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Fully-Interleaved Linear Arrays with Predictable Sidelobes based

on Almost Difference Sets

G. Oliveri and A. Massa

Abstract

This paper proposes an analytical technique based on AlmostDifference Sets (ADSs) for

the design of interleaved linear arrays with well-behaved and predictable radiation features.

Thanks to the mathematical properties ofADSs, such a methodology allows the design

of interlaced arrangements with peak sidelobe levels (PSLs) only dependent on the aper-

ture size, the number of elements of each subarray, and the behavior of the autocorrelation

function of theADS at hand.PSL bounds are analytically derived and an extensive nu-

merical validation is provided to assess the reliability, the computational efficiency, and

the effectiveness of the proposed approach.It is worth noticing that, although without any

optimization, such an analytic technique si still able to improve (on average0.3 dB) the

performances ofGA-optimized layouts.

Key words: Array Antennas, Interleaved Arrays, Linear Arrays, Almost Difference Sets, Side-

lobe Control.
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1 Introduction

Shared aperture antennas are of great interest in modern wireless systems for communications,

detection, location, and remote sensing because of the needto realize multiple functions in a

limited space [1]. In this framework, aperture arrays of intermixed elements (often indicated

as interleaved, interlaced or interspread arrays) provideinteresting performances in terms of

hardware complexity, aperture efficiency, and flexibility [1]. However, each array of an inter-

leaved arrangement usually shows a lower gain and a higher peak sidelobe level (PSL) than the

corresponding non-interlaced design [2].

In order to overcome such drawbacks, several approaches have been proposed [1][2][3][4]

starting from random techniques aimed at reducing thePSL of shared apertures [5]. More

recently, stochastic optimization techniques [1][2] or hybrid approaches [6] have been success-

fully applied. Despite their effectiveness, statistical methodologies are computationally ineffi-

cient when dealing with large apertures anda-priori estimates of the expected performances are

usually not available.

In this paper, the problem of designing equally-weighted fully-interleaved arrays is addressed

to provide design guidelines to be employed when, whether bychoice or by necessity, a com-

putationally inexpensive and sub-optimal solution with predictable performances is preferred to

a random or a stochastically-optimized design. Towards this end, the synthesis of interleaved

arrays is faced with an innovative approach that exploits the so-called Almost Difference Sets

(ADSs). ADSs are binary sequences characterized by a three-level autocorrelation [7]. They

constitute a generalization of Difference Sets [8] and havebeen used to design thinned arrays

with predictable sidelobes [9]. In order to exploitADSs for the synthesis of interleaved ar-

rangements, let us consider the following properties:

• the complementary of anADS is still anADS [10];

• anADS-based array has a low and predictablePSL [9];

• ADS arrangements can be analytically (i.e., without any optimization) designed whatever

the aperture size [9].

3



Such features suggest the design of an interleaved array with low sidelobes by determining the

memberships of the array elements to the two subarrays according to the sequence of0s or1s

of anADS sequence [11] in a complementary way.

Let also notice that an extension or application of thePSL estimators obtained in [9] forADS-

based thinned arrays to interleaved distributions is not trivial. As a matter of fact, the bounds

deduced in [9] refer to the best thinned array among those obtained by cyclically shifting a

referenceADS sequence. However, such a configuration is not generally thebest one when

shared apertures are of interest, since the complementary array can exhibit an unsatisfactory

PSL. The definition of a compromiseADS guaranteeing the most suitablePSL for both

arrays is then needed. Accordingly, a new theoretical and numerical analysis is mandatory to

deduce and validate suitable bounds forADS-based interleaved arrays.

The outline of the paper is as follows. After a short introduction on array thinning through

ADSs (Sect. 2), the exploitation of theADS properties for array interleaving is analyzed from

a mathematical viewpoint to highlight the key features ofADS-based designs (Sect. 3). The

numerical validation is carried out in Sect. 4 by considering a set of representative examples

and comparisons with state-of-the art approaches. Finally, some conclusions are drawn (Sect.

5).

2 Almost Difference Sets in Linear Array Thinning

In this section, theADS-based guidelines for linear array thinning [9] are briefly reviewed and

the most relevant properties ofADSs discussed.

The array factor of a linear array defined over a lattice ofN equally-spaced positions (d being

the inter-element distance in wavelength) in the absence ofmutual coupling is given by [13]

SI(u) =

N−1
∑

n=0

wI(n)exp(i2πndu) (1)

wherewI(n) is the array weight of then-th element,u = sin(θ) (u ∈ [−1, 1]). Dealing with

equally-weighted thinned arrays,wI(n) can either assume the value1 (i.e., the radiating element

is present) or0 (i.e., the element is missing). In [9], the design of thinnedarrays is carried out
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according to the following rule

wI(n) =











1 if n ∈ DI

0 otherwise

whereDI is an (N, K, Λ, t)-ADS, that is a set ofK unique integers belonging to the range

[0, N − 1] whose associated binary sequence,wI(n), n = 0, .., N − 1 has a three-valued cyclic

autocorrelation functionξI(τ) ,
∑N−1

n=0 wI(n)wI [ (n + τ)|mod N ], τ ∈ [0, N − 1], of periodN

ξI(τ) =























K τ = 0

Λ for t values of τ

Λ + 1 otherwise

(2)

Thanks to this, it is possible to predict the behavior of the power pattern of the resulting thinned

arrangement. As a matter of fact, it can be shown that [9] the inverse discrete Fourier transform

(IDFT ) of ξI(τ), ΞI(k) ,
∑N−1

τ=0 ξI (τ) exp
(

2πi τk
N

)

, is equal to the samples of the array power

pattern|SI(u)|2 atu = k
dN

ΞI(k) =

∣

∣

∣

∣

SI

(

k

dN

)
∣

∣

∣

∣

2

. (3)

By exploiting such a property, it has been possible [9] to determine suitable bounds for the peak

sidelobe level of theADS-based arrays

PSLopt
MIN ≤ PSLopt

DW ≤ PSLopt {DI} ≤ PSLopt
UP ≤ PSLopt

MAX (4)

where

PSLopt {DI} = minσ∈[0,N−1]

{

PSL
(

D
(σ)
I

)}

, (5)

D
(σ)
I ,

{

d
(σ)
k ∈ Z

N , k = 1, ..., K : d
(σ)
k = (dk + σ)|mod N

}

being theσ-th sequence obtained

by cyclically shifting ofσ positions the originalADS DI (D(σ)
I is still anADS [7]) and

PSL
(

D
(σ)

I

)

,
maxu/∈Rm |SI(u)|2

|SI(0)|2
, (6)
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whereRM ,







−UM ≤ u ≤ UM , UM = 1

2Nd

r

maxkΞ(k)

Ξ(0)







is the mainlobe region [9]. Moreover,







































PSLopt
MIN =

K−Λ−1−
q

t(N−t)
(N−1)

(N−1)Λ+K−1+N−t

PSLopt
DW = maxkΞI (k)

ΞI (0)

PSLopt
UP = maxkΞI(k)

ΞI (0)
(0.8488 + 1.128 log10N)

PSLopt
MAX =

“

K−Λ−1+
√

t(N−t)
”

(0.8488+1.128 log10N)

(N−1)Λ+K−1+N−t
.

Properties and theorems ofADSs can be found in [7][10] and the references therein. In the next

section, the properties ofADSs and the associated arrangements will be exploited for designing

interleaved arrays.

3 ADS-Interleaved Arrays - Mathematical Formulation

Let us consider the following theorem:

Theorem 1 [10]: if DI is anADS, then its complementary setDC , Z
N\DI ,

(i.e.,DC =
{

dj ∈ Z
N , j = 1, ..., N − K : dj /∈ DI

}

) is an(N, KC , ΛC , t)-ADS,

whereKC = N − K andΛC = N − 2K + Λ(1) .

Starting from anADS array with weightswI(n), n = 0, .., N −1, the coefficientswC(n) of the

complementary distribution are given by

wC(n) = 1 − wI(n), n = 0, .., N − 1. (7)

The aperture efficiencyηap (ηap ,
PN−1

n=0 wI(n)+
PN−1

n=0 wC(n)

N
) of the arisingfully interleaved array

turns out to beηap = K+KC

N
[1] and it is equal to1 sinceKC = N − K (see Theorem 1).

For illustrative purposes, let us consider the(30, 15, 7, 22)-ADS [11]

DI = {5, 6, 8, 9, 10, 14, 16, 17, 19, 20, 22, 23, 24, 27, 29} (8)

(1) It is worth to point out thatTheorem 1 holds true also for a sub-class ofADSs for whicht = 0 or t = N−1
[12] [namely, the Difference Sets (DSs)] widely used in array thinning [8].
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whose complementaryADS is given by

DC = {0, 1, 2, 3, 4, 7, 11, 12, 13, 15, 18, 21, 25, 26, 28} . (9)

The associated binary sequences,wI(n) and wC(n), n = 0, ..., N − 1, and the interleaved

arrangement are shown in Fig. 1(a).

Since the element distribution of the interleaved antenna is composed by two distinctADS-

based thinned arrays, several conclusions drawn in [9] still hold true. More specifically, (a)

both arrays are expected to exhibit lowerPSLs with respect to random arrangements, (b) each

design can be cyclically shifted to obtain up toN different ADS arrangements, and (c) the

methodology can be applied to synthesize extremely large apertures with negligible computa-

tional costs. Moreover, some specific properties ofADS interleaved arrays can be deduced

from Theorem 1. As an example, the autocorrelation functions satisfy the following equation

(see the Appendix)

ξC(τ) = ξI(τ) + [N (1 − 2ν)] (10)

whereξC(τ) ,
∑N−1

n=0 wC(n)wC [ (n + τ)|mod N ] andν , K
N

is the unbalancing factor (ν ∈

[0, 0.5], ν = 0.5 being the index value for interleaved arrays with the same number of active

elements). For illustrative purposes, the plots of the autocorrelation functions of theADSs in

(8) and (9) are reported in Fig. 1(b). As expected,ξI(τ) = ξC(τ) sinceν = 0.5. On the other

hand, the samples of the corresponding power patterns|SI(u)|2 and|SC(u)|2 comply with Eq.

(3)(2), and the ratio between the normalized values ofΞI(k) andΞC(k), Ψ(k) , ΞC(k)
ΞC(0)

ΞI (0)
ΞI(k)

, is

constant and equal to (see the Appendix)

Ψ =

(

1 − ν

ν

)2

k = 1, ..., N − 1 (11)

[e.g.,Ψ = 0 dB in Fig. 1(c) beingν = 0.5]. In such a case,ΞI(k) = ΞC(k) (i.e., the samples

of the power patterns of the interleaved arrays atu = k
dN

coincide) sinceξI(τ) = ξC(τ).

(2) Eq. (3) can be written for the array deduced fromDC by replacingξI(τ) with ξC(τ), ΞI(k) with ΞC(k) ,
IDFT {ξC (τ)}, andSI(u) with SC(u) ,

∑N−1
n=0 wC(n)exp(i2πndu).
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As for ν 6= 0.5, the interleaved arrangement deduced from the(53, 14, 3, 26)-ADS [11] is

displayed in Fig. 2(a). In this case,ν ≈ 0.26 and the interleaved subarrays have a quite different

number of active elements. According to (10),ξC(τ) has the same behavior ofξI(τ), but it is a

replica translated byN(1 − 2ν) = 25 [Fig. 2(b)]. The pattern samples still coincide with the

IDFT values of the corresponding autocorrelations atu = k
dN

, even though significantly differ

from those whenν = 0.5 since hereΨ ≈ 8.89 dB [Fig. 2(c)]. As a matter of fact, non-negligible

differences verify between thePSLs of |SI(u)|2 and|SC(u)|2 because of the dependence ofΨ

onν (Fig. 3).

As regards thePSL bounds of interleavedADS-based arrays, a straightforward exploitation

of (4) is not at hand. Indeed, although Eq. (4) can be applied to predictPSLopt {DI} =

minσ∈[0,N−1]

{

PSL
(

D
(σ)
I

)}

or PSLopt {DC} = minσ∈[0,N−1]

{

PSL
(

D
(σ)
C

)}

[9], it is not

generally possible to determine a shift optimal for bothDI andDC sinceσopt
I 6= σopt

C be-

ing σopt
I , argminσ∈[0,N−1]

{

PSL
(

D
(σ)
I

)}

and σopt
C , argminσ∈[0,N−1]

{

PSL
(

D
(σ)
C

)}

.

Therefore, a suitable compromise solution, which is not guaranteed to satisfy (4), has to be

taken into account. However, since several “compromises” could be defined also according to

the application at hand (e.g., differentPSL constraints could be required on each subarray of

the interleaved arrangement) and unlike [9], suitablePSL bounds for any admissible compro-

mise interleaving (i.e., any value ofσ) are defined (see the Appendix)

PSLI
MIN ≤ PSLI

DW ≤ PSL
(

D
(σ)
I

)

≤ PSLI
UP ≤ PSLI

MAX

PSLC
MIN ≤ PSLC

DW ≤ PSL
(

D
(σ)
C

)

≤ PSLC
UP ≤ PSLC

MAX

(12)

wherePSLI
MIN = PSLopt

MIN , PSLI
DW = Γ (0.5 + 0.8 log10N), PSLI

UP = maxkΞI(k)
ΞI(0)

(1.9 + 1.8 log10N),

PSLI
MAX =

“

K−Λ−1+
√

t(N−t)
”

(1.9+1.8 log10N)

K2 , andPSLC = ΨPSLI , being

Γ ,
mink (ΞI(k))

K2
k = 1, ..,

⌊

N − 1

2

⌋

. (13)

It is worthwhile to point out that, while the values ofPSLI
DW and PSLI

UP can be deter-

mined only when the explicit form of theADS is available, the computation ofPSLI
MAX

andPSLI
MIN only requires the knowledge ofN , K, Λ, andt. Moreover, one can observe that
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mutual-coupling effects could be integrated in the above treatment by considering an analysis

similar to that performed in [14] for thinnedADS arrangements.

4 Numerical Analysis and Validation

This section is aimed at numerically assessing the performances of interleaved arrays based

on ADSs as well as the reliability of thea-priori bounds in (12). Such a study is carried out

by considering numerical experiments concerned with arrays having different apertures and

thinning factors [11].

The first numerical example deals with balanced interleavedarrays (i.e.,ν = 0.5) for which

Ψ = 1. The plots ofPSL
(

D
(σ)
I

)

andPSL
(

D
(σ)
C

)

versusσ in Fig. 4(a) refer to the interleaved

arrangements generated from the(150, 75, 37, 112)-ADS (N = 150, K = KC = 75, η ,

t
N−1

≈ 0.75). As it can be observed, every interleaved configuration (i.e., different value ofσ)

presents aPSL value that complies with (12) [Fig. 4(a)]. On the other hand, a shift optimal for

both sub-arrays cannot be identified sinceσopt
I 6= σopt

C [Fig. 4(a)], although the power patterns

in correspondence with

σcomp , argminσ

[

PSL
(

D
(σ)
I

)

+ PSL
(

D
(σ)
C

)]

(14)

[Fig. 4(b)], σopt
I [Fig. 4(c)], andσopt

C [Fig. 4(d)] indicate that different compromise solutions

(e.g., minimumPSL for either one or both the arrays) can be easily generated by simply cycli-

cally shifting the referenceADS without any optimization.

Similar conclusions hold true also for different values ofN andη as confirmed by the plots in

Fig. 5 where the results concerned with the(700, 350, 174, 175)-ADS (N = 700, K = KC =

350, η ≈ 0.25) are shown. The existence of different compromise solutions within thea-priori

bounds [indicated by the boxes in Figs. 6(a), 7(a), 10(b), and 11(b)] is further highlighted in Fig.

6(a) (ν = 0.5, η = 0.25) for different aperture sizes (N = 150, 312, 700). As expected, wider

arrays provide lowerPSL values whatever the “compromise” criterion [Fig 6(a)] and, for each

dimensionN , there exist several arrangements withPSL performances close to those withσopt
I ,

σopt
C , andσcomp [Fig. 6(a)]. This latter as well as the uniform distribution of the “representative”
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points in Fig. 6(a) further confirm the flexibility and effectiveness of theADS-based approach

in determining a broad set of compromise alternatives by means of simple cyclic shifts of a

reference sequence.

In order to complete the numerical validation forν = 0.5 andη = 0.25, Figure 6(b) summarizes

the obtained results in terms ofPSL versusN .

Although balanced arrangements (i.e.,ν = 0.5) are commonly analyzed in the literature [1] and

usually adopted in practical applications, interleaved arrays withν 6= 0.5 can be of some interest

when dealing with wireless services requiring at the same time different radiation performances

on the same physical aperture. In order to analyze their performances, the values of thePSLs

and their bounds are shown in Fig. 7 for different aperture sizes (N = 149, 349, 701) being

ν = 0.25 andη = 0.5. As it can be observed,PSL
(

D
(σ)
I

)

andPSL
(

D
(σ)
C

)

significantly

differ [Fig. 7(a)] because of the unbalance between the two subarrays. Nevertheless, their

values still comply with (12) as better resumed in Figs. 7(b)-7(c). For completeness, the power

patterns in correspondence withσcomp and for two representative cases are reported in Fig. 8

[Fig. 8(a) - N = 149, Fig. 8(b) - N = 701]. As expected, the envelopes of the patterns differ

approximately byΨ (Ψ ≈ 9.5 dB) within the sidelobe region outsideRM .

Such a behaviour suggests the use of non-isotropic array elements to compensate thePSL

differences between the two interleaved arrays then widening the admissible set ofADS-based

interleaved arrays with similar/close radiation characteristics of their subarrays. To investigate

such a possibility, a simple model for the elementary radiator is considered in the following.

More specifically, acosm(θ)-element is employed [15] (see Fig. 9) and the array pattern is

modified as follows

S
(m)
I (u) = SI(u) ×

(√
1 − u2

)m

being
√

1 − u2 = cosθ. For notation simplicity, let us indicate withPSL
(

D
(σ)

I , m
)

,
maxu/∈Rm

˛

˛

˛S
(m)
I (u)

˛

˛

˛

2

˛

˛

˛S
(m)
I (0)

˛

˛

˛

2

the associated peak sidelobe level. By analyzing the behaviours ofPSL
(

D
(σ)

C

)

andPSL
(

D
(σ)

I , m
)

(m ≤ 0.25) of the interleaved array deduced from the(106, 52, 25, 78)-ADS [Fig. 10(a)], one

can infer that the use of a very low-directivity radiator (m ≈ 0.25) [i.e., a small “translation”

of the representative points in Fig. 10(b)] is enough to reach the conditionPSL
(

D
(σcomp

m )
C

)

≈
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PSL
(

D
(σcomp

m )
I , m

)

[Fig. 10(c)] sinceΨ ≈ 0.32 dB for theADS at hand. As a matter of fact,

the value ofm depends onΨ. The largerΨ, the higher is the directivity of the array element

necessary to balance the radiation patterns of the two subarrays. As an example, the interleaved

distribution generated from the(109, 27, 6, 54)-ADS (ν ≈ 0.25) and characterized byΨ ≈ 9.64

dB [Fig 11(a)] requires a higherm value (i.e.,m ≈ 300). The plots in Fig. 11(b) confirm that

a larger translation is needed in this case to locate the point representative ofσcomp
m close to the

diagonal of the diagram [i.e., the locus wherePSL
(

D
(σcomp)

C

)

= PSL
(

D
(σcomp)

I , m
)

]. On the

other hand, the use of a highly directive element significantly modifies the originalADS-based

pattern as shown in Fig. 11(c) where the plots of the compromise patterns for different values

of m are reported. It should be also noted that a more regular pattern could be synthesized

by resorting to more complex or customized radiating elements and a suitable optimization for

eachADS at hand, for the time being, out of the scope of the present paper.

The last experiment is aimed at comparing the performances of ADS-based interleaved designs

with those from state-of-the-artGA-based approaches [1]. Towards this end, the benchmark ar-

rangement described in [1] and characterized byN = 60 andν = 0.5 is dealt with. ThePSL of

theGA-optimized array [1] and those of theADS-based designs based on the(60, 30, 14, 15)-

ADS are shown in Figs. 12(a)-12(b). The corresponding beampatterns in Fig. 12(c) show that

theADS interleaved array favourably compares with theGA antenna [PSLGA = −13.48 dB

vs. PSL
(

D
(σcomp)
I

)

= −13.27 dB andPSL
(

D
(σcomp)
C

)

= −13.93 dB], even if no optimiza-

tion has been performed for theADS synthesis.

Moreover, Figure 12(b) points out that several shifted variations of the reference ADS pro-

vide PSL performances close to that of theGA-optimized array. This further confirms the

convenience of exploiting (for a pre-screening of the admissible interleaved arrays or as start-

ing point for optimization processes) theADSs to synthesize reliable and efficient interleaved

arrangements.
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5 Conclusions

In this paper, anADS-based methodology has been proposed for interleaving equally-weighted

linear arrays operating on the same frequency band. Such adeterministic approach is not aimed

at synthesizing optimal arrays, but rather to provide suitable guidelines for the efficient de-

sign of shared apertures with predictable performances. Anextensive numerical analysis has

been carried out to evaluate thePSL performances as well as to prove the reliability of the

analytically-derivedPSL bounds in the absence of mutual coupling effects.

The obtained results have pointed out the following key features of theADS-based interleaving:

• the PSLs of the interleaved arrays area-priori known when the corresponding refer-

enceADS sequences are available in explicit form, while suitable bounds are predicted

otherwise;

• the difference between thePSL bounds of the two complementary subarrays amounts to

Ψ and only depends on the thinning indexν (i.e.,PSLC = Ψ × PSLI);

• the ADS-based approach can be straightforwardly applied to synthesize both balanced

(ν = 0.5) and unbalanced interleaved arrays (ν → 0);

• theADS-based design enables the synthesis of very large interleaved arrays with negli-

gible computational costs and resources;

• several compromise configurations that satisfy different requirements can be easily gen-

erated from a referenceADS by means of cyclic shifts;

• ADS interleaved arrays favourably compare with state-of-the-art optimized arrangements

[e.g.,PSLGA = −13.48 dB vs.PSL
(

D
(σcomp)
I

)

= −13.27 dB andPSL
(

D
(σcomp)
C

)

=

−13.93 dB], although theADS synthesis does not include any optimization;

• directive elementscan be profitably used to enlarge the applicability ofADSs as well as

the number of admissible balanced arrays.

It is also worth observing that, although the proposed technique does not theoretically generate

the optimal solution of the synthesis problem at hand, it canbe easily integrated with optimiza-
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tion approaches either to define a sub-optimal starting solution for a local search or to generate

the initial population for a multiple-agent optimization.

Future efforts will be devoted to extend theADS-based synthesis method to other array ge-

ometries and wireless scenarios, as well as to take into account the effects of mutual coupling

between the array antennas in the mathematical derivation.Moreover, although out of the scope

of this paper andnot pertinent to array synthesis, but rather to combinatorial mathematics, ad-

vances in the generation techniques ofADSs are expected.
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Appendix

- Derivation of (10)

By definition

ξC(τ) =

N−1
∑

n=0

wC(n)wC [ (n + τ)|mod N ] . (15)

By exploiting (7), it results that

ξC(τ) =

N−1
∑

n=0

[1 − wI(n)] {1 − wI [ (n + τ)|mod N ]}

and after simple manipulations, we obtain

ξC(τ) =
∑N−1

n=0 1 −
∑N−1

n=0 wI(n) −
∑N−1

n=0 wI [ (n + τ)|mod N ] +
∑N−1

n=0 wI(n)wI [ (n + τ)|mod N ] =

= N − 2K + ξI(τ).

being
∑N−1

n=0 wI(n) =
∑N−1

n=0 wI [ (n + τ)|mod N ] = K.

- Derivation of (11)

Starting from Eq. (10) and taking into account the definitionof ΞC(k), it can be shown that

ΞC(k) =
∑N−1

n=0 ξC(τ)exp
(

2πi τk
N

)

=

=
∑N−1

n=0 {ξI(τ) + [N (1 − 2ν)]} exp
(

2πi τk
N

)

=

= ΞI(k) +
∑N−1

n=0 [N (1 − 2ν)] exp
(

2πi τk
N

)

=

= ΞI(k) + N [N (1 − 2ν)] δ(k)

whereδ(k) = 1 if k = 0 andδ(k) = 0, otherwise. By evaluating the normalized version of

ΞI(k), ΞI(k) , ΞI(k)
ΞI(0)

, andΞC(k), ΞC(k) , ΞC(k)
ΞC(0)

, it turns out that

ΞC(k) =
ΞI(k)

ΞI(0) + N [N (1 − 2ν)]

whenk 6= 0. Consequently,

Ψ =
ΞC(k)

ΞI(k)
=

ΞI(0)

ΞI(0) + N [N (1 − 2ν)]
, k 6= 0.

14



Finally, sinceΞI(0) =
∑N−1

n=0 ξI(τ)exp (0) = K2, one obtains that

Ψ =
K2

K2 + N [N (1 − 2ν)]
=

K2

K2 + N2 − 2NK
=

(

K

N − K

)2

.

- Derivation of (12)

The array factor of the array generated fromD(σ)
I is equal to [9]

S
(σ)
I (u) =

N−1
∑

k=0

ω
(σ)
I (k)

sin (πduN − kπ)

N sin
(

πdu − kπ
N

) (16)

whereω
(σ)
I (k) , IDFT

{

w
(σ)
I (n)

}

=
∑N−1

n=0 w
(σ)
I (n)exp(2πink

N
) (k = 0, ..., N − 1) and

w
(σ)
I (n) is defined as follows

w
(σ)
I (n) =











1 if n ∈ D
(σ)
I

0 otherwise
. (17)

By substituting (16) into (6), one obtains

PSL
(

D
(σ)

I

)

=

maxu/∈Rm

∣

∣

∣

∣

∑N−1
k=0 ω

(σ)
I (k) sin(πduN−kπ)

N sin(πdu− kπ
N )

∣

∣

∣

∣

2

K2
. (18)

As regards the lower bounds ofPSL
(

D
(σ)

I

)

, it results that

PSL
(

D
(σ)

I

)

≥
maxk∈[1,⌊N−1

2 ⌋]
∣

∣

∣
ω

(σ)
I (k)

∣

∣

∣

2

K2
(19)

by sampling (18) atu = p
Nd

, p = 1, ..., N − 1 and observing thatu = 0 ∈ Rm. Then,

PSL
(

D
(σ)

I

)

≥ 1

K2
maxk∈[1,⌊N−1

2 ⌋]ΞI(k) (20)
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since [9]

ω
(σ)
I (k) =

√

ΞI(k)exp(iφ
(σ)
k ). (21)

By using (20), it can deduced that the lower boundPSLI
MIN coincides withPSLopt

MIN in [9]

since the right term in (20) does not depend onσ.

As far asPSLI
DW is concerned, a tighter bound than that in [9] can be provided. Towards this

end, starting from the observation that the peaks of the beampattern within the sidelobe region

are located atu = q+1/2
Nd

[9], let us consider the following approximation

PSL
(

D
(σ)

I

)

≈
maxq

∣

∣

∣

∣

∑N−1
k=1

√

ΞI(k)exp(iφ
(σ)
k ) (−1)q−k

N sin[ π
N (q−k+ 1

2)]

∣

∣

∣

∣

2

K2
, q = 1, ..,

⌊

N − 1

2

⌋

.

(22)

If the the explicit form of theADS D
(σ)
I is available, thenΓ [see (13)] is a known quantity and

(22) can be reformulated as follows

PSL
(

D
(σ)

I

)

≥ Γ maxq

∣

∣

∣

∣

∣

N−1
∑

k=1

exp(iφ
(σ)
k )

(−1)q−k

N sin
[

π
N

(

q − k + 1
2

)]

∣

∣

∣

∣

∣

2

q = 1, ..,

⌊

N − 1

2

⌋

.

By defining the quantity∆(N) = minσ=0,..,N−1

{

maxq

∣

∣

∣

∣

∑N−1
k=1 exp(iφ

(σ)
k ) (−1)q−k

N sin[ π
N (q−k+ 1

2)]

∣

∣

∣

∣

2
}

(q = 1, ..,
⌊

N−1
2

⌋

), it turns out that

PSL
(

D
(σ)

I

)

≥ Γ ∆(N) (23)

where the term on the right side is independent onσ. In order to estimate∆(N) and likewise

to [9], it is possible to model the phase termsφ
(σ)
k (k = 1, .., N − 1) as independent identically

distributed (i.i.d) uniform random variables. Since the statistics of∆(N) are not known in

closed form, Monte Carlo simulations were carried out to derive the following approximation

E {∆(N)} ≈ 0.5 + 0.8 log10(N) (24)

which holds true forN & 100. By substituting (24) in (23), the analytical form ofPSLI
DW is

obtained.
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Concerning the upper bounds ofPSL
(

D
(σ)

I

)

, the following approximation can be obtained

starting from (22)

PSL
(

D
(σ)

I

)

≤ maxkΞI(k)

ΞI(0)
maxq

∣

∣

∣

∣

∣

N−1
∑

k=1

exp(iφ
(σ)
k )(−1)q−k

N sin
[

π
N

(

q − k + 1
2

)]

∣

∣

∣

∣

∣

2

, q = 1, ..,

⌊

N − 1

2

⌋

.

(25)

Then, after simple manipulations, it turns out that

PSL
(

D
(σ)

I

)

≤ maxkΞI(k)

ΞI(0)
Mmax (26)

whereMmax = maxσ [M(σ)] (σ = 0, ..., N − 1) and

M(σ) , maxq

∣

∣

∣

∣

∣

N−1
∑

k=1

exp(iφ
(σ)
k )(−1)q−k

N sin
[

π
N

(

q − k + 1
2

)]

∣

∣

∣

∣

∣

2

, q = 1, ..,

⌊

N − 1

2

⌋

.

Still modeling the phase termsφ(σ)
k (k = 1, .., N − 1) as i.i.d uniform random variables and

performing Monte Carlo simulations, the following approximation can be obtained

Mmax ≈ 1.9 + 1.8 log10(N), N & 100.

By recalling that [9]
maxkΞI(k)

ΞI(0)
≤ K − Λ − 1 +

√

t(N − t)

K2

and substituting in (26), the upper boundPSLI
MAX is obtained.

As for PSLI
UP , one can observe that when theADS at hand is known,χ is a known quantity.

Thus, the following bound can be deduced directly from (26)

PSLI
UP =

maxkΞI(k)

ΞI(0)
[1.9 + 1.8 log10(N)] .

Finally, it is worthwhile to point out that the bounds onPSL
(

D
(σ)

C

)

can be directly inferred

from those onPSL
(

D
(σ)

I

)

by simple substitution ofKC andΛC with K andΛ, respectively,

throughout the derivation. More specifically, one can deduce (12) by exploiting the relationship

betweenΞI(k) andΞC(k) [Eq. (11)].
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FIGURE CAPTIONS

• Figure 1. Balanced interleaved arrays [N = 30, ν = 0.5, η = 0.75 - (30, 15, 7, 22)-

ADS]: (a) binary sequences and interleaved arrangement, (b) plots ofξI(τ) andξC(τ),

and (c) plots of|SI(u)|2, |SC(u)|2, ΞI(k), andΞC(k).

• Figure 2. Unbalanced interleaved arrays [N = 53, ν = 0.264, η = 0.25 - (53, 14, 3, 26)-

ADS]: (a) binary sequences and interleaved arrangement, (b) plots ofξI(τ) andξC(τ),

and (c) plots of|SI(u)|2, |SC(u)|2, ΞI(k), andΞC(k).

• Figure 3. Plot ofΨ versusν.

• Figure 4. Balanced interleaved arrays [N = 150 (aperture size:74.5λ), ν = 0.5, η =

0.75 - (150, 75, 37, 112)-ADS]: (a) PSL value versus cyclic shiftσ, σ = 0, ..., N − 1.

Plots of the normalized patterns|SI(u)|2 and |SC(u)|2 generated from (b) D
(σcomp)
I , (c)

D
(σopt

I )

I , and (d) D
(σopt

C )

I .

• Figure 5. Balanced interleaved arrays [N = 700 (aperture size:349.5λ), ν = 0.5,

η = 0.25 - (700, 350, 174, 175)-ADS]: (a) PSL value versus the cyclic shiftσ, σ =

0, ..., N − 1. Plots of the normalized patterns|SI(u)|2 and|SC(u)|2 generated from (b)

D
(σcomp)
I , (c) D

(σopt
I )

I , and (d) D
(σopt

C )

I .

• Figure 6. Balanced interleaved arrays [ν = 0.5, η = 0.25]: (a) representative points of

theADS-based solutions andPSL bounds whenN = 150, N = 312, N = 700, and (b)

PSL values and bounds versus the array sizeN .

• Figure 7. Unbalanced interleaved arrays [ν = 0.25, η = 0.5]: (a) representative points

of theADS-based solutions andPSL bounds whenN = 149, N = 349, N = 701, (b)

PSLI and (c) PSLC values and bounds versus the array sizeN .

• Figure 8. Unbalanced interleaved arrays [ν = 0.25, η = 0.5]. Plots of the normal-

ized patterns|SI(u)|2 and|SC(u)|2 generated from theσcomp-th shifted version of (a) the

(149, 38, 9, 74)-ADS (N = 149 - Aperture size:74λ) and (c) the (701, 175, 43, 350)-

ADS (N = 701 - Aperture size:350λ).
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• Figure 9. Element pattern of the directive radiator for different values of the “directivity”

indexm [m ∈ {0, 0.25, 1, 10, 99, 200, 300}].

• Figure 10. Unbalanced interleaved arrays [N = 106, ν = 0.49, η = 0.75]: (a) PSL

value versus the cyclic shiftσ, σ = 0, ..., N − 1, (b) representative points of theADS-

based solutions with isotropic and directive elements (m = 0.25), and (c) plots of the

normalized patterns|SC(u)|2 and
∣

∣

∣
S

(m)
I (u)

∣

∣

∣

2

(m = 0.0, 0.25) in correspondence with

D
(σcomp

m )
I .

• Figure 11. Unbalanced interleaved arrays [N = 109, ν = 0.25, η = 0.5]: (a) PSL

value versus the cyclic shiftσ, σ = 0, ..., N − 1, (b) representative points of theADS-

based solutions with isotropic and directive elements (m = 10, 300), and (c) plots of the

normalized patterns|SC(u)|2 and
∣

∣

∣
S

(m)
I (u)

∣

∣

∣

2

(m = 0, 10, 300) in correspondence with

D
(σcomp

m )
I .

• Figure 12. Comparative Assessment - Balanced interleaved arrays [N = 109 (aperture

size:29.5λ), ν = 0.5]: (a) PSL value of theGA solution [1] and theADS-based array

versus the cyclic shiftσ, σ = 0, ..., N − 1, (b) representative points, and (c) plots of the

normalized patterns derived from theADS D
(σcomp) and synthesized by theGA-based

procedure.
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wI(n) = [0000 0110 1110 0010 1101 1011 1001 01]
wC(n) =[1111 1001 0001 1101 0010 0100 0110 10]
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Figure 1 - G. Oliveri et al., “Fully-Interleaved Linear Arrays ...”
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wI(n) = [1100 0000 0010 0101 1000 0000 1000 1000 0000 1000 0010 1011 0100 0]
wC(n) =[0011 1111 1101 1010 0111 1111 0111 0111 1111 0111 1101 0100 1011 1]
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Figure 10 - G. Oliveri et al., “Fully-Interleaved Linear Arrays ...”

31



-22

-20

-18

-16

-14

-12

-10

-8

-6

 0  20  40  60  80  100

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

σ

N=109, ν=0.25, η=0.5

PSL(DI
(σ)) PSL(D(σ)

C ) PSL(DI
(σ),10) PSL(DI

(σ),300)

σcomp

σ10
compσ300

comp

(a)

-21

-17.5

-14

-10.5

-7

-21 -17.5 -14 -10.5 -7

P
S

L(
D

C(σ
) )

PSL(DI
(σ))

N=109, ν=0.25, η=0.5

m=0 m=10 m=300

σcompσ10
compσ300

comp

(b)

-40

-35

-30

-25

-20

-15

-10

-5

 0

UM UM
C 0  0.25  0.5  0.75  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

N=109, ν=0.25, η=0.5

|SI(u)|2 - σcomp

|SC(u)|2 - σcomp
|SI

(10)(u)|2 - σcomp

|SI
(300)(u)|2 - σcomp

PSL(DI
(σcomp))

PSL(DC
(σcomp))

PSL(DI
(σ10

comp),10)PSL(DI
(σ300

comp),300)

(c)

Figure 11 - G. Oliveri et al., “Fully-Interleaved Linear Arrays ...”

32



-15

-14

-13

-12

-11

-10

-9

 0  10  20  30  40  50  60

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

σ

N=60, ν=0.5

σcomp

PSL(DI
(σ)) PSL(DC

(σ))

PSLGA

(a)

-16

-15

-14

-13

-12

-11

-10

-9

-16 -15 -14 -13 -12 -11 -10 -9

P
S

L(
D

C(σ
) )

PSL(DI
(σ))

N=60, ν=0.5

σcomp

PSLGA

(b)

-30

-25

-20

-15

-10

-5

 0

UM 0  0.2  0.4  0.6  0.8  1

N
or

m
al

iz
ed

 v
al

ue
 [d

B
]

u

N=60, ν=0.5

PSLGAPSL(DI
(σcomp)) PSL(DC

(σcomp))

|SI(u)|2 - σcomp

|SC(u)|2 - σcomp

|SI(u)|2=|SC(u)|2 - [Haupt, 2005]

(c)

Figure 12 - G. Oliveri et al., “Fully-Interleaved Linear Arrays ...”
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