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Abstract

Pairwise comparison matrices (PCMs) play a key role in multi-criteria decision-
making, especially in the analytic hierarchy process. It could be necessary for an
expert to compare alternatives based on various criteria. However, for a variety
of reasons, such as lack of time or insufficient knowledge, it may happen that
the expert cannot provide judgments on all pairs of alternatives. In this case, an
incomplete pairwise comparison matrix is formed.

In the first research part, an optimization algorithm is proposed for the optimal
completion of an incomplete PCM. It is intended to numerically minimize a con-
strained eigenvalue problem, in which the objective function is difficult to write
explicitly in terms of variables. Numerical simulations are carried out to examine
the performance of the algorithm. The simulation results show that the proposed
algorithm is capable of solving the minimization of the constrained eigenvalue
problem.

In the second part, a comparative analysis of eleven completion methods is stud-
ied. The similarity of the eleven completion methods is analyzed on the basis
of numerical simulations and hierarchical clustering. Numerical simulations are
performed for PCMs of different orders considering various numbers of missing
comparisons. The results suggest the existence of a cluster of five extremely
similar methods, and a method significantly dissimilar from all the others.

In the third part, the filling in patterns (arrangements of known comparisons)
of incomplete PCMs based on their graph representation are investigated under
given conditions: regularity, diameter and number of vertices, but without prior
information. Regular and quasi-regular graphs with minimal diameter are pro-
posed. Finally, the simulation results indicate that the proposed graphs indeed
provide better weight vectors than alternative graphs with the same number
of comparisons. This research problem’s contributions include a list of (quasi-
)regular graphs with diameters of 2 and 3, and vertices from 5 up to 24.

Keywords: Pairwise comparisons, Incomplete pairwise comparison matrix, Ana-
lytic hierarchy process, Perron eigenvalue, Consistency, Diameter, Regular graph.
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Chapter 1

Introduction

1.1 Motivation

Pairwise comparison is a key concept in multi-criteria decision analysis (MCDA)
(Greco et al., 2016; Triantaphyllou et al., 1998). The quantitative application
of pairwise comparisons in decision analysis was pioneered by Thurstone (1927).
Since then, Saaty expanded the idea of pairwise comparison through a widely-
used multi-criteria decision-making method, the analytic hierarchy process (AHP)
(Saaty, 1977, 1980).

In recent years, AHP has been regarded as an active area of research in multi-
criteria decision analysis (Wallenius et al., 2008). The AHP is a methodology
in MCDA for the theory of relative measurement, which utilizes a hierarchy for
organizing and analyzing complex decision problems. The ultimate objective
(goal) is defined at the top of the hierarchy. The criteria (if necessary, subcriteria)
are positioned beneath the goal (in the middle level). All the alternatives are
placed at the bottom level (Saaty, 2004).

The AHP uses a pairwise comparison matrix (PCM) to reveal the relative impor-
tance of alternatives and criteria. It is mainly useful to transform judgments into
relative weights of importance for both objective and subjective assessments. It
makes appropriate for decision problems when one wants to select the best alter-
native or to calculate the weights of the decision alternatives. The assumption is
that decision-makers respond with a numerical answer to the query, “How many
times is the ith alternative more important/preferable than the jth alternative?”
and then incorporate it into a square matrix A = (aij)n×n of size n, where aij > 0

1



and aji = 1/aij, ∀i, j. The goal of comparing alternatives in pairs is to find a
priority vector (a vector of weights) in order to evaluate preferences or produce
a ranking. In other words, if X = {x1, x2, . . . , xn} is a set of alternatives, then
the preference relation on X×X is represented by a pairwise comparison matrix
A = (aij)n×n and the aim is to determine a weight vector w on X:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

 7→ w =


w1

w2
...
wn

 (1.1)

where aij indicates the relative measure of how much the alternative xi is preferred
to alternative xj. A simple rule that governs how to convert a weight vector into
a ranking vector is: the larger the weight, the higher location of the alternative
in the ranking (Saaty, 1994).

A set of n alternatives requires a maximum of n(n− 1)/2 paired comparisons to
be made. For instance, experts perform fifteen comparisons for six alternatives,
twenty-one comparisons for seven alternatives, and so on. The number of paired
comparisons increases as n increases. Thus, when the number of alternatives is
larger, the difficulty of comparing the whole n(n−1)/2 comparisons is inevitable.
Due to this reason, several weighting methods were proposed (Lin, 2007).

Preferences can be modeled using partial information, the so-called incomplete
pairwise comparison matrices. Some of the data/entries could be missing due to
a number of reasons, such as decision makers’ insufficient knowledge of particular
alternatives or criteria, lack of time due to the abundance of alternatives, or the
decision makers’ unwillingness to provide all of the pairwise judgments (Harker,
1987a).

Furthermore, in the AHP, if there are n alternatives and m criteria, a decision-
maker must compare the total of n(n−1)

2 ×m+ m(m−1)
2 paired comparisons. There-

fore, utilizing all the paired comparisons is costly and time-consuming for rather
large m and n. Carmone Jr et al. (1997) conducted an interesting Monte Carlo
investigation of incomplete PCMs to ascertain how the AHP is affected by de-
creased sets of pairwise comparisons. The result suggests that half of the known
n(n−1)/2 comparisons are sufficient to achieve a satisfactory result. This insight

2



led researchers to look for weighting methods using fewer pairwise comparisons.
As a result, several methods have been proposed based on the following goals: (i)
to derive the priority vectors. That means, a priority vector can be derived from
an incomplete PCM without knowing the whole comparisons (e.g., Mazurek and
Kułakowski (2022); Xu (2004b); Kułakowski (2020)); and (ii) to estimate the
missing values in the incomplete PCMs using the data from the ones that are
previously known. There are many methods to estimate the missing values in
incomplete PCMs (e.g., Fedrizzi and Giove (2007); Bozóki et al. (2010); Zhou
et al. (2018); Herrera-Viedma et al. (2007a)).

Incomplete PCMs have attracted the attention of many scholars since its intro-
duction by Harker (1987c) due to a frequent and relevant issue when uncertainty
is involved in the pairwise judgements. According to a recent study, incomplete
PCMs are considered to be a hot research topic in AHP (Alrasheedi, 2019; Ureña
et al., 2015). Researchers face a hurdle in developing an optimization algorithm
that completes partial matrices into totally coherent matrices. Proposing an
algorithm that produces minimal inconsistency is of our great interest.

Besides the optimal completion of incomplete PCMs, various features of incom-
plete PCMs and their applications have been explored in literature. For instance,
inconsistency measures for incomplete PCMs (Kułakowski and Talaga, 2020; Szy-
bowski et al., 2020), inconsistency thresholds (Ágoston and Csató, 2022a), ap-
plications for ranking purpose in sports (Temesi et al., 2023; Bozóki et al., 2016;
Csató, 2013), and the optimal completion procedures and paths to determine
which comparisons should be made and which ones can be omitted (Fedrizzi and
Giove, 2013; Bozóki and Szádoczki, 2022).

The importance of pairwise comparisons is not only limited to AHP, it can also
be applied in other multi-criteria decision-making methods, such as the ANP
(Analytic Network Process) (Saaty, 2004), MAVT (Multi-Attribute Value The-
ory) (Keeney and Raiffa, 1993), the BWM (best-worst method (Rezaei, 2015),
ELECTRE (ÉLimination Et Choix Traduisant la REalité) (Roy, 1968; Figueira
et al., 2016), PROMETHEE (Preference Ranking Organization METHod for En-
riched Evaluation) (Brans and Vincke, 1985; Brans and De Smet, 2016), MAC-
BETH (Measuring Attractiveness by a Categorical Based Evaluation Technique)
(Figueira et al., 2005), and PAPRIKA (Potentially All Pairwise RanKings of all

3



possible Alternatives) (Hansen and Ombler, 2008).

Multi-criteria decision-making (MCDM) methods have numerous real-world ap-
plications (Eltarabishi et al., 2020; Triantaphyllou et al., 1998; Vaidya and Ku-
mar, 2006). In particular, many industrial engineering applications require an
optimal decision based on the assessment of several alternatives in terms of vari-
ous criteria. MCDM models provide a viable solution to effectively quantify the
pertinent data (Triantaphyllou et al., 1995). Some of the industrial engineering
applications that call for MCDM techniques include:

• Integrated manufacturing (Putrus, 1990; Yurdakul, 2004): For instance, to
determine the best alternative (e.g., best computer system) in order to up-
grade the computer system of a computer integrated manufacturing (CIM)
facility with respect to the decision criteria like cost, performance char-
acteristics (i.e., CPU speed, memory capacity, RAM, etc.), availability of
software, maintenance, expendability, etc.

• Layout design (Cambron and Evans, 1991; Hadi-Vencheh and Mohamadghasemi,
2013; Eraslan et al., 2020): e.g., In the literature (Eraslan et al., 2020), AHP
and ELECTRE methods have been used to evaluate an appropriate office
layout design (three office alternatives are compared) for employees’ job sat-
isfaction at the work place based on the nine main criteria: working safety,
dust, smell, light, working position, noise, working area, position of tools,
and position of materials.

• Flexible manufacturing systems (FMSs) (Amini and Asoodar, 2016; Tabu-
canon et al., 1994; Özgürler et al., 2011; Maniya and Bhatt, 2011; Yadav
and Jayswal, 2018; Wabalickis, 1988): e.g., (i) To select the most appro-
priate tractor using AHP based on five main criteria: price, maintenance,
production power, ergonomic and model (Amini and Asoodar, 2016); and (ii)
To select an appropriate machine (e.g., conventional machines or numerical
control machines) for flexible manufacturing systems based on criteria, such
as machine procedures, lead time, labor cost, and operation shift (Tabucanon
et al., 1994).

• Evaluation of technology investment decisions (Ghasempour et al., 2019;
Boucher and MacStravic, 1991): e.g., Prioritize projects (for selecting solar

4



plants site and technology) based on criteria, such as risk and return.

1.2 Goal and research questions

The goal of this thesis is to propose an efficient optimization algorithm, study the
comparative analysis of some selected completion methods to identify similari-
ties, highlight the differences, and make future recommendations, and provide a
systematic filling in pattern designs for incomplete PCMs that the decision-maker
decides which pairwise comparisons should be performed first in order to make a
better optimal decision.

Answers to the following research questions will help to achieve this goal.

Question 1: Which optimization algorithm gives a better optimal completion
of the Perron-Frobenius eigenvalue problem subject to interval constraints? How
fast and efficient the proposed algorithm is? The partial information in the
pairwise comparison matrices could be optimally estimated by employing various
techniques of optimization. Optimizing the Perron-Frobenius eigenvalue problem
appears to yield a small inconsistency (Shiraishi et al., 1998; Bozóki et al., 2010).

Question 2: How similar are the different completion methods with respect to
the completed matrices between methods? Is there a significant difference in the
completion methods? What comparison criteria are most appropriate? There are
several completion methods in the literature. We aim at studying the similarities
of the different methods from a numerical point of view.

Question 3: For incomplete PCMs, which filling in patterns are recommended
to estimate the preferences in the best way under our assumptions (with given
conditions: a number of vertices, regularity, and diameter)? In other words, how
to provide a systematic collection of incomplete pairwise comparisons’ patterns in
an optimal way with properties/parameters: a number of criteria (vertices), reg-
ularity, and diameter? What are the challenges and limitations of this research?
The main objective of this research problem is to examine which pairwise com-
parisons should be done first to get a decent estimate of the decision makers’
preferences depending on the whole set of comparisons without prior information
about the alternatives to be compared.

5



1.3 Outline of the thesis

The structure of the thesis is highlighted below in Figure 1.1. Chapter 1 presents
the motivation, specific goals and objectives of the research, as well as the re-
search questions that the thesis aims to answer. Chapter 2 presents an overview
of the state of the art for complete and incomplete preference relations in multi-
criteria decision making. This chapter discusses the concepts and theories related
to multi-criteria decision making, including the different types of preference re-
lations, incomplete pairwise comparison matrices, and various optimization tech-
niques (methods) for deriving weights and completing incomplete matrices. It
aims at presenting a foundation for the research conducted in later chapters of
the thesis. Chapter 3 summarizes the research results and their contributions:
Section 3.1 (Publication I) summarizes the implementation of Nelder-Mead algo-
rithm on the constrained eigenvalue minimization problem. Section 3.2 (Publi-
cation II) summarizes the comparative study of eleven completion methods for
incomplete PCMs. The similarities and the differences between completion meth-
ods are discussed from the numerical point of view through the hierarchical cluster
analysis. Section 3.3 (Publication III) summarizes the filling in pattern designs
of incomplete PCMs, to determine the optimal set of paired comparisons, us-
ing parameters: regularity, minimal diameter and number of vertices. Finally,
Chapter 4 concludes the thesis by discussing the limitations of the research and
presenting potential directions for future research.

Chapter 1. Introduction

Chapter 2. Background study

Chapter 3. Research results and contributions

Publication IIPublication I Publication III

Chapter 4. Discussion and conclusions

Figure 1.1: Structure of the thesis
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Chapter 2

Background study

This chapter presents (in)complete preference relations, decision-making process,
different completion methods for incomplete preference relations, and terminolo-
gies for the optimal filling in strategies related to the research problems from the
state of the art.

2.1 Decision-making theory

Decision-making is a natural process that all humans can engage in for ev-
eryday life, which differs from a simple choice (choosing the fastest route to
school/work or the best meal selection) to more complex ones that require con-
siderable thought. For instance, one can describe a house/flat he/she wants to
rent in terms of the rental cost, size/area, distance from work, etc. Hence, mak-
ing a choice gets more difficult when multiple alternatives and criteria are being
considered (see Example 1). Decision-making under conditions of various, usually
conflicting criteria in the light of ranking or selection between alternatives (includ-
ing people) is referred to multi-criteria decision-making (MCDM), also known as
multi-criteria decision analysis (MCDA) (Xu and Yang, 2001; Mardani et al.,
2015).

Example 1 Consider the following decision problem that contains five alterna-
tives (Flat 1, Flat 2, Flat 3, Flat 4, Flat 5) with respect to four criteria (size,
rental cost, distance from work and number of bedrooms) in order to choose/rent
an ideal flat in Trento, Italy. This example is intended to show the readers that
AHP has been suggested for a flat selection problem and its hierarchy is shown

7



in Figure 2.1.

Size of flat
(in m2)

Rental cost
(in Euro)

Distance from
work (in km)

Number of
bedrooms

Flat 1 40 600 7 1
Flat 2 45 550 10 1
Flat 3 50 620 6 1
Flat 4 60 800 5 2
Flat 5 70 1000 0.3 2

Size of
flat

Rental
cost

Distance
from
work

Number
of bed-
rooms

satisfaction
with flat

Flat 3Flat 2Flat 1 Flat 4 Flat 5

Figure 2.1: Hierarchy for the flat selection problem

The concept of a decision process is often connected to terminologies, such as
decision-maker, decision analysis, alternatives and criteria. A decision-maker
can be a person or entity responsible for making a decision, or in charge of a
decision-making process, whereas decision analysis is a structured process to
make a rational decision with the aid of mathematical models, i.e., to provide the
decision-maker with a strategy for assessing the prospective effects of a choice
using scientific methods. A set of alternatives can be evaluated or ranked using
a set of criteria. Alternatives are options that a decision-maker can compare to
each other, whereas criteria are the objects or attributes that a decision-maker
uses to evaluate the preferences of these alternatives (Brunelli, 2011).

Multi-criteria decision analysis is often applied in various settings such as indus-
trial engineering (Triantaphyllou et al., 1995), business analytics (Yalcin et al.,
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2022), government agencies (Kurth et al., 2017) and healthcare (Marsh et al.,
2017). The commonality across all MCDA applications is that they all require
ranking or selecting alternatives by taking into account a number of different
criteria together.

History of MCDA

The practice of MCDM/A is assumed to have its roots in an issue that required
mediation/arbitration or negotiation, which is related to the life of King Solomon
(1011–931 BC) (Köksalan et al., 2013). Solomon was a man of great wisdom and
made his kingdom of Israel very wealthy. In the bible, a famous example of
Solomon’s judgement was reported as: Solomon resolved a quarrel with wisdom
when two women came to him and that argued over who was the true mother of
a baby. One mother’s baby passed away in the middle of the night after being
crushed by her rolling over on it while she slept. Each claimed to be the mother
of the living child. He recommended cutting the living child in half with a sword,
each woman to receive half. Then, the true mother was revealed to Solomon
because she was willing to hand over her child to the lying woman, as sad a
decision as it was. Solomon then ruled to give the child to the compassionate
woman, claiming her to be the child’s true mother.

The foundation for contemporary decision analysis probably trace back to the fa-
mous American statesman Benjamin Franklin by his well-known decision-making
process in a letter sent to Joseph Priestley (London, 1772). In his letter, first, he
advises that the pros and cons should be described as they occur over a period of
time (during three or four days) consideration rather than all at a single time. He
then weighs them. Third, he determines the balance after assigning weights and
makes a decision accordingly. The other modern decision analysis goes back to
the formal analysis of utility theory by von Neumann and Morgenstern (1940s),
albeit many other significant early contributions can be found (Köksalan et al.,
2011, 2013). Furthermore, the development of decision analysis in its current
form was largely influenced by the work of Raiffa, Schlaifer, and Howard (1950s)
(Rellstab, 1992). The acronym MCDM (Multiple Criteria Decision-Making) be-
came more well-known by the work of Stanley Zionts in 1979 as a result of his
article: “MCDM – If not a Roman numeral, then what?” (Zionts, 1979).
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MCDA software tools are quite helpful for applications when there are many cri-
teria and alternatives, and the weighting methods are more sophisticated. There
are software tools based on pairwise comparisons, such as ExpertChoice (Forman
et al., 1983) and SuperDecisions (Adams and Saaty, 2003). Nowadays, MCDA
software is mostly supported by web-based programs (e.g., PriEsT and FITrade-
off), which are free software tools, and other resources can be located on the
website of International Society on MCDM (Softwares, 2023) and in the liter-
ature (Weistroffer and Li, 2016). Note that MCDM and MCDA can be used
interchangeably.

2.1.1 Multi-criteria decision-making methods

Making decisions may include a lot of data and can be challenging. Thus, MCDM
methods can be helpful in such situations. We need decision-making methods to
avoid or reduce the chance of making poor decisions. The advantage of employing
decision-making methods include the following (Kulakowski, 2020; Figueira et al.,
2016):

• analyzing the situation and identifying the possible alternatives and their
consequences;

• organizing and/or structuring the decision making-process to improve co-
herence among alternatives, objectives and goals;

• proposing a common framework by identifying the actors, stakeholders and
experts;

• developing recommendations based on the results of the computational pro-
cedures and the decision process;

• participating in the legalization of the ultimate decision.

There are many MCDA methods listed in the literature with their own charac-
teristics (Cinelli et al., 2022, 2020; Triantaphyllou et al., 1998). One may find
205 and more MCDA methods on the website of “MCDA Methods Selection Soft-
ware (MCDA-MSS)” that aids experts in answering: Which MCDA method is
the most suitable for a given decision-making problem?

MCDA methods can be classified as compensatory and outranking methods (Hwang
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and Yoon, 1981). Compensatory methods compute aggregated global weights for
each alternative (e.g., AHP (Saaty, 1977) and TOPSIS (Technique for Order Pref-
erence by Similarity to Ideal Solution) (Hwang and Yoon, 1981)). In contrast,
outranking methods result in ordinal ranking without calculating global weight
or global utility from the comparison of multiple alternatives (e.g., ELECTRE
(ÉLimination Et Choix Traduisant la REalité) (Roy, 1968; Figueira et al., 2016)
and PROMETHEE (Preference Ranking Organization METHod for Enriched
Evaluation) (Brans and Vincke, 1985; Brans and De Smet, 2016)). In this strat-
egy, alternatives that do not meet a specific criterion are eliminated.

Furthermore, in the field of multi-criteria decision analysis, there has been two
schools: namely, the European school and the American school (Lootsma, 1990).
For historical reasons, the European school is also known as the French school,
which is due to the proposal of ELECTRE, PROMETHEE and related methods
mainly in the French-speaking-regions. ELECTRE (Roy, 1968), PROMETHEE
(Brans and Vincke, 1985) and other several outranking methods represent the
European school, whereas Saaty’s AHP (Saaty, 1977) and MAVT (Keeney and
Raiffa, 1993) represent the American school. Both schools are focused on the same
issue: the assessment of a limited number of alternatives (pairwise comparisons)
in light of a limited number of conflicting criteria by a single decision-maker.
However, they use different kinds of subjective judgments. For instance, the
AHP can always be used to determine the preferred alternative and to rank the
available alternatives. In contrast, ELECTRE is often unable to completely rank
the available alternatives. It is even sometimes unable to choose the alternative
that is most preferred (Lootsma, 1990).

In addition, unlike other methods (including MAVT and TOPSIS), AHP and
ANP work well with intangibles. The AHP allows one to build scales for tangibles
and intangibles so that priorities can be derived. It enables the development
of the relative scales of measurement required for measuring intangibles, which
are prevalent in many scientific fields and multi-criteria decision-making (Saaty,
2008b; Saaty and Shang, 2011). A comparative analysis of some MCDM methods
(including both schools) was conducted by (Triantaphyllou, 2000; Wallenius et al.,
2008; Macharis et al., 2004; Fernandes et al., 2015).

Nevertheless, this thesis emphasizes the American school or AHP approach and
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is not aimed at comparing the MCDM methodologies with AHP.

2.1.2 AHP and Operations Research

To answer the question: Which academic field does AHP fall under?, some au-
thors believe that it is found at the intersection of decision analysis and op-
erations research (Brunelli, 2015). In fact, decision analysis is a sub-field of
decision-making theory based on mathematical methods and is intended to help
decision-makers in selecting from a set of predetermined alternatives (Keeney
and Raiffa, 1993), while the development of mathematical methods for making
optimal decisions is at the core of operations research (Triantaphyllou et al.,
1998). According to Merriam-Webster dictionary, Operations research is defined
as the application of scientific and especially mathematical methods to the study
and analysis of problems involving complex systems. As long as AHP looks for
advanced mathematical methods for the study and analysis of complex decision
problems, it is fair to say that AHP belongs to the field of operations research.

2.2 Preference relations

Preference relations are frequently used in decision-making models to represent
information for decision-making problems. A preference relation can be described
mathematically as follows.

Definition 1 (Preference relation (Alonso et al., 2004)) A preference re-
lation R on the set X = {x1, . . . , xn} is characterized by a function µR : X×X →
D, where D is the domain preference degrees’ representation given by the decision
maker for each pair of alternatives.

In this section, the three preference relations: multiplicative PCMs, additive
PCMs and reciprocal relations (or fuzzy preference relations) are presented in
details, albeit there are several kinds of preference relations (Xu, 2007b).

2.2.1 Multiplicative pairwise comparison matrices

Pairwise judgments can be represented into a mathematical framework termed
as a pairwise comparison matrix (PCM) when applied to a reference set X of
cardinality n, where X = {x1, x2, . . . , xn}.
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Comparisons can be made using a numerical scale that expresses how much more
significant or dominant one element is over another element according to the cri-
terion to which they are being compared. (Saaty, 1980) adopted a discrete scale
{1/9, . . . , 1/2, 1, 2, . . . , 9} in order to associate between the verbal judgements
and numerical values for the matrix entries aij of A for all i, j = 1, 2, . . . , n,
because of human cognitive limits (Miller, 1956). According to Miller, the hu-
man brain cannot process more than seven plus or minus two alternatives at
once. Different scales, other than Saaty’s scale, have been proposed in litera-
ture, such as transitive scale by Ji and Jiang (2003), balanced scale by Pöyhönen
et al. (1997) and others (Dodd et al., 1995; Lootsma, 1993; Salo and Hämäläinen,
1997). Nevertheless, in this thesis, the Saaty fundamental scale is chosen and its
associated verbal expressions are presented in Table 2.1.

Table 2.1: Saaty’s fundamental scale and verbal expression

Scale Linguistic Expression (scale meaning)

1 Equal importance
2 Weak or slight importance
3 Moderate importance
4 Above moderate
5 Strong importance
6 Above strong
7 Very strong importance
8 Very, very strong
9 Extreme importance

1.1− 1.9 If the alternatives are close together.
Reciprocals If alternative xi is assigned to the above number

of the above number when compared to alternative xj, then
alternative xj has the reciprocal value
when compared with alternative xi.

Definition 2 (Multiplicative pairwise comparison matrix (Saaty, 1977))
A positive and reciprocal real matrix A = (aij)n×n, i.e. aij > 0 and aji = 1/aij

for all i, j = 1, 2, . . . , n, is known as a pairwise comparison matrix (PCM). From
the reciprocity property, it follows that aii = 1.

Intuitively, entry aij in A indicates the ratio between two positive weights wi and
wj such that aij ≈ wi/wj, where wi and wj, are the weights corresponding to the
ith and the jth elements of the reference set, respectively.

Example 2 Consider the following multiplicative PCM A that was collected
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from an audience of roughly 30 people, using consensus to make each judgment,
about drink consumption in the USA, to decide “Which drink is consumed more
in the USA and how much more than another drink?” (Saaty, 2008a).

A =

Coffee Wine Tea Beer Soda Milk Water
Coffee 1 9 5 2 1 1 1/2
Wine 1/9 1 1/3 1/9 1/9 1/9 1/9

Tea 1/5 2 1 1/3 1/4 1/3 1/9
Beer 1/2 9 3 1 1/2 1 1/3
Soda 1 9 4 2 1 2 1/2
Milk 1 9 3 1 1/2 1 1/3

Water 2 9 9 3 2 3 1





According to Saaty’s interpretations, for instance, a12 = 9 indicates that “Coffee”
is extremely preferred to “Wine”. It can also be verified that using the right
eigenvector method (Saaty, 1977) the priority vector from the decision matrix is

w = (0.18, 0.02, 0.04, 0.12, 0.19, 0.13, 0.33).

Thus, the preferences are: Water ≻ Soda ≻ Coffee ≻ Milk ≻ Beer ≻ Tea ≻
Wine. And “Water” is much more consumed than other drinks. The symbol “≻”
means “is preferred to”.

Reciprocity is a necessary condition to meet the minimal coherence of A. How-
ever, in order to ascertain whether the pairwise judgments contained in a PCM
reflect rational choices, it is useful to ask experts to discriminate with a suitable
level of rationality. Hence, the consistency condition is linked to the condition of
rationality.

2.2.2 Ordinal and cardinal consistency

The consistency condition is important to assure the trustworthiness/reliability
of the final decision (ranking result) (Brunelli, 2018). There are two types of
consistencies: ordinal consistency and cardinal consistency.

Ordinal consistency implies the transitivity of logical inferences (Tversky, 1969).
For instance, if alternative xi is preferred to alternative xh and xh is preferred
to alternative xj, then alternative xi should be preferred to alternative xj. Or
equivalently, it can be seen as the three-way transitivity of preferences. That
means, a pairwise comparison matrix A is said to be ordinally consistent if there
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is no three-way cycle in a PCM A (Gass, 1998). Meaning that, the preferences
xi ≻ xh ≻ xj ≻ xi form a three-way cycle, and hence transitivity fails. Here, the
symbol “≻” represents a strict preference relation. In fact, there are other levels
of rationality (coherence conditions) (Brunelli and Cavallo, 2020).

Definition 3 (Ordinal consistency (Wu and Tu, 2021)) A pairwise com-
parison matrix A = (aij)n×n is said to be ordinally consistent if the following
four conditions are satisfied for all i, h, j = 1, 2, . . . , n:

(i) aih > 1 and ahj > 1 =⇒ aij > 1;

(ii) aih > 1 and ahj = 1 =⇒ aij > 1;

(iii) aih = 1 and ahj > 1 =⇒ aij > 1; and

(iv) aih = 1 and ahj = 1 =⇒ aij = 1.

Note that, based on the relationships between alternatives, aih > 1 can be inter-
preted as xi ≻ xh, and aih = 1 means xi ∼ xh, where the symbols “≻” and “∼”
refer to “preference” and “indifferent” relations, respectively.

Cardinal consistency indicates the intensity-based rationality of preferences. In
this thesis, we stick to cardinal consistency.

Definition 4 (Cardinal consistency (Saaty, 1977)) A pairwise comparison
matrix A = (aij)n×n is consistent if and only if the cardinal transitivity aij =

aihahj holds for all i, j, h = 1, 2, . . . , n. A PCM A is called inconsistent when
there is at least one triple of indices (i, j, h) such that the previous relation is not
satisfied.

Proposition 1 (Saaty (1977)) There exists a vector w = (w1, w2, . . . , wn)

such that
aij =

wi

wj
, ∀i, j (2.1)

if and only if the multiplicative PCM A = (aij)n×n is consistent.

If A is consistent, it is straightforward to calculate a vector w using the geometric
mean method (Crawford and Williams, 1985):

wi = n

√√√√ n∏
j=1

aij, i = 1, 2, . . . , n.
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Example 3 Let us consider the following pairwise comparison matrix

A =


1 3 9 5

1/3 1 3 1

1/9 1/3 1 1/3

1/5 1 3 1

 .

It can be verified that A is not consistent as a13a34 ̸= 5 = a14. Consequently,
there is no vector w = (w1, . . . , wn) that satisfies Eq. (1). However, if a14 =

3, instead of 5, then A becomes consistent and the normalized vector w =

( 9
16 ,

3
16 ,

1
16 ,

3
16).

Proposition 1 is an alternative characterization of cardinal consistency, where the
weights wi and wj can be derived through the row geometric means (see related
papers, e.g., Crawford (1987); Bortot and Pereira (2013); Csató (2019)).

Definition 5 (Inconsistency Ratio) Saaty’s inconsistency ratio (CR) (Saaty,
1977, 1980) is defined by

CR(A) =
λmax(A)− n

(n− 1)RIn
(2.2)

where λmax(A) is the Perron eigenvalue of the complete PCM A, and RIn is the
random inconsistency index associated with a matrix order n as stated in Table
2.2, which is the average CI of random matrices using Saaty’s discrete scale.

Table 2.2: Random index RIn values (Alonso and Lamata, 2006)

n 3 4 5 6 7 8 9 10

RIn 0.5245 0.8815 1.1086 1.2479 1.3417 1.4056 1.4499 1.4854

CR serves as a measure of inconsistency for the judgments in PCMs. The esti-
mated inconsistency of the judgments increases with the large value of CR. In
addition, because it is unavoidable that some degree of inconsistency must be ac-
cepted, Saaty (1977) proposed a 10% cut-off rule to specify the set of acceptable
PCMs. It follows that PCMs with CR < 0.1 are accepted. Otherwise, PCMs
must be revised.

Another well-known inconsistency index in the literature is the Koczkodaj incon-
sistency index (denoted as KI(A)) (Koczkodaj, 1993; Duszak and Koczkodaj,
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1994), which is defined as

KI(A) = max

{
1−min

{
aihahj
aij

,
aij

aihahj

}
, 1 ≤ i < h < j ≤ n

}
(2.3)

where A = (aij)n×n is a complete PCM. Koczkodaj’s index measures the highest
local inconsistency of a PCM (that is, the maximum of all possible triads). There
are n(n−1)(n−2)/6 possible triads for a given n×n PCM (Duszak and Koczko-
daj, 1994). Furthermore, the comparative analysis of Saaty’s and Koczkodaj’s
inconsistencies was provided by Bozóki and Rapcsák (2008).

There are many different levels of inconsistency indices, such as geometric consis-
tency index (Crawford and Williams, 1985; Aguarón and Moreno-Jiménez, 2003),
Golden-Wang consistency index (Golden and Wang, 1989), Barzilai’s relative er-
ror index (Barzilai, 1998), Harmonic consistency index (Stein and Mizzi, 2007),
and others (Brunelli, 2018). Moreover, many authors have examined the issue
of inconsistency measures in the literature (Bortot et al., 2022; Cavallo, 2020;
Mazurek, 2022; Brunelli, 2017; Fedrizzi et al., 2002; Bortot and Pereira, 2013;
Brunelli and Fedrizzi, 2015).

2.2.3 Additive pairwise comparison matrices

Additive PCMs are alternative representations of pairwise comparisons to model
decision-making problems.

Definition 6 (Additive pairwise comparison matrix (Barzilai, 1998)) A
matrix P = (pij)n×n is said to be additive pairwise comparison matrix if and only
if the preferences satisfy the condition of reciprocity (additive reciprocity)

pij = −pji, ∀i, j.

Note that pij ∈ (−∞,∞), ∀i, j, i.e., the domain of additive PCM is the real
line. Preference representation pij > 0 indicates that xi is strictly preferred to
xj, whereas pij < 0 expresses the opposite preference and the diagonal entries
aii = 0 means that xi and xj are indifferent.
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The consistency condition (additive consistency) is represented by

pih = pij + pjh, ∀i, j, h. (2.4)

The additive PCM is consistent if and only if the consistency condition is satisfied.
Moreover, there exists a priority vector u = (u1, . . . , un) such that

pij = ui − uj, ∀i, j (2.5)

if and only if the additive PCM is consistent. More information related to deriving
priority vectors from complete additive PCMs can be found in the literature
(Barzilai and Golany, 1990).

Even if the thesis solely focuses on multiplicative PCMs and reciprocal relations,
it is important to see the relations between the three types of preference repre-
sentations. Transformation of multiplicative PCMs into additive PCMs could be
possible through the logarithmic function logb(aij) = pij, ∀i, j and for b > 0,
and the converse transformation (additive into multiplicative) is done using the
inverse: bpij = aij, ∀i, j (Brunelli, 2015, p. 47).

Example 4 Consider a consistent multiplicative PCM:

A =

1 1
4 2

4 1 8
1
2

1
8 1

 .

Then, one can find the following skew-symmetric additive matrix by using the
base-2 logarithm:

P =

log2 1 log2
1
4 log2 2

log2 4 log2 1 log2 8

log2
1
2 log2

1
8 log2 1

 =

 0 −2 1

2 0 3

−1 −3 0

 .

Moreover, the additive matrix is consistent (i.e., −2 + 3 = 1) from Eq. (2.4).

2.2.4 Reciprocal relations

Another well-known preference relation type is called reciprocal relations which
is also named as fuzzy preference relations (Tanino, 1984; Fedrizzi and Giove,
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2007; Cabrerizo et al., 2014; Herrera-Viedma et al., 2007b).

Definition 7 (Reciprocal relation) A matrix R = (rij)n×n is called a recip-
rocal relation if rij ∈ [0, 1] (i, j = 1, 2, . . . , n) and rji = 1 − rij. It follows that,
rii = 0.5, ∀i.

Intuitively, rij indicates the degree of preference between alternatives i and j.
That means, the value rij = 0.5 refers to an indifference between alternative i

and alternative j, rij > 0.5 refers to alternative i is preferred over alternative j,
rij = 1 refers to alternative i is absolutely preferred over alternative j and rij = 0

has the reverse meaning.

Definition 8 (Additively consistent reciprocal relation (Tanino, 1984))
A reciprocal relation R = (rij)n×n is additively consistent if and only if

rij = rih + rhj − 0.5, i, j, h = 1, . . . , n, (2.6)

that is, Tanino’s (Tanino, 1984) additive consistency property holds.

Proposition 2 (Tanino (1984)) There exists a priority vector v = (v1, . . . , vn)

such that
rij =

1

2
+

1

2
(vi − vj) and |vi − vj| ≤ 1, ∀i, j (2.7)

if and only if the reciprocal relation R is additively consistent.

The transformation function that converts multiplicative PCMs into reciprocal
relations, and vice versa, is presented below.

A function g : [1/9, 9]→ [0, 1] such that

rij = g(aij) =
1

2
(1 + log9 aij) (2.8)

converts multiplicative PCMs into reciprocal relations and its inverse aij =

g−1(rij) = 92rij−1 gives back to an equivalent representation of multiplicative
PCM (Fedrizzi, 1990).

Example 5 Consider again the multiplicative PCM in Example 4. Its transfor-
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mation into reciprocal relations is

R =

 0.5 1
2(1 + log9

1
4)

1
2(1 + log9 2)

1
2(1 + log9 4) 0.5 1

2(1 + log9 8)
1
2(1 + log9

1
2)

1
2(1 + log9

1
8) 0.5

 ≈
0.5000 0.1845 0.6577

0.8155 0.5000 0.9732

0.3423 0.0268 0.5000

 .

Note that multiplicative consistency is an alternative type of consistency condi-
tion for reciprocal relations.

Definition 9 (Multiplicatively consistent reciprocal relation) A recipro-
cal relation R = (rij)n×n is multiplicatively consistent if it satisfies the following
condition (Shimura, 1973):

rih
rhi

=
rij
rji

rjh
rhj

, ∀i, j, h. (2.9)

An equivalent consistency condition to (2.9), which has a similar structure to
the consistency of multiplicative PCMs and additive PCMs, was formulated by
Chiclana et al. (2008) as follows:

rih =
rijrjh

rijrjh + (1− rij)(1− rjh)
, ∀i, j, h. (2.10)

Proposition 3 (Tanino (1984)) There exists a priority vector w = (w1, . . . , wn)

such that
rij =

wi

wi + wj
, ∀i, j (2.11)

if and only if the reciprocal relation R is multiplicatively consistent.

The simplest method for deriving a priority vector w associated with reciprocal
relations can be found in (Fedrizzi and Brunelli, 2010). The procedure is similar
to the geometric mean method for multiplicative PCMs. That is,

wi = n

√√√√ n∏
j=1

(
rij

1− rij

)
, i = 1, 2, . . . , n. (2.12)

A multiplicative PCM A = (aij)n×n can be transformed into multiplicatively
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consistent reciprocal relations R = (rij)n×n using the function

rij =
aij

1 + aij
, ∀i, j (2.13)

and its inverse aij =
rij

1−rij , or aij =
rij
rji

gives an equivalent representation of
multiplicative PCM.

Example 6 Considering the consistent PCM in (4), one can find the following
multiplicatively consistent reciprocal relation using the transformation (2.13):

R ≈

0.5000 0.2000 0.6667

0.8000 0.5000 0.8889

0.3333 0.1111 0.5000

 .

Its corresponding priority vector using (2.12) is w = (0.7938, 3.1749, 0.3606).

An alternative approach to preference representation was that described by Cav-
allo and D’Apuzzo (2009) and refers to a general group structure. The idea is
to create a unified framework and offer a useful consistency index so that vari-
ous PCM types can be defined. However, this approach is not considered in the
thesis.

2.2.5 Other types of preference relations

In addition to the above preference relations, there are various types of preference
relations that have been proposed in the literature, such as

(i) Linguistic preference relations (Xu, 2005a; Cabrerizo et al., 2013; Li et al.,
2018; Liu et al., 2017; Wu et al., 2015; Herrera and Herrera-Viedma, 2000):
Let L = {ℓα|α = −t, . . . ,−1, 0, 1, . . . , t} be a finite and totally ordered
discrete term set with odd and small cardinality, such as 7 and 9, where ℓα

represents a linguistic variable. For instance, a set L with 9 terms could be
provided as follows: L = {ℓ−4 = extremely poor; ℓ−3 = very poor; ℓ−2 =

poor; ℓ−1 = slightly poor; ℓ0 = fair; ℓ1 = slightly good; ℓ2 = good; ℓ3 =

very good; ℓ4 = extremely good}. Usually L satisfies the following condi-
tions: (i) the set is ordered (ℓα > ℓβ if α > β); (ii) there is a negation
operator (neg(ℓt) = ℓ−t). To preserve all the given information, the discrete
term set L is extended to a continuous term set L̂ = {ℓα|α ∈ [−p, p]}, where
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p(p > t) is a sufficiently large positive integer. The term ℓα ∈ L is called
original linguistic term, and ℓα ∈ L̂ is called a virtual linguistic term (Xu,
2005a). A decision maker often uses the original linguistic terms to evaluate
alternatives and the virtual linguistic terms in operation. Consider any two
linguistic virtual terms ℓα, ℓβ ∈ L̂, then their operational laws are expressed
as follows (Xu, 2004a): (i) ℓα ⊕ ℓβ = ℓα+β; (ii) λℓα = ℓλα, λ ∈ [0, 1]. A
linguistic preference relation on the set X can be represented by a decision
matrix B = (bij)n×n ⊂ X ×X with

bij ∈ L̂, bij + bji = ℓ0, bii = ℓ0, i, j = 1, . . . , n

where bij denotes the preference degree or intensity of the alternative xi

over xj. The preference degrees in the linguistic preference relation B are
interpreted as: bij > ℓ0 indicates alternative xi is preferred to xj, bij < ℓ0

indicates alternative xj is preferred to xi and bii = ℓ0 indicates indifference
between xi and xj.

(ii) Intuitionistic fuzzy preference relations (Xu, 2007a; Xu and Liao, 2015;
Szmidt and Kacprzyk, 1998): An intuitionistic preference relation Ṙ was
defined by Xu (2007a) as a preference structure, whose entries are intuition-
istic fuzzy numbers, denoted as ṙij = (uij, vij) with uij, vij ∈ [0, 1], 0 ≤
uij + vij ≤ 1, uij = vji, uii = vii = 0.5, i, j = 1, . . . , n. uij indicates the
preference degree of the alternative xi to alternative xj (i.e., membership
degree); vij indicates the degree to which alternative xi is not preferred to
alternative xj (i.e., non-membership degree). The hesitancy degree (also
known as indeterminacy degree) is represented by πij = 1− uij − vij.

(iii) Hesitant preference relations (Zhang and Wu, 2014a,b; Xia et al., 2013; Xia
and Xu, 2011, 2013):

(a) Hesitant multiplicative preference relations: This type of preference
relation was developed by Zhang and Wu (2014a) to represent hesitant infor-
mation using a 1− 9 Saaty’s scale. A decision maker may hesitate between
some numerical preferences in [1/9, 9] due to time constraints and/or lack
of knowledge. In this case, the preference degree of the alternatives xi over
xj can be represented by a hesitant element (an entry of a decision ma-
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trix), such as {8, 9}, {1/8, 1/7}, {1/9, 1/8, 1/5} and so on. For instance,
in group-decision making, some experts may provide 7, some provide 8 and
others provide 9. The experts may not be able to convince one another to
change their views. In such cases, the degree of alternatives can be repre-
sented by a matrix element {7, 8, 9} (Zhang and Wu, 2014a,b).

(b) Hesitant fuzzy preference relations: The preference degrees of alter-
natives are represented using the 0.1 − 0.9 scale, instead of 1 − 9 scale, in
hesitant fuzzy sets (Xia et al., 2013; Xia and Xu, 2011, 2013).

(iv) Triangular fuzzy multiplicative preference relations (Van Laarhoven and
Pedrycz, 1983): A preference relation A = (aij)n×n is said to be triangular
fuzzy multiplicative preference relation if it satisfies the following conditions:
aij = [aLij, a

M
ij , a

U
ij], aLija

U
ji = aMij a

M
ji = aUija

L
ji = 1, aUij ≥ aMij ≥ aLij > 0,

aLii = aMii = aUii = 1 for all i, j = 1, . . . , n, where aij indicates the triangular
fuzzy preference degree of the alternative xi over xj, aLij, aMij and aUij are the
lower, medium and upper limits of aij, respectively.

(v) Triangular fuzzy additive preference relations (Xu, 2002): a triangular fuzzy
additive preference relation R = (rij)n×n satisfies the following conditions.
rij = [rLij, r

M
ij , r

U
ij ], rLij + rUji = rMij + rMji = rUij + rLji = 1, rUij ≥ rMij ≥ rLij ≥ 0,

rLii = rMii = rUii = 0.5 for all i, j = 1, . . . , n, where rij indicates the triangular
fuzzy preference degree of the alternative xi over xj, rLij, rMij and rUij are the
lower, medium and upper limits of rij, respectively.

(vi) Interval-valued preference relations:

(a) Interval fuzzy preference relations (Xu, 2004c; Genç et al., 2010): A
preference relation R = (rij)n×n is said to be an interval fuzzy preference
relation if rij = [rLij, r

U
ij ], rji = [rLji, r

U
ji], rLij+rUji = rUij+rLji = 1, rUij ≥ rLij ≥ 0,

rLii = rUii = 0.5 for all i, j = 1, . . . , n, where rij represents the interval-valued
preference degree of the alternative xi over xj, rLij and rUij are the lower and
upper limits of rij, respectively.

(b) Interval multiplicative preference relations (Saaty and Vargas, 1987;
Salo and Hämäläinen, 1992): a preference relation A = (aij)n×n is said to
be an interval multiplicative preference relation if aij = [aLij, a

U
ij], aLijaUji =

aUija
L
ji = 1, aUij ≥ aLij > 0, aLii = aUii = 1 for all i, j = 1, . . . , n, where aij
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represents the interval-valued preference degree of the alternative i over j,
aLij and aUij are the lower and upper limits of aij, respectively.

(vii) Self-confident fuzzy preference relation: A preference relation A = (aij, s
∗
ij)n×n

having two components is said to be self-confident fuzzy preference relation
if the first component aij represents the preference degree or intensity of
the alternatives xi over xj, and the second component s∗ij represents the
self-confidence level associated with aij (Dong et al., 2019; Zhu et al., 2021).

(viii) Many other preference relations that account for uncertainty can be found
in the literature (Xu, 2007a,b; Xia and Xu, 2013; Xia et al., 2013; Xia and
Xu, 2011; Ureña et al., 2015).

Nevertheless, these types of preference relations are not considered in the thesis.

2.2.6 Weighting methods for complete PCMs

Hereinafter, we use the name pairwise comparison matrix instead of multiplicative
pairwise comparison matrix.

The main aim of using a pairwise comparison matrix A = (aij)n×n is to obtain
a priority vector (weight vector) w = (w1, w2, . . . , wn) ∈ Rn

+ so that the ratio
between weights adequately represent the matrix entries, i.e., aij ≈ wi

wj
, ∀i, j. Any

algorithm or procedure that derives a priority vector w from a PCM A is referred
to as a weighting method or prioritization method. There are several weighting
methods to derive a priority vector from a complete pairwise comparison ma-
trix, where all entries of the matrix are known (Golany and Kress, 1993; Choo
and Wedley, 2004; Lin, 2007; Kulakowski, 2020). Among these, the two most
widely-used weighting methods are the eigenvector method (EVM) developed by
(Saaty, 1977), and the geometric mean method (GMM) proposed by Crawford
and Williams (1985).

The EVM provides a priority vector (right eigenvector) w corresponding to the
maximum eigenvalue of a PCM A such that

Aw = λmaxw (2.14)

where λmax is the maximum eigenvalue of A (also known as Perron root or the
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Perron-Frobenius eigenvalue). By the Perron-Frobenius theorem, the priority
vector exists and is unique up to a scalar multiple. Moreover, the vector w is
usually assumed to be normalized, i.e.,

∑n
i=1wi = 1.

Theorem 1 (Perron-Frobenius Theorem) If a square matrix is positive, then
it has a unique real maximum eigenvalue and an associated positive right eigen-
vector.

The GMM is the most straightforward method for complete PCMs, where each
weight wi is the geometric mean of the ith row of A = (aij)n×n (Crawford and
Williams, 1985):

wi =

n

√∏n
j=1 aij∑n

h=1

(
n

√∏n
j=1 ahj

) , i = 1, 2, . . . , n. (2.15)

This formula also helps to find a unique optimal solution for the logarithmic least
squares (LLS) problem (Kwiesielewicz, 1996):

min
(w1,...,wn)

n∑
i=1

n∑
j=1

(
log aij − log

wi

wj

)2

s.t.


∑n

i=1wi = 1

wi > 0, ∀i.

(2.16)

with an appropriate normalization. Note that the LLS problem formulation starts
from the most commonly used consistency condition aij = aihahj,∀i, h, j. If a
PCM A is consistent, then aij =

wi

wj
, ∀i, j. On the other hand, if a PCM A is not

consistent, the following expression measures the error eij between the judgment
values aij:

eij = aij
wj

wi
, ∀i, j. (2.17)

Equivalently, it can be rewritten as

log eij = log aij + log
wj

wi
, ∀i, j. (2.18)

Thus, the optimization problem (2.16) was formulated from (2.18) by considering
the objective function as the sum of errors (i.e.,

∑n
i=1

∑n
j=1(log eij)

2).
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The EVM and GMM provide the same priority vector when PCMs are consistent.
The similarity between these two prioritization methods can be found in the
literature (Kułakowski et al., 2022; Mazurek et al., 2022).

2.3 Incomplete pairwise comparison matrices

In real-world applications, incomplete data could appear due to the unpredictable
or complicated nature of decision-making settings. We refer to a PCM as being in-
complete when one or more of its elements are absent. These elements are absent
because of many reasons, such as a shortage of time and/or limited knowledge
to make all the n(n − 1)/2 comparisons (Harker, 1987a; Tang et al., 2018), or
impossibility to compare some of the alternatives (e.g. in sports (Bozóki et al.,
2016)).

Definition 10 (Incomplete Pairwise Comparison Matrix) A PCM Â =

(aij)n×n is said to be an incomplete PCM if aji = 1/aij if aij is known, otherwise
aji = aij = ∗, where ∗ denotes the missing elements. Alternatively, it can be
expressed in the form:

Â =


1 ∗ · · · a1n

∗ 1 · · · ∗
... ... . . . ...

1/a1n ∗ · · · 1

 . (2.19)

2.3.1 Graph representations of incomplete PCMs

Since the 1940s, graphs have been used to show paired comparisons in literature
(Kendall and Smith, 1940). In fact, it has now gained popularity in the literature
due to the widespread use of incomplete PCMs (Blanquero et al., 2006; Csató,
2015; Gass, 1998; Wang and Takahashi, 1998; Bozóki et al., 2016; Kułakowski
et al., 2019).

It is customary to visualize the structure of an incomplete pairwise comparison
matrix using an associated directed or undirected graph. In the thesis, the only
thing that matters is whether there is a comparison between the two components.
As a result, we employ undirected graphs, where the vertex labels the criteria or
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alternatives. If the decision-makers compare the two individual items, then there
is an edge between the two vertices.

Definition 11 (Undirected graph) For a given incomplete PCM Â = (aij)n×n,
an associated undirected graph G to Â is defined as

G := (V,E), (2.20)

where V = {1, 2, . . . , n} denotes the set of vertices (nodes), and E denotes the set
of undirected edges {i, j} (pairs of vertices) corresponding to the already assigned
comparisons, E = {{i, j}| aij is known, i, j = 1, 2, . . . , n ; i ̸= j}.

With the exception of the diagonal entries, this means that if the matrix entry
aij is already known, the edge is allocated either from node i to node j or from
node j to node i. Unknown entries will not be given an edge. It should be noted
that matrix Â performs a role that is similar to the adjacency matrix of graph
G.

Definition 12 (Connected graph) Two vertices u and v of undirected graph
G are said to be connected if the graph G contains a path from u to v. A graph
is called connected if every pair of vertices in the graph is connected. Otherwise,
the graph G is called disconnected.

For our investigation, a key attribute of the graph (2.20) will be its degree of
connectivity. In actuality, we only take connected graphs corresponding to in-
complete PCMs into account. In other words, if an incomplete n × n PCM
corresponds to a non-connected graph, it simply implies that there are at least
two nonempty subsets of the reference set’s members, and none of them are com-
pared (directly or indirectly) with any element of the other subset. This issue
is obviously unimportant for practical considerations, so we don’t take it into
account.

The association between the missing comparisons in the incomplete PCM and
its corresponding connected graph is as follows. To have a connected system of
comparisons, the minimum number of comparisons needed is n− 1. A complete
graph, having n− 1 degrees per node, can be used to represent a complete PCM
of size n, and of course, it is connected. However, the connectedness of the
corresponding graph to an incomplete PCM varies depending on the number of
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missing comparisons (k). Considering k as the number of missing elements only
in the upper triangle of a PCM, the graph is always connected if k ≤ n− 2, and
possibly connected if there are at most k = n(n−1)/2−(n−1) = (n−1)(n−2)/2
missing elements. In fact, if a graph is connected along with k = (n−1)(n−2)/2,
then the graph becomes a spanning tree. The graph is disconnected when k >

(n− 1)(n− 2)/2, because the number of known entries in the incomplete matrix
is less than n− 1.

Note that the undirected graph G is a spanning tree if it is connected without
cycles. Each spanning tree with n vertices has exactly n−1 edges (comparisons).

Example 7 Consider a 5 × 5 incomplete PCM with four missing comparisons
where the missing comparisons are represented by ‘∗’ as follows:

Â =


1 1

3 5 2 ∗
3 1 ∗ ∗ 1

4
1
5 ∗ 1 ∗ 9
1
2 ∗ ∗ 1 7

∗ 4 1
9

1
7 1

 .

The undirected graph representation of the given incomplete PCM is depicted in
Fig. 2.2.

Figure 2.2: Undirected graph representation of Â in Example 7.

The connectedness of the associated undirected graph is an important property
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for our numerical simulations as the solutions of some completion methods sig-
nificantly depend on it. That means, the existence and uniqueness of solutions
are influenced by the connectedness of the graph.

2.3.2 (Quasi-)regular graphs for incomplete PCMs

In this subsection, the notions of s-(quasi-)regularity, graph diameter and a
twisted product of two graphs are described.

Definition 13 (s-regular graph) When every vertex has degree s, the graph
is said to be s-regular graph or s-edged connected graph, which means that every
vertex in the graph has s neighbors.

The s-regularity essentially means that there are no distinguishable vertices, such
as in the case of the star graph. Semantically, s-regularity indicates “how many
comparisons have to be made?” because every vertex has a degree of s.

In sports contests like the Swiss system or other tournaments (Csató, 2013; Ólaf-
sson, 1990; Biró et al., 2017; Kujansuu et al., 1999), where each player or team
plays an equal number of games in the first phase, regularity produces a form of
symmetry that is also desirable (before the knockout stages). As a result, the
comparisons’ representing graph is regular (Csató, 2017).

Definition 14 (s-quasi-regular graph) When every vertex in a graph has de-
gree s, but exactly one vertex has degree s + 1, the graph is said to be s-quasi-
regular.

Example 8 Consider 3−(quasi-)regular graphs with different vertices in Fig-
ure 2.3. Vertex 1 in Figure 2.3 (a) has degree 4, while the remaining vertices
have equal degree 3. Hence, it is 3-quasi-regular graph. In contrast, in Figure 2.3
(b), all vertices have degree 3, and hence it is 3-regular graph.

Definition 15 (Diameter of a graph) The length of the longest shortest path
between any two vertices of a graph G is called a diameter of a graph G, repre-
sented by d and computed as

d = max
u,v∈V

ℓ(u, v),

where V represents the set of vertices of G and ℓ(., .) is the length of the shortest
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(a) 3-quasi-regular graph (b) 3-regular graph

Figure 2.3: The graph representation of 3-quasi-regular and 3-regular designs with different
vertices. Reprinted from Publication III.

path between two vertices of G (that is, the distance between them).

For instance, in Figure 2.3, the diameter is 2 in each subfigure.

A twisted product of two graphs (Bermond et al., 1982, 1984) is one of the
graph construction techniques that we extensively used to find the (quasi-)regular
graphs and it is defined as follows.

Definition 16 (Twisted product of two graphs (Bermond et al., 1982))
Let G = (V,E) and G′ = (V ′, E ′) be two undirected graphs. Let

−→
E be the set

of arcs in an arbitrary orientation of G. For each arc (i, j) ∈
−→
E , let f(i,j) be a

one to one mapping from V ′ to V ′. The twisted product of two graphs G and G′,
denoted by G ∗G′ is defined as follows:

(a) The vertex set of G ∗G′ is the Cartesian product V × V ′;

(b) There is an edge between vertices (i, i′) and (j, j′) if and only if

either i = j and {i′, j′} ∈ E ′, or (i, j) ∈
−→
E and j′ = f(i,j)(i

′).

In general, the twisted product of two (quasi-)regular graphs can be used to
construct new families of (quasi-)regular graphs with interesting properties. For
example, if G and G′ are both regular graphs, then G ∗G′ is also regular. Addi-
tionally, if G and G′ are both connected, then G ∗G′ is also connected.

Example 9 The product of K2 (a complete graph with 2 vertices) and K3 (a
complete graph with 3 vertices) gives a 3-regular graph with vertices n = 6,
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degree s = 3 and diameter d = 2, denoted as X6. That is, K2 ∗K3 = X6.

Example 10 Let G = Kn be a complete graph and G′ = X8 be the graph on 8
vertices with degree 3, then the product of the two graphs Kn∗X8 has 8n vertices,
degree n+ 2 and diameter 2 (Bermond et al., 1982).

2.4 Completion methods for incomplete PCMs

There are two different techniques/methods for estimating the missing values
of an incomplete PCM: iterative methods (e.g., Herrera-Viedma et al. (2007a);
Alonso et al. (2008)) and optimization methods (e.g., Fedrizzi and Giove (2007);
Bozóki et al. (2010); Triantaphyllou (1995); Zhang et al. (2012)). Some of them
were established based on the reduction of Saaty’s inconsistency ratio (e.g., see
subsection 2.4.1).

2.4.1 Optimization algorithms for Perron eigenvalue minimization
problem

In this subsection, three optimization techniques are presented to solve a Perron
eigenvalue minimization problem. The optimization algorithms are implemented
to reduce the inconsistency ratio CR or, equivalently, to give the best λmax-
optimal completion.

Considering Saaty’s CR index Saaty (1977, 1980), the Perron eigenvalue opti-
mization problem is the following:

argmin
x>0

λmax(Â(x)) (2.21)

where Â(x) is an incomplete PCM with k unknown variables (missing compar-
isons) such that x = (x1, x2, . . . , xk), and λmax(Â(x)) denotes the Perron eigen-
value function of Â(x). Moreover, a solution x∗ = (x∗1, x

∗
2, . . . , x

∗
k) to problem

(2.21) is referred to as an optimal completion of Â.

Initially, a problem of this nature—the generalization of the eigenvector method
to a specific term of the characteristic polynomial—was considered by Shiraishi
et al. (1998); Shiraishi and Obata (2002). More recent research has focused on
the Perron eigenvalue (λmax) minimization (2.21) of incomplete PCMs (Bozóki
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et al., 2010; Ábele-Nagy, 2015; Tekile, 2019; Tekile et al., 2021).

The objective function in (2.21) is non-convex. However, it can be converted
into a strictly convex function using exponential parametrization: x 7→ et, ∀x ∈
R+(Bozóki et al., 2010). This is a good property for the uniqueness of the solution.

Example 11 Let us consider a 3 × 3 incomplete PCM with one missing com-
parison:

B̂ =

1 2 x
1
2 1 5
1
x

1
5 1

 .

Since the PCM B̂ is of order 3, the analytic formula for λmax can be easily found
as follows (Rao Tummala and Ling, 1998):

λmax(B̂(x)) = 1 + 3

√
x

10
+

3

√
10

x

and using the exponential parametrization x = et, one obtains

λmax(B̂(et)) = 1 +
3

√
et

10
+

3

√
10

et
.

Thus, the transformation of the non-convexity of λmax(B̂(x)) into the convexity
of λmax(B̂(et)) can be depicted in Figure 2.4.

1 2 3 4 5 6 7 8 9

x

3

3.5

4

4.5

5

5.5

m
a

x
(x

)

(a) Non-convexity of the function λmax(x)

1 2 3 4 5 6 7 8 9

t

3

4

5

6

7

8

9

10

m
a

x
(e

t )

(b) Strict convexity of the function λmax(e
t)

Figure 2.4: The transformation of the non-convexity of λmax(B̂(x)) into the strict convexity of
λmax(B̂(et)) in Example 11. Note that λmax(x) and λmax(B̂(x)) are used interchangeably.
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Proposition 4 (Bozóki et al. (2010)) The connectedness of the undirected graph
corresponding to the incomplete PCM is a necessary and sufficient condition for
the uniqueness of the eigenvalue minimization problem (2.21).

Cyclic coordinates method

The method of cyclic coordinates using MATLAB’s solver fminbnd was suggested
by Bozóki et al. (2010) in order to find the best λmax-optimal completion. This
method minimizes the objective function in (2.21) cyclically with respect to the
coordinate variables. In each step, a function of a single variable is minimized
(i.e., one variable at a time is solved). The aim is to minimize λmax so that a
complete PCM A could be obtained.

In reference to (Bozóki et al., 2010), the basic steps of the method are described
as follows. Let xq ∈ R+ be the missing comparisons (unknown variables) for
q = 1, 2, . . . , k, and k denotes the number of unknown variables. Let x

(m)
q also

denote the value of xq in the mth step of the iteration. Each iteration of the
method consists of k steps. Thus, x1 is changed first by keeping the rest of the
associated variables fixed, then x2 and so forth until xk. The procedure is then
repeated beginning with x1 until the halting condition is met.

The cyclic coordinates algorithm is provided in Algorithm 1. Furthermore, the
global convergence of the cyclic coordinates algorithm was stated and proved in
the literature (Luenberger and Ye, 1984, pp. 266–267).

Algorithm 1 Cyclic coordinates algorithm for argmin
x>0

λmax(Â(x))

Input: An incomplete PCM Â with k missing comparisons.
Output: A complete PCM A.

1: Set m← 0, and x
(0)
q ← 1 ∀q ▷ Assign initial values.

2: while max
q=1,2,..,k

||x(m)
q − x

(m−1)
q || > Tolerance do ▷ Stopping criteria.

3: Choose q ∈ {1, 2, .., k}
4: x

(m)
q ← argmin

xq

λmax(Â(x
(m)
1 , ..., x

(m)
q−1, xq, x

(m−1)
q+1 , ..., x

(m−1)
k )) ▷ Solves one variable at a

time.
5: Repeat step 4 for all q ∈ {1, 2, .., k}, and then go to step 6
6: m← m+ 1 ▷ increment for the mth step of the iteration.
7: end while
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Newton’s method

Newton’s method is an optimization algorithm with derivative information that
is used to determine an optimal solution. It can be used as both in univariate case
(using the first derivative), and in multivariate case (using the second derivative).
In the multivariate situation, if the objective function f is twice differentiable,
then the gradient vector ∇f(x) and the inverse of the Hessian matrix H(x) are
involved.

The univariate and multivariate Newton methods were employed by Ábele-Nagy
(2015) to solve the Perron eigenvalue minimization problem. In the univariate
case, the author optimized only one variable at a time using the cyclic coordinates
with Newton method. In contrast, in the multivariate case, all the variables can
be optimized simultaneously instead of cyclically optimizing one variable at a
time.

Here, the multivariate Newton’s algorithm is presented as follows (Algorithm 2)
for solving (2.21). The optimization procedure is as follows. For the sake of
convexity behavior, exponential parametrization is used. Let xq = etq be the
(i, j)th missing comparison, and objective function f(t) = λmax(e

t1, et2, ..., etk),
where k is the number of missing comparisons, q = 1, . . . , k. The derivatives
∂λmax(x)

∂xq
and ∂2λmax(x)

(∂xq)2
are known (known as Harker derivatives) (Harker, 1987b).

The goal is to minimize f . To do this, we employ Newton’s multivariate method
in the rth iteration:

t(r+1) = t(r) − γ[Hf(t
(r))]−1∇f(t(r)), (2.22)

where Hf(t
(r)) represents the Hessian matrix of f(t), ∇f(t(r)) is the gradient

vector of f(t), and γ is Newton’s step size.

One could refer Harker’s first and second derivative formulas to compute the
gradient vector ∇f(t) = ( ∂f∂t1 , ...,

∂f
∂tk

) and Hessian matrix Hf(t), respectively, in
the literature (Ábele-Nagy, 2015; Tekile, 2017; Harker, 1987b).

The halting criteria must be specified for x but not for t because slight changes
in t result in significant variations in x.
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Algorithm 2 Newton’s algorithm for argmin
x>0

λmax(Â(x))

Input: An incomplete PCM Â with k missing comparisons.
Output: A complete PCM A.

1: Choose starting values of t and step size γ ▷ Initial value must be assigned to t.
2: Set r← 0 ▷ Initial iteration.
3: while max

q=1,2,..,k
||x(r)

q − x
(r−1)
q || > Tolerance do ▷ Stopping criteria.

4: t(r+1) ← t(r) − γ[Hf (t
(r))]−1∇f(t(r)) ▷ Variables are optimized simultaneously.

5: r ← r + 1. ▷ Increments for the rth iteration.
6: end while

Gradient descent algorithm

The gradient descent algorithm is a first-order derivative optimization process
that moves in steps proportional to the negative of the gradient function at the
current point. It is also referred to as the steepest descent algorithm.

The gradient descent algorithm was implemented by Tekile (2017, 2019) for solv-
ing the Perron eigenvalue minimization problem (2.21). A unique optimal solu-
tion is guaranteed with the exponential parametrization, xq = etq , q = 1, . . . , k.
The algorithm implementation procedure (Algorithm 3) is as follows. Let f(t) =
λmax(e

t1, et2, ..., etk), where k represents the number of unknown variables. The
goal is to minimize f(t). The gradient vector ∇f(t) = ( ∂f∂t1 , ...,

∂f
∂tk

) could be
computed using Harker’s first derivative formula (Harker, 1987b).

Algorithm 3 Gradient descent algorithm for argmin
x>0

λmax(Â(x))

Input: An incomplete PCM Â with k missing comparisons.
Output: A complete PCM A.

1: Choose starting values of t and step size γ ▷ Inital value must be assigned to t.
2: Set r← 0 ▷ Initial iteration.
3: while max

q=1,2,..,k
||x(r)

q − x
(r−1)
q || > Tolerance do ▷ Stopping criteria.

4: dr ← −∇f(tr) ▷ Gradient vector.
5: If dr = 0, then stop. Otherwise, go to step 6
6: tr+1 ← tr + γdr ▷ Gradient descent formula.
7: r ← r + 1 ▷ Increments for the rth iteration.
8: end while

The global convergence of the gradient descent algorithm was stated and proved
in the literature (Freund, 2004, pp. 3–5).
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2.4.2 Other completion methods for incomplete PCMs

The optimal completion of incomplete PCMs by optimizing quantities other than
λmax has been given the same, or even more, attention. These methods can be
categorized as optimization methods and iterative methods (Ureña et al., 2015;
Kulakowski, 2020). Some of the methods have the common objective of complet-
ing incomplete PCMs, which are called completion methods. On the other hand,
the other methods—the so-called prioritization methods—have a goal to derive
priority vectors of incomplete PCMs without first completing them. Neverthe-
less, it is also possible to estimate the values of the missing comparisons using
the acquired weights as a ratio wi/wj. Thus, sometimes, we call them completion
methods as seen in a broader manner (see also Chapter 3.2). Some of the com-
pletion methods (and prioritization methods) for incomplete PCMs are presented
as follows.

Geometric mean method for incomplete PCMs

Kułakowski (2020) provided an extension of the geometric mean method (GMM)
for an incomplete PCM Â = (aij)n×n. The idea is: first, the missing entries
aij = ∗ are replaced by the ratios/variables wi/wj in Â, say the substituted
matrix A∗, and then using the geometric mean of the ith row of A∗:

wi = n

√√√√ n∏
j=1

aij, i = 1, . . . , n

yields a system of nonlinear equations. Finally, the system of nonlinear equations
boils down to a system of linear equations through logarithmic transformations,
and then a solution is obtained.

The above idea/procedure leads to the following ranking algorithm.

Step 1. Construct an auxiliary matrix B = (bij)n×n from the given incomplete PCM
Â = (aij)n×n, such that

bij =


1, if i ̸= j & aij = ∗

0, if i ̸= j & aij ̸= ∗

n− ki, if i = j
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where ki represents the number of missing comparisons in the ith row of Â
and ′∗′ indicates the missing comparisons. Then, a vector of constant terms

v =



∑n
j=1
a1j ̸=∗

log a1j

...

...∑n
j=1
anj ̸=∗

log anj

 .

Step 2. Solve the following system of linear equations, with ŵ = (ŵ1, . . . , ŵn)
T :

Bŵ = v. (2.23)

and create a weight vector w = (w1, . . . , wn)
T in the form:

w = (eŵ1, eŵ2, . . . , . . . , eŵn)T .

Step 3. Normalize w and obtain the resulting vector wGM :

wGM =

(
w1∑n
j=1wj

,
w2∑n
j=1wj

, . . . ,
wn∑n
j=1wj

)T

.

Note that the solution for Eq. (2.23) exists if the graph associated with the incom-
plete PCM Â is connected. For more details, see (Kułakowski, 2020; Kulakowski,
2020).

In general, it is worth noting that the geometric mean method (Kułakowski,
2020), the incomplete logarithmic least squares method (Bozóki et al., 2010) and
the geometric mean of all spanning trees for incomplete PCMs (Siraj et al., 2012;
Mazurek and Kułakowski, 2022) result in the same weight vectors (and the same
completed matrix by replacing the missing comparisons with the ratio wi/wj)
(Bozóki and Tsyganok, 2019; Kułakowski, 2020).

Weighted least absolute error method

A priority vector w = (w1, . . . , wn) from a given incomplete PCM Â = (aij)n×n

can be derived from the following linear optimization problem (Takeda and Yu,
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1995):

min
(w1,...,wn)

n∑
i=1

n∑
j=1

χ(aij) · ϵij

s.t.


χ(aij) · |aijwj − wi| ≤ χ(aij) · ϵij∑n

i=1wi = 1

wi > 0, i = 1, . . . , n.

where ϵij is a nonnegative variable and

χ(aij) =

1, aij is known

0, aij is unknown.

A lexicographically optimal completion method for incomplete PCMs

Recently, Ágoston and Csató (2022b) proposed a lexicographical-based comple-
tion method for incomplete PCMs using the well-known method of Koczkodaj’s
inconsistency index (Koczkodaj, 1993) and the concept of nucleolus in coopera-
tive game theory (Schmeidler, 1969) so that a non-uniqueness nature of the op-
timization problem in (Koczkodaj et al., 1999) could be adjusted. The proposed
algorithm identifies the missing comparisons in a way that the inconsistencies of
the triads could be lexicographically minimal and gives a unique optimal com-
pletion. However, the associated graph with incomplete PCM must be connected
in order for the lexicographically optimal completion to be unique. For more
details, see (Ágoston and Csató, 2022b).

There are other several prioritization methods (or completion methods) for in-
complete PCMs in literature, such as Least Squares Method (LSM) (Chu et al.,
1979; Chen and Triantaphyllou, 2001), Weighted Least Squares Method (WLSM)
(Chu et al., 1979; Chen and Triantaphyllou, 2001), Xu goal programming method
(Xu, 2004b), Xu eigenproblem method (Xu, 2005b), and many others (Yuan
et al., 2023; Ureña et al., 2015; Alrasheedi, 2019; Mazurek and Kułakowski, 2022;
Brunelli et al., 2007; Faramondi et al., 2020; Yuan et al., 2023) (see also Chapter
3.2).
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2.5 Simplex-based optimization techniques

In this section, simplex search algorithms are discussed, in particular, the Nelder-
Mead algorithm which has connection with Publication I in Chapter 3.

Definition 17 (Simplex) A simplex S in Rk can be defined as the convex hull
of k + 1 vertices.

Example 12 A simplex in R is a line segment; a simplex in R2 is a triangle; a
simplex in R3 is a tetrahedron, and so on.

Spendley et al. (1962) proposed the first simplex-based optimization algorithm.
This algorithm employs only two types of simplex transformations—reflection
and shrinkage—to create a new simplex in each step. The reflection step is
away from the vertex with the maximum function value, whereas the shrinkage
step is towards the vertex with the minimum function value. In these trans-
formations, throughout all iterations, the angles between each simplex’s edges
remain the same. As a consequence, the working simplex can vary in size but
not shape. Later, the method of Spendley et al. (1962) was modified by Nelder
and Mead (1965) by including two additional transformations—expansion and
contraction—that enable the working simplex to change both its size and shape
(Powell, 1998; Singer and Nelder, 2009).

The Nelder-Mead algorithm is one of the most popular direct search methods
(Lewis et al., 2000; Wright, 1996) for unconstrained nonlinear optimization prob-
lems. It is appropriate for the minimization of functions of several variables
without derivative information or with discontinuity. For k-dimensional vectors
(a function of k variables), the algorithm employs a simplex with k + 1 non-
degenerate points (vertices) to determine the optimal point based on the four
possible steps of transformations: reflection, expansion, contraction and shrink.
Their respective scalar parameters (coefficients) can be denoted as: reflection (ρ),
expansion (χ), contraction (γ) and shrink (σ). They must satisfy the following
conditions: ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, 0 < σ < 1 (Lagarias et al., 1998;
Nelder and Mead, 1965; Nocedal and Wright, 2006).

The actual implementation of the Nelder-Mead algorithm is usually reasonable,
despite rarely becoming stuck in a non-stationary point. However, when stag-
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nation happens, it can be overcome by restarting the algorithm (Kelley, 1999a).
The convergence of the algorithm for low and high dimensional problems were
investigated in the literature (Lagarias et al., 1998, 2012; McKinnon, 1998; Gao
and Han, 2012). In addition, the algorithm’s complexity analysis for a single
iteration has been addressed in the literature (Singer and Singer, 1999, 2004).

Another version of Nelder-Mead algorithm for unconstrained optimization prob-
lem was implemented by Gao and Han (2012) using adaptive parameters for
higher-dimensional problems, but they have not explicitly stated the convergence
properties of the algorithm.

Furthermore, Mehta and Dasgupta (2012) proposed a modified Nelder-Mead al-
gorithm for solving a general nonlinear constrained optimization problem that
handles linear and nonlinear (in)equality constrains. The authors evaluated the
performance of their algorithm by examining several benchmark problems and
comparing it with various methods such as, α constrained method with muta-
tion (Takahama and Sakai, 2005); Genetic algorithm (Deb et al., 2000); Bees
algorithm (Pham et al., 2005), and found that, in terms of effectiveness and effi-
ciency, it is comparable to such algorithms. Nevertheless, we consider a different
approach to dealing with the interval constraints (in Chapter 3, Publication I).

The Nelder-Mead algorithm has a wide variety of real-world applications, espe-
cially in chemistry, engineering, and medicine (Wright, 1996). It has also been
used and integrated into various software programs: for example, MATLAB’s
fminsearch (The MathWorks, 2021) and Python (Kochenderfer and Wheeler,
2019).

40



Chapter 3

Research results and contributions

This chapter summarizes the objectives of the publications and their respective
contributions.

3.1 Publication I

Publication I represents, “Constrained Eigenvalue Minimization of Incomplete
Pairwise Comparison Matrices by Nelder-Mead Algorithm” (Tekile et al., 2021).
The goal of the research was to propose an efficient optimization algorithm that
numerically minimizes the Perron eigenvalue (a maximum eigenvalue function)
subject to interval constraints, where the objective function could not be ex-
pressed explicitly in terms of variables.

Let x = (x1, x2, . . . , xk) ∈ Rk
+, and f(x) := λmax(Â(x)). The constrained

eigenvalue minimization problem is expressed as

min
x

f(x)

s.t. lq ≤ xq ≤ uq, q = 1, 2, . . . , k
(3.1)

where Â(x) is an incomplete PCM that contains k unknown variables (missing
comparisons), and lq and uq are the lower and upper bounds for the variable
xq, respectively. Moreover, we consider a restriction 1/9 ≤ lq, uq ≤ 9 for all
q = 1, 2, . . . , k. The restriction [1/9, 9] is due to Saaty’s proposal and to comply
with AHP formulation.

The constrained eigenvalue problem (3.1) is an extension of the eigenvector
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method for incomplete PCMs based on the concept of Shiraishi et al. (1998),
which is used to find an optimal completion with minimal CR inconsistency. In
fact, the eigenvector x that corresponds to the minimal λmax in (3.1) provides a
priority vector. However, the uniqueness of a solution to the problem (3.1) is not
guaranteed because of the non-convexity nature of the objective function. Hence,
by transforming the objective function into convexity, the connectedness of the
graph associated with the incomplete PCM Â remains a necessary and sufficient
condition for uniqueness, which was proved by Bozóki et al. (2010).

Furthermore, it frequently occurs that a decision maker feels more appropriate to
communicate their pairwise comparisons as intervals rather than as a precise nu-
merical value because of the inherent uncertainty in articulating preferences (e.g.,
Salo and Hämäläinen (1992); Saaty and Vargas (1987)). Therefore, interval judg-
ments provide the preference evaluation with important flexibility by indicating
a range for the relative importance of the preferences.

In general, it is noted that the maximum eigenvalue function (Perron eigenvalue)
cannot be explicitly written as an analytic function of the variables x1, x2, . . . , xk.
In light of this, we proposed the Nelder-Mead algorithm (Nelder and Mead, 1965;
Lagarias et al., 1998) to solve the constrained optimization problem, where the
objective function is strictly convex using an exponential parametrization. How-
ever, in practice, the algorithm works for an unconstrained optimization problem.
Thus, the techniques of coordinate transformation (Tepljakov, 2017; Oldenhuis,
2009) needed to be applied in order to change the constrained problem (3.1) into
an unconstrained problem. Moreover, we transform the initial point x0 of the
constrained problem (3.1) into the initial point z0 of the unconstrained problem
so that an initial simplex with k+1 vertices for the unconstrained problem could
be constructed. And again, after the unconstrained problem is solved, we need to
transform its solution into the solution of the constrained problem (3.1) through
another inverse coordinate transformation.

Let x = (x1, x2, . . . , xk) ∈ Rk
+ be the primal k-dimensional variable vector cor-

responding to the constrained problem, and z = (z1, z2, . . . , zk) ∈ Rk be a new
search vector corresponding to the unconstrained problem. Then, the constrained
problem (3.1) into an unconstrained problem min

z∈Rk
f(z), the coordinate trans-

formation T could be expressed by a function T : [19 , 9] → [−π2 , π2 ] such that
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1
9 ≤ ℓq, uq ≤ 9 and

T (xq) = arcsin

(
2(xq − ℓq)/(uq − ℓq)− 1

)
, q = 1, 2, . . . , k. (3.2)

In short, T can be expressed as T (xq) = zq such that

zq = arcsin

(
2(xq − ℓq)/(uq − ℓq)− 1

)
, q = 1, 2, . . . , k. (3.3)

The inverse coordinate transformation Tinv (transformation from the solution of
unconstrained problem to the solution of the constrained problem) is expressed
as Tinv : R→ [19 , 9] such that Tinv(zq) = xq, where 1

9 ≤ ℓq, uq ≤ 9 and

xq = ℓq +
1

2
(uq − ℓq)(sin(zq) + 1), q = 1, 2, . . . , k. (3.4)

Note that, using the coordinate transformation T in (3.2), the initial vertex z0

can be calculated from the initial vertex x0 of the constrained problem (3.1). Let
z0,q be the qth component of z0, and x0,q be the qth component of x0 such that
lq ≤ x0,q ≤ uq. Then,

z0,q = arcsin
(
2(x0,q − lq)/(uq − lq)− 1

)
, q = 1, 2, . . . , k. (3.5)

However, it is a good idea to shift the initial coordinate values by 2π, i.e.

z0,q = 2π + arcsin

(
2(x0,q − lq)/(uq − lq)− 1

)
, q = 1, 2, . . . , k. (3.6)

The addition of 2π to the initial values of z0,i is a way to shift the values to ensure
that the initial simplex region has a non-zero diameter. This is necessary because
if the initial simplex region has a vanishingly small diameter, the Nelder-Mead
algorithm may not be able to converge to a good solution.

The standard Nelder-Mead algorithm (Lagarias et al., 1998) along with coordi-
nates transformation techniques (3.3) and (3.4), from now on we call it simply
the Nelder-Mead algorithm (4), was successfully implemented to the constrained
problem (3.1). The algorithm uses the standard values ρ = 1, χ = 2, γ = 1/2,

and σ = 1/2, which are frequently used in the literature (Nelder and Mead, 1965;
Lagarias et al., 1998; Kelley, 1999b; Baudin, 2010; The MathWorks, 2021).
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The Nelder-Mead algorithm starts with an initial simplex with k + 1 nondegen-
erate vertices z1, z2, . . . , zk+1 around a given initial point z0. Vertex z1 can be
chosen at random. In practice, however, the most common choice of z1 is z1=z0

to make a proper restarts of the algorithm (Singer and Nelder, 2009). Next, the
remaining k vertices are generated using a step-size si in the direction of the unit
vector ei = (0, 0, . . . , 1, . . . , 0) ∈ Rk, which forms a right-angled simplex at z0:
zi+1 = z0 + siei, ∀i = 1, . . . , k such that

si =

0.05 if z0,i ̸= 0

0.00025 if z0,i = 0
(3.7)

where z0,i is the ith component of z0 (The MathWorks, 2021).

The initial simplex S0 is a convex hull of k + 1 vertices z1, . . . , zk, zk+1. The
vertices of S0 are ordered according to the increasing function values:

f(z1) ≤ f(z2) ≤ . . . ≤ f(zk) ≤ f(zk+1). (3.8)

Vertex z1 is considered as the best vertex (vertex that has the smallest function
value) and zn+1 as the worst vertex (vertex that has the largest function value).
The centroid z is computed as z = 1

k

∑k
i=1 zi, which is the average of the non-

worst k vertices, i.e. all points (vertices) except for zk+1. Moreover, at each
iteration of the algorithm, the simplex vertices are ordered as z1, . . . , zk, zk+1

according to the increasing values of the objective function.

Given that TolZ, TolFun, MaxIter, and MaxFunEvals, the algorithm terminates
when one of the following three conditions is met:

(C1) max1≤i≤k ||zi+1 − z1||∞ ≤ TolZ and max1≤i≤k |f(zi+1)− f(z1)| ≤ TolFun;

(C2) The maximum number of iterations (MaxIter) has been reached;

(C3) The maximum number of function evaluations (MaxFunEvals) has been
reached.

We focused on PCMs of size 4 and above because PCMs of size 3 already have
an analytical formula (Shiraishi and Obata, 2021), making the optimal comple-
tion straightforward. Illustrative examples are provided below to the optimal

44



Algorithm 4 Nelder-Mead algorithm for min
xq∈[lq ,uq ]

f(x). Reprinted from Publication I.

Set an initial point/vertex x0 that satisfies the given interval constraints of (3.1).
Apply the coordinate transformation T from (3.3) to form unconstrained problem min

z∈Rk
f(z).

Compute an initial simplex S0 with vertices {zi}i=1,...,k+1 for the unconstrained problem.
Compute fi = f(zi), i = 1, 2, . . . , k + 1.
Sort the vertices in S0 with an increasing objective function values.
while maxi ||zi+1 − z1||∞ > TolZ & maxi |fi+1 − f1| > TolFun do

if count > MaxIter or count > MaxFunEvals stop. ▷ Stopping criteria.
count = count + 1 ▷ Counts the number of iterations and function evaluations.
z← 1

k

∑k
i=1 zi ▷ Calculate centroid.

zr ← (1 + ρ)z− ρzk+1 ▷ Reflection
fr ← f(zr) ▷ Function value at zr.
if fr < f1 then

ze ← (1 + ρχ)z− ρχzk+1 ▷ Expansion
fe ← f(ze)
if fe < fr then

zk+1 ← ze ▷ Accept ze and replace the worst vertex zk+1 with ze
else

zk+1 ← zr ▷ Accept zr and replace the worst vertex zk+1 with zr
end if

else if f1 ≤ fr < fk then
zk+1 ← zr ▷ Accept zr and replace zk+1 with zr

else if fk ≤ fr < fk+1 then
zoc ← (1 + ργ)z− ργzk+1 ▷ Outside contraction
foc ← f(zoc)
if foc ≤ fr then

zk+1 ← zoc ▷ Accept zoc and replace zk+1 with zoc
else

Compute k new vertices zi = z1 + σ(zi − z1), i = 2, . . . , k + 1 ▷ Shrink
fi ← f(zi), i = 2, . . . , k + 1 ▷ Compute fi = f(zi), i = 2, . . . , k + 1

end if
else

zic ← (1− ρ)z+ ρzk+1 ▷ Inside contraction
fic ← f(zic)
if fic < fk+1 then

zk+1 ← zic ▷ Accept zic and replace zk+1 with zic
else

Compute k new vertices zi = z1 + σ(zi,old − z1), i = 2, . . . , k + 1 ▷ Shrink
fi ← f(zi)∀i = 2, . . . , k + 1.

end if
end if

S ← {zi}i=1,...,k+1. ▷ Update simplex S with vertices {zi}i=1,...,k+1.
Compute fi = f(zi), i = 1, 2, . . . , k + 1.
Sort the k + 1 vertices of the simplex S with an increasing objective function values.
end while
Select the best vertex and hence it will be an optimal solution for the unconstrained problem.
Apply the inverse coordinate transformation Tinv from (3.4) to get an optimal solution for
the constrained problem.
Output: An optimal solution x∗ = (x∗

1, x
∗
2, . . . , x

∗
k) for the constrained problem (3.1), and

the corresponding objective value f(x∗).
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completion of the incomplete PCMs using the Nelder-Mead algorithm.

Example 13 Consider the incomplete PCM Â with matrix size 4 (Tekile et al.,
2021):

Â =


1 ∗ 1/3 1

∗ 1 1/9 ∗
3 9 1 3

1 ∗ 1/3 1


where ∗ denotes the missing comparisons. Equivalently, the above incomplete
PCM with unknown variables x1 and x2 can be rewritten as

Â(x) =


1 x1 1/3 1

1/x1 1 1/9 x2

3 9 1 3

1 1/x2 1/3 1



where x = (x1, x2).

As was previously noted, it might be advantageous for the expert to convey
his/her preferences as intervals. Hence, the eigenvalue minimization problem can
be constructed with interval constraints as follows:

min
x>0

λmax(Â(x))

s.t. 5 ≤ x1 ≤ 7

1/9 ≤ x2 ≤ 9.

(3.9)

It is obvious that by utilizing the consistency condition, we can obtain x1 =

a13a32 = 3, and x2 = a23a34 =
1
3 or x2 = a14/a12 =

1
3 (as a12a24 = a14). However,

within the interval [5, 7], applying the Nelder-Mead algorithm to the minimization
problem (3.9) with initial value x0 = (6, 1), the algorithm arrives at the solution
x1 = 5 and x2 = 0.2582 with λmax = 4.0246 (CR = 0.0093). It should be noted
that obtaining a consistent matrix is no longer achievable due to the constraint on
x1 (by Definition 4). The reduction of its objective function (Perron eigenvalue)
by the algorithm and the evolution of the variables are shown in Figure 3.1. In
this example, the given values for termination are: TolZ = 10−4, TolFun = 10−4.
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As can be seen in Figure 3.1 (b), within the first few iterations, there is a quick
reduction of the objective function.
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Figure 3.1: The values of x1 and x2, and the first 20 iterations of the algorithm to solve (3.9):
(a) Evolution of the variables with respect to iterations; (b) Perron eigenvalue vs. Iteration.

Example 14 Consider the 7×7 incomplete PCM Â with six unknown variables
(x1, . . . , x6) = x after replacing the missing comparisons (Tekile et al., 2021):

Â(x) =



1 1/3 x1 1 1/4 2 x5

3 1 1/2 x2 x3 3 3

1/x1 2 1 4 5 6 5

1 1/x2 1/4 1 1/4 1 2

4 1/x3 1/5 4 1 x4 1

1/2 1/3 1/6 1 1/x4 1 x6

1/x5 1/3 1/5 1/2 1 1/x6 1.


Let us first define a constrained eigenvalue minimization as follows in order to
achieve completion while adhering to the constraint restriction [1/9, 9]:

min λmax(Â(x))

s.t. 1/9 ≤ xq ≤ 9 for q = 1, 2, 3, 4, 5, 6.
(3.10)

Then applying the algorithm to minimization problem (3.10) with initial value
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x0 = (1, 1, 1, 1, 1, 1), the optimal solution is

x∗ = (0.1618, 2.7207, 1.3465, 2.5804, 0.8960, 0.7731),

λmax(Â(x∗)) = 7.4067.

The completed matrix A is acceptable, referring to Saaty’s 0.1 cut-off rule because
CR = 0.0504. Moreover, the first 44 iterations and values of the variables for
each iteration are provided in Figure 3.2. The left-side graph in Figure 3.2 shows
the evolution of the variables with respect to the number of iterations. As can
be seen, the variables do not converge monotonically. This is mainly due to the
algorithm’s contraction step. For example, when we look at the value of x2 at
iterations 11, 18, and 27, it fluctuates. Also, the value of λmax at iterations 2
and 6 drops significantly due to the expansion step. In this example, we used
the values for termination: TolZ = 10−4, TolFun = 10−4. There is no significant
difference in the λmax values after the 44-th iteration.
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Figure 3.2: The values of x1, . . . , x6, and the first 44 iterations of the algorithm for minimization
(3.10): (a) Evolution of the variables with respect to iterations; (b) Perron eigenvalue vs.
Iteration. Reprinted from Publication I.

The convergence analysis of the proposed algorithm lacks a precise statement in
literature (Price et al., 2002; Gao and Han, 2012). For instance, if the optimiza-
tion problem is strictly convex with a function of one variable, then the global
convergence is guaranteed. However, for two variables, it may converge to a
non-stationary point, although the problem is strictly convex (McKinnon, 1998).
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Thus, the numerical simulations were needed in order to clarify the performance
of the algorithm in the case of our constrained optimization problem (3.1).

The performance of the algorithm was examined through extensive numerical
simulations to show how well the suggested algorithm fills an incomplete PCM
and could validate its performance by varying the number of missing comparisons.
The case of connected undirected graphs corresponding to incomplete PCMs (for
each matrix size n = 4, 5, 6, 7, 8, 9, 10) was considered to carry out the simulation.
The simulation results were measured by, a widely-used inconsistency measure,
Saaty’s inconsistency ratio (CR).

Two classes of random complete PCMs were chosen that result in different levels
of inconsistencies:

(i) Random PCMs from the Saaty scale {1/9, 1/8, . . . , 1/2, 1, 2, . . . , 8, 9}; and

(ii) Random consistent PCMs on [1/9, 9] with a slight change by Hadamard
multiplicative perturbation using the log-normal distribution (µ = 0, σ =

0.65) which result in inconsistent PCMs with more realistic CR values close
to Saaty’s threshold 0.1.

In contrast to type (i) matrices, type (ii) matrices represent more reasonable real-
world instances. All in all, an incomplete PCM is constructed by removing one
or more entries at random using a uniform distribution. Meanwhile, a test has
to be done in order to verify whether the associated graph is connected. In turn,
the proposed algorithm is put into practice.

Among the interesting results in Publication I, Figure 3.3 depicts that the al-
gorithm effectively executes the optimal completion of incomplete PCMs. Addi-
tionally, the algorithm gives more consistent PCMs with more incomplete data
(as k increases and nearer to n(n− 1)/2).
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Figure 3.3: Average CR of 10,000 PCMs versus the number of missing comparisons k with
respect to the matrix size n. Reprinted from Publication I.

In general, our simulation results based on the 10, 000 generated PCMs, suggest
the following:

• the solution obtained is unique if and only if the undirected graph associated
with the incomplete PCM is connected;

• the proposed algorithm can estimate the missing values in the incomplete
PCMs;

• the algorithm provides more consistent PCMs with more incomplete data,
while the graphs are connected;

• the algorithm is fast and efficient.

3.2 Publication II

Publication II represents, “A numerical comparative study of completion methods
for pairwise comparisons matrices” (Tekile et al., 2023). The goal of the research
was to analyze the completion methods from the numerical point of view in order
to identify the similarities and highlight the possible differences between methods
based on the logarithmic distance measure (using the completed matrices) as a
comparison criterion.

The eleven completion methods, denoted as M1,. . .,M11, have been selected based
on the common aim of completing incomplete preferences in accordance with some
appropriate criteria, e.g., the uniqueness of a solution. The first three methods
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M1, M2, M3 are inconsistency based optimization methods, the next three meth-
ods M4, M5, M6 are based on minimization of judgments’ biases/errors, other
three methods M7, M8, M9 are non-optimization-based algorithms, and the last
two M10, M11 are prioritization methods, however, they can be considered as
completion methods in a ‘broad’ sense because the missing values can be esti-
mated using weights.

For quick reference, the methods considered for the comparative analysis are
provided below.

Method M1. λmax-based optimal completion method
Method M2. c3-based optimal completion method
Method M3. ρ-based optimal completion method
Method M4. A method of δ-based local inconsistency indicator
Method M5. ϵ-based Least Absolute Error (LAE) method
Method M6. ϵ-based Least Squares Method (LSM)
Method M7. Connecting paths method
Method M8. Alonso et al.’s method
Method M9. DEMATEL-based optimal completion method
Method M10. Harker’s eigenvalue methods
Method M11. Incomplete logarithmic least squares method (ILLSM)

Let Â = (aij)n×n be an incomplete PCM of size n, and x1, . . . , xk denote k

missing comparisons. Then the 11 completion methods are described as follows.

Method M1. λmax-based optimal completion method

The missing comparisons in the incomplete PCM Â are estimated as the argu-
ment solving the minimization of the Perron-Frobenius eigenvalue function (λmax)
within the limits of the interval [1/9, 9], i.e.,

argmin
x

λmax(Â(x))

s.t. 1/9 ≤ xq ≤ 9, q = 1, 2, . . . , k
(3.11)

where x = (x1, . . . , xk) and k is the number of missing comparisons. Different
optimization techniques have been successfully applied to (3.11) due to the non-
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analytic nature of λmax (Bozóki et al., 2010; Tekile et al., 2021; Ábele-Nagy, 2015;
Tekile, 2019). And then, Saaty’s CR is used as a measure of inconsistency.

Method M2. c3-based optimal completion method

In the characterstic polynomial of a PCM A, the coefficient c3 of λn−3 is utilized
as a measure of inconsistency index (Shiraishi et al., 1998), and given as

c3(A) =
n−2∑
i=1

n−1∑
h=i

n∑
j=h+1

(
2− (

aihahj
aij

+
aij

aihahj
)

)
.

The value of c3 is non-positive for n ≥ 3, and equals zero if and only if the PCM
is consistent. Thus, Obata et al. (1999) observed that the consistency of Â is
maximized by solving the analytic function of its variables x1, x2, . . . , xk, writen
as c3(Â(x)), subject to the interval constraint [1/9, 9], i.e.,

argmax
x

c3(Â(x))

s.t. 1/9 ≤ xq ≤ 9, q = 1, 2, . . . , k
(3.12)

where x = (x1, . . . , xk) and k is the number of missing comparisons.

It is worth noting that convex optimization techniques are effective to solve (3.12)
due to the concavity nature of the objective function c3 with respect to max

(Shiraishi and Obata, 2002). An illustrative example is provided below to show
the relation between c3 and the missing comparison.

Example 15 Consider the incomplete PCM Â with one missing comparison,
denoted as x:

Â =


1 x 3 1

1/x 1 1/2 4

1/3 2 1 9

1 1/4 1/9 1

 .

The estimated value of the missing comparison x using (3.12) is x ≈ 1.2247 with
max(c3) ≈ −31.2571. The graph of c3(x) = −4.1667x−6.2500/x−21.0509 and
a contour plot of c3 with two missing comparisons are shown in Figure 3.4.
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Figure 3.4: (a) Graph of c3 with one missing comparison a12; (b) Contour plot of c3 with two
missing comparisons a12 = x and a24 = y, from Example 15. The red point in the bottom
contour line at (2, 1.5) indicates the maximum value.

Method M3. ρ-based optimal completion method

Fedrizzi and Giove (2007) proposed a method for incomplete reciprocal relation
R̂ = (rij)n×n based on the consistency condition (2.6), which results in the fol-
lowing inconsistency index ρ:

ρ =
n∑

i=1

n∑
h=1

n∑
j=1

(rih + rhj − rij − 0.5)2.

Thus, the estimated values for the missing comparisons in R̂ are obtained by
minimizing the inconsistency index ρ, i.e.,

argmin
x

ρ(R̂(x)

s.t. 0 ≤ xq ≤ 1, q = 1, 2, . . . , k
(3.13)

where R̂ = (rij)n×n is an incomplete reciprocal relation, x = (x1, . . . , xk) and k

is the number of missing comparisons.

After the completion of the incomplete reciprocal relation by this method using
optimization problem (3.13), the transformation (2.8) is utilized in order to find
a complete PCM A = (aij)n×n within the interval [1/9, 9].
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Example 16 Consider the following incomplete reciprocal relation with one miss-
ing comparison, denoted as x, which was transformed from Example 15:

R̂(x) =


0.5000 x 0.7500 0.5000

1− x 0.5000 0.3423 0.8155

0.2500 0.6577 0.5000 1.0000

0.5000 0.1845 0 0.5000

 .

Then solving the minimization problem (3.13), the estimated value for the missing
comparison r12 is x ≈ 0.5461. The graph of ρ(R̂(x)) is depicted in Figure 3.5.
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Figure 3.5: Graphs of ρ from Example 16: (a) with one missing comparison r12; (b) with two
missing comparisons r12 and r23.

Method M4. A method of δ-based local inconsistency indi-
cator

Ergu and Kou (2013) and Ergu et al. (2011) considered the consistency condition
aij = aihahj, ∀i, j, h of a PCM A in order to formulate a local index

δij(A) =
1

n

n∑
h=1

aihahj − aij, ∀i, j. (3.14)

That is, δij(A) = 0 if all the indirect comparisons of i with j through h agree
with the pairwise comparison aij.

Following this, the values of the missing comparisons, or the values of the variables
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x1, x2, . . . , xk, of an incomplete PCM Â(x) could be obtained using the following
optimization problem (Ergu and Kou, 2013):

min
x∈Rk

+

n∑
i=1

n∑
j=1

(
δij(Â(x))

)2
s.t. 1/9 ≤ xq ≤ 9, q = 1, 2, . . . , k.

(3.15)

The expression δij(Â(x)) can be considered as an indicator for the (i, j)th posi-
tion of an incomplete PCM Â(x).

Method M5. ϵ-based Least Absolute Error (LAE) method

Ergu et al. (2014) considered three formulations related to the well-known con-
sistency results of a PCM A:

i) a PCM A is consistent if and only if there exists a (weight) vector w =

(w1, . . . , wn) such that
aij =

wi

wj
, ∀i, j.

ii) In the consistent case, the ith component of w is related to the entries on
the ith row of matrix A by means of the following function,

wi =

(
n∏

h=1

aih

) 1
n

.

iii) In the consistent case, aijaji = 1. Let the quantity be cij such that cij =

aijaji to quantify the inconsistency related to the (i, j)th comparison of A.
Then, cij is rewritten as

cij = aij · aji =
wi

wj
· aji =

(
n∏

h=1

aih

) 1
n

(
n∏

h=1

ajh

) 1
n

· aji.

Then, following the formulation (iii) above, and noting that in the consistent case
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cij = 1, Ergu et al. (2016) proposed a local error,

ϵij(A) = cij − 1 =

(
n∏

h=1

aih

) 1
n

(
n∏

h=1

ajh

) 1
n

· aji − 1, ∀i, j. (3.16)

The indicator ϵij(A) = 0 if all the indirect comparisons of i with j through h

agree with the pairwise comparison aij.

Considering the incomplete PCM Â(x) with x = (x1, x2, . . . , xk) ∈ Rk
+, the

values of the unknown variables are computed by minimizing the sum of absolute
values of the errors ϵij(Â(x)). That is, by solving the following optimization
problem of Least Absolute Error (LAE):

min
x∈Rk

+

n∑
i=1

n∑
j=1

∣∣∣ϵij(Â(x))
∣∣∣

s.t. 1/9 ≤ xq ≤ 9, q = 1, 2, . . . , k.

(3.17)

Method M6. ϵ-based Least Squares Method (LSM)

Based on Eq. (3.16), Ergu et al. (2016) proposed the optimization problem of the
Least Squares Method (LSM) as follows, where the sum of the squares of each
error ϵij(Â(x)) as a function of unknown variables x1, . . . , xk is minimized. That
is,

min
x∈Rk

+

n∑
i=1

n∑
j=1

(
ϵij(Â(x))

)2
s.t. 1/9 ≤ xq ≤ 9, q = 1, 2, . . . , k.

(3.18)

Method M7. Connecting paths method

It is natural to fill in the missing comparisons aij of an incomplete PCM Â

by taking the average of the intensities of all connecting paths that connect
alternatives/criteria i to j if the associated graph to Â is connected (Harker,
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1987c).

For the known comparisons aih and ahj, under the consistent situation, aij can
be obtained using the expression aij = aihahj. The pair aih and ahj, h ̸= i, j, is
called an elementary connecting path of aij (Chen et al., 2015).

The value of the missing comparison aij of the incomplete PCM Â = (aij)n×n

could be obtained by taking the geometric mean of intensities of all rth connecting
paths of aij, denoted CP (aij)r, connecting the two alternatives i and j in Â (Chen
and Triantaphyllou, 2001), i.e.,

aij =

(
N∏
r=1

CP (aij)r

) 1
N

(3.19)

where

• CP (aij)r represents the rth connecting path of missing comparison aij and
computed as

CP (aij)r : aij = ai,h1
· ah1,h2

· ah2,h3
· · · aht,j, (3.20)

for the known comparisons ai,ht
and aht,j, and indices i, j, h1, . . . , ht ∈ {1, . . . , n},

1 ≤ t ≤ n− 2; and

• N is the total number of connecting paths.

Finally, using the reciprocal property aji = 1/aij, the missing comparisons of the
lower triangular part of the PCM Â are obtained.

In addition, for the sake of comparability of the method with the other completion
methods, the interval restriction [1/9, 9] is taken into account. Assuming the
estimated value as aij: if aij < 1/9, then aij = 1/9, and if aij > 9, then aij = 9.

Example 17 Consider the following incomplete PCM with 1 missing compari-
son:

Â =


1 2 3 ∗
1/2 1 1/2 4

1/3 2 1 5

∗ 1/4 1/5 1

 .

57



Figure 3.6: Undirected graph representation of Â.

The undirected graph representation of this incomplete PCM is shown in Figure
3.6.

The four connecting paths for the missing entry a14 are: 1− 2− 3− 4, 1− 2− 4,
1− 3− 2− 4, and 1− 3− 4. Then, using Eqs. (3.19) and (3.20):

(i) CP (a14)1 = a12 · a23 · a34 = 2 · 1/2 · 5 = 5

(ii) CP (a14)2 = a12 · a24 = 2 · 4 = 8

(iii) CP (a14)3 = a13 · a32 · a24 = 3 · 2 · 4 = 24

(iv) CP (a14)4 = a13 · a34 = 3 · 5 = 15

Therefore,

a14 =
4
√

CP (a14)1 · CP (a14)2 · CP (a14)3 · CP (a14)4 = 10.9545.

However, in this example, the value of the missing entry a14 must be 9 as the
value 10.9545 is out of the interval [1/9, 9] for the sake of comparison with the
other methods.

When matrix size becomes large, the number of connecting paths will be very
large (e.g., with n = 8 and 3 missing comparisons, we can find 1064 connecting
paths). In addition, in the literature (Chen and Triantaphyllou, 2001), for a PCM
of size ten, the number of possible connecting paths to be considered might be
equal to 109, 600 and hence this condition is mentioned as a drawback of the
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method due to its computational cost.

Method M8. Alonso et al.’s method

Herrera-Viedma et al. (2007b) developed a method for estimating the missing
values of incomplete reciprocal relations (fuzzy preference relations). Following
this, Alonso et al. (2008) adapted an equivalent estimation procedure for incom-
plete PCMs. Thus, the missing values of an incomplete PCM Â = (aij)n×n can
be estimated as follows, based on two different requirements.

I. Define the sets that identify which missing comparisons can be estimated at
each phase of the algorithm.

i. V = {(i, j) | i, j ∈ {1, . . . , n} ∧ i ̸= j}, where V represents the set of
pairs of alternatives (pairwise comparisons) without considering diago-
nal entries of Â;

ii. MV = {(i, j) ∈ V | aij is unknown}, where MV represents the set of
missing values (missing comparisons) of Â;

iii. EV = V \MV , where EV represents the set of estimated values (known
comparisons) of Â for which the decision-maker provides preference val-
ues (except the diagonal entries);

iv. The set of intermediate alternatives j (when j ̸= i, k) that can be used
to estimate the missing comparison aik (i ̸= k):

H1
ik = {j ̸= i, k | (i, j), (j, k) ∈ EV };

H2
ik = {j ̸= i, k | (j, k), (j, i) ∈ EV };

H3
ik = {j ̸= i, k | (i, j), (k, j) ∈ EV }.

Then, we compute the following: EMVh (the set of missing comparisons
that must be estimated in iteration h of the algorithm), KVh (the set of
all known values (known comparisons) in iteration h), and UVh (the set of
unknown values (missing comparisons) in iteration h).

KVh = EV ∪
( h−1⋃

ℓ=0

EMVℓ

)
; UVh = MV \

( h−1⋃
ℓ=0

EMVℓ

)
;
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EMVh = {(i, k) ∈ UVh | ∃j ∈ {H1
ik ∪H2

ik ∪H3
ik}}.

Note that EMV0 = ∅, KV1 = EV , and EV will be replaced by KVh to
calculate H1

ik, H
2
ik and H3

ik in iteration h with updated PCM Â.

II. Develop an expression for estimating a particular missing comparison cp′ik
in iteration h:

cp′ik =

(∏
ℓ∈K

( n∏
j∈Hℓ

ik

cajℓik

)1/#Hℓ
ik
)1/#K

(3.21)

where K = {ℓ ∈ {1, 2, 3} | Hℓ
ik ̸= ∅}, ca

j1
ik = aijajk, caj2ik = ajk/aji, and

caj3ik = aij/akj. Moreover, we restrict the values of aik in the range [1/9, 9]:
if cp′ik < 1/9, then aik = 1/9; else if cp′ik > 9, then aik = 9; else aik = cp′ik.

The general algorithm for the missing comparisons estimation in iteration h is
presented in Algorithm 5 (Herrera-Viedma et al., 2007b; Alonso et al., 2008).

Algorithm 5 Iterative algorithm in step h

Input: Incomplete PCM Â.
Output: Complete PCM A.
Step 1: EMV0 = ∅ and h = 1
Step 2: while EMVh ̸= ∅

h = h+ 1;
For every (i, k) ∈ EMVh , calculate cp′ik in Eq. (3.21), where
(a) K = ∅;
(b) H1

ik = {j ̸= i, k | (i, j), (j, k) ∈ KVh}; if (#H1
ik ̸= 0) then K = K ∪ {1};

(c) H2
ik = {j ̸= i, k | (j, k), (j, i) ∈ KVh}; if (#H2

ik ̸= 0) then K = K ∪ {2};
(d) H3

ik = {j ̸= i, k | (i, j), (k, j) ∈ KVh}; if (#H3
ik ̸= 0) then K = K ∪ {3}.

Let aik = cp′ik.
end while

Step 3: Restrict aik in the range [1/9, 9]: if cp′ik < 1/9, then aik = 1/9; else if cp′ik > 9, then
aik = 9; else aik = cp′ik.
Step 4: Display a complete PCM A.

To estimate all missing values (missing comparisons), a sufficient condition for
Algorithm 5 is also provided in Proposition 5.

Proposition 5 (Zhang et al. (2014)) The iterative algorithm (Algorithm 5)
estimates all missing values of an incomplete PCM if the set of n−1 non-leading
diagonal elements of the incomplete PCM is known (i.e., each alternative must
be compared at least once).
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The iterative algorithm terminates when h reaches the maximum iteration, i.e.,
EMVmaxIter = ∅. Since the connected graphs are considered for our numerical
simulations (Proposition 5 is satisfied), the estimation of all missing comparisons
with the algorithm is achievable. Thus, the algorithm terminates after all the
missing comparisons are obtained. For more details, see (Alonso et al., 2008).

Method M9. DEMATEL-based optimal completion method

DEMATEL (DEcision-MAking Trial and Evaluation Laboratory) has been demon-
strated in the literature to be a useful method for evaluating interrelationships
and causal analysis, allowing decision-makers to categorize the involving factors
of a system into cause and effect groups. Moreover, unlike the AHP, it assumes
that all criteria are mutually dependent and influence other criteria. The com-
parison scales of the DEMATEL method are 0 (no influence), 1 (low influence), 2
(high influence), and 3 (very high influence). Using these comparison scales, the
comparative judgments of a decision-maker are expressed in the form of a direct-
relation matrix in which the principal diagonal entries are zero (Falatoonitoosi
et al., 2013; Lin et al., 2011; Wu and Chang, 2015; Lin and Wu, 2008).
Zhou et al. (2018) proposed a DEMATEL-based completion method for incom-
plete PCMs. It is an iterative algorithm that enables a decision-maker to directly
estimate the missing comparisons in the incomplete PCM.

The method typically has four fundamental phases to estimate the missing values
of an incomplete PCM on the interval [1/9, 9]:
Step 1. Transform the incomplete PCM Â = (aij)n×n into a direct-relation
matrix Dr by replacing all missing comparisons with zero, and compute the
normalized matrix N. The direct-relation matrix Dr is written as Dr = (dij)n×n,
where dij = aij if aij is already known and dij = 0 if aij is missing. The
normalized matrix N can be obtained from N = Dr

m , such that

m = max

{
max

i

n∑
j=1

dij,max
j

n∑
i=1

dij

}
.

The matrix N is normalized. That is, all entries of N are in [0, 1].
Step 2. Transform the direct-relation matrix Dr into total-relation matrix Tr
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using the formula
Tr = N(I−N)−1

where I is an identity matrix of size n and N is a normalized matrix. The
total-relation matrix captures both direct and indirect relationships between in-
fluencing factors and provides information on how one factor affects another.
By computing the sum of the rows and columns of Tr, Ri(i = 1, . . . , n) and
Ci(i = 1, ..., n), respectively, the relevance of each influencing factor can be iden-
tified. Additionally, the sign of Ri − Ci can categorize each factor/criterion as
either a ‘cause’ (Ri −Ci > 0) or an ‘effect’ (Ri −Ci < 0) (Lin et al., 2011; Zhou
et al., 2018). It is important to note that the total-relation matrix Tr can be
derived in the following way:

Tr =
∞∑
p=1

Np

= lim
p→∞

(N+N2 + · · ·+Np)

= lim
p→∞

N(I+N+N2 + · · ·+Np−1)

= lim
p→∞

N(I−N)−1(I−N)(I+N+N2 + · · ·+Np−1)

= lim
p→∞

N(I−N)−1(I−Np)

= N(I−N)−1

(3.22)

because Np converges to a zero matrix as p→∞.

Step 3. Transform the total-relation matrix Tr = (tij)n×n into a complete PCM
C = (cij)n×n with:

cij =

√
tij
tji

for i < j.

Note that C satisfies the reciprocal condition cji = 1/cij, ∀i, j, and also cii =

1, ∀i.
Step 4. The missing entries aij of the incomplete PCM Â are estimated as aij =
cij (i, j = 1, 2, . . . , n). Moreover, we restrict the values of missing comparisons
to be in the interval [1/9, 9]: if cij < 1/9, then aij = 1/9, and if cij > 9, then
aij = 9 by keeping the known entries of the incomplete PCM A unchanged. Now
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A will be the completed matrix from the method.

In the event that the expression I−N lacks inverse, the calculation of the total-
relation matrix Tr may not be possible, and the method may fail to achieve its
goal. However, the authors suggested an alternative approach of using Tr =

N + N2 + · · · + Np, where p is a positive integer greater than or equal to 5 in
most cases, as an approximation of the total-relation matrix. This is because the
consistency ratio (CR) of the complete PCM A decreases gradually as p increases
from 5. For more details, see (Zhou et al., 2018).

Method M10. Harker’s eigenvalue method

Harker’s eigenvalue method (Harker, 1987a) completes an incomplete PCM Â =

(aij)n×n by constructing an auxiliary matrix C = (cij)n×n:

cij =


1 + ki, if i = j

0, if i ̸= j & aij = ∗

aij, otherwise

where ki represents the number of missing comparisons in the ith row of Â and
′∗′ indicates the missing comparisons. Then, the method computes the maximum
eigenvalue λmax of C and its corresponding right eigenvector w = (w1, . . . , wn)

such that
λmaxw = Cw. (3.23)

The weight vector w is normalized (i.e.,
∑n

i=1wi = 1), and its ratio wi/wj

replaces the missing comparisons of the incomplete PCM Â.

Furthermore, the values of missing comparisons are restricted to the interval
[1/9, 9] in order to make it comparable with the other completion methods, i.e.,
if aij < 1/9, then aij = 1/9, and if aij > 9, then aij = 9 without changing the
known comparisons of the incomplete PCM Â.

Example 18 Consider the 5× 5 incomplete PCM Â with four missing compar-
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isons:

Â =


1 ∗ 3 ∗ ∗
∗ 1 1/9 ∗ 5

1/3 9 1 3 1/2

∗ ∗ 1/3 1 8

∗ 1/5 2 1/8 1

 .

Then, the auxiliary matrix corresponding to Â is

C =


4 0 3 0 0

0 3 1/9 0 5

1/3 9 1 3 1/2

0 0 1/3 3 8

0 1/5 2 1/8 2

 .

The weight vector (eigenvector from (3.23)) is

w = (0.243, 0.130, 0.295, 0.218, 0.114).

Thus, the completed matrix by Harker’s eigenvalue method will be

A =


1 1.871 3 1.117 2.132

0.534 1 1/9 0.597 5

1/3 9 1 3 1/2

0.896 1.676 1/3 1 8

0.469 1/5 2 1/8 1

 .

Method M11. Incomplete logarithmic least squares method
(ILLSM)

The incomplete logarithmic least squares problem (Bozóki et al., 2010) associated
with an incomplete PCM Â(aij)n×n is a nonlinear optimization problem and
expressed as
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min
w>0

n∑
i=1

n∑
j=1

χ(aij)

(
log aij − log

wi

wj

)2

(3.24)

s.t.


∑n

i=1wi = 1

1
9 ≤

wi

wj
≤ 9, i, j = 1, . . . , n.

(3.25)

where

χ(aij) =

1, aij is known

0, aij is unknown.

In the objective function, the unknown comparisons are given values of zero.
Then, after minimization, the ratio wi/wj in the weight vector w = (w1, . . . , wn)

estimates the values of the missing comparisons in Â. The constraints 1
9 ≤

wi

wj
≤

9, i, j = 1, . . . , n in the optimization problem (3.24) enforce the values of the
missing entries in the interval 1

9 , 9, for the sake of comparability with the other
methods.

Theorem 2 (Bozóki et al. (2010)) The connectedness of graph G associated
with the incomplete PCM is a necessary and sufficient condition for the unique-
ness of the optimal solution of the incomplete logarithmic least squares problem.

3.2.1 Numerical Simulations and Hierarchical Clustering

To measure the closeness between two completed matrices, the Manhattan dis-
tance D is used:

D(A,B) = ∥ log(A)− log(B)∥ =
n∑

i=1

n∑
j=1

|log(aij)− log(bij)| (3.26)

where A = (aij)n×n and B = (bij)n×n are the completed matrices obtained by
applying two different methods to the same incomplete matrix Â = (âij)n×n of
order n.

It is reasonable to apply the logarithm to each matrix entry before computing
the distance between two PCMs, although various distance formulas are pro-
vided in the literature. This is due to the fact that, for instance, the distance
between judgments 1

8 and 1
9 should be the same as that between judgments 8
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and 9 (Fedrizzi, 1990, pp. 233–235). Notice that log stands for natural loga-
rithm. Moreover, the formula (3.26) was used by Mazurek et al. (2021) with the
exception of the logarithmic transformations.

From now on, the following notation will be utilized:

• D denotes the distance in Eq. (3.26);

• D∗ denotes the mean distance in Eq. (3.26) computed over a number of
instances.

Two completion methods are more similar when the mean distance D∗ is smaller.

Perturbed consistent PCMs were generated to carry out the numerical simula-
tions for n = 4, . . . , 8 along with various numbers of missing comparisons. A
consistent PCM A = (aij)n×n on [1/9, 9] is generated by using aij ← [ wi/wj,
where (w1, . . . , wn) is a randomly generated vector with wi ∈ [1, 9]. Then the
consistent matrix is modified using a random perturbation aij ←[ aij · β, β ∼
from Lognormal distribution Lognormal(0, σ2) with σ = 0.7, where the distri-
bution of the CR of the perturbed PCMs has an expected value very close to
0.1. We believe that these inconsistent PCMs are more relevant than randomly
generated matrices, anyway, which are also analyzed in Publication II. Once the
upper triangle has been completed in this manner, reciprocity is used to create
the lower triangle.

To construct an incomplete PCM of order n, one or more comparisons are ran-
domly removed from a complete PCM independently and using a uniform dis-
tribution in the upper triangle, replacing them with unknowns. Then, starting
with the upper triangle, the lower triangle is created to obtain the reciprocals
of the unknowns. Finally, an incomplete PCM will be constructed. A test is
performed in order to check whether the corresponding undirected graph asso-
ciated with each incomplete PCM is connected or not. It is important to note
that the uniqueness of the solution for the optimization-based methods depends
on the connectedness of the associated undirected graph. Moreover, there are
some methods that consider the graph’s connectedness as a sufficient condition
for finding a solution (e.g., methods M7, M8, M9 and M10).

Furthermore, an agglomerative hierarchical clustering algorithm is applied using
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a single-linkage method (Johnson, 1967; Everitt et al., 2011), which is simple
and suitable for our goal. The algorithm merges the two clusters W and Z at
min{d∗st| s ∈ W , t ∈ Z} where d∗st is the distance between elements. That is, the
most similar clusters are merged in the distance matrix, and deleting rows and
columns are kept so that old clusters are joined into new ones using the minimum
distance.

Let D∗ = (d∗st)11×11 be a distance matrix, where the entries d∗st of the matrix
D∗ are the mean distances between the eleven methods: Ms and Mt (s, t =

1, . . . , 11). Then, the basic steps of the agglomerative hierarchical clustering are
the following:

(1) Start with m = 11 clusters, each object making a single cluster of its own,
and then m decreases by 1 at each step;

(2) The most two similar clusters are joined using the minimum distance;

(3) The distance matrix D∗ is updated;

(4) Steps (2) and (3) are repeated until only one cluster remains.

3.2.2 Results and discussion

Figure 3.7 reports the mean distances between methods by means of heatmaps.
The color of each heatmap cell is described by the colorbar (on the rightmost side)
subject to the ranges of the distance values. Dark-blue represents larger values
and light-blue represents smaller values. For instance, in Figure 3.7, greater
values in the distance matrix can be found in the cells of the heatmap linked to
method M4, and are shaded with dark-blue, in each subfigure, in an L-shaped
pattern. Since the distance matrix is symmetric, the heatmaps only depict the
values in the upper triangle. Additionally, the two methods M3 and M5 yield
results that are quite similar for all distances taken into account.

Dendrograms are used to display the hierarchical clustering of the eleven com-
pletion methods. The dendrogram is built in the bottom-up hierarchy, which is
also known as agglomerative hierarchical clustering. For instance, as depicted in
Figure 3.8, the methods M3 and M5 are linked with the smallest height, hence
they are the most similar; the set of methods {M3, M5, M11} is the next most
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similar methods; M1 and M2 are the third most similar methods; the cluster
{M1, M2, M3, M5, M11} represents the fourth most similar methods, and so on.
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Cutting a dendrogram

Figure 3.8: A sample of cutting a dendrogram into seven clusters: {M1,M2,
M3,M5,M11}, {M7}, {M8,M9}, {M6}, {M10}, {M4}. Reprinted from Publication II.

Simulations were performed by further varying the order of PCMs and the number
of missing comparisons. When we cut all dendrograms into a constant of seven
clusters, as shown in Figure 3.9, five methods—M1, M2, M3, M5, M11—are al-
ways found in one cluster. This indicates that these five methods are extremely
similar, irrespective of the order of the matrix or the number of missing entries,
with an exception made for the very specific case with limited relevance k = 1.
That is, the similarity among the completion methods does not change signif-
icantly for the increasing k and/or n, except for the very specific case k = 1.
At k = 1 while n increases, the five methods M3, M5, M7, M8 and M11 are
the most similar. On the other hand, method M4 is typically associated with
greater mean distances. In fact, cluster M4 has the highest height across all of
the dendrograms, making this method an outlier.

Furthermore, if we try to analyze the discrepancy of the completion method
M4 results to the others, one question may come up in one’s mind: ‘Why the
discrepancy of the M4 results?’ It is fair to reason out that it could be related to
the possibility that biases, upon which method M4 is based, may differ greatly
from inconsistencies. For instance, consider the entry a15 = 6 of the following
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Figure 3.7: Heatmaps and distances D∗ over 1000 instances using σ = 0.7 for different values
of n and k. Reprinted from Publication II.
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Figure 3.9: Hierarchical clustering of the eleven completion methods corresponding to Figure
3.7. Reprinted from Publication II.
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If we examine its value with those found through non-trivial indirect comparisons
a1jaj5, ∀j ̸= 1, 5, we get

a12a25 − a15 = 2− 6 = −4

a13a35 − a15 = 7− 6 = 1

a14a45 − a15 = 9− 6 = 3

which draws attention to the existence of inconsistencies. Nevertheless, when
they are added up using Eq. (3.14), they provide a null bias because the errors
indeed exist but cancel one another out. The difference between the ideas of
bias and inconsistency makes the selection of the completion method even more
crucial.

We verified that, through numerical simulations, the 11 completion methods yield
the same completed (and consistent) PCM when only considering incomplete
PCMs corresponding to connected graphs, if the initial complete PCMs are all
consistent.

It is important to show whether the similarity between two completion methods
is related with the similarity of the weight vectors extracted from the complete
PCMs. Hence, the weight vector (normalized eigenvector) is calculated from the
completed PCM C using the right eigenvector method:

λmaxw = Cw

where λmax is the the maximum eigenvalue of C. Then, the Manhattan distance
d̂s,t between two weight vectors is calculated:

d̂s,t(u,v) =
n∑

i=1

|ui − vi| (3.27)
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where u = (u1, . . . , un)
T and v = (v1, . . . , vn)

T are weight vectors derived from
the same completed PCM by applying two different methods Ms and Mt (s, t =
1, 2, . . . , 11), whereas Ds,t (see Eq. (3.26)) represents the distance between two
completed matrices from two different methods Ms and Mt. It is worth noting
that all weight vectors are derived from the completed matrices (after completion)
and normalized (

∑n
i=1 ui = 1 and

∑n
i=1 vi = 1).

We considered the two extreme cases: the most similar methods (M1 and M2),
and significantly dissimilar (M1 and M4). Scatter plots are provided in Fig-
ures 3.10 and 3.11, respectively. Spearman’s rank correlation coefficients suggest
that the two variables (distance between completed matrices versus distance be-
tween their weight vectors) have a strong co-monotonic relationship.

All calculations and visualizations were carried out using MathWorks MATLAB
R2021b and Wolfram Mathematica 12.1.

3.3 Publication III

Publication III represents, “Filling in pattern designs for incomplete pairwise
comparison matrices: (quasi-)regular graphs with minimal diameter” (Szádoczki
et al., 2022). The goal of the research was to develop an innovative approach to
filling in pattern designs using graphs that shows the patterns of the comparisons
that have to be made, based on the concept of diameter which was missing in the
relevant literature, and that contains a collection of (quasi-)regular graphs with
diameters of 2 and 3, degrees of 3, 4 and 5, and vertices from 5 up to 24.

The arrangements of the known comparisons are particularly important, and prior
to the decision-making process, the set of comparisons is carefully planned. We
consider the items to be compared in a symmetric manner without any further
prior information. Every item is compared to the same number of elements,
which creates a sort of symmetry. However, we avoid situations when two items
are compared only indirectly via a very long path. Thus, we search for graphs with
a minimum diameter (d parameter) for a particular number of vertices (n) and
regularity levels (s). When the d parameter is small, our system of comparisons
becomes more reliable or stable. The s parameter is also important to show us
how many comparisons have to be made and avoid some cases for a given criteria
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Figure 3.10: The relation between distances from the completed PCMs (D1,2) and distances
from weight vectors (d̂1,2) computed on 1000 perturbed PCMs with σ = 0.7. The indices {1, 2}
indicate the methods M1 and M2, respectively. The value of ρ indicates the Spearman rank
correlation coefficient. Reprinted from Publication II.
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Figure 3.11: The relation between distances from the completed PCMs (D1,4) and distances
from weight vectors (d̂1,4) computed on 1000 perturbed PCMs with σ = 0.7. The indices {1, 4}
indicate the methods M1 and M4, respectively. The value of ρ indicates the Spearman rank
correlation coefficient. Reprinted from Publication II.
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(vertices) because every vertex has a degree of s and hence the number of edges is
ns/2. Hence, if the decision-maker wants to create a PCM as quickly as possible,
he/she should use a small s value. However, usually there should be a trade-off
between the parameters because for many criteria n, the smaller regularity s will
result in a more fragile system of comparisons, or a larger diameter d.

Computational and constructing methods have been used to determine the graph(s)
with minimal diameter d for a given (n, s) pair. Using these methods, it was sim-
ple to identify which s is the minimum required to reach a certain d for a given
n. We identified that the suitable values for the regularity at the selected upper
bound of n = 24 are s = 3, 4, 5 and the suitable values for the graph’s diameter
are d = 2, 3. For many (n, s) pairs, the diameter d = 1 would logically imply a
complete graph and hence a complete PCM, neither of which are important to
us.

For a general MCDM problem, the completion ratio may provide more informa-
tion as an indicator that shows how far we are from the ‘extreme’ case, in which
the decision-makers must perform all the n(n−1)

2 comparisons rather than consid-
ering only ns

2 comparisons in case of regular graphs or ns+1
2 comparisons in case

of quasi-regular graphs. Therefore, the completion ratio is defined as follows:

c =

{
ns/2

n(n−1)/2 if n or s is even
(ns+1)/2
n(n−1)/2 if n and s are odd

(3.28)

that will be calculated for every instance.

The different construction techniques that have been used for the collection of
our graphs for a given (n, s, d) pair are the following.

1. We used the built-in graphs in Wolfram Mathematica (Wolfram Research,
2020) as a starting reference point and the ones having the minimal diameter
will be selected.

2. We used nauty and Traces (McKay and Piperno, 2014) and IGraph/M
(Horvát, 2020) as construction methods for smaller and middle-sized graphs
to generate all the possible (quasi-)regular graphs. Then the required ones
could be selected. For instance, consider the following result, which has
been found by using the first technique nauty and Traces. As can be seen
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Figure 3.12: The construction of 3-quasi-regular graph on 7 vertices with the help of nauty
geng (COS++, 2021).

in Figure 3.12, if we provide the number of vertices n = 7, minimum degree
s = 3, maximum degree 4 (because of quasi-regular graph), maximum and
minimum number of edges (ns+1)/2 = (7×3+1)/2 = 11 (see Eq. (3.28)),
then we can find 4 possible graphs quickly (displayed in the output as edge
list). In this example, all of the four generated graphs are 3-quasi-regular
graphs with diameter 2.

3. We collected the well-known graphs from different literature, such as the
Petersen graph (Holton and Sheehan, 1993), Wagner graph (Maharry and
Robertson, 2016) and prism graph (Pratt, 1996).

4. We used several construction techniques to generate all the possible regular
graph designs for larger graphs, such as the twisted product, integer linear
programming or merging and extending techniques with the help of some
existing graphs, although many of these cases were challenging and time-
consuming.

We defined s-quasi-regularity, which are our findings and the first to be used
in this context. Most of the quasi-regular graphs have been constructed using
a twisted product of two graphs (see Definition 16), while few have been found
using integer linear programming or strategies for extending and merging with
the help of some existing graphs. For instance, the 5-quasi-regular graph on 21
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vertices has been found using the method of twisted product K3 ∗X7, where K3

is a complete graph with three vertices, whereas X7 is a graph with a diameter
of 2 on 7 vertices in which all of the vertices have degree 3 with the exception
of one which has a degree of 4. The 5-regular graph with 22 vertices has been
obtained using the following binary integer programming :

Let V = {1, . . . , 22} be the set of vertices, and let P = {i ∈ V, j ∈ V : i < j}
be the pairs of vertices. For (i, j) ∈ P , let Xi,j be a binary decision variable
that indicates whether (i, j) is an edge. For (i, j) ∈ P and h ∈ V \ {i, j},
let Yi,j,h be a binary decision variable that indicates whether h is a common
neighbor of i and j. For (i, j) ∈ P , let SLACKi,j be a slack variable.

min
∑

(i,j)∈P

SLACKi,j∑
(i,j)∈P :h∈{i,j}

Xi,j = 5 for h ∈ V (1)

Xi,j +
∑

h∈V \{i,j}

Yi,j,h + SLACKi,j ≥ 1 for (i, j) ∈ P (2)

Yi,j,h ≤ Xi,h[if i < h] +Xh,i[if h < i] for (i, j) ∈ P and h ∈ V \ {i, j} (3)

Yi,j,h ≤ Xj,h[if j < h] +Xh,j[if h < j] for (i, j) ∈ P and h ∈ V \ {i, j} (4)

Xi,j, Xi,h, Xh,i, Xh,j, Xj,h, Yi,j,h, SLACKi,j ∈ {0, 1} for all i, j, h ∈ V (5)

5-regularity is enforced by constraint (1). Diameter 2 is enforced by constraint
(2). Constraints (3) and (4) enforce that Yi,j,h = 1 implies h is a neighbor of i
and j, respectively. The existence of the required graph is guaranteed if and
only if the binary integer programming has a solution with SLACKi,j = 0, ∀
(i, j) ∈ P . Reprinted from Publication III.

The problem has 5082 variables, 9493 constraints, and 1 objective function. Its
solution can be found using standard optimization software/solver, such as Gurobi
with AMPL or Gurobi with Python.

Table 3.1 shows graphs with the minimal values of regularity s = 3 and diameters
d = 2 (left-sided graphs) and d = 3 (right-sided graphs) from vertices of n = 5 up
to n = 16. Graphs with vertices n = 1, 2, 3, 4 are not considered because of the
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following reasons: (i) For n ≤ 3, the 3-regularity is not possible; (ii) For n = 4,
the graph diameter is 1, because this is a complete graph and forms a complete
PCM. It is also worth noting that 3-regular graphs are only examined when n

is even, while the 3-quasi-regular graphs (the closest graphs to 3-regularity) are
examined when n is odd. Furthermore, it should be noted that the completion
ratio (c) is decreasing while n increases. Thus, we should stress the fact that

s=3
d=2 Graph Further

Information
s=3
d=3 Graph Further

Information

n=5
• c = 8/10 =

0.8

• 1 graph

n=11
• c = 17/55
≈ 0.309

• 134 graphs

n=6

3-prism graph
(C3 ×K2)

• c = 9/15 =
0.6

• 2 graphs

n=12

Tietze graph

• c = 18/66
≈ 0.273

• 34 graphs

n=7
• c = 11/21
≈ 0.524

• 4 graphs

n=13
• c = 20/78
≈ 0.256

• 353 graphs

n=8

Wagner graph

• c = 12/28
≈ 0.429

• 2 graphs

n=14

Heawood graph

• c = 21/91
≈ 0.231

• 34 graphs

n=9
• c = 14/36
≈ 0.389

• 2 graphs

n=15
• c = 23/105
≈ 0.219

• 290 graphs

n=10

Petersen graph

• c = 15/45
≈ 0.333

• 1 graph

n=16
• c = 24/120

= 0.2

• 14 graphs

Table 3.1: 3-(quasi-)regular graphs on n vertices with minimal diameter d = 2, 3. Reprinted
from Publication III.

there are very few graphs for each pair (n, s) with the smallest diameter.

When n is becoming large, the diameter goes up but the completion ratio is still
decreasing in n. However, the completion ratio is increasing in s. We exam-
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ined the interesting graphs with different cases, which can assist anyone with an
MCDM problem in determining which comparisons need to be made. The sum-
mary of the results is provided in Table 3.2, which contains the number of possible
(quasi-)regular graphs for a given (n, s, d) pair. Graphs with diameter d = 2 are
represented by lightgray, while graphs with diameter d = 3 are represented by
gray. ‘≥’ represents that there are at least as many possible graphs. An open
problem, when n = 23 and s = 5 with diameter d = 3, is represented by ‘?’. The
remaining graphs and their corresponding filling in pattern designs can be seen
in Publication III (Szádoczki et al., 2022), provided as a supplementary material
to the paper in the Appendix.

s
n 3 4 5

5 1
6 2
7 4
8 2
9 2
10 1
11 134 37
12 34 26
13 353 10
14 34 1
15 290 1
16 14 ≥ 3
17 51 ≥ 1
18 1 ≥ 1
19 4 ≥ 1
20 1 ≥ 1
21 ≥ 3 ≥ 1
22 ≥ 1 ≥ 1
23 ≥ 1 ?
24 ≥ 1 ≥ 1

Table 3.2: Results’ summary: the number of s-(quasi-)regular graphs on n vertices with
diameter d. Lightgray represents d = 2 and gray represents d = 3, ‘≥’ refers that there are at
least as many possible graphs. ‘?’ indicates that it is still an open problem. Reprinted from
Publication III.

Furthermore, an extensive numerical simulation has been carried out to vali-
date our recommended filling in pattern designs. As for the priority vectors
derivation techniques from the incomplete PCMs, we applied the two well-known
completion methods: Incomplete Logarithmic Least Squares Method (ILLSM)

79



and Eigenvector Method based on the CR-minimal completion (Bozóki et al.,
2010). We used two metrics (distance measures)—the Euclidean distance and
the Chebyshev distance—to calculate the differences between the weight vectors
derived from a certain filling in designs and from a complete PCMs. For each
of the examined filling in pattern’s parameter combinations (n, s, d), 1000 per-
turbed PCMs were used at three different levels of inconsistency (perturbation)
to compare various filling in patterns with the recommended ones. Finally, the
results suggested that the (quasi-)regular graphs with minimal diameter provide
the closest priority vectors on average than the other alternative graphs with the
same number of comparisons. For more detailed methodology and results of all
parameter combinations, see the Appendix of Publication III.

3.3.1 Motivational example

This example illustrates the importance of the diameter for better filling in designs
having 10 alternatives. Among 3-regular graphs on 10-vertices, the Petersen
graph has the smallest diameter, which is 2, while the Alternative 3-regular graph
has a diameter 5.

A numerical simulation has also been performed to compare the two different
filling in patterns (see Table 3.13) represented by the two graphs (see Figure 3.13).
In contrast to the alternative graph’s filling in patterns, the simulation results
suggested that the Petersen graph’s filling in patterns typically has small errors
and better performance (small standard deviation). As a result, it appears that
our recommendation performs effectively in the context of pairwise comparison
matrices.

The main contribution of the research project was a systematic collection of filling
pattern designs for incomplete PCMs through graph representations of PCMs.
Our results—the proposed (quasi)-regular graphs with minimal diameter—can
be used for both theorists and practitioners in multi-criteria decision-making,
given in several formats: graph, adjacency matrix, list of edges and ‘Graph6’
code (provided in the appendix of Publication III). For instance, practitioners can
utilize our recommended graphs as a ‘recipe’ in designing questionnaires based on
pairwise comparisons. Our findings can also be utilized in group decision-making
as we treat the individual preferences to be compared in a symmetric way and
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that we don’t need to assume any prior knowledge. Although our findings were
presented using paired comparison matrices, their applicability is much broader.
For instance, the problem of tournament design is brought on by the ranking
of sport players or teams based on their matches: which pairs should compete
against one another without having prior information about their strengths?

(a) An alternative 3-regular graph (b) Our recommended graph: the Petersen
graph

Figure 3.13: Two 3-regular graphs. Reprinted from Publication III.

1 2 3 4 5 6 7 8 9 10

1 1 a12 a14 a16

2 1
a12

1 a23 a25

3 1
a23

1 a34 a35

4 1
a14

1
a34

1 a45

5 1
a25

1
a35

1
a45

1

6 1
a16

1 a67 a69

7 1
a67

1 a78 a710

8 1
a78

1 a89 a810

9 1
a69

1
a89

1 a910

10 1
a710

1
a810

1
a910

1

1 2 3 4 5 6 7 8 9 10

1 1 a13 a14 a16

2 1 a24 a25 a27

3 1
a13

1 a35 a38

4 1
a14

1
a24

1 a49

5 1
a25

1
a35

1 a510

6 1
a16

1 a67 a610

7 1
a27

1
a67

1 a78

8 1
a38

1
a78

1 a89

9 1
a49

1
a89

1 a910

10 1
a510

1
a610

1
a910

1

Table 3.3: Two different filling in patterns represented by the graphs in Figure 3.13 based on
the known entries aij of the PCM provided. The pattern corresponding to the Alternative
graph can be seen to the left side, while the Petersen graph’s filling in design is shown on the
right side of the PCM. Reprinted from Publication III.

81



Chapter 4

Discussion and conclusions

4.1 Discussion

4.1.1 Summary of research findings and their implications

The thesis has addressed three research problems/questions related to incomplete
pairwise comparison matrices (PCMs).

In Section 3.1 (Publication I), our study focused on an application of the Nelder-
Mead algorithm for solving a constrained eigenvalue minimization problem using
the coordinate transformation techniques. Several numerical simulations were
conducted to evaluate the performance of the algorithm in tackling the mini-
mization problem subject to interval constraints. The simulations results indi-
cated that the algorithm has the ability to effectively estimate the missing values.
Moreover, the solution obtained is unique, provided that the undirected graph
associated with the incomplete PCM is connected. Additionally, the proposed al-
gorithm addresses a gap in the existing literature by producing an optimal point
that can lie on the boundary of the interval, unlike other existing methods, such
as the cyclic coordinates method (Bozóki et al., 2010), which returns the optimal
point within the interval’s interior—as opposed to the boundary—due to the slow
convergence of the method. The findings of the study can aid decision-makers
in completing partial information in PCMs. Consequently, the suggested algo-
rithm can be easily incorporated and transformed into tools for multi-criteria
decision-making, enabling practitioners to use it conveniently.

In Section 3.2 (Publication II), we analyzed the eleven completion methods by
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examining the completed matrices numerically and comparing the results. Hi-
erarchical cluster analysis was utilized to identify the similarities and highlight
differences between the methods. The significance of conducting numerical stud-
ies to analyze and compare various completion methods becomes more important
when there is a lack of a comprehensive axiomatic framework. Surprisingly, there
was recently no proof demonstrating the similarity or differences between various
completion methods in terms of the minimal diversity between the completed
matrices. It was unknown whether these methods can be used interchangeably
with minimal variation in results from a practical perspective. From the numer-
ical perspective, the main contributions of the second research project are: (i)
The results indicate that five methods are more similar than the others, while one
method differs greatly from the others; (ii) The study has pointed out a difference
in the results obtained from bias-based methods and inconsistency-based meth-
ods. Specifically, the fourth method showed significant divergence from the other
inconsistency-based methods. This highlights the importance of understanding
the distinction between bias and inconsistency when selecting completion meth-
ods. It also presents an avenue for further research to explore this difference; (iii)
The strength of the relationship between the distance between completed matrices
and the distance between their weight vectors can be inferred from Spearman’s
rank correlation coefficients, which indicate a strong co-monotonic relationship
between the two variables.

In Section 3.3 (Publication III), we provided a systematic collection of filling in
patterns (arrangements of known elements) of incomplete pairwise comparisons
with the help of undirected graphs under given conditions: diameter, regularity
and number of vertices. The minimal diameter was considered to be the key con-
cept in our research, which was missing in the relevant literature. The proposed
graphs, which have minimal diameter and are (quasi-)regular, are not only rel-
evant in terms of graph theory but also demonstrate their significance in multi-
criteria decision-making. They have potential applications in group decision-
making (Oliva et al., 2019) with diverse individual preferences. Moreover, our
results using pairwise comparisons can be applied to ranking sports players or
teams for tournament design without prior knowledge of their strengths. The re-
sults of the study are most applicable to these specific types of MCDM problems
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and may not be directly generalizable to other types of preference relations. How-
ever, the approach presented in the thesis, which uses (quasi-)regular graphs to
fill in the patterns of incomplete PCMs, could potentially be adapted and applied
to other types of decision-making problems that involve pairwise comparisons.

4.1.2 Limitations and future research directions

It is important to acknowledge the limitations of our research design and con-
sider how they may affect the validity and generalizability of our findings. Our
research study relied on a numerical simulation approach instead of an empirical
approach, despite the fact that we employed randomly generated PCMs and per-
turbed to be somewhat representative of real-world instances. Empirical research
provides actual data from real-world observations or experiments, which can be
used to test hypotheses and validate assumptions (e.g., Bozóki et al. (2013)).
However, it can be time-consuming, expensive, and subject to biases and errors.
On the other hand, numerical simulations involve creating mathematical models
or algorithms to generate hypothetical pairwise comparisons based on specified
parameters or assumptions. They can be used to explore the properties of dif-
ferent types of PCMs, evaluate the sensitivity of different methods, and generate
data for mathematical/statistical analyses. However, they rely on assumptions
and simplifications that may not accurately reflect real-world preferences. To
address these limitations, we may consider incorporating empirical research in
future studies.

In Section 3.1 (Publication I), while conducting simulations, we did not encounter
any issues with the convergence of the algorithm. However, it is worth noting
that we relied on numerical simulations rather than theorems to evaluate its
convergence, which could be a limitation of our study. Further investigation may
be necessary to address this potential limitation.

In Section 3.2 (Publication II), we conducted a comparative analysis using car-
dinal consistency, but did not consider ordinal consistency in our analysis. As a
result, we did not include other methods that rely on ordinal consistency (e.g.,
Yuan et al. (2023)). Additionally, it may be a subject of future research to ex-
amine the reliability of weight vectors derived from incomplete PCMs employing
completion (and prioritization) methods.
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In Section 3.3 (Publication III), based on the numerical simulations results, it
appears that the proposed (quasi-)regular graphs with minimal diameter out-
perform other alternative graphs with same number of comparisons, as per the
simulation design used in the study. Nevertheless, this does not exclude the
chance that there may be other simulation strategies/designs that are even more
advantageous, which we have not yet identified. Additionally, while our numerical
simulations provide some evidence to support the confirmation of our recommen-
dations, it would be nice to prove our conclusions as a theorem. Furthermore,
the examination of filling in pattern designs with vertices of n = 23, regularity of
s = 5, and diameter of 2 remains unresolved and necessitates additional research.
The computational capacity for simulations also limited the number of alterna-
tives that can be considered. Moreover, exploring the robustness of the results
between various regularity levels, between different diameters, and larger minimal
diameters may require further study and could be a focus of future research.

4.2 Conclusions

The thesis recognizes the importance and relevance of incomplete PCMs and
their generalization to complete PCMs (i.e., with null missing comparisons). The
methods and optimization techniques developed for incomplete matrices are valu-
able tools for decision-making in practical settings, where incomplete information
is often the norm rather than the exception. Assume that, CPCMs represents the
set of all complete pairwise comparison matrices. CGPCMs represents the set of
all pairwise comparison matrices with connected graphs, but may not be complete
PCM. Moreover, (Possibly) Incomplete PCMs represents the set of all incomplete
pairwise comparison matrices, including those where the graph of comparisons
may not be connected. Figure 4.1 depicts the inclusion relations ‘⊆’ between the
sets of PCMs:

CPCMs ⊆ CGPCMs ⊆ (Possibly) Incomplete PCMs.

To sum up, the thesis dealt with three research problems that are associated
with incomplete PCMs and offers answers/solutions to overcome them. The
study of the first research problem proposed an efficient optimization algorithm,
the Nelder-Mead algorithm, for solving the constrained eigenvalue minimization
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problem with interval constraints. The proposed algorithm effectively estimates
missing values and produces a unique optimal solution that can lie on the bound-
ary of the interval, addressing a gap in the existing literature.

CPCMs

CGPCMs

(Possibly) Incomplete PCMs

Figure 4.1: The inclusion relations between the sets of PCMs.

The second research problem analyzed eleven completion methods using numeri-
cal simulations and hierarchical cluster analysis. The study found that five meth-
ods were more similar than others, one method differed greatly, and there was
a difference between bias-based and inconsistency-based methods. The study
highlighted the importance of understanding this distinction when selecting com-
pletion methods and inferred a strong relationship between the distance between
completed matrices and the distance between their weight vectors. The study’s
findings provide valuable insights for selecting appropriate completion methods
and suggest avenues for further research.

The third research problem focused on developing an innovative approach to fill-
ing in pattern designs using graphs for incomplete PCMs. We aimed at identifying
the minimum value of diameter required to reach a certain regularity for a given
number of vertices. The study emphasized the importance of the arrangement of
known comparisons in the decision-making process, and provided different con-
struction techniques for generating (quasi-)regular graphs with minimal diameter
for a given (n, s) pair. The completion ratio has also been defined as an indi-
cator that shows how far decision-makers are from performing all comparisons.
The different completion methods, such as ILLSM (Incomplete Logarithmic Least
Squares Method) and Eigenvector Method for incomplete PCMs, were used to
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derive the priority vectors from the incomplete PCMs to perform the numerical
simulations. Finally, the research presented a systematic approach to filling in
pattern designs for incomplete PCMs, which can assist decision-makers with an
MCDM problem in determining which comparisons need to be made. We pro-
vided a collection of (quasi-)regular graphs with diameters of 2 and 3, degrees of
3, 4, and 5, and vertices from 5 up to 24. Furthermore, we validated our recom-
mended filling in pattern designs through an extensive numerical simulations.
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