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Abstract
The present work develops ANAKIN: anArtificial iNtelligence bAsedmodel for (radiation-induced) cell
KIlliNg prediction. ANAKIN is trained and tested over 513 cell survival experiments with different
types of radiation contained in the publicly available PIDE database.We showhowANAKIN
accurately predicts several relevant biological endpoints over awide broad range on ion beams and for
a high number of cell-lines.We compare the prediction of ANAKIN to the only two radiobiological
models forRelative Biological Effectiveness prediction used in clinics, that is theMicrodosimetric Kinetic
Model and the Local EffectModel (LEMversion III), showing howANAKINhas higher accuracy over
the all considered cell survival fractions. At last, viamodern techniques ofExplainable Artificial
Intelligence (XAI), we showhowANAKINpredictions can be understood and explained, highlighting
howANAKIN is in fact able to reproduce relevant well-known biological patterns, such as the
overkilling effect.

1. Introduction

In the last decades, radiotherapy (RT) has increasingly proven to be an extremely effective cure against cancer.
Within RT, particle therapy (PT), has been emerging (Durante and Flanz 2019), and at the end of 2021, about
325.000 patients have been treatedworldwidewith PT, of which close to 280.000with protons and about 42.000
with carbon ions (PTCOG2022). Furthermore, other ions have been recently gaining attention (Rovituso 2017):
in 2021 the first patient was (re-)treatedwith helium (Mairani et al 2022) at theHeidelberg IonTherapyCenter
(HIT) inGermany, while perspective studies are looking into the possible using of oxygen (Kurz et al 2012, Sokol
et al 2017).

The physical rationale of using hadrons in cancer treatment is their characteristic energy lossmechanisms,
which result in concrete biological advantages compared to photons, such as increased tumor control and a
greater sparing of normal tissues, with a consequently lower risk of toxicity.

Despite the theoretically superior physical properties of hadrons compared to photons, further research is
critical for increasing the PT application in the clinic. A correct and accurate estimation of radiation-induced
biological damage remains one of themajor limitations to the full exploitation of this treatmentmodality. The
key quantity used to describe the radiation effectiveness in inducing specific damage is theRelative Biological
Effectiveness (RBE), which is defined as the ratio between the dose delivered by a given radiation and the dose
delivered by the reference radiation yielding the same biological effect:
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RBE allows quantifying howmuchmore lethal certain radiation is compared to the reference radiation,
usually x-rays, and is used inTreatment Planning Systems (TPS) to calculate the biological dose, namely the
physical dosemultiplied by the RBE. For this reason, over the last decades a plethora ofmathematical
mechanisticmodels, (Kellerer andRossi 1974, 1978, Tobias 1980, 1985,Hawkins 1994, Kase et al 2006, Elsässer
et al 2010, Vassiliev 2012, Friedrich et al 2013a, 2013b,Manganaro et al 2017, Vassiliev et al 2017, Inaniwa and
Kanematsu 2018, Bellinzona et al 2021, Cordoni et al 2021,McMahon and Prise 2021, Cordoni et al
2022a, 2022b), as well as data-driven phenomenologicalmodels, (Wilkens andOelfke 2004, Tilly et al 2005,
Carabe et al 2012, Chen andAhmad 2012,McNamara et al 2015,Mairani et al 2017) have been developed to
estimate RBE based on biological as well as physical quantities. At the base ofmostmodels is the linear-quadratic
(LQ) behavior of the cell survival logarithmwith respect to the imparted dose:

( ) = a b- -S D e ,D D2

whereα andβ are some specific parameters that depend on both biological (e.g. tissue type) and physical (e.g
radiation quality) variables (McMahon 2018).

Currently, a constant RBEof 1.1 is conservatively used in proton therapy, although evidences show its
variability, especially in the distal region (Paganetti et al 2002, Paganetti 2014, 2018,Missiaggia et al 2020, 2022a).
For carbon and helium ions, the RBE variations across the irradiation field are significant enough that a constant
value cannot be used. Currently, two radiobiologicalmodels are currently used to predict RBE in clinical
practice: (i) theMicrodosimetric KineticModel (MKM) (Inaniwa et al 2010, Inaniwa andKanematsu 2018,
Bellinzona et al 2021), and (ii) the Local EffectModel (LEM) (Elsässer et al 2010, Friedrich et al 2013a, Pfuhl et al
2022). Bothmodels have been vastly tested against in vitro and in vivo data (Inaniwa andKanematsu 2018, Pfuhl
et al 2022), but the outcomes have not indicated a clear superiority of onemodel to the other. In addition,
significant differences in the prediction of RBE acrossmodels are evident so that, at present days, the use in
clinical practice of a variable RBE is highly subject to themodel chosen, (Giovannini et al 2016,Missiaggia et al
2020, Bertolet et al 2021,Missiaggia et al 2022a).

The lack of a robust and generalizedmodel for predicting RBEhinders the full exploitation of PT, including
the use of ions heavier than carbon, such as oxygen, to successfully treat radio-resistant tumors, (Boulefour et al
2021), ormulti-ion therapy, which is nowadays accessible from the technical point of view (Ebner et al 2021).

Furthermore, although someRBEmodels have a generalmathematical formulation, their implementation
in the TPS, especially for inverse planning, requires a heavy calculation effort. This issue is usually overcome
both by using look-up tables and bymaking specific assumptions (Inaniwa andKanematsu 2018), such as
physical or biological approximations, which clearly limit themodel generality and affect its RBE prediction
accuracy.

Aiming at deriving a generalmodel able to accurately predict RBE across awide range of physical and
biological variables, we developedANAKIN (anArtificial iNtelligence bAsedmodel for (radiation-induced) cell
KIlliNg prediction), a new general AI-drivenmodel for predicting cell survival andRBE.Machine Learning (ML)
andDeep Learning (DL) algorithms have recently started to gain attention in themedical physics community
with applications on imaging (Sahiner et al 2019), fast dose estimation (Götz et al 2020),Monte Carlo simulation
(Sarrut andKrah 2021), and particle tracking (Missiaggia et al 2022b) have been published.However, only
Papakonstantinou et al (2021) applyML for predicting radiation-induced biological quantities, conducting a
study on the induction ofDNAdamage and its complexity, but no analysis onRBE is performed.

ANAKIN is composed by variousML andDL-basedmodules, eachwith a specific tool, and interconnected
to each other. Themodel considers both physical variables such as the kinetic energy of the incident beamor also
the Linear Energy Transfer (LET), that is the amount of energy that a particle transfers to thematerial traversed
per unit distance, (Durante and Paganetti 2016), and biological variables, such as theα andβ values for the
reference radiation response. Tomake themodel as general as possible, we trained it on cell survival data for 20
cell lines widely used in radiobiology and 11 different ion types all available on theParticle IrradiationData
Ensemble (PIDE) (Friedrich et al 2013b, 2021). Togetherwith particles of interest for clinical applications, we
also included in the training process heavier ions, including iron. This choice extends the application of
ANAKIN to other research fields, such as radiation protection in space. To verify ANAKINpredictions and
assess their accuracy, we randomly divided the data available in PIDE into two sets, one for training and one for
testing. Therefore all results reported in the present work refer to the test set, which consists entirely of
experiments that have not been included in the training set.

Artificial Intelligence (AI) has had a disruptive impact both in the researchfield and in real-life applications.
The potential ofmodern and advancedML andDL algorithms have started to gain attention in themedical
physics community, where several research papers on the application ofDL to imaging, (Sahiner et al 2019), fast
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dose estimation, (Götz et al 2020),Monte Carlo simulation, (Sarrut andKrah 2021), and particle tracking,
(Missiaggia et al 2022b), have appeared. Quite surprisingly, to the best of our knowledge, the only results in the
literature that useML to predict radiation-induced biological quantities is (Papakonstantinou et al 2021), where
the authors conduct a study on the induction of cellular damage, but no analysis onRBE is performed
(Davidovic et al 2021).

ML andDLhave been shown to be extremely powerful, accurate, andflexible tools to extract information
and hidden relations aswell as to predict themost likely outcome based on data of possibly different nature,
(Khalid et al 2007,Ongsulee et al 2018, Shwartz-Ziv andArmon 2022).Moreover, an excellent, systematic and
comprehensive data collection of cell survival experiments exists and is publicly available, the PIDE, (Friedrich
et al 2013b, 2021).

ANAKIN is constituted by variousML andDL-basedmodules, eachwith a specific task, and interconnected
to each other. Two different tree-basedmodels, namely theRandomForest (RF) (Ho1995, 1998), and the
ExtremeGradient Boosting (XGBoost) (Chen andGuestrin 2016a, 2016b) algorithms are used to predict cell
survival for awide variety of radiation and cell-lines. It is worth stressing that the final goal of ANAKIN is to
develop a robust and accuratemodel that is able to predict cell survival in themost general possible conditions.
ANAKIN is trained to predict cell survival for 20widely used cell lines and for 11 different ions type. Concerning
this last point, despite the drivingmotivation beingHT,many different ions, such as ironwhich is beyond the
possible application in the clinic, are included in themodel. Thismakes ANAKIN extremely general so that
possible future application in space radioprotection is also envisaged.

ANAKIN is trained on the PIDE. It is worth stressing that, in order to be as realistic as possible, experiments
contained in the PIDEdataset are divided into a training set and a testing set. Therefore all results reported in the
present work refer to the test set, which consists entirely of experiments that have not been included in the
training set. Thismeans that ANAKIN is asked to predict the cell survival for experiments that have never been
seen before. Besides the alreadymentioned variables, ANAKIN considers both physical variables such as the
kinetic energy of the incident beamor also the LET, that is the amount of energy that a particle transfers to the
material traversed per unit distance, (Durante and Paganetti 2016), and biological variables, such as theα andβ
values for the reference radiation response.

ANAKIN is tested over several endpoints andmetrics to establish the actual accuracy of its predictions.
Further, ANAKINpredictions are comparedwith theMKMand the LEM,which are the only two
radiobiologicalmodels currently used in the clinic. The twomodels are based on different funding assumptions,
such as target size definition, the concept of locality, and parameters included, and therefore have significant
differences in the predicted RBE. The analysis of the differences is beyond the scope of the present paper but has
been deeply studied in literature (Friedrich et al 2013a, Stewart et al 2018, Scholz et al 2020, Bellinzona et al
2021). Regarding the LEM results, an extremelywell-done and extensive analysis of the LEMhas become
available very recently (Pfuhl et al 2022). As amatter of a fact,much of the analysis conducted in the current
paper has been explicitly inspired by Pfuhl et al (2022). In this direction, itmust be stressed that, in the current
paper, version LEM III is used since LEM IV is not currently implemented in the survival toolkit and thus, the
presented comparisons could not be translated to the state of the art version of the latter code It is clear that the
results reported in Pfuhl et al (2022) on the LEM IV aremore accurate than the one reported in the current
research using the LEM III, so this factmust be taken into account.

Finally, the current work further aims at demystifying the erroneousmyth thatML andDLmodels are
obscure black-boxmodels whose predictions cannot be interpreted. If this argument can in fact be partially
correct for extremely deep and sophisticatedNN that has been builtmostly in the field of theReinforcement
Learning, the same cannot be said for the vastmajority ofML andDLdeveloped in the last years. In fact, on one
side, itmust be said that someMLmodels, such as for instance tree-basedmodels, are interpretable by nature
and, on the other side, recently huge attention has been posed to the development ofmathematical techniques
aiming at explainingML andDLmodels that are not of easy interpretation; such area of research is known as
Explainable AI (XAI) (Gunning et al 2019).

Themain focuses of the present research are to:

(i) Develop for the first time a general AI-driven model to predict cell survival fraction over a wide range of
biological cell lines and physical irradiation conditions.

(ii)Compare ANAKINwith the two radiobiologicalmodels used in the clinic (MKMand LEM).

(iii) Show that ML- and DL-based models are not only accurate but can also help in gaining new knowledge and
understanding in radiobiology andmedical physics.
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2.Material andmethods

2.1. The dataset
The development, training, and verification of ANAKIN are based on data fromPIDE (Friedrich et al
2013b, 2021).

TheMKMand LEMpredictions are computed via the survival toolkit, (Attili andManganaro 2018,
Manganaro et al 2018). This toolkit is an open-source implementation that has been checked to be coherent with
the published results of themodels, but nonetheless, differences with themost advanced versions of the two
formalismsmay arise. Unfortunately, to date, no extensive and qualitative estimation of theMKMpredictions
overmany cell lines exists sowe could only rely on the survival toolkit. In particular, theMKMcoupledwith the
amorphous trackmodel, (Kase et al 2007), and the LEM III have been considered.

The PIDEdatabase contains a series of cell survival experiments, conducted over amultitude of different
irradiation conditions and cell lines. In addition to the original data, a set of LQparameters are calculated for
each experiment and is also reported. Following Pfuhl et al (2022), ANAKIN is thus trained over the exponential
linear-quadratic fit on cell survival experiments. This is done asmany experiments contained in the PIDE clearly
show anomalous variability in the reported survival fraction. Experiments reporting less than 3measurement
points are removed from the dataset because at least 3 values are needed tofit an LQ curve. The dataset obtained
fromPIDE is then divided into two subclasses, one for training ANAKIN and one for testing its predictions. The
selection is done so that each subset contains a sufficient amount of data for each cell line and ions to be
statistically significant.

Unlike Pfuhl et al (2022), ANAKIN is trained on bothmonoenergetic and Spread-out Bragg-peak (SOBP)
ion beams, and for this reason, a specific variable is added to the data to specify the irradiation condition.

After applying all the selection criteria described above, the resulting dataset contains 513 experiments,
including 20 cell lines and 11 ion types, of which 333were randomly assigned for training and the remaining 180
for testing. Figure 1(a) gives an overall point of view on the number of considered experiments for each cell-lines
aswell as ion type.

At the end of the cleaning of the data, we are left with 513 experiments, we randomly selected the 65%of the
experiments, which correspond to 333 experiments, for trainingwhereas the remaining 180 are used to test. It is
worth stressing that the division between train and test has been performed over the experiments,meaning that
ANAKIN is tested on experiments that have never been seen before by themodel. All results that are shown in
the present paper refer to the test set so that ANAKIN test reflects a realistic situation inwhichANAKIN should
predict the cell survival of an experiment or a real situation that has never been seen before.

ANAKIN takes as input 14 variables of both physical and biological parameters, either continuous, such as
LET or energy, or discrete, such as ion type or cell-lines. The full list is reported in table 1. Variables names as
reported in table 1 are taken from the PIDE and described in Friedrich et al (2013b, 2021). The only variable that
has been added to the dataset is the square of the dose, namedDose2. The choice of considering the square of the
dose ismotivated by thewell-known linear and quadratic form for the logarithmof survival. It is worth noticing
that alsoαγ andβγ values are passed as input to ANAKIN.

2.2.Machine andDLmodels
ANAKIN is an ensemble AImodel composed ofML andDLmodules, eachwith a different task, that together
predicts the cell-survival probability. A schematic representation of ANAKIN is shown infigure 1(b). Four
different tree-basedmodels are trained on the PIDE: twoRF (Ho1995, 1998), and twoXGBoost (Chen and
Guestrin 2016a, 2016b). PIDE data are directly used as input for oneRF and oneXGBoostmodel, while for the
other two they arefirst processedwith theDeep Embedding (Micci-Barreca 2001, Guo andBerkhahn 2016)
NeuralNetwork (NN), where categorical variables with high cardinality (in this case Ion,Cells andCellCycle) are
pre-processed to learn a newmeaningful data representation. Once the initial parameters are selected, (e.g. cell
line, ion type, and kinetic energy), the survival is calculatedwith each of the fourmodels, and these values are
used as input to ANAKIN to predict thefinal cell survival.

Tree-basedmodels have been chosen for the predictivemodules rather thanNNbased algorithms because,
to date, despite the groundbreaking impact thatNNhad on image detection,NNhad a significantly less impact
on tabular data; there are in fact several empirical pieces of evidence that standardML approaches have
comparable or even better results thanNN, (Grinsztajn et al 2022). On the contrary, DL algorithms are used
withinANAKIN in an innovative way to solve different tasks. Asmentioned above, ANAKIN is trained to
predict cell survival overmany cell lines as well as ions. Such variables can assume only discrete values, typically
referred to as categorical variables in theML andDL community, and for this reason, they are not in principle
easily handled by anMLorDLmodel. Evenmore problematic there is the fact that such categorical variables
have a high number of possible values. This poses a serious issue in how these variablesmust bemapped to
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numeric values to be efficiently treated by anMLmodel. Several possible solutions to the above problem exist,
(Seger 2018), but recently, DL has gained huge attention not as solely a predictive tool but also as an extremely
powerful data pre-processing tool, used for instance as amodel to extract new information fromdata. For
instance, DL has been recently proposed to specifically treat categorical variables with a high number of values.
Such technique is calledDeep Embedding, (Micci-Barreca 2001, Guo andBerkhahn 2016, Shreyas 2022), and

Figure 1.ANAKIN input dataset andworkflow. (a)Number of experiments for each ion type, reported in the horizontal axis, and cell-
line, reported in the vertical axis; the size refers to the number of experiments. (b)A schematic representation of ANAKIN.Data from
PIDE are input into two types of tree-basedmodels (RF andXGBoost), either directly or after being processedwith aDeep Embedding.
All fourmodels predict cell survival, and the values are used as input for ANAKIN,which opportunely combines the predictions to
provide afinal cell survival output.
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consists in training aNN that learns themost efficient way of encoding a categorical variable, such as in the
present case the cell-line or also the ion type, into a low-dimensional numerical vector that can be efficiently
used by anothermodel to understand themost accurate relation between these variables and the target variable
to predict. Therefore, ANAKINhas three specifically devotedmodules to learn a newdata representation for the
cell lines, ion type, and also cell cycle. TheDL-basedDeep Encodingmodules are connected to the previously
mentioned tree-based predictivemodules to create ANAKIN, the final ensemblemodel that takes each single
module output and predicts the cell survival fraction.

Each inputmodel has been validated using a 10-fold cross-validation, and their hyper-parameters have been
obtained using a Bayesian optimization technique, as described inMissiaggia et al (2022b).

Consider dataset ≔ { }=  y,i i i
N

1 composed byN samples, where

≔ ( )¼ Î = ¼ < ¥ x x n i N, , , , 1, , ,i
i

n
i

1

are the n input features onwhich amodel is trained to predict the target variable Îyi . In the current case,i

are the variables reported in table 1, whereas yi is the cell survival.
Given a set of parameterW, that depends on themodel, and a suitably chosen training set ≔ { } =  y,i i i

N
1,

<N N , the aimof theMLorDLmodels is to solve the following optimization problem

Table 1. List of all variables used as input to ANAKIN. The names are described according to PIDE documentation (Friedrich et al
2013b, 2021)with the exception ofDose2, which represents the square of the dose value and has been introduced in this work. Domain
column refers to the origin of the variable considered, such as physics (p) or biology (b). Type refers to the type of the variable, that can be
either continuous (c) or discrete (d). The other columns reports a description of the considered variable aswell as a brief summary of statistics.

Variable Domain Type Description Statistics

Dose p c Dose inGy Min value = 0 Gy

Max value = 14Gy

Dose2 p c Square of the dose inGy Min value = 0 Gy

Max value = 196 Gy

LET p c Linear Energy Transfer in keVμm−1 Min value = 0.9 keVμm−1

Max value = 2160 keVμm−1

Energy p c Specific energy of the ion inMeV u−1 Min value = 0.275MeV u−1

max value = 680MeV u−1

Ion p d Ion species 11 classes

Most frequent: carbon ion

(186 exp.)
Least frequent: oxygen (4 exp.)

Charge p d Charge of the ion 9 classes

Most frequent: 6 (186 exp.)
Least frequent: 8 (4 exp.)

IrradiationConditions p d Irradiationmodalities:monoenergetic (m) or
SOBP (s)

2 classes

Most frequent:m (433 exp.)
Least frequent: s (80 exp.)

Cells b d Cell line used 20 classes

Most frequent: V79 (182 exp.)
Least frequent: HGIB2 (4 exp.)

CellClass b d Tumor cells (t) or normal cells (n) 2 classes

Most frequent: n (383 exp.)
Least frequent: t (130 exp.)

CellOrigin b d Human cells (h) or rodent cells (r) 2 classes

Most frequent: h (274 exp.)
Least frequent: r (239 exp.)

CellCycle b d Cycle of cells 5 classes

Most frequent: a (491 exp.)
Least frequent: G0/G1 2 exp.

DNAContent b d Genomic length of diploid cells 2 classes

Most frequent: 6 (274 exp.)
Least frequent: 5.6 239 exp.

ax b c Alpha parameter of reference radiation Min value = 0.03Gy−1

Max value = 0.82−1

bx b c Beta parameter of reference radiation Min value = 0Gy−2

Max value = 0.11Gy−2
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( ˆ ( ))å f
=

   Wmin , ; ,
W t

N

i i
1

being f̂ the output function for themodel and  the loss function. To improve the accuracy and reduce the
overfitting, a regularization is added to the loss function, as done in Bishop et al (1995), LeCun et al (2015).

The output function f̂ is the learned function approximating the ideal functionf, that describes the link
between the featuresi and the target yi

2.2.1. Ensemble tree-basedmodels: RF andXGBoost
RandomForest (RF) is an ensembleML algorithm that combinesweakermodels, such as decision trees, to create
amore robustfinalmodel (Ho1995, 1998). Being a bagging algorithm, the ensemblemodel is created in parallel,
and thus the output is the average of all thee outcomes. Compared to decision trees, the RF reduces the
overfitting on the train data, and thus it improves the prediction accuracy.

RF (Ho1995, Friedman et al 2001) assumes that f̂ is the average of weaker learners decision-treesψk, that is

ˆ ( ) ( )åf y¼ = ¼
=

x x
K

x x, ,
1

, , ,i
n
i

k

K

k
i

n
i

1
1

1

whereψk is the outcome of the kth decision tree.
Like RF, also XGBoost is an ensembleML algorithm that combinesweaker decision treemodels to create a

more robust finalmodel (Chen andGuestrin 2016a, 2016b). XGBoost is a boosting algorithm so that the
ensemblemodel is created in series, and thus the output of every singlemodel is passed to another, with the aim
of reducing the error of the previous one. Also bagging ismostly used to reduce the overfitting of the train data
and to improve the accuracy of the predictions.

XGBoost starts with a potentially inaccuratemodel

ˆ ( ¯ ) ( ˆ ( )) ( )åf f=
=

  x W W; arg min , ; , 1
W t

N

i i0
1

and then it thus expanded in a greedy fashion as

⎡
⎣⎢

⎤
⎦⎥

ˆ ( ¯ ) ˆ ( ¯ ) ( ˆ ( ) ˆ ( )) ( )åf f f f= + +-
=

-  x W x W x W W; ; arg min , ; ; . 2m m
W t

N

i m i1
1

1

2.2.2. Deep embedding
Deep Embedding, (Micci-Barreca 2001, Guo andBerkhahn 2016, Shreyas 2022) is aNN- based technique for
mapping a categorical variable into a vector. Being a supervised algorithm, theNN is trained to predict the cell
survival fraction. Thus, the intermediate representation learned by the network is extracted and constitutes the
new values used for the categorical variable.

In the context ofNN, theW parameters defined in equations (1)–(2) are usually referred to as weights. In this
work, we chose themultilayer perceptron (MLP)NN,which is thefirst andmost classical type of network used.

AMulti-Layer Perceptron (MLP) is created by connecting several single-layer perceptrons, where several
nodes are placed in a unique layer. The inputs ( )¼x x, , n1 are fed to the network so that the final output z is
produced. Typically the output is a nonlinear function of aweighted average of the input, i.e.

⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ) åf s= = +
=

y x w x b ,
i

n

i i
1

wherewi are theweights and b is the bias. Also,σ is a suitable (possibly)nonlinear function, like a sigmoid

( )s =
+ -

z
e

1

1
.

z

The connection between single-layer perceptrons is done in a preferred direction. This type of network is
called feedforward because the inputs are fed to the first layer, then the output goes to the second layer, and so on
until the data reaches the last output layer. By providing a series of correct results to the network, and thus
making the problem supervised, theNNcan learn the best weights and bias to reproduce any desired output
(Bishop et al 1995, LeCun et al 2015).

2.3. Explainable AI
Several XAI techniques (Molnar 2020, Biecek andBurzykowski 2021) can be used to understand how anML
model work. in the present work, we focus on three specific verywell-known and powerful techniques, namely
(i) variable importance, (ii)Accumulated Local Effect (ALE) plot, and (iii) the Shapley value.
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2.3.1. Variable importance
Variable importance (Breiman 2001, Fisher et al 2019)measures the global importance of each feature to the
final output of themodel. Themain idea behind the calculation is that, if a variable is important for calculating
thefinal output of themodel, then after a permutation of the variable values, themodel performance
significantly decreases. Larger changes in the overallmodel performance are then associatedwith highly
important features.

2.3.2. ALE plot
Accumulated Local Effect (ALE) plot, (Apley andZhu 2020, Grömping 2020), is one of themost advanced and
robust dependence plots for describing how variables influence on average predictions of anMLmodel. One of
themost advanced aspects of thismodel is that it accounts for the correlation between variables. ALE plot thus
calculates the average changes in themodel prediction and sum (accumulate) themover the values assumed by a
specific variable.

Ale plot is defined as Apley andZhu (2020)

ˆ ( ) ≔
ˆ ( ) ( ∣ ) ( )ò ò
f¶
¶

-f x
z x

z
p x z dx dz

,
constant. 3

x

x
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1 2
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1

Instead of considering the effect of the prediction f̂, the ALE plot considers changes in the prediction
ˆ ( )f¶
¶
z x

z

,1 2

1
, which represents the local effect of the variable. This is averaged over all possible values of the other

variable x2, weighted by the actual probability of registering the value x2 given the considered value x1. Then, the
result is integrated, or accumulated, up to x1. This value is centered around the average prediction, represented
by the constant appearing in equation (3), so that the average effect over the data is 0. Therefore, ALE plots
calculate the average difference in the prediction to be imputed to a local change in a variable.

2.3.3. The SHAP value
The Shapley Additive exPlanation (SHAP) value, (Lundberg and Lee 2017), is a local XAI technique extremely
powerful that aims at explaining individual predictions and in particular what is the contribution of every single
variable to the overall prediction. The SHAPmethod computes Shapley values (Hart 1989) as an additive feature
attribution, alike a linearmodel, so that the prediction is decomposed as

ˆ ( ) åf j j= +
=

x ,
i

n

i0
1

whereji represents the contribution of the ith feature andj0 is an intercept.

2.4. Error assessment
Toprovide a comprehensive and accurate assessment of ANAKINperformances,manymetrics are used
throughout this paper. In order to compare cell survival fractions, for each experiment we computed the
logarithmic RootMean Square Error (logRMSE), defined as

≔ ( ˆ ( ) ( ))å -
N

S D S DlogRMSE
1

log log ,i

D D

i i 2

whereD is the dose andND is the number of dosesmeasured in the ith experiment. Ŝ
i
and S i are the cell survivals

predicted andmeasured, respectively. In the paper, the average and standard deviation of all the errors used are
calculated by averaging the results for experiments included in the test set.

The RBE at the survival level ρ is defined as

a b r a

b
=
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r
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gD
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4 log

2
,

X
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whereD is the dose giving ρ survival fraction. Also, we denote

≔a
a

b
b

=a
g

b
g

RBE , RBE ,ion ion

whereαγ andβγ represent theα andβ value for the reference radiation, respectively.We specifically consider
three survival levels at ρ= 0.5, 0.1, 0.01. In the paper, we focus onRBE0.1 predictions, as this is themain value
used in radiobiology for particle therapy.

The comparison of RBEmeasured or calculatedwithANAKIN is investigated using theMeanAbsolute
Error (MAE)metric
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and theMeanAbsolute Percentage Error (MAPE)metric
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rRBEi and rRBEi represent ANAKIN values andmeasurements, respectively, for the endpoint ρ= 0.5, 0.1,
0.01 α,β and the ith experiment. Since the range of RBE is extremelywide, the twometrics are often used
together to provide a better evaluation of the performances of ANAKIN.

We also calculated theMAE values ofα andβ as
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where ā i
ion and b̄

i
ion are the predictedα andβ values for the ith experiment, whereas ai

ion and b
i
ion are the

measured data. For those quantities, theMAPE values were not calculated, as the absolute value of bothα andβ
were close to 0.

3. Results

Results of the current work include a quantitative and comprehensive analysis of the comparison between
ANAKIN cell survival predictions and experimentalmeasurements available in PIDE. Awide range of possible
metrics, such as RBE at different cell survival probabilities,α andβ predictions aswell as the cell survival at
different doses are presented. A detailed description of the usedmetrics is reported in section 2.4.

Figure 2(a) shows (A)MAPE and (B)MAEvalues (section 2.4) for RBE10 , RBE50 andRBE1 , while the
numerical values, as well as the logRMSE, are reported in table 2. The results indicate that ANAKINhas similar
errors for different endpoints, with RBE50 exhibiting a slightly higherMAE andMAPE thanRBE10 andRBE1 .

Measured RBE10 values andANAKINpredictions are reported infigure 2(b) as a function of the LET and
βγ/αγ. In addition, theMAE for RBE10 , RBE50 andRBE1 are plotted against LET andβγ/αγ. The results
indicate an excellent agreement betweenRBE10 ANAKIN and the experimental data over the entire range of
LET. The smoothing spline of the RBE10 predicted as a function of LET completely overlapswith the
experimental curve. despite this is not necessarily a proof of a perfect agreement, it is nonetheless clear that the
experimental trend is predicted byANAKIN. A good agreement can be also seen by analyzing each experiment’s
results. This is also supported by theMAE for the other endpoints (figures 2(b) (C) and table 2), which remains
mostly constant around for LET>10 keVμm−1. Concerning errors as a function ofαγ/βγ , there is a higher
variability than observed for LET. The discrepancy observed in the spline smoothing at highβγ/αγ seems an
artifact of the smoothing procedure, as it is not reflected in theMAE (panel (D)). On the contrary, at lowβγ/αγ ,
i.e. for highαγ/βγ cell-lines, ANAKIN clearly underestimates the RBE10 , as it is also indicated by the highMAE
in the lowβγ/αγ region. Figure 3 shows the experimental RBE10 against ANAKINprediction. The results are
sharply distributed around the bisector representing the ideal perfect prediction. The deviation between the
bisector and themodel prediction increases as the RBE grows. Figure 4 reports ANAKINRBE10 predictions
compared to themeasurements, plotted against LET for 4 different ions (protons, helium, carbon and iron) in a
very broad LET range.Overall, ANAKIN seems to reproducewell the experimental data. For protons, ANAKIN
can reproduce the small RBE variability at lowLET aswell as the clear rise above 20 keV μm−1. ANAKIN is
accurate also for helium and carbon ions, and it is clearly able to reproduce the overkilling effect, which yields a
decrease in theRBE10 around 100 keVμm−1. ANAKIN values appear to be very close to themeasurements also
for iron.

Similar conclusions can be drawn from figure 5(a). Iron shows a strongly peaked distribution because of the
lownumber of available experiments; nonetheless, iron a low error in bothmetrics. Besides iron, the other ions
show comparable results, with heliumhaving a broader distribution in bothMAE andMAPE reflecting a lower
accuracy of ANAKIN. Protons exhibit an error distribution peaked around the average values, as well as some
outliers with high errors, as clearly indicated by the spikes in the high errors region.However, these peaks are for
MAPE, andwe hypothesize that theymight bemainly caused by lowRBE values, which can result in high
percentage errors. Figure 5(b) showsMAE andMAE error distributions evaluated for RBE10 , grouped by
monoenergetic beam and SOBP. The peak of the distributions is similar for both cases, but the error distribution
for themonoenergetic beams is clearly broader than for the SOBP. Figure 6 showsRBEα andRBEβ plotted
against LET andβγ/αγ . RBEα values are accurately predicted byANAKIN independently of LET andβγ/αγ . A
higher inaccuracy is observed for RBEβ in the lowβγ/αγ region. The absolute errors in theα andβ predictions

9

Phys.Med. Biol. 68 (2023) 085017 FGCordoni et al



show a steady behavior over the LET range (panel (E)), while the errors on theα values clearly decrease as
βγ/αγ increases, coherently with previous analysis performed above.

3.1. ComparisonwithMKMandLEM
To further assess the accuracy of ANAKIN in predicting cell survival andRBE, we compared it with the only two
RBEmodels that are currently used in clinical practice, namely theMKM (Hawkins 1994, Inaniwa et al 2010,
Inaniwa andKanematsu 2018, Bellinzona et al 2021) and LEM (Krämer et al 2000, Elsässer and Scholz 2007,

Figure 2.ANAKINpredictions and error assessment for different endpoints. (a)(A)MAPE and (B)MAEdistributions for RBE10
(yellow), RBE50 (blue) andRBE1 (purple). The dotted vertical lines indicate the average values of each distribution. (b)RBE10
predicted byANAKIN (black) and extracted fromPIDE (black) plotted against LET (A) andβγ/αγ (B). To guide the eye, the
continuous lines represent a spline smoothing.MAE for RBE10 (yellow), RBE50 (blue) andRBE1 (purple) plotted against LET (C)
andβγ/αγ (D).
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Elsässer et al 2008, Pfuhl et al 2022). To calculate the biological outcomes from theMKMand LEM III, we used
the survival toolkit (Manganaro et al 2018).We performed the comparison for theHSG andV79 cell lines
because they are among themost used in radiobiological experiments, and several datasets are available in the
literature. For theV79 cell lines, we used 41 different experiments with proton, helium, and carbon ions, while
for theHSG cell line, we included 15 experiments conductedwith helium and carbon ions. To compare the
models, the samemetrics introduced in section 2.4 are used.

Predictions withMKMand LEMhave been performedwith the survival toolkit (Manganaro et al 2018, Attili
andManganaro 2018) including the implementation of a limited number of versions for the lattermodels. In
particular, a newer version of the LEM, namely the LEM IV (Elsässer et al 2010), has been recently developed but
it has not been used in the current study since a freely usable version is not available. For the LEM,we used
version III, as the latest version (IV) is not available. However, an extensive quantitative study has been published
(Pfuhl et al 2022), so a further quantitative comparison between the LEM IV accuracywithANAKIN can be
conducted.

The comparison between themodels is shown infigures 7(a)–(b), while the numerical values are reported in
table 3. The results indicate that overall ANAKIN ismore accurate than both theMKMand the LEM in
predicting allmetrics and endpoints considered. For both cell lines, the LEM shows the largest deviations from
themeasurements, closely followed by theMKMwithANAKIN reporting lower errors. In particular, for the
HSG cell-line, the LEM shows anMAE for the RBE10 of 1.55, whilst theMKMandANAKINhave respectively a
MAEof 1.18 and 0.43. For theV79 cell line, theMKMand the LEMpredict comparable results with anMAE for
RBE10 of 1.5 and 1.2. ANAKIN shows anMAE for RBE10 of 0.43. Other endpoints andmetrics have comparable

Figure 3.RBE10 extracted fromPIDEplotted against the RBE10 predicted byANAKIN. The color represents the density, while the
diagonal dotted red line indicates the perfect prediction.

Table 2.Average errors and standard deviations
of different errormetrics and endpoints.

Endpoint Error Mean Sd

logRMSE 1.06 1.26

RBE10 MAE 0.43 0.58

MAPE 0.26 0.80

RBE1 MAE 0.24 0.74

MAPE 0.25 0.31

RBE50 MAE 0.74 0.91

MAPE 0.42 0.81

α MAE 0.24 0.24

β MAE 0.03 0.05

RBEα MAE 0.73 4

MAPE 0.4 1.37

RBEβ MAE 0.43 0.65

MAPE 0.43 0.59
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results. Together with having lower average errors, ANAKIN exhibits narrower error distributions and does
never reach absolute errors as high as theMKMand LEM. Figures 8–9 illustrates the absolute difference ofMAE
betweenANAKIN andMKMor LEM, calculated for the RBE10 of both cell lines. All experimental datasets were
obtained fromPIDE.

This analysis confirms the results shown infigures 7(a)–(b) and table 3. ANAKIN ismore accurate in
predicting the selected biological outputs than both theMKMand LEM for themajority of experiments. The
maximumdiscrepancy betweenMAE is significantly higherwhenANAKIN is closer to the experimental data
(yellow dots), reaching differences above 6 for V79 cell lines, but only 2 for the opposite case. This result indicates
that for the cases where ANAKIN is less accurate than the othermodels, its error is smaller thanwhen the
predictions of theMKMandLEM III are off.

3.2. Explainable artificial intelligence
Figure 10(a) shows the global importance of all variables included inANAKIN, calculated over thewhole test
dataset. The plot suggests that the dose is by far themost relevant parameter, followed byβγ, LET, andDose2 (the
dose squared), which are all close together. This finding indicates that ANAKINuses both physical and biological
variables to predict the biological outcome. The Ions Cells variables, onwhich a categorical embedding has been
performed, denote the ion type and cell line, respectively, and have both a high impact onANAKIN.

To a have a better understanding of ANAKIN global behavior, and in particular of the correlation between
LET and the predicted survival, we calculated theALE plot as described in section 2.3 and reported in
figure 10(b) as a function of the LET. To obtain an unbiased effect, theALE has been evaluated at the same dose
of 2 Gy for all the experiments. The typical trend of the overkilling effect is clearly visible: figure 10(b) implies
that small positive variations in the LET yields a clear negative variation in the cell survival, with a consequent
increase of the RBE, up to 100 keV μm−1, after which the cell survival starts increasing again as the LET
increases, with therefore a decrease in the RBE. Figure 11(a) reports the SHAP value for each experiment plotted
against LET, considering afixed dose of 2 Gy. Unlike theALE plot, the SHAP value is a local technique, namely
the SHAP is evaluated for each individual input variable, and thusfigure 11(a) shows the importance of LET in
the overall cell survival assessment, evaluating it for each experiment. As for the ALE plot, the typical behavior of
the overkilling effect emerges. Protons exhibit a high positive SHAP value, which remains almost constant up to
15 keV μm−1. As the LET rises above 15 keV μm−1, protons shows a steep increase in the RBE and the SHAP
value for LET drops. In this region, especially for low-energy protons, the kinetic energy becomesmore

Figure 4.RBE10 predicted byANAKIN (black) and extracted fromPIDE (yellow) plotted against LET for protons (top left), helium
(top right), carbon (bottom left) and iron(bottom right) ions. To guide the eye, the continuous lines represent spline smoothing.
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important than the LET to predict cell survival (figure 12(b)). The SHAP value decreases steadily up to 100 keV
μm−1, after which it starts increasing again, reproducing the typical shape due to the overkill effect. Figure 11(b)
shows the SHAP value forαγ andβγ . The SHAP value forαγ shows that lowαγ has a positive but almost equal
importance to themodel, but asαγ increases andαγ/βγ goes over 5 Gy the SHAP values linearly decrease to have
at last negative high values.

Forαγ below a certain threshold, that coincides with cell lines with lowαγ/βγ< 5, the SHAP is positive, and
then it starts decreasing linearly withαγ , reaching high negative values for highαγ andαγ/βγ . A similar trend is
shownby theβγ SHAP values. For lowβγ and highαγ/βγ , the SHAP value is positive, and then it begins to
diminish. The data also indicate that the SHAP values forβγ showboth higher variability and higher absolute
values than those forαγ .

Finally, we performed a comparison of experiments considering the SHAP values. Figure 12(a) shows the
SHAP values for ANAKIN input features for two experiments performedwith protons of similar LET of 18 keV
μm−1 and 19 keVμm−1 for different cell lines. The corresponding RBE10 values of the two experiments are

Figure 5.ANAKINMAPE andMAEdistributions for different ions and irradiation conditions. (a)MAPE (A) andMAE (B)
distributions for ANAKINRBE10 prediction for carbon ions (yellow), iron (blue), helium (purple) and protons (red). Dotted vertical
lines indicate the distributions average values. (b)MAPE (A) andMAE (B)distribution for ANAKINRBE10 prediction for
monoenergetic beams (yellow) and SOBP (blue). The dotted vertical lines indicate the distributions average values.
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significantly different, being 1.2 and 2.7, respectively, as can be seen infigure 4 panel (A). ANAKINoutputs are
extremely accurate for both experiments, being 1.13 and 2.5, with anMAEof 0.07 and 0.1 and aMAPE of 0.05
and 0.03, respectively. Figure 12(a) suggests that the only variables showing a significant difference between the
two experiments are theαγ andβγ , as it should be since the two experiments have been performed over different
cell lines. Figure 12(b) compares the SHAP values for 4 different experiments, performedwith either protons of
heliumof different LET (high or low). The rationale for the selection of themeasurement is to test ANAKIN for
different ions and LET. Besides differences in the cell-lines-specific parameters, focusing only on ion-specific
variables, it can be seen howLET and energies are treated significantly differently. The SHAP value for LET is
high and positive for both protons datasets and for low-LET helium,while is negative for high-LEThelium. The
SHAP related to the beam energy is positive and close to 0 for both particles when the LET is low, it is negative
and close to 0 for high-LEThelium, and negative with a high absolute value for high-LET protons.

4.Discussion

The results reported in section 3 show that ANAKINproduces accurate results over awide range of biological
endpoints, beams of different particle species and energies, with a consistent behavior for different errormetrics.
Despite the fact that logRMSE is themost robustmetric, being able to detect discrepancies between the predicted

Figure 6.RBEα predicted byANAKIN (yellow) and extracted fromPIDE (black) plotted against LET (A) andβγ/αγ (B). RBEβ
predicted byANAKIN (yellow) and extracted fromPIDE (black) plotted against LET (C) andβγ/αγ (D). The continuous lines
represent spline smoothing.MAEof ANAKINpredictions and data fromPIDE forαion (yellow)βion (blue) values plotted against LET
(E) andβγ/αγ (F).
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cell survival and the experiments at different doses, to be easily comparable to existing radiobiologicalmodel,
most of the analysis of ANAKIN results has been conducted for RBE. As often in predictive analysis, the choice of
themetric is of fundamental importance and strongly depends on the specific variable that themodel is built to
predict. In this particular case, the cell survival curves considered in the study have an extremelywide range, with
corresponding RBE up to 6, and for this reason just a singlemetric cannot give a robust evaluation of themodel
accuracy. Experiments conductedwith high LET radiation, are characterized by highRBE values andmight have
high absolute errors. However, the relative percentage errormight be lower in such cases, being perhaps amore
appropriatemetric for experiments with highRBE.On the contrary, for experiments where the RBE is close to 1,
such as those conductedwith high-energy protons, theMAPEmight bemisleading, and theMAEmight be a
better tool. Since the choice of themost relevantmetric is not always trivial and depends on the chosen endpoint,
our analysis was usually performed by studyingMAPE andMAE together. Nonetheless, for the sake of
readability and to avoid giving an excessive amount of information, when reasonable, only theMAEmetric is
reported as it is considered to be, for the present case,more informative as compared to theMAPE.

Figure 7.ANAKIN,MKMand LEMMAE andMAPEdistribution forV79 andHSG cell-lines. (a)MAPE (A) andMAE (B)
distributions for RBE10 calculatedwith ANAKIN (yellow), LEM III (blue), andMKM (purple) for theV79 cell line. The dotted vertical
lines denoted the average values. (b)MAPE (A) andMAE (B)distributions for RBE10 calculatedwith ANAKIN (yellow), LEM III
(blue), andMKM (purple) for theHGS cell line. The dotted vertical lines denoted the average values.
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MAPE andMAEdistributions (figure 2(a) and table 2) show that the errors for RBE10, RBE1 andRBE50 are
all sharply peaked around the average valueswith low deviation, denoting an overall consistent cell-survival
prediction despite the extremely large range of LET and cell-lines considered in the study. Further, it can be seen
howANAKIN is able to reproduce not only the average RBE, represented by the continuous splines but also the
high variability of the RBE acrossmany LET and cell-lines. The validation of ANAKIK against RBE10
measurements (figure 2(b)) shows themodel’s accuracy.When theMAE is plotted against the LET, two key
aspects emerge: (i) in the low-LET region, theMAE for RBE50 is slightly lower compared to the high LET region;
(ii) theMAE for RBE10 andRBE1 remains almost constant in thewhole LET range, with a slight drop at around
30 keVμm−1. Notable enough, in the range 80–120 keVμm−1, the experiments exhibit a large variation in RBE,
nonetheless ANAKIN error does not seem to be affected by this huge variability with no evident increase in
ANAKIN inaccuracy. This could go in the same direction as noted above,meaning that ANAKIN is able to
predict RBE fluctuations at high LET. Further, a feature that supports the potential of AI inmodeling cell
survival andRBE, is that ANAKINpredicts the overkill effect around 100 keVμm−1, without any specific
training.

ANAKINRBE10 predictions show a slowly higher discrepancy from the experimental values in the low
βγ/αγ region, againmostly for RBE50 , which corresponds to cell lines with highαγ/βγ (figure 2(b))These cell
lines are extremely radiosensitive and therefore are characterized by a larger experimental variability that is
reflected in the low accuracy of ANAKINprediction. Further, fewer experiments have been performed for cell-
linewith highαγ/βγ , so a higher errormight simply be a natural fluctuation due to lower statistics.

A specific analysis of single ions species prediction shows howANAKIN accurately predicts cell survival over
awide range of ion species with very different LET, also guessing correctly the dependence of LET-RBE profiles
on the ion type. For protons, ANAKIN is capable of reproducing the almost constant RBE at low-LETwith a
steep increase after 5 keVμm−1, as well as the extremely high RBE at around 20 keVμm−1. As shown, for
example in (Missiaggia et al 2022a), currently used RBEmodels a often unable to accurately reproduce the RBE
for very low energy protons. ANAKIN could then provide a robust and accurate tool to predict the RBEof
clinical protons, thus allowing to develop TPSwith a variable RBE instead of thefixed value of 1.1 currently used.

The comparisonwith experimental data acquiredwith helium and carbon ions show that ANAKIN
prediction are accurate also for these species, even if exhibiting a larger variability on the errors. This is a direct
consequence of the higher variability of RBE characterization connected to these two ions. These findings
suggest that ANAKIN could provide an invaluable tool for predicting RBE for heavy ions, where it is commonly
accepted that a constant value cannot be used in their clinical applications.

Table 3.Average errors and standard deviations of ANAKIN,MKM, and LEM III calculations
for V79 andHSG cell lines considering different endpoints.

V79

ANAKIN MKM LEMIII

Endpoint Error Mean Sd Mean Sd Mean Sd

logRMSE 0.70 0.71 1.9 1.43 1.66 1.4

RBE10 MAE 0.44 0.74 1.2 0.79 1.5 0.9

MAPE 0.23 0.16 0.61 0.2 0.73 0.16

RBE1 MAE 0.57 0.85 1.4 1.62 1.71 1.7

MAPE 0.2 0.14 0.42 0.43 0.46 0.47

RBE50 MAE 0.48 0.39 1.27 1.68 1.71 2.37

MAPE 0.17 0.06 0.39 0.36 0.4 0.41

HSG

ANAKIN MKM LEMIII

Endpoint Error Mean Sd Mean Sd Mean Sd

logRMSE 0.72 0.42 1.06 0.47 1.36 0.93

RBE10 MAE 0.43 0.3 1.28 0.38 1.55 0.26

MAPE 0.11 0.07 0.16 0.09 0.21 0.1

RBE1 MAE 0.31 0.2 1.44 0.22 1.45 0.31

MAPE 0.14 0.06 0.21 0.07 0.21 0.14

RBE50 MAE 0.51 0.49 1.63 0.56 1.69 0.34

MAPE 0.15 0.1 0.19 0.11 0.28 0.08
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The error distribution formonoenergetic beams is lower than for SOBP, as indicated by themain peak of the
MAEdistributions (figure 5(b)), but it is broader.We hypothesize that this behavior could be due to the fact that
for amonoenergetic beam, an inaccurate LET estimation can result in a significantly different RBE prediction.
Overall, ANAKIN is able to accurately predict RBE value for bothmonoenergetic and SOBP,without the need of
adding ad hoc adaptations.

Also, RBEα andRBEβ show a good accuracy between predicted and experimental values. Bothα andβ
errors seem to remain constants over thewhole range of LET, whereas an analysis of theα variability as a
function ofβγ/αγ shows that for highαγ/βγ cell lines the estimation ofα is subject to higher uncertainty. There
is a clear underestimation ofα for highαγ/βγ cell line, which directly translated into the highRBE error in these
cell lines, as already discussed above. Similar conclusions can be drawn forβwith a slightly higher error in the
highβγ/αγ region. These results point out that ANAKIN is able to reproduce not onlyα, but alsoβ, which is
typically subject to extremely high uncertainty, as shown for instance by low accuracy ofmanymodels in
reproducingβ variability, (Pfuhl et al 2022). In addition,β is predicted to be dependent on the radiation quality,
as shown by the trend of the experimental data and in contrast tomany other existing radiobiologicalmodels.

Figure 8.MAEdifference betweenANAKIN andMKM (A) or LEM III (B) calculated for different experiments (labeledwith an ID
number on the y axis). All values are for the RBE10 of theV79 cell line available in PIDE. The black dots representmeasurements for
which theMKMor LEMexhibit lowerMAE thanANAKIN,while the yellow dot are those forwhich ANAKINMAE is lower. The red
vertical line indicates zero.
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4.1. ComparisonwithMKMandLEM
To further test ANAKIN capability and appreciate its accuracy, we compare its results with predictions from the
two radiobiologicalmodels currently used in the clinics (MKMand LEM). In general, in fact, it is difficult to
assess the accuracy of amodel by simply considering its overall deviations from the experimental data. It is rather
more effective to compare its predictions with othermodels assumed as benchmarks.

Thefinding of this comparison indicates that ANAKINhas an overall higher accuracy than both theMKM
and the LEM in all themetrics, that is RMSE,MAPE andMAE. TheMKMperforms slightly better than the LEM,
but this result could be related to the fact that we had to use LEM III, instead of the latest version LEM IV,which
was not available. This hypothesis is supported by the results reported in Pfuhl et al (2022), which shows that
LEM IVhas significantly better accuracy than LEM III.

ANAKIN error distribution is significantly less broad than both theMKMand LEMdistributions and its
maximumerror is lower. ANAKINhas not been specifically trained to predict the two cell lines selected for the
comparison (i.e. V79 andHSG) but on awide range of different cell lines available on PIDE.

The analysis performed on several experiments suggests that ANAKIN ismore accurate than both theMKM
and LEM.Overall, ANAKIN shows a lower error than theMKMandLEM, and evenwhen its prediction is less
accurate than the other twomodels, themaximum error is lower than those obtainedwith the other two.

4.2. Explainable AI
The global variable importance study presented in figure 10(a) shows howboth biological and physical variables
are efficiently used byANAKIN to predict cell survival. The dose is themost important variable, as expected. The
analysis also identifies the square of the dose as a relevant variable, which is also reasonable as the quadratic
relation between survival and the dose is widely used inmanyRBEmodels. Concerning the physical variables,
LET is considered to bemore important than ion kinetic energy.

For the biological variables,αγ andβγ are among themost relevant input parameters togetherwith the cell
line. Our hypothesis is that ANAKINuses these three variables to understand how a specific cell line responds to
ionizing radiation.

The variables over which aDeep Embeddingwas performed, namely Ion,Cells andCellCycle, are also
relevant to themodel predictions, suggesting that such advancedDLbased embedding has been able to uncover
important information.

Figure 9.MAEdifference betweenANAKIN andMKM (A) or LEM III (B) calculated for different experiments (labeledwith an ID
number on the y axis). All values are for the RBE10 of theHGS cell line available in PIDE. The black dots representmeasurements for
which theMKMor LEMexhibit lowerMAE thanANAKIN,while the yellow dot are those forwhich ANAKINMAE is lower. The red
vertical line indicates zero.
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The same effect emerges analyzing the dependence of the SHAP value from the LET. For protons, ANAKIN
gives approximately the same positive and high importance to LETup to 15 keVμm−1. In this region, protons
show an almost constant RBE, andANAKIN recognizes this behavior by giving the same importance to different
values of LET.

The association between highαγ values and high negative importance infigure 11(b) reflects the fact that, for
highly radiosensitive cell-lines, theαγ value, that describe the contribution of single track, should bemore
important than in cell-lines with lowerαγ/βγ .

Figure 10.ANAKIN global interpretability. (a) Importance analysis for the variables used byANAKIN. The variable names reflect
PIDE documentation (Friedrich et al 2013b, 2021).We also introduced theDose2 as a new variable, representing the square of the
dose. (b)ALE plot of the effect of LET on the survival probability predicted byANAKIN for an imparted dose of 2Gy.
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The SHAP value could be also extremely important in understandingwhich variables lead to a certain RBE.
To support this hypothesis, we compared two experiments conductedwith protons of comparable energies,
namely 18 keVμm−1 and 19 keVμm−1. The results indicate that ANAKIN can correctly predict a significant
variability in theRBE, that in this case stemmed from the fact that different cell lines were considered, as pointed
out by the SHAP values for theαγ andβγ parameters.

To investigate how different physical variables affect ANAKINoutcomes, we considered proton and helium
beams of different energies.We found that LEThas always had a positive high impact only for high-LEThelium,
as this beamwas the only onewith a LET in the overkill region. Therefore itmight be concluded that the LET is
used byANAKIN in a significantly differentmanner when an overkill effect is expected. The SHAP value for the
beamkinetic energy is positive for protons and helium at lowLET,whereas it is negative for the high LET beams,
which have extremely low energies (below 1MeV u−1), corresponding to depth downstreamof the Bragg peak.
The SHAP analysis indicates that the kinetic energy ismuchmore important for protons than helium at low
values. This behavior can be due to the fact that low-energy helium ions have a LET above the overkill threshold,
and thus themain information to predict cell survival is carried by LET.Overall, it seems that ANAKIN is able to
use jointly LET and kinetic energy to accurately predicts the cell survival fraction.

Advanced XAI techniques have been applied to understandwhat variables are relevant to ANAKIN
predictions, as well as to showhow specific biological features observed in experimental data, such as the

Figure 11.ANAKINSHAP value for LET andαγ andβγ parameters. (a) SHAP values for LET plotted against LET. All data are for a
2 Gy dose irradiationwith different ions, ranging fromprotons to iron. (b) SHAP values calculated forαγ plotted againstαγ (A) andβγ
plotted againstβγ (B). The data are divided into two groups, forαγ/βγ > 5 (yellow dots) andαγ/βγ < 5 (blue dots). The data are for a
dose of 2 Gy.
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overkilling effect at high LET and the variableβ coefficients, are reproduced byANAKIN. The implementation
of such behaviors is non-trivial in a purelymathematicalmodel and it represents thus a strength of ANAKIN.
Furthermore, these XAI techniques can play amajor role in clinical applications since they allow the
interpretation of ANAKINprediction but also the understanding on how reliable the given prediction could be.
It is worth stressing that, one of themajor limitations in biophysicalmodeling of radiation effects, both for
curative and radioprotective purposes, is exactly on the uncertainties estimation. Although anAI-based
approach is not derived frommechanistic considerations, unlike existing radiobiologicalmodels, and thus

Figure 12.ANAKINSHAP values for different experiments. (a) SHAP values calculated for themost relevant ANAKIN variables for
protons of similar LETs ((A) 18 keVμm−1 and (B) 19 keVμm−1). The dose has been set at 2 Gy. (b) SHAP values calculated for the
most relevant variables for theV79 cell line for protons at 4 keVμm−1 (A) and 28.8 keVμm−1 and heliumat (C) 28 keVμm−1 and (D)
190 keVμm−1. The dose has been set to 2 Gy.
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cannot provide validation of thesemechanisms, on the other hand, its power in processing and filtering the data
dependencies can help to reveal features hidden in the data, that on their turn can drive further comprehension
of the phenomenon.

5. Conclusions

The present paper presents theAI-basedmodel ANAKIN, for predicting the survival fraction of various cell lines
exposed to different types of radiation. Thefindings contained in this paper prove that a singlemodel is able to
predict the behavior of different ion species, without the need to specifically train themodel on data relative to a
single ion. Although themainmotivation for developing ANAKIN is to apply it in particle therapy, themodel
accuracy in predicting the biological effect of extremely high LET events could extend its application in other
fields, such as space radioprotection.

The analysis described here indicates that ANAKIN is able to accurately predict cell survival andRBE over a
wide range of different cell lines and ions type.Higher uncertainties and errors emerge for cell-lines
characterized by lowαγ/βγ and LET in the range from20 to 150 keVμm−1. These uncertainties reflect the
uncertainties in the experimental data, onwhichANAKINhas been trained on. In fact, cell lines with high
αγ/βγ aswell as experiments with high LET beams show a higher variability of RBE.

When comparedwith two of themost used radiobiologicalmodels, namely theMKMand LEM III,
ANAKIN showed in averagemore accurate predictions. The gap between themodels could be smaller if the
latest versions of theMKMand LEMbecome available in the literature.

Although purely data-drivenmodels are often considered to be less powerful thanmechanisticmodels,ML
andDLhave the advantage of being extremely flexible. This is supported by the fact that ANAKINpredicts both
the overkill effect and the variableβ into theMKM.On the contrary, inmechanisticmodel ad hoc correction
termsmust typically be added to include the above effects.

Themodular structure ofANAKINmakes it very easy to include advanced features.Themost relevant example is
the implementationof a radiationquality descriptiondifferent from the classical LET, such asmicrodosimetric or
nanodosimetric quantities, aswell as the coupling ofANAKINwith amechanisticRBEmodel. In fact,whilewenotice
the remarkable accuracyof themodel basedpurely onLET,we are aware that the latter parameter is a suboptimal
descriptor of a radiationfield. Thusweplan to extend themodel by includingmicro- ornanodosimetric information,
whichwith thepresent dataset is difficult to retrieve,without introducing further inaccuracy. Further,whilst at the
present stage,ANAKIN is trained and testedon in vitrodata, in future extensions ofANAKIN,weplan to consider
in vivodata and clinical values forα andβparameters inorder to get amore significative clinical descriptor in terms
of TCPestimations.Also,when available sufficiently large datasets for other endpoints (mutation, transformation
and chromosomeaberration)ANAKINcanbe easily extended to suchpredictions.

In conclusion, we showed that ANAKIN is an intuitive and understandablemodel, that demonstrates high
accuracy in predicting cell survival andRBE. Any prediction given byANAKIN can be analyzed in detail, so that
the contribution of each input variable can be precisely assessed. Several advanced techniques of XAI can be used
either to understand if a well-known biological or physical phenomena, such as the overkill effect or LET
dependentβ, has been included inANAKIN, but also to gain further insight and unveil existing correlations
between different variables.While AI has been broadly employed in radiotherapy treatment planning, either for
physical dose optimization or image segmentation, ANAKIN is the first application on radiobiological
calculations, whichmay open the possibility to use for the first time anAI-basedmodel to biological treatment
planning, i.e. the optimization of the dose deliverywith explicit consideration of a voxel-dependent RBE. This
problem is typically extremely heavy computationally and strongly linked to uncertainties, two features where a
model like ANAKINmay be of the outermost advantage.
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