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ABSTRACT: In recent years, a few multiple-resolution modeling strategies
have been proposed, in which functionally relevant parts of a biomolecule are
described with atomistic resolution, with the remainder of the system being
concurrently treated using a coarse-grained model. In most cases, the
parametrization of the latter requires lengthy reference all-atom simulations
and/or the usage of off-shelf coarse-grained force fields, whose interactions have
to be refined to fit the specific system under examination. Here, we overcome
these limitations through a novel multiresolution modeling scheme for proteins,
dubbed coarse-grained anisotropic network model for variable resolution
simulations, or CANVAS. This scheme enables a user-defined modulation of
the resolution level throughout the system structure; a fast parametrization of the potential without the necessity of reference
simulations; and the straightforward usage of the model on the most commonly used molecular dynamics platforms. The method is
presented and validated with two case studies, the enzyme adenylate kinase and the therapeutic antibody pembrolizumab, by
comparing the results obtained with the CANVAS model against fully atomistic simulations. The modeling software, implemented in
Python, is made freely available for the community on a collaborative github repository.

■ INTRODUCTION
Steady improvements in high-performance computing hard-
ware and molecular dynamics (MD) simulation software over
several decades have ushered in impressive advancements in
the computer-aided investigation of soft and biological matter
systems, in particular, macromolecules of biological origin such
as lipids, proteins, and nucleic acids.1−3 At the same time, a
detailed modeling of molecular systems in which each atom is
described as an interaction center often turns out to be
inconvenient or even undesirable�on the one hand, because
of major computing and data storage requirements and, on the
other hand, because of the effort in analyzing the simulation
outcome. To overcome both limitations, simplified, coarse-
grained (CG) models,4−9 in which several atoms are lumped
together in effective interaction sites, are frequently employed.
CG models enable the simulation of larger systems over longer
time scales, thanks to a smoother (free) energy profile and
fewer degrees of freedom with respect to all-atom representa-
tions.
Coarse-grained models have been successfully employed for

a number of biologically and pharmacologically relevant
applications. These include the study of spontaneous
protein−ligand binding,10 where both the macromolecule,
the ligand, and the solvent are modeled in a coarse-grained
fashion. The approach proved useful for the identification of
binding pockets and the estimation of binding free energies on
a number of systems; however, the simplified representation of
the ligand requires a not-so-obvious new parametrization of the
interactions and limits the distinction between similar

molecules (as in the case of enantiomers).10 In addition, the
employment of a coarse-grained solvent model limits the
accuracy in the case where single water molecules are actively
involved in the stabilization of the ligand in the binding site.
Similarly, a number of coarse-grained force fields, including,
among others, MARTINI,11,12 SIRAH,13,14 AWSEM,15 and
Scorpion16 force fields, have been used to investigate protein−
protein interactions, providing accurate results in terms of
binding free energies. However, those models prevent an even
coarser representation of the protein interfaces, which might be
desirable in the case of very large protein assemblies;
furthermore, they do not provide an accurate description of
the system if specific atomistic details, possibly crucial for the
properties or behavior of interest, are effectively integrated out
in the low-resolution model.
Hence, whereas all-atom models provide the necessary

accuracy at the expense of substantial computational resources,
CG models enable a more efficient and intelligible
representation of the system at the cost of losing possibly
crucial detail. Although several problems in computational
biophysics can be tackled with one of these two methods,
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many open questions remain that necessitate an approach at
the interface between chemical accuracy and computational
efficiency. In this regard, methods have been developed in
which molecules described at different resolutions are
simultaneously simulated within the same setup. Examples
include the following: coupling of MARTINI with atomistic
force fields;17,18 the simulation of atomistic proteins and
nucleic acids in a multiresolution solvent with the SWINGER
algorithm;19,20 and the simulation of soluble proteins with the
PACE force field, which has been developed with the specific
aim of coupling united-atom protein models with a coarse-
grained solvent representation.21,22 Pushing the “resolution
mix” even further, in some applications it might be desirable to
couple different levels of detail within the same biomolecule to
limit the computationally expensive high-resolution modeling
to a subset of protein residues or nucleic acid base pairs. This
approach was pioneered by the quantum mechanics/molecular
mechanics (QM/MM) methods,23−27 which allow a con-
nection between a small region where ab initio models are
used, and a classical all-atom description in the remainder of
the system. Along the same lines, several methodologies have
been developed to couple atomistic and coarse-grained levels
of resolution within the same simulation setup, and even
within the same molecular structure. For example, in the
Molecular Mechanics/Coarse-Grained (MM/CG) scheme
developed in 2005 by Neri et al.,28 the atomistically detailed
active site is incorporated into a coarse-grained Go̅-like model,
which aims at reproducing the correct conformational
fluctuations of the full protein.29 The MM/CG method was
later tailored for the simulation of membrane protein/ligand
complexes,30 and in the last version of the method, dubbed
open-boundary MM/CG,31 the dual-resolution description of
the protein is coupled with an adaptive multiscale model of the
solvent, namely, the Hamiltonian adaptive resolution scheme
(H-AdResS);32,33 in the latter, regions of different resolution
are defined in the simulation box, allowing water molecules to
change their resolution on the f ly when diffusing from one
region to the other. More recently, a similar method34,35

employed a high-resolution force field in small regions of a
protein, most notably, the active site, while treating the
remainder in a coarse-grained fashion, for example, as an elastic
network model.36

Dual-resolution methods have been successfully applied for
the study of several biological systems, including soluble35 and
membrane proteins.37−39 However, the available approaches
share some common shortcomings: first, the standard
modeling of the CG region allows little flexibility in the choice
of the CG sites; second, the CG region is usually defined ad
hoc, and new mappings require a completely new reparamete-
rization of the interactions; third, nonbonded interactions
(such as electrostatics) are typically not taken into account in
the CG model, thus preventing interactions between different
structural domains that might come in close contact during the
course of the simulation. CG models with an accurate
description of electrostatics have been developed;40−42

however, in such cases, the protein is uniformly coarse-grained
at a resolution intermediate between the atomistic and one-
bead-per-amino acid one, thus limiting the level of coarse-
graining and preventing a straightforward coupling between
regions at different resolutions. These limitations hinder the
applicability of standard multiple-resolution models, with
detrimental consequences for the in silico investigation of
proteins and their interactions.

In this work we propose a novel approach, dubbed coarse-
grained anisotropic network model for variable resolution
simulations, or CANVAS, which enables a fast parametrization
of multiple-resolution models. The CANVAS strategy
leverages the blurred and approximate nature of coarse-grained
models to identify effective sites based on a user-provided
input and determines the interactions among them based on
the molecule’s structure and all-atom force field, making it
unnecessary to run reference simulations. This strategy makes
the parametrization of the model practically instantaneous and
allows the modulation of the system’s resolution in a quasi-
continuous manner across the structure, from all-atom to
(very) coarse-grained. Most notably, the interaction between
regions of the system at different resolutions (including the
solvent) is accounted for and straightforward to set up,
allowing the seamless implementation in standard MD
software packages (e.g., GROMACS or LAMMPS).
The article is structured as follows: first, we describe in detail

the CANVAS model, focusing on the construction of the
multiple-resolution representation and on the parametrization
of the interactions. A Methods section follows, providing the
simulation details. The results of the validation of the
CANVAS approach are then presented by comparing results
from all-atom and multiscale simulations of two biomolecules,
namely, the enzyme adenylate kinase and the IgG4 antibody
pembrolizumab, each modeled with three resolution levels.
Finally, conclusions and perspectives are discussed.

■ THE CANVAS MODEL
In the CANVAS approach to multiresolution protein
modeling, a decimation mapping is implemented for the
choice of the interactions sites:9 those atoms included in a
user-defined list are retained, whereas the other ones are
discarded. If all atoms of a given subregion of the molecule are
retained, the high-resolution atomistic description is employed;
in contrast, regions where atoms are removed are described at
a varying level of detail. In lower-resolution regions, the
physical properties of the survived atoms are modified so as to
incorporate in effective interactions those atoms that have been
integrated out (Figure 1). Specifically, each discarded atom is
associated with the closest surviving one, and the properties of
the latter are determined from those of the group of discarded
atoms it represents.
The CANVAS model enables in principle a quasi-

continuous modulation of the resolution of a protein or part
of it, in that the detail of the representation can be gradually
reduced from the all-atom level to a very coarse one, possibly
lower than a few (from one to three) amino acids per bead;
between the highest and lowest resolutions, an arbitrary
number of intermediate levels are feasible. In the current
implementation, we performed the choice of employing three
levels of resolution:

• all-atom (AT): the highest level of detail, where all the
atoms of a given amino acid are retained;

• medium-grained (MG): intermediate level of detail,
where only the backbone atoms of an amino acid are
retained, that is, the carbon alpha CAmg, the nitrogen
Nmg of the amino group, the oxygen Omg, and the carbon
Cmg of the carboxyl group;

• coarse-grained (CG): the lowest level of resolution (in
the applications presented here, only the Cα atoms of
each CG residue are kept, dubbed CAcg.
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The sets of protein residues modeled with an AT, MG, or
CG detail are specified by the user and do not change during
the simulation, that is, the biomolecule has a time-independent
triple resolution. Table 1 summarizes the survived atoms in
each region and their label.
The first step of the model construction is to identify the

region of the system where the chemical details play a crucial
role such that no simplification of the atomistic description is
desirable. Residues described at MG and CG resolutions can
be either specified from the user or directly identified on the

basis of the atomistic residues; in the latter case, the MG
region is built by including those residues at a distance of 1 nm
from the AT region, whereas the rest of the biomolecule is
automatically assigned a CG representation.
The AT part is modeled through a standard atomistic force

field (in the implementation discussed here, these are
Amber99SB-ildn43 or CHARMM36m44), where the classical
functional form and parametrization of the bonded and
nonbonded interactions between atoms are employed. In the
MG and CG domains, the potential energy is given by

= + + +E E E E EAA harmonic VdW coulomb (1)

The first term, EAA, corresponds to bonded interactions from
the atomistic force field, namely, chemical bonds, angles, and
proper/improper dihedrals:

= + +

+

( ) ( ) ( )
( )

E E h r E h E h

E h

AA bonds angles dihedrals

improper (2)

Here, h(r), h(θ), h(ϕ), and h(ω) are Heaviside functions
taking the value 1 if a bond, angle, dihedral, or improper
dihedral exists in the atomistic force field for a couple, triplet,
or quadruplet of survived atoms. Therefore, stretching,
bending, and torsion potentials with their original equilibrium
values are possible only if, respectively, the pair, triplet, and
quadruplet of atoms (where at least a CG bead is involved)
from the all-atom representation of reference are maintained in
the MG and CG regions. The second term in eq 1, Eharmonic,
describes the bonded interactions between and within the low-
resolution domains. The bonded connectivity and its para-
metrization are strictly dependent on the resolution levels
employed and on the chemical nature of the retained sites,
namely, on their atom type. In the current implementation,
beads are connected by harmonic springs as schematically
depicted in Figure 1d and described in detail in Figure 2.
Specifically, the reference bond length corresponds to the
distance between the two atoms/beads in the starting
structure, whereas the value of the elastic constant depends
on the nature of the bonded particles and their position along
the sequence: (1) A stiff spring (kb) is employed for
consecutive beads (red line of Figure 2); its value is 5 × 104
kJ·mol−1·nm−2. (2) A weaker spring knb is used for non-
consecutive Cα beads (CAcg − CAmg, CAcg − CAcg, CAmg −
CAmg) whose distance in the reference (native) conformation
lies below a fixed cutoff equal to 1.4 nm (orange line of Figure
2). Critically, the magnitude of knb depends on the distance d
between the two Cα beads, farther CG units interacting
through looser springs. The profile of knb(d) was obtained
through a statistical analysis performed over an ensemble of
effective pair potentials acting among nonconsecutive Cα
atoms in the pembrolizumab antibody; such potentials were
extracted via direct Boltzmann inversion. See Section S1 in the
Supporting Information for additional technical details. (3) A
second weaker spring kif is employed between an atomistic Cα
and a CA bead (CAat − CAmg or CAat − CAcg) if they do not

Figure 1. Scheme of the decimation process in the low-resolution part
of the biomolecule. (a) Blue circles show all the atoms in the low-
resolution part. (b) Choice of atoms that survive depicted in red. (c)
Decimated atoms (light orange and light green) are mapped onto
their closest survived atom in terms of Euclidean distance (orange and
green arrows), according to the Voronoi tessellation. (d) Each
survived atom, shown with a large red circle, is representative of the
closest not-survived atoms mapped by it. A harmonic spring, depicted
with a dashed yellow line, connects the neighboring survived atoms.

Table 1. Description of Survived Atoms for Amino Acids
(aa) for Each Level of Resolution

label region survived atoms per aa

at fully-AT all (CAat, Nat, etc.)
mg medium-grained backbone (Nmg, CAmg, Cmg, Omg)
cg coarse-grained Cα (CAcg)
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belong to consecutive residues, and their distance in the
reference conformation is less than a fixed cutoff equal to 1.4
nm (magenta dashed line of Figure 2). The recommended
value of kif is 50 kJ·mol−1·nm−2 to guarantee the appropriate
degree of flexibility.
We stress that if the two survived atoms taken into account

are connected by a covalent bond in the fully atomistic
representation, the latter replaces Eharmonic (black line of Figure
2). Similarly, bending and torsion potentials with their original

atomistic parametrization are maintained if the triplet and
quadruplet of atoms (where at least a CG bead is involved) in
the all-atom representation of reference are retained in the
coarse regions. Rescaled nonbonded 1−4 interactions are
introduced only in the AT region. In addition, to guarantee the
correct degree of flexibility in multidomain proteins, no bond is
introduced between those beads that are close in space in the
starting configuration but belong to distinct structural
domains; the latter can be defined either on the basis of the

Figure 2. Schematic representation of the bonded interactions in the three regions at different resolutions. On the top of the figure, only
consecutive residues are considered, and on the bottom, nonconsecutive ones. The atoms/beads that belong to the first residue are traced with a
circle, whereas those that belong to the second residue are sketched with a square. R stands for the side chain. In the figure, hydrogen atoms are
ignored for clarity, while being explicitly accounted for in the model. Bonded interactions are represented with different colors and thicknesses
according to the spring constant.
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knowledge of the system or through appropriate algorithms
developed to decompose protein structures in rigid sub-
units.45,46 The indices of the residues belonging to each
domain are specified by the user in an optional input file.
Finally, EVdW and Ecoulomb in eq 1 are the van der Waals and

Coulomb nonbonded contributions to the potential energy
between nodes. For the AT region, standard force-field
parameters are taken, whereas in the MG and CG regions,
the charge and Lennard-Jones parameters of each bead are
computed from the average properties of the neighboring
atoms, as defined through a procedure akin to a Voronoi
tessellation.47−49 First, a Voronoi cell is defined by associating
the decimated atoms (blue circles of Figure 1b) to the closest
survived atom (in terms of Euclidean distance ), which is now
treated as a CG bead (Figure 1c and Figure 3b,c). We
emphasize that because a geometric criterion is employed to
group atoms, the resulting bead is representative of atoms that

could also belong to separate residues, as schematically shown
in Figure 3. For this reason, the protein’s starting structure
plays a relevant role in the Voronoi tessellation because the
relative orientation of side chains might influence the
construction of the cells. Therefore, it is important that the
structure employed as a reference for coarse graining is
minimized and equilibrated. For the same reason, the Voronoi
tessellation-based coarse-graining procedure is strongly de-
pendent on the starting structure, and we can expect the
relative arrangements of secondary elements to be preserved
during the simulation. If conformational changes are desirable,
a careful distribution of the different degrees of resolution
along the structure is required, and a more informed partition
of the system should be done with explicit input from the user.
After the definition of the Voronoi cells, nonbonded

potential parameters are computed for each CG bead.
Specifically, for a mapping that retains N atoms out of n: (1)
The charge QI is defined as the algebraic sum of the charges qi
of the atoms it represents:

Q qI
i I

i
(3)

(2) The diameter σI is twice the gyration radius Rg:
R2I g (4)

where

= | |

=

=

=

R
N

N

r r

r r

1

1

i

N

i

i

N

i

g
2

1
cog

2

cog
1

Here, ri represents the coordinates of each atom, whereas rcog
corresponds to the coordinates of the center of geometry of the
group. (3) ϵI is the geometric average of the ϵi values of the
atoms it represents:

I
i I

i
N1/

(5)

As opposed to the network of bonded interactions, where a
predefined set of parameters is employed, the nonbonded part
is automatically constructed on the basis of the properties of
the retained sites, independently of the level of resolution and
the bonded connectivity between them. The combination rule
used to determine, from these parameters, Lennard-Jones
interactions between CG beads is the same as the one
employed by the atomistic force field in the high-resolution
region; namely, it is based on the Lorentz−Berthelot rules for
both the Amber and CHARMM force fields. In addition, in the
case of interactions between nonconsecutive coarse-grained
sites, nonbonded interactions are fully accounted for, whereas
nonbonded interactions are switched off in the case of bonds
involving atoms in the high-resolution region, as in the
standard atomistic description.
We stress that because CG beads in the CANVAS

representation may not be representative of a single residue,
a direct residue-based analysis can not be performed. This is a
specific feature of the CANVAS approach: the latter, in fact,
was conceived to be easily generalized to very coarse mappings,
where one bead is representative of more than one residue, or
for inhomogeneous mappings, where the retained low-

Figure 3. (a) Schematic representation of three amino acids: arginine,
leucine, and lysine (from left to right). Dashed black lines represent
the peptide bonds between two residues. The aliphatic hydrogens are
not displayed for simplicity. (b) All three amino acids are modeled as
CG, where only the Cα atom CAcg (red, blue, and green bigger
circles) are retained. The other atoms are decimated and mapped
onto the closest survived atom (shown in pink, light blue, and light
green). A bead is not necessarily representative of atoms belonging to
the same residue since the grouping criterion is merely based on
euclidean distance. (c) Arginine and lysine are modeled in CG (red
and green bigger circles), whereas the leucine is described in MG
(CAmg in blue, Nmg in black, Cmg in violet, and Omg in orange).
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resolution sites are distributed throughout the protein
independently from the residue at which they originally belong
(so that some residues might be represented by one or more
beads, whereas others might be discarded completely). In such
a case one can use mappings that are different from the
intuitive, chemistry-based ones, but that are the most efficient
in preserving the information contained in the all-atom protein
representation.9,50

The code and examples of input files for simulating a system
with the CANVAS model are freely available at https://github.
com/potestiolab/canvas. The code consists of two Python
scripts: the first one (block.py) has the purpose of creating the
list of survived atoms with their relative labels (AT, MG, or
CG); the second script (CANVAS.py) returns the input files
needed for simulating a solvated biomolecule in LAMMPS or
GROMACS, according to the choice made by the user. The
mandatory arguments for the successful execution of the code
are the list of survived atoms, the coordinate file (.gro) and the
topology file (.top) of fully atomistic representation. A detailed
description of the other parameters (mandatory and optional)
and a tutorial for the construction and simulation of a
CANVAS model, starting from the atomistic representation,
are available on the same repository.

■ MATERIALS AND METHODS
The two systems employed in the present work as a test bed
for the CANVAS model are the enzyme adenylate kinase51−53

and the antibody pembrolizumab.54

Adenylate kinase (ADK) plays a critical role in maintaining
the energetic balance in the cell, interconverting adenosine
diphosphate (ADP) molecules into adenosine monophosphate
(AMP) and adenosine triphosphate (ATP).55 The structure of
ADK can be partitioned in three domains, called the CORE,
LID, and NMP, and two distinct nucleotide binding sites, as
shown in Figure 4a,b.
The second system used here as a test case, pembrolizumab,

is a humanized IgG4 antibody consisting of four chains,
covalently bound by disulfide bonds (Figure 5a). Pembrolizu-
mab�which is the generic name for the trade drug name
Keytruda�is currently used in immunotherapy as an
anticancer drug.56 Its antigen is the programmed cell death
protein 1 (PD-1), expressed on the membrane of T cells, B
cells, and natural killer cells; the formation of the high-affinity
complex between the antibody and its antigen prevents the
binding of PD-1 with the programmed cell death receptor
ligands PD-L1 and PD-L2, which would lead to a suppression
of the antitumor activity of T cells.57

The reference structures employed for the construction of
the multiscale models were obtained from equilibrated all-atom
simulations. Specifically, the crystallographic ADK structure
(PDB ID: 4AKE) was solvated in an aqueous solution at 0.15
M NaCl concentration; after energy minimization, the system
was equilibrated for 125 ns in the NPT ensemble, using the
Parrinello−Rahman barostat58 with a time constant of 2.0 ps at
1 bar and the Langevin thermostat59 to keep the temperature
at 300 K. The all-atom simulation was extended for 500 ns, on
which the analyses were performed. For the CANVAS
simulation, the equilibrated structure was placed in a cubic
simulation box of 9.1 nm per side and solvated in an aqueous
solution at 0.15 M NaCl concentration.
The reference structures of pembrolizumab are given by the

representative conformations sampled from four all-atom 500
ns long simulations of the antibody in the apo form, after

clustering the frames on the basis of their structural similarity.
Each of these atomistic simulations was started from the PDB
crystallographic structure of the deglycosilated antibody (PDB
ID: 5DK3) after modeling of the missing residues; for more
details on the all-atom simulation protocol, the reader is
referred to ref 60. A CANVAS simulation is started from each
representative conformation of the antibody, for a total of six
different runs; this choice is dictated by the large conforma-
tional variability of the molecule, and the peculiar properties of
each conformational basin. The CANVAS models of the

Figure 4. Fully atomistic representation of ADK. In particular, (a) and
(b) show the open and compact conformation of the protein,
respectively, in terms of secondary structure. LID, NMP, and CORE
domains are depicted in green, yellow, and gray. (c) displays a
schematic representation of the reference structure of ADK before
conversion from the all-atom representation to the CANVAS one.
Specifically, the CORE of the protein, modeled atomistically, is
depicted in green; the part that is described in MG is shown in
orange; the remainder, which is going to be coarse-grained, is shown
in blue.
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representative structures are placed in a cubic simulation box
of 17.9 nm per side and are solvated in a 0.15 M NaCl aqueous
solution.
For both ADK and pembrolizumab, the force field employed

was Amber99SB-ildn,43 and the water model was TIP3P.61

Furthermore, for the sake of assessing the validity of the
approach independently of the specific all-atom force field
employed, 10 ns long CANVAS simulations of ADK were
performed with the Charmm36m force field, using MD
software programs GROMACS and LAMMPS; the results of
these tests are provided as Supporting Information in Figure
S2. CANVAS systems were prepared starting from the
representative structures obtained from the atomistic simu-
lations, after energy minimization with the steepest descent
algorithm and 100 ps of NVT equilibration. The temperature
is kept constant at 300 K by means of the Langevin
thermostat.59 In the NPT production run, the Parrinello−
Rahman barostat is employed, as described above. The

integration step is 2 fs. The calculation of electrostatic
interactions is performed in all cases by using the reaction-
field method62,63 with a dielectric constant of ϵ = 80 and a
cutoff of 2.5σmax; here, σmax is the maximum value of σ among
all the beads of the system. To validate the choice of the
AMBER force field in combination with the reaction-field
method making use of the previous set of parameters, we also
performed an atomistic MD simulation using PME for the
description of electrostatic interactions, with a dielectric
constant ϵ = 1 and a cutoff of 1.0 nm. The comparison is
performed in terms of RMSF between the two all-atom
trajectories of ADK, as shown in Figure S3. We observed that
the trends of fluctuations are consistent with each other,
providing comforting evidence that the AMBER model can be
safely employed with a reaction field. The SETTLE64 and
RATTLE65 algorithms for rigid water and rigid bonds
containing hydrogen were used. The length of the CANVAS
simulations is 500 ns for ADK and 200 ns for each antibody
system. All simulations were carried out with GROMACS
2018.66 We stress here that the usage of an explicit solvent,
while guaranteeing the highest level of accuracy of the model
in the atomistic region, makes the computational cost of the
simulation essentially identical to that of a fully atomistic
model.In Table 2 we provide a quantitative comparison of the

performance of 500 ns long ADK simulations run on a 48-
cores single node. These show how the CANVAS simulation is
slightly faster (about 1.05 times) than the atomistic one when
using the reaction-field electrostatic method and same cutoff.
Moreover, as expected, the all-atom simulation employing the
reaction field is faster�about twice as fast�than the
corresponding one when using PME. One of the long-term
targets in the development of variable-resolution models is the
boost of computational efficiency through the reduction of the
number of model particles; here, however, we apply the
multiscale representation for the biomolecule alone because
the combined usage of multiple-resolution models of the
protein and of the solvent would lead to ambiguities in the
validation and in interpretation of the outcomes. The usage of
CANVAS in combination with computationally efficient
models of the solvent (e.g., implicit solvent67,68 or adaptive
resolution simulation schemes32,33,69) will be the object of
future work.
The analysis of fluctuations was performed with the VMD

molecular visualization program.70 In particular, the root-
mean-square deviation (RMSD) was computed through the

Figure 5. (a) Graphical representation of the crystallographic
conformation of pembrolizumab in terms of secondary structure.
Fab 1, Fab 2, Fc, and the hinge are depicted in green, yellow, gray, and
red, respectively. (b) Schematic representation of the 4A reference
conformation of pembrolizumab before conversion from the all-atom
to the multiresolution. In particular, in green is depicted the hinge of
the biomolecule, modeled atomistically; in orange is shown the part
that is going to be described as MG; the remainder, shown in blue, is
going to be represented as CG.

Table 2. Comparison of the Time Performance for ADK
Simulations Run on 48 Cores, Single Node, for Different
Electrostatic Methods, Interaction Cutoffs, and Resolutiona

method resolution cutoff [nm] performance

reaction field all-atom 1.000 87.90 ns/day
reaction field all-atom 1.698 32.14 ns/day
reaction field CANVAS 1.698 33.75 ns/day
PME all-atom 1.000 43.04 ns/day
PME all-atom 1.698 19.17 ns/day

aAs expected, those employing the PME are about twice as slow as
those employing the reaction-field (RF) method for all-atom
simulation and cutoff of 1.0 nm. The CANVAS simulation is slightly
faster than the all-atom one when using the RF method and a cutoff of
1.698 nm. The latter value corresponds to 2.5σmax for the ADK
starting configuration when constructing the CANVAS model.
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RMSD Trajectory Tool considering the sole Cα atoms. The
root-mean-square fluctuations (RMSF) were computed by
means of an in-house tkl script. The radii of gyration were
computed with gmx gyrate, whereas the solvent-accessible
surface area was computed with gmx sasa. The principal
component analysis and the calculation of the root-mean-
square inner product (RMSIP)71 between the essential
subspaces from atomistic and CANVAS simulations were
performed with the Python module MDAnalysis. The
calculation of the electrostatic potential was performed with
the online adaptive Poisson−Boltzmann solver (APBS)72 after
the creation of an input PQR file that, in the case of the
multiscale model, includes the radii and charges as computed
with the CANVAS protocol. Protein visualization and
rendering was performed with VMD,70 whereas the plots
were created with Xmgrace and Python libraries.

■ RESULTS AND DISCUSSION
In this section we compare results from the atomistic and
CANVAS simulations for both ADK and pembrolizumb to
assess the validity of the proposed multiscale model. In the
case of pembrolizumab, the comparison is performed between
the six CANVAS simulations and the corresponding ensembles
of structurally homogeneous configurations obtained through a
clustering of all-atom simulation frames; see Tarenzi et al.60

Adenylate Kinase. The ADK protein exists in two main
conformations, required for the catalytic activity of the
enzyme: a fully open one, where the LID and the NMP
domains are separated from each other, thus exposing the
binding site; and a closed one, which is stabilized by the
presence of the substrate and allows for the enzymatic reaction
to take place.73 In the all-atom simulation, ADK samples both
the open conformation, which corresponds to the starting
structure (Figure 4a), and a more compact one (Figure 4b),
where the distance between the LID and NMP arms is
substantially reduced. This partially closed conformation of
ADK in the apo state was already observed experimentally74

and in previous MD simulation studies.75,76 However, we do
not observe a complete transition between the open and fully
closed states, as expected from the absence of the substrate and
from the long time scale of the process (on the order of μs to

ms77); indeed, the computed distance between the Cα atoms
of residues A55 and V169, previously used to discriminate the
two conformational states both in experiments and simu-
lations,78 is consistent with the open state for the whole
duration of the trajectory (Figure S4 in the Supporting
Information).
The evolution of the protein between the two aforemen-

tioned conformations can be quantified during the simulation
in terms of the RMSD of all Cα atoms with respect to the initial
frame, which corresponds to the equilibrated structure of ADK
in the NPT ensemble (Figure 4a). Because the latter is in the
open conformation, higher RMSD values are indicative of
closer structures. The resulting plot is shown with a red line in
Figure 6a. As expected, two states are clearly visible: one
corresponding to 3 Å and the second one around 6 Å. The
compact conformation (higher RMSD values) is attained for a
few nanoseconds after 80 ns, it reappears subsequently after
200 ns and remains there until the end of the simulation.
Consistent with the previous analysis, the red line of Figure

6b shows the RMSF for each Cα, computed with respect to the
average structure: we notice that the atoms constituting the
protein arms, that is, the LID and NMP domains (indices
118−160 and 30−67) have wider fluctuations with respect to
the CORE.
Because the open/closed transition is determined by the

relative orientation of LID and NMP with respect to the
CORE, the latter is modeled at high resolution in the
CANVAS simulation, with the aim of retaining a realistic
degree of flexibility of the hinge. In contrast, the LID and the
NMP domains are described using two levels of resolution,
that is, MG and CG. We recall that all residues whose distance
is less than 1 nm with respect to the closest all-atom residues
are described as MG to guarantee a smooth transition between
the highest and lowest levels of resolution. A schematic
representation is shown in Figure 4c.
The CANVAS simulation shows two main protein

conformations, analogous to the all-atom simulation: the
open one, as depicted in Figure 7a, and the compact one as
displayed in Figure 7b. The interconversion between the two
conformations is monitored, analogous to the fully atomistic
simulation, by calculating the RMSD of the Cα atoms (CAat,

Figure 6. (a) RMSD of all ADK Cα comparing the all-atom simulation (red line) and the CANVAS one (blue line). The presence of two different
states, one corresponding at about 3 Å and the second one close to 6 Å, are indicative of open and compact conformations, respectively. (b) RMSF
for each Cα of ADK from the all-atom simulation (red line) and the CANVAS one (blue line). The cyan area corresponds to the CORE domain,
which is described atomistically, whereas the gray and white regions correspond to the parts of the system (LID and NMP domains) modeled in
CG and MG, respectively. Videos of the atomistic and CANVAS trajectories are provided on the Zenodo repository 10.5281/zenodo.7225086.
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CAmg, CAcg) with respect to the reference frame. The resulting
curve is shown in blue in Figure 6a. The comparison between
the all-atom and multiresolution RMSD shows that the
CANVAS model reproduces well the conformational changes
observed in the fully atomistic system, allowing the protein to
transition between the two basins more frequently than the all-
atom reference. To assess whether the two sampled states are
structurally similar in both simulations, we performed a
clustering analysis on the all-atom and CANVAS trajectories,
using the RMSD with respect to the starting structure as a
distance measure. From the two clusters obtained (corre-
sponding to the fully open and to the compact conformations),
the central structures are extracted; representative conforma-
tions belonging to the same state are then compared between
the atomistic and multiscale cases (Figure S5), and the RMSD
value between them was calculated. The resulting RMSD
values are 3.7 Å for the open conformations and 5.5 Å for the
compact ones; a visual inspection of the representative
structures reveals that these deviations are mostly limited to
the flexible and disordered regions of the protein, whereas the
overall conformational state is the same in the atomistic and
multiscale case. Conversely, the comparison of closed and
open structures shows larger deviations: the RMSD value
between the open atomistic and CANVAS compact
representative conformations is 7.4 Å, whereas the RMSD
value is 5.8 Å when comparing the compact atomistic and
CANVAS open representative conformations. Next, we looked
into the fluctuation of each Cα in the all-atom part and each
CA bead (CAmg, CAcg) in the MG and CG ones (whose
position is the same for the corresponding Cα atoms in the all-
atom representation), as depicted by the blue line in Figure 6b.
Also in this case, for both all-atom and lower-resolution regions
the fluctuations of Cα atoms are comparable to those from the
atomistic simulation. The comparison of fluctuations has also
been performed independently on the sets of frames extracted
from the atomistic and CANVAS trajectories after the RMSD-
based clustering; the resulting RMSF is plotted in Figure S6 of
the Supporting Information, and it shows a similar trend in the
two cases.
As explained in the description of the model, the values of Q,

σ, and ϵ for each low-resolution bead are different depending
on the number and type of atoms that are mapped onto it.
Figure 7 shows the two conformations where each CG bead is
colored according to its charge, and whose size is based on the
σ values. The partial charges assigned to each MG and CG
bead, in addition to those assigned to each atom by the
atomistic force field, were used to compute the electrostatic
potential with the APBS.72 The protein surface, colored

Figure 7. CANVAS representations of ADK, where the all-atom
region is described in licorice and the MG/CG beads as VdW spheres.
The diameter of each bead is given by the value of σ, whereas its color
is dependent on the value of the charge: white spheres are indicative
of neutral charge, whereas blue and red beads correspond to positive
and negative charges, respectively. (a) shows the open conformation
of the protein, whereas (b) shows the more compact one. (c) displays
the electrostatic potential calculated with the APBS for the all-atom
and CANVAS representations of the starting ADK structure, mapped
on the protein surface.

Figure 8. Per residue values of SASA, computed for the atomistic region of the ADK. The AT region is composed of three segments of consecutive
residues, denoted AT1, AT2, and AT3.
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according to the mapped potential, is represented in Figure 7c
for both the fully atomistic case and the CANVAS case; the
comparison shows that the electrostatic patches are conserved
in the multiresolution representation.
To check the accuracy in the description of the AT region in

the CANVAS model, we computed the average solvent-
accessible surface area (SASA) for each atomistic residue,
comparing the results to the values obtained from the atomistic
simulation (Figure 8). The results are in good agreement; the
slightly larger SASA values for some residues in the CANVAS
simulation might be ascribed to the fact that in the fully
atomistic case the protein spends a larger portion of the
trajectory in the compact state, where the solvent accessibility
of a number of residues is reduced.

Pembrolizumab. In Tarenzi et al.,60 four all-atom
simulations have been performed starting from the PDB
crystallographic structure of the full-length antibody, for a total
simulation time of 2 μs. The antibody conformations sampled
from the MD simulations are grouped into six clusters on the
basis of their structural similarity. The representative structures
of the different clusters are shown in Figure S7 and labeled 0A,
1A, 2A, 3A, 4A, and 5A according to the increasing value of the
protein’s average radius of gyration. The conformations differ
mainly in the relative orientation of the Fab and Fc domains,
which can get in close contact thanks to the flexibility of the
hinge region; the latter includes two 18 residue long disordered
segments, bridged by two disulfide bonds.
The six representative pembrolizumab structures are taken

as starting conformations for six CANVAS simulations.
Because the variation in the relative arrangement of Fab1,
Fab2, and Fc domains is made possible by the disordered hinge
region, the latter is described atomistically, whereas the three
large domains are modeled with lower levels of detail. In
particular, those residues whose distances are less than 1 nm
with respect to the closest fully atomistic ones are described as

MG, whereas the rest is represented as CG. A schematic
representation is given in Figure 5b.
Deviations from the starting structure along the simulations

are plotted in Figure S8 in terms of RMSD and compared to
the average RMSD of the atomistic frames falling within the
same conformational cluster. Both atomistic and CANVAS
deviations were computed with respect to the same reference
structure. For the majority of the conformational clusters, the
RMSD values from the CANVAS simulation fall within the
error bar of the atomistic reference. However, Figure S8
suggests also that the CANVAS representation of pembrolizu-
mab is slightly more rigid than the fully atomistic case;
conversely, the atomistic conformations falling within the same
cluster appear more heterogeneous, hence their largest values
of RMSD with respect to the representative structures.
The average residue fluctuations were evaluated by

computing the RMSF of each Cα in the all-atom part and
each CA bead (CAmg, CAcg) in the MG and CG ones (whose
position is the same of the corresponding Cα atoms in the all-
atom representation). The analysis of the RMSF plots (Figure
9) shows that, for each cluster, the fluctuations follow the same
trend for both all-atom and CANVAS simulations; nonethe-
less, the RMSD and RMSF values of pembrolizumab in the
CANVAS case appear rather low when compared to those of
the ADK simulations, where the multiresolution model
quantitatively reproduces the atomistic fluctuations. This may
be ascribed to the interconnections between distant antibody
regions, which take place through an extended network of
interdomain correlations within and around the hinge.60

Indeed, we expect that the differences between atomistic and
multiscale fluctuations are due to the particularly small high-
resolution region chosen for the pembrolizumab with respect
to ADK; in the latter case, ∼62% of the residues is described
atomistically, whereas in the former case only ∼3% of the
residues is at high resolution. To test this hypothesis, we

Figure 9. RMSF computed on Cα atoms of each apo form of pembrolizumab, for all-atom (red lines) and CANVAS simulations (blue lines). The
cyan slabs correspond to the hinge region described atomistically in the CANVAS model, whereas the gray and white regions correspond to the
parts of system modeled as CG and MG, respectively. The x-axis corresponds to the Cα indices.
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performed an additional 50 ns long CANVAS simulation of
pembrolizumab with a larger size of the atomistic region; here,
the number of atomistic residues is about 16% of the total. The
resulting RMSF (Figure S9) shows that including in the high-
resolution region also those Fab and Fc residues that are in
contact with the hinge region leads indeed to a better
agreement between the all-atom and CANVAS simulations,
with respect to the case where the hinge region alone is treated
atomistically. In this regard, we stress that the choice of the
optimal level and distribution of coarsening to be employed in
the construction of a multiple-resolution protein model is a
complex and difficult task per se;9,50 nonetheless, CANVAS
would represent a powerful instrument to investigate precisely
this aspect, in that it allows a simple parametrization of the
model and the subsequent study of the optimal resolution
modulation required to correctly and quantitatively reproduce
specific system features.
Residue fluctuations are further investigated by computing

the linear correlation between the RMSF of Cα atoms of fully
atomistic simulation and the CANVAS one for each case. The
latter is given by the calculation of the Pearson coefficient79 ρ,
as reported in the scatter plots of Figure S10. All clusters show
satisfactory results, with good RMSF correlations (ρ ∼ 0.7);
moreover, an excellent correlation is found in cluster 0A (ρ ∼
0.87). To gain additional information about the latter result,
we also calculated the cross Pearson coefficient ρXY between
states and models as summarized in Table 3. X and Y take

values in [0, 5], corresponding to the various clusters, whereas
each variable is associated with the all-atom (X) and CANVAS
(Y) model. For instance, the value of ρ25 corresponds to the
Pearson correlation coefficient between the RMSF of Cα atoms
for the 2A cluster at fully atomistic resolution versus the RMSF
of the 5A state simulated with CANVAS. Diagonal elements
ρXX measure the correlation between Cα atoms of a fully
atomistic simulation and corresponding CANVAS one for the
same cluster. Such values, already displayed in the scatter plot
of Figure S5, are highlighted in bold in the table. One can
notice that the higher the cluster index, the lower the value of
the Pearson correlation coefficient (ρ00 = 0.87, ρ55 = 0.68).
Because the clusters are ranked by increasing radius of gyration
(or equivalently decreasing compactness), the reason for this

trend can be ascribed to the fact that the CANVAS model of a
more open structure has more freedom to explore
conformations further and further away from the reference.
Furthermore, Table 3 shows that the Pearson coefficient is

not systematically higher when comparing simulations starting
in the same conformational basin. This is not a fully
unexpected result; indeed, CANVAS simulations were started
from the given initial conformations that in this case are also
representative of specific groups of structures sampled in an all-
atom MD trajectory, but this gives no guarantee that the whole
run will explore the same cluster. This is true in general, even
in the case of a fully atomistic model: a new all-atom
simulation starting from a representative frame of one
conformational cluster might, because of its stochastic nature,
diffuse toward another cluster and hence show a fluctuation
pattern closer to what is observed in a different set of frames.
In the case under examination, additionally, the CANVAS
model consists of a distinct structural representation and
interaction force field with respect to the all-atom reference;
hence, even if the simulation starts from a representative frame
of the all-atom cluster, this frame will not be an equilibrium,
representative configuration of the conformational space that
would be sampled by the CANVAS model. What we observe in
our analysis is that, in spite of this caveat, the CANVAS
simulations show a remarkable structural overlap between the
conformations sampled starting from a given frame and the all-
atom cluster they represent, as can be seen from the CANVAS
simulation trajectories provided as Supporting Information; as
for the pattern of fluctuations, the strong intracluster
consistency is paired by a non-negligible, and sometimes
higher, correlation with different reference clusters, whose
appearance is thus not unexpected nor surprising. Hence,
although further work is certainly needed to perfect the
agreement between the all-atom model and its multiple-
resolution counterpart, the strong structural consistency and
the highly correlated RMSF patterns of CANVAS run against
their corresponding references support the idea that the model
can already capture rather fine details of the molecule’s
dynamics.
Further analyses were performed to differentiate the

dynamics of all-atom and CANVAS simulations for different
clusters. Specifically, we have examined the fluctuation
correlations distinguishing residues by their level of resolution
(AT, MG, CG) and the domain they belong to (FAB1, FAB2,
FC). This analysis highlights other salient properties of the
fluctuations of the antibody: (1) Scatter plot with points colored
based on resolution (AT, MG, CG) in Figure S11. The all-atom
part is very small (∼3%); hence, the corresponding value of the
Pearson coefficient is not indicative. Conversely, the medium-
and coarse-grained parts make up for most of the antibody
(∼97%); hence, the value of ρMG and ρCG is closer to the one
of the full system (dash black line). (2) Scatter plot with points
colored based on the domain partition (FAB1, FAB2, FC) in
Figure S12. Each domain produces a linear pattern in the plot,
and the values of the corresponding Pearson coefficients is
close to unity. It is worth noticing that, in some of the clusters,
the RMSF of the two Fab domains indicates differences in
flexibility between the all-atom and the CANVAS models.
Specifically, although the overall correlation degree is rather
high, the slope of this correlation is different between the two
domains. A close inspection reveals indeed that the two heavy
chains present a different arrangement of the hinge and the
CH2 domain, as already noted elsewhere,

54,60 thus returning a

Table 3. Cross Pearson Coefficients ρXY between States and
Modelsa

aX and Y refer to the all-atom and CANVAS model, respectively; both
indices correspond to the conformation from which the simulations
start (0A, 1A, 2A, 3A, 4A, 5A). On the diagonal, the higher the index XX,
the less compact the antibody conformation and the lower the value
of ρXX.
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model whose Fab domains have different interactions and,
therefore, different flexibilities.
These analyses provide an additional confirmation that the

RMSF correlation between all-atom simulation and the
CANVAS one is rather high, although more sophisticated
and less straightforward than expected; this, in hindsight, is a
reasonable behavior for a system whose structural and
dynamical modules are represented, modeled, and simulated
with distinct levels of resolution.
The conformational dynamics of the system was further

inspected by computing the RMSIP between the essential
subspaces given by the first n normal modes of the covariance
from the atomistic and CANVAS simulations, with n ranging
from 1 to the first 10 modes. A value of 0 indicates that the two
mode subspaces are orthogonal, whereas 1 indicates that they
are identical.71 Figure S13 shows that less than 5 modes are
enough to attain a very good overlap (RMSIP > 0.8) for all
clusters.
We compared the similarity of the structures sampled in the

atomistic and CANVAS simulations through the calculation of
the radius of gyration (Figure S14). The values present small
deviations, with the largest discrepancy of 1.3 Å observed in
cluster 3A; however, in all cases, the radius of gyration from the
all-atom simulations is slightly larger than that from the
multiscale case, arguably because the steric effects of the side
chains cannot be perfectly matched in the very coarse
representation employed here, where only the Cα or backbone
atoms are retained for more than 97% of the residues.
As previously done for ADK, the electrostatic potential of

the Fab1 domain at MG/CG resolution has been computed
for the antibody Fab, on the basis of the partial charges
assigned to each bead in the CANVAS model (Figure 10). The
comparison between the all-atom and low-resolution case
shows a good similarity.

The average SASA was computed along the trajectory for
each residue of the atomistic region, namely, the two hinge
segments (Figure 11). The comparison between the SASA
values computed from the all-atom and multiscale simulations,
performed for each conformational cluster, shows a very good
agreement. The CANVAS model proves able to accurately
reproduce the solvent exposure of the atomistic residues in
relation to the conformational properties of the fully atomistic
system.

■ CONCLUSIONS
In this work we introduced the CANVAS model for the
multiscale molecular dynamics simulation of proteins. The
model couples different levels of detail within the same protein
representation, ranging from a fully atomistic description to a
coarse one, for example, one bead per amino acid (as in the
case studies discussed here) or even lower levels of resolution.
CANVAS allows a smooth transition between these resolutions
by including regions at intermediate levels of detail.
Importantly, the nonbonded components of the interaction
potential are taken into account at all resolution levels by
assigning to each CG bead the average properties�including
charge, size, and dispersion energy�of the atoms that are
mapped onto it. This property enables, in principle, the
application of CANVAS for the simulation of large, multimeric
protein complexes, where also the CG resolution can be used
to model realistic molecular interfaces. This application will be
explored in future works.
Here, we have tested the CANVAS model on two systems of

very different size and conformational dynamics, namely, the
enzyme adenylate kinase and the therapeutic antibody
pembrolizumab. To validate the model, we performed a
comparison among the properties extracted from the fully
atomistic and multiscale simulations, in terms of residue
fluctuations, large-scale dynamics, solvent exposure, and
electrostatic properties; in all cases, the CANVAS model
results are in good agreement with the all-atom reference.
The variable-resolution modeling approach presented here

achieves two key goals: first, it demonstrates that a sensible
modulation of the resolution can be employed to construct
models of large molecules whose behavior is the same of, or
quantitatively consistent with, that of a reference all-atom
model of the system; second, it enables the rapid, practical
construction of tailored low-resolution models of such
molecules with minimal information and no reference
simulations. The possible applications of these models cover
a broad spectrum; we here stress those that appear most
promising to us, namely, the exploration of the conformational
space of molecules whose structure is known with low
resolution only, or the characterization of the structure−
dynamics−function relation by means of the systematic
modulation of the resolution throughout the structure. An
additional future application is the efficient calculation of
binding free energies, employing an atomistic accuracy only in
the active and/or allosteric sites. The relevance of taking into
account distant protein domains within the simulation setup
has been proven in various cases, as for example specifically
observed in the case of antigen−antibody binding affin-
ities;60,80 the possibility of keeping a simplified description of
the vast majority of the molecule thus represents an advantage
with respect to the alternative approach of simulating only the
protein domain involved in the binding. In addition, we can
expect that the impact on entropy due to the reduction of the
number of degrees of freedom is similar, and therefore does
not affect the result, if the aim is to compute relative binding
free energy among a set of similar ligands, where the mapping
of the protein is kept the same. All the above-mentioned
applications, which involve the usage of the CANVAS model in
combination with efficient simulation methods for the solvent
(e.g., multiple-time-step,81,82 implicit solvent,67,68 or adaptive
resolution simulation methods32,33,69) are currently under

Figure 10. Electrostatic potential calculated with the APBS for the all-
atom and CANVAS representations of pembrolizumab Fab1, mapped
on the protein surface.
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development and pave the way to a novel approach to
computer-aided molecular biochemistry.
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