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Abstract- As recently shown in laboratory bench scale experiments, chemotaxis, i.e.
the movement of microorganisms toward or away from the concentration gradient of a
chemical species, could have a fundamental role in the transport of bacteria through
saturated porous media. Chemotactic bacteria could enhance bioremediation by directing
their own motions to residual contaminants in less conductive zones in aquifers. The aim
of the present work is to develop a proper numerical scheme to define and to quantify the
magnitude and the role of chemotaxis in the complex groundwater system framework.

We present a new class of meshless Lagrangian particle methods based on the Smooth
Farticle Hydrodinamics (SPH) formulation of Vila & Ben Moussa, combined with a new
Weighted Essentially Non-Oscillatory (WENO) reconstruction technique on moving point
clouds in multiple space dimensions. The purpose of this new scheme is to fully exploit the
advantages of SPH among traditional meshbased and meshfree schemes and to overcome
its inapplicability for modeling chemotaxis in porous media.

The key idea is to produce for each particle first a set of high order accurate Moving
Least Squares (MLS) reconstructions on a set of different reconstruction stencils. Then,
these reconstructions are combined with each other using a nonlinear WENO technique in
order to capture at the same time discontinuities and to maintain accuracy and low numer-
ical dissipation in smooth regions. The numerical fluxes between interacting particles are
subsequently evaluated using this MLS-WENO reconstruction at the midpoint between two
particles, in combination with a Riemann solver that provides the necessary stabilization
of the scheme based on the underlying physics of the governing equations. We propose
the use of two different Riemann solvers: the Rusanov flux and an Osher-type flux. The
use of monotone fluxes together with a WENO reconstruction ensures accuracy, stability,
robustness and an essentially non oscillatory solution without the artificial viscosity term
usually employed in conventional SPH schemes. To our knowledge, this is the first time
that the WENO method, which has originally been developed for mesh-based schemes
in the Eulerian framework on fixed grids, is extended to meshfree Lagrangian particle
methods like SPH in multiple space dimensions.

In the first part, we test the new algorithm on two dimensional blast wave problems
and on the classical one-dimensional Sod shock tube problem for the Euler equations of
compressible gas dynamics. We obtain a good agreement with the exact or numerical
reference solution in all cases and an improved accuracy and robustness compared to

existing standard SPH schemes.



In the second part, the new SPH scheme is applied to advection-diffusion equation in
heterogeneous porous media with anisotropic diffusion tensor. Several numerical test case
shows that the new scheme is accurate. Unlike standard SPH, it reduces the occurrence of
negative concentration.

In the third part, we show the applicability of the new scheme for modeling chemotaxis
in porous media. We test the new scheme against analytical reference solutions. Under the
assumption of complete mixing at the Darcy scale, we perform different two-dimensional
conservative solute transport simulations under steady-state conditions with instant injec-

tion showing that chemotaxis significantly affect the quantification of field-scale mixing

processes.

vi
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1 Introduction

Chemotaxis is the orientation or movement of cells, bacteria or multicellular organisms
along a chemical concentration gradient (attractants) either toward or away from the
chemical stimulus (chemorepellents) [Eisenbach and Lengeler, 2004]. In human biology
chemoattaction have a fundamental role in vascular patterns development[Serini et al.,
2003], in tumor angiogenesis [Roussos et al., 2011] or in atherogenesis [Ibragimov et al.,
2005] and even in neural network grouth and self-organization [Segev and Ben-Jacob,
2000]. Chemotaxis has been observed as in simple animal behavioral mechanism [Ward,
1973] [Zuckerman and Jansson, 1984] as in plants and big animals reproductive system
[Zimmera and Riffellc, 2011]. A complete chemotaxis theory was reported for the first time
at the end of the nineteenth century when Pfeffer [1887] and Engelmann [1881] analyzed
chemotactic aggregation of bacteria in regions of high attractant concentration (see Fig.
1.1).

In the last century, bacterial chemotaxis has been an area of increasing interest to
both experimentalists and theoreticians [7indall et al., 2008]; chemotactic behaviour
was observed in many bacteria, such as Escherichia coli, Rhodobacter sphaeroides and
Bacillus subtilus [Tindall et al., 2008]"; and in acqueos system bacteria chemotaxis is well
documented and charaterized [Mesibov R. and Adler, 1973],[Tindall et al., 2008].

In contrast, chemotaxis in porous media was distinguished and documented only re-
cently [Wang and Ford, 2009]. For the first time, applying magnetic resonance imaging,
Olson [2004] quantifies bacterial chemotactic parameters within a packed column sug-
gesting that chemotaxis biodegradation in low permeability areas. Long and Ford [2009]

reported enhancements in bacteria migration due to attractant gradient under groundwater

IFor a comprehensive list of chemotactic bacterial species and the differences between them see [Eisenbach
and Lengeler, 2004]
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Figure 1.1: Aggregation of chemotactic bacteria in regions of high attractant concentration as
originally shown by Pfeffer [1887].

flow condition both in homogeneous and heterogeneous laboratory test cases [Wang and
Ford, 2009]. Pore scale simulations suggest that traveling bacteria bands may potentially
reach velocity comparable to groundwater flow velocity [Long and Hilpert, 2008].

These experimental and theoretical researches clearly suggest chemotaxis as important
process in microbial dynamics in porous media, and recently studies on role of chemotaxis
in the transport and dynamics of bacteria at field scales are starting to take place (see
for instance [Long and Ford, 2009],[Valdés-Parada et al., 2009b],[| Wang et al., 2008]).
However, the complexity of field scale, i.e. groundwater flow variability, heterogenety,
biologial dynamics and spacial and temporal scale, has not yet allowed to define the
magnitude and effect of chemotaxis.

The motile motion of a single bacteria relies on series of run and trumbles [7indalla
et al., 2008] resulting in a random walk as the Brownian motion of particles in fluid
[Valdés-Parada et al., 2009b]. In presence of attractant this random walk is distorted so
that the movement towards a better environment is favored [7indalla et al., 2008]. Starting

from this single bacteria motion Keller and Segel [1971a] proposed a mathematical models
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for bacterial populations flux N, in homogeneous fluid phase containing an attractanta as:
Np = —DpVep +veep (1.1)

The first term in expression (1.1) is the diffusive bacteria flux and represents the random
component of bacteria motion. It is proportional to the bacteria concentration ¢; where
Dy, is the the random mobility coefficient that quantifies the diffusive behavior of bacterial
populations [Ford and Harvey, 2007b]. The second component is the adventive flux and it
represents the bacterial population response to the attractant in term of chemotatic velocity
[Ford and Harvey, 2007b] [Valdés-Parada et al., 2009b]. The mathematical formulation
of chemotaxis velocity was derived by Chen et al. [1998] starting from experimental
observations on individual bacteria movement and then generalized by Rivero et al. [1989]

as:

2 kq||V \%
Ve = ZVstanh Xo allVed Ca

(1.2)
3 2vg (kd+Ca)2 Vel

where k; is the dissociation constant that represents the propensity of bacteria to sense
gradient, v, is the mean bacteria velocity speed, ) is the sensitivity coefficients taking
into account the bacteria response to attractants or repellents [Ford and Harvey, 2007b]
[Valdés-Parada et al., 2009b] and ¢, is the attractant concentration. According to Eqn.(1.2)
chemotatic bacteria concentration could have velocities comparable to groundwater flow
velocity (Fig. 1). Although equations (1.1) and (1.2) are a complete model to describe

0.0040

0.0035 -

0.0030 |
£/ Co = 0.0

Co/Cy = 0.00
T/ C = 0.003_77¢y = 0.004

0.0025
0.0020 F 1
C/Co = 0.005
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Chemotatic velocity [cm/s]

0.0005

0.0000

0 1 2 3 1 5 5 7 8
Attractant gradient [g/(Lcm)]

Figure 1.2: Chemotatic velocity for different attractant concentrations and attractant gradients
according to Rivero et al. [1989]’s formulation.
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bacteria chemotaxis, bacteria transport in porous media involves many other chemical,
physical and biological processes which not only are closely linked but also strongly
depend on porous media structure and on multiple time and space scales [Murphy and
Ginn, 2000]. As a matter of fact the role and magnitude of chemotaxis can only be

evaluated in this complex framework.

1.1 Mathematical model

The governing pore scale equation for the system under consideration are:

‘UV2Vf(r) — Vp(r) _ pfg, (133)

V-vi(r) =0, (1.35)

Cullll) L5 (v cus(r) =V (DuVeqi(ra) 450 (130)

W + V- ((ve(r) +vie(r,2)) cpi(r,0) =V (DpVep i(x,1)) + 550 (1.3d)

Eqgns. (1.3a) and (1.3b) are the momentum and continuity equation for fluid phase re-
spectively, both in case of stationary flow [Bear, 1988], where the term vy is the fluid
velocity, u is fluid viscosity, p the fluid density, p the fluid pressure and g is the gravity
acceleration. Eqn. (1.3c) and (1.3d) represent the attractant solutes and bacteria species
mass conservation equations respectively. The reader can note that bacteria transport is
driven not only by convection and diffusion but also by chemotactic, where v, ; is the is the
bacteria chemotactic velocity for i —th bacteria species [Valdés-Parada et al., 2009b]. This
mathematical model states that the attractant and bacteria concentration has no influence
on fluid density and that solid are impermeable to bacteria. The term D, ; is the attractant
molecular diffusion and D, . rr; is the effective random mobility coefficient which is the
analog of the diffusion coefficient of molecules Valdés-Parada et al. [2009b].

However, the solution of the pore scale model is not feasible to study and to understand
chemotaxis at laboratory or more important at field scale [Valdés-Parada et al., 2009b;
Porter et al., 2011]. As a matter of fact, by an up-scaling procedure, usually based on
volume averaging [Whitaker, 1999], the pore scale continuum equations are referred to a
Reference Elementary Volume (REV). The REV, often called Darcy’s scale, has a length
scale equal to many pore lengths [Bear, 1988; Steefel et al., 2005], where we consider
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effective hydraulic properties and where the concentration are computed [Herrera, 2009].

The resulting macro scale model transport model is expressed as:

Vh(r), (1.4a)

V- (K(r)h(r)) =0, (1.4b)

where Eqns (1.4a) and (1.4b) are the flows equations in case of stationary flow with V¢
the Darcy’s velocity, K the hydraulic conductivity tensor, ¢ the porosity, and 4(r) the total
hydraulic head [Bear, 1988].

The governing equation for the attractants is the well known advection diffusion

reactions equation, that reads as:

9C,,
ot

+V-(ViCai) =V (D4 (VCayi)) + Rai (1.5)

Eqn. (1.5) is referred to the continuum scale where C, ; is the i — th solute concentration
which is regarded as homogeneous over the REV, where is the total reaction rate for i —th
component and D, ; is the total hydrodynamic dispersion tensor. The term Dy ; is the sum
of molecular diffusion and dispersion and it takes into account in the up-scaled model of
pore scale flow fluctuations on diffusion [Luo et al., 2008].

Similarly, the macroscale transport model for bacteria reads as follows[ Valdés-Parada
et al., 2009b]:

dCp;
ot

+V-((Vi+Ve)Ci) =V Dpierr (VCpyi)) + Rp, (1.6)

where Cy,; is the i —th bacteria species concentration at Darcy’s scale and Ry, ; is the total
reaction rate for bacteria species i —th. The term Dy, ; . 7 is the total dispersion tensor for
bacteria which is the sum of the effective bacteria mobility, the hydrodynamic dispersion
and the contribution of chemotactic velocity to bacteria dispersion [Porter et al., 2011;
Valdés-Parada et al., 2009b]. In Eqn. (1.6), V. is the effective chemotactic velocity at
Darcy’ scale, which depends on bacteria transport properties as well on porous media
structure [Porter et al., 2011; Valdés-Parada et al., 2009b]. In this contest, both V. and
Dy i.rr are usually quantified by adopting an empirical approach [Porter et al., 2011]

based on fitting attractant and bacteria measured data scaling bacteria random mobility
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and chemotactic velocity with porous medium tortuosity or porosity [Ford and Harvey,
2007b; Wang et al., 2008; Long and Ford, 2009; Wang and Ford, 2009]. Valdés-Parada
et al. [2009b], by volume averaging, derives the effective chemotactic parameters under

the assumptions on pore structure and attractant concentrations.

1.2 Numerical model

The chemotaxis add unique challenges to the particularities of flow and transport
in porous media. As reported by Sudicky [1986], the hydraulic conductivity varies by
several orders of magnitudes within short distances which implies a heterogeneous flow
field both in magnitude and direction. As a result, the solute transport produces large
variations of concentration within short distances. Due to the strongly and non-linearly
dependence of chemotaxis velocity on attractant concentrations and attractant gradient, a
correct representation of concentration and concentration gradient became fundamental and
decisive in studying chemotaxis. Unfortunately, most of the standard numerical scheme
add artificial numerical diffusion [Herrera et al., 2009, 2010; Boso et al., 2013]. This
implies that the gradient are underestimate inhibiting the real bacteria chemotactic response.
Similarly, particular attention should be paid to the low attractant concentration modeling
where the chemotactic response is greater.

Recently Herrera et al. [2009, 2010] and Boso et al. [2013] show the advantages of the
Smooth Particle hydrodynamics (SPH) [Monaghan, 2012] in modeling solute transport in
porous media. The SPH is a fully meshfree scheme, it is free from grid orientation and
with low numerical diffusion. Unlike standard particle based scheme, for example Random
Walk Particle Tracking, particles carry solute concentration and not solute mass, implying
twofold advantages: it can represent concentration values up to hardware precision and it
is possible to compute reactions at individual particles without remapping.

The example (1.2) Herrera et al. [2009] gives an illustrative comparison of SPH against
TVD solver and HMOC scheme in case of only advection. It is clear that, TVD and HMOC
can not avoid numerical dispersion, smoothing sharp interfaces at the fringes of the plume
and inhibiting artificially a possible chemotaxis response.

Unfortunately, there are some limitation in SPH extension to simulate chemotaxis: It
can not handle multiple advection fields like in case of chemotaxis velocities and flow

field velocity and it is very sensitive to particle disorder especially in gradient computation.
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Moreover in case of anisotropic dispersion it produce negative concentrations.
These limitations of the standard SPH for the simulation of the advection diffusion plus

chemotaxis transport in porous media provide the motivation for the research in this thesis.

Figure 1.3: Spatial concentration distribution at dimensionless for Pe = . TVD solver (top),
HMOC solver (middle), and SPH (bottom). Courtesy of Herrera et al. [2009]
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1.3 Objectives

The objective of this thesis is to develop, implement, and evaluate new numerical
meshless methods scheme to correctly simulate the chemotaxis in porous media. We have

the following specific objectives:

1. To derive and implement a new meshless scheme and test it with well known test

cases;
2. To apply the new scheme in passive solute transport in porous media;
3. To compare the new scheme with traditional particle Lagrangian scheme;

4. To evaluate the suitability of using the new meshless in order to simulate chemotaxis

in porous media;

1.4 Organization

Chapter 2 presents the derivation of a new numerical scheme focusing on the numerical
solutions of Euler equations. The purpose of this Chapter is to introduce the new numerical
Lagrangian scheme rather than to solve a specific problem and the solution of the inviscid
flow problem is an appropriate test case providing both shock and rarefaction waves with
reference and exact solutions. We develop a new class of meshless Lagrangian particle
methods based on the SPH formulation of Vila & Ben Moussa [Ben Moussa et al., 1999;
Ben Moussa, 2006], combined with a new Weighted Essentially Non-Oscillatory (WENO)
[Dumbser et al., 2007, 2008a,b] reconstruction technique on moving point clouds in
multiple space dimensions. The key idea is to produce for each particle first a set of
high order accurate Moving Least Squares (MLS) [Breitkopf et al., 2005] reconstructions
on a set of different reconstruction stencils. Then, these reconstructions are combined
with each other using a nonlinear WENO technique in order to capture at the same time
discontinuities and to maintain accuracy and low numerical dissipation in smooth regions.
The numerical fluxes between interacting particles are subsequently evaluated using this
MLS-WENO reconstruction at the midpoint between two particles, in combination with a
Riemann solver [Toro, 1997] that provides the necessary stabilization of the scheme based

on the underlying physics of the governing equations. We propose the use of two different
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Riemann solvers: the Rusanov flux and an Osher-type flux [Dumbser and Toro, 2011a]. The
use of monotone fluxes together with a WENO reconstruction ensures accuracy, stability,
robustness and an essentially non oscillatory solution without the artificial viscosity term
usually employed in conventional SPH schemes. To our knowledge, this is the first time
that the WENO method, which has originally been developed for mesh-based schemes
in the Eulerian framework on fixed grids, is extended to meshfree Lagrangian particle
methods like SPH in multiple space dimensions. We test the new algorithm on two
dimensional blast wave problems and on the classical one-dimensional Sod shock tube
problem [Sod, 1978] for the Euler equations of compressible gas dynamics [Toro, 1997].
We obtain a good agreement with the exact or numerical reference solution in all cases and
an improved accuracy and robustness compared to existing standard SPH schemes.

We extend the MWSPH to approximate advection diffusion equations with anisotropic
diffusion tensor. We demonstrate that the MWSPH, is stable and accurate and that it
reduces the occurrence of negative concentrations. We compare then the new MWSPH
with standard SPH scheme in modeling advection-diffusion equations in case of anisotropic
dispersion. The comparison is performed by considering analytical solutions and some
indicators such as minimum concentration, maximum concentration, dilution index and
dissipation rate.

Chapter 4 analyzes the limits of standard SPH in modeling chemotaxis. Then we
presents the numerical strategy to model the chemotaxis with the MWSPH. A key element
of the proposed approach is that the advection chemotactic flux is appropriated in a relative
moving frame with fluid motion using Riemann solvers in complete meshfree framework.
The MWSPH solutions of bacteria chemotaxis are compared with reference solutions,
obtaining a satisfactory agreement. We perform some numerical experiments in order to
analyze the effect of chemotaxis on bacteria transport

Finally, a summary of the results and main findings are given in Chapter 5. In this work,
the each Chapter is stand-alone piece of work including individual introduction, method-
ology and results. Thus, for sake of clarity, equations and notations are independently
redefined.
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2 A New Class of Moving-Least-Squares
WENO-SPH Schemes

1

Smooth Particle Hydrodynamics (SPH) is a truly [Liu and Liu, 2010] meshfree La-
grangian scheme developed by Lucy [1977]; Gingold and Monaghan [1977] for astrophys-
ical applications and successively extended to solid mechanics [Libersky and Petschek,
1991; Libersky et al., 1993; Johnson and Beissel, 1996], free surface flow [Monaghan,
1994, 2005; Ferrari et al., 2009], multiphase transport [Hu and Adams, 2006; Deng et al.,
2013; Adami et al., 2010b] and diffusive transport problems [Cleary and Monaghan, 1999;
Espaiiol and Revenga, 2003; Herrera et al., 2009, 2010; Boso et al., 2013]. Comprehensive
reviews of different SPH schemes that have been developed so far can be found in Vignjevic
and Campbell [2009]; Liu and Liu [2010] and Monaghan [2012].

In SPH the continuum is discretized by a finite set of interpolation points, which are
particles that carry physical properties such as mass, density, pressure and velocity [Fang
et al., 2009; Monaghan, 1994]. Since SPH is a Lagrangian particle method, the particles
move with the local fluid velocity. This makes SPH suitable for advection- dominated
dynamics [Fang et al., 2009; Liu et al., 2003b,a] and complex flow problems [Adami et al.,
2010a; Colagrossi and Landrini, 2003; Ferrari et al., 2009]. Moreover, the meshfree
particle nature of SPH has opened also applications to molecular dynamics at nano and
microscale [Ellero, 2009; Gholami et al., 2013] and microrheology [Vauez-Quesada et al.,
2012].

In its original formulation SPH suffers from the lack of consistency [Belytschko et al.,

1998], low order of accuracy and the so-called tensile instability [Swegle et al., 1995].

I A version of this chapter has been accepted for publication in Journal of Computational Physics
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Consequently, many modifications and improvements have been proposed over the years.
A set of papers (see for example [Liu et al., 1995; Dilts, 1999; Zhang and Batra, 2004;
Monaghan, 2005; Liu and Liu, 2006]) have addressed the consistency problem by improv-
ing the interpolation kernel function and its derivative. However, satisfying the consistency
condition for the kernel at the continuous level does not necessary lead to consistency
in the SPH scheme at the discrete level Liu and Liu [2010]. On the other hand, solving
the compressible Euler equations with the original SPH scheme may lead to unphysi-
cal oscillations, such as the so-called tensile instability [Monaghan, 2000]. Monaghan
[2000] introduced artificial viscosity and velocity smoothing terms to handle both tensile
instability and discontinuities in the solution. However, even with these modifications
a spike may appear in the pressure field at the location of the contact discontinuity and
additional numerical diffusion is added also in regions away from shocks. To attenuate
these problems, Balsara [1995] introduced an upper bound for the artificial viscosity, while
Gingold and Monaghan [1977] used a variable viscosity coefficient to reduce numerical
diffusion in smooth regions.

Regarding incompressible fluid dynamics different modifications have been proposed
to reduce tensile instability and unphysical oscillations. The ISPH (Incompressible-SPH)
formulation solves the Poisson equation for the pressure and enforces the divergence
condition for the velocity field, see e.g. [Hu and Adams, 2009; Xu et al., 2009]. Ellero
et al. [2007] instead achieve incompressibility by imposing that particle volumes do not
change. In the WCSPH (Weakly Compressible Smooth Particle Hydrodynamics) the fluid
is considered weakly compressible and a constant background pressure field ensures non-
negative pressures and reduces tensile instability, see e.g. [Colagrossi and Landrini, 2003;
Adami et al., 2010a]. However the background pressure can introduce additional numerical
viscosity. Recently Adami et al. [2013] proposed an alternative WCSPH based on a
different formulation of particle momentum velocity and the particle advection velocity.

Vila [1999] and Ben Moussa [2006] introduced a different SPH formulation that is very
close to the finite volume formalism and is based on Riemann solvers. It does not require
any artificial viscosity terms for stabilization. In this formulation the artificial viscosity
is replaced by the intrinsic numerical viscosity of the Riemann solver. This completely
avoids the use of the artificial viscosity term and its cumbersome calibration. In addition
Vila and Ben Moussa showed that their scheme is L., stable under CFL condition for

monotone fluxes. For example, Ferrari et al. [2009] obtained monotone pressure fields

12
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for free surface flows by using a monotone Rusanov flux in contrast to standard SPH.
Unfortunately, despite its advantages, this alternative formulation is excessively diffusive
even when applying Gudonov’s flux based on the exact Riemann solver [Ferrari et al.,
2009]. Similarly, Inutsuka [2002] reformulates the SPH with Riemann solvers in the so
called Godunov-SPH schemes (GSPH) where the Riemann solvers are based on kernel
interpolation and Taylor series kernel interpolation of primitive variables in the region of
interacting particles. Recently, in a review on SPH schemes applied to the compressible
Euler equations [Puri and Ramachandran, 2014] the authors show that also GSPH may
produce unphysical oscillations and does not eliminate the spike of the pressure field
at the contact wave in the one-dimensional case. One also should mention the recently
developed rpSPH method Abel [2011], which improves the behavior of the pressure field
in the presence of shear waves.

The motivation of this chapter is therefore to develop and to apply a new SPH scheme
that is not affected by the tensile instability or other known SPH instabilities and which does
not produce excessive numerical dissipation. Our method is based on the approach of Vila
& Ben Moussa and achieves at the same time higher accuracy and more robustness than
standard SPH schemes. The key difference with respect to the existing SPH schemes is the
introduction of a new high order accurate nonlinear meshfree MLS-WENO reconstruction
operator into SPH and to use this higher order non-oscillatory data in combination with a
Riemann solver to compute the particle interactions.

Preliminary investigations about the use of high order reconstructions within the SPH
framework have been carried out in one space dimension in [Renaut et al., 2013; Xueying
et al., 2013]. However, to the best knowledge of the authors, such techniques have never
been used in multiple space dimensions, which is the declared scope of the present chapter.
A further limitation of the method presented in [Xueying et al., 2013] is that the particle
volumes do not evolve in time and that the particles do not move, i.e. the scheme essentially
reduces to a one-dimensional Eulerian approach on fixed grids. In contrast, the new method
presented in this article is a meshless Lagrangian particle method based on MLS-WENO
reconstruction on moving point clouds in multiple space dimensions. For the use of higher
order ENO and WENO reconstructions in mesh-based cell-centered Lagrangian finite
volume schemes see Cheng and Shu [2007]; Liu et al. [2009]; Boscheri and Dumbser
[2013b]; Dumbser and Boscheri [2013]; Boscheri et al. [2014].

The rest of the Chapter is organized as follows. In Section 3.1 we introduce the Euler

13
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equations of compressible gas dynamics in conservative and non-conservative form. In
Section 2.2.1 we briefly describe the standard SPH scheme and in Section 2.2.2 we present
the SPH approach based on Riemann solvers proposed by Vila & Ben Moussa. The
Riemann solvers used in this chapter are explained in Section 2.2.3, while in Section
2.3 we introduce our new meshfree MLS-WENO reconstruction giving all details of the
reconstruction procedure. In Section 2.4.1, the MLS-WENO SPH scheme (in the following
denoted by MWSPH) is compared with the standard SPH method and, in particular, its
robustness with respect to particle disorder is assessed. In Section 2.4.2 the new MWSPH
scheme is applied to inviscid compressible gas dynamics and comparisons with standard
SPH and the SPH of Vila & Ben Moussa are made. Finally, Section 2.5 gives some

concluding remarks and an outlook to future research.

2.1 Governing equations

In a Lagrangian frame the two-dimensional Euler equations for an ideal compressible

fluid assume the following non-conservative form:

d

_d‘t’ — —pV-v, (2.1a)
dv Vp

—_— = 2.1b
i 0 (2.1b)
de p

= _FPy. 2.1

7 o v, (2.1c)

where (2.1a) is the continuity equation, (2.1b) is the momentum balance equation and (2.1c)
is the energy conservation equation. Here % denotes the total derivative, p is the density of
the fluid, v = (u,v) the velocity vector, p the pressure and e is the specific internal energy

per unit mass. For ideal gases the following constitutive equation is typically adopted:

(2.2)
in which 7 is a constant representing the ratio of specific heat capacities of the fluid [7oro,
1997]. System (2.1) in completed by the equation of motion which reads

dr_

ar _ 2.3
7= (2.3)
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where r = (x,y) is the position of a given infinitesimal control volume. According to Vila’s
formalism it is useful to rewrite the system (2.1) in the following compact conservative
form 3

a—? +V-F(Q) =0, (2.4)

where Q is the vector of conservative variables and F = (f,g) is the flux tensor. For the

compressible Euler equations they read

p pu pv
2
u u-+p uy
e=| ™|, =] ° . oe=| P 25)
pv puv pve+p
E u(E +p) v(E +p)
Here, E is the total energy density defined as
1
E=pe+3p (u* +v?), (2.6)
hence the pressure can be written as follows:
1
p=@O-1) (E—Ep(uzﬂz))- (2.7)

2.2 SPH formulations

2.2.1 The standard SPH formulation

Following the SPH formalism the computational domain € is discretized by a finite
set of N particles Z; (i < 1 < N), with positions r; and mass m;. The original SPH form
presented by Gingold and Monaghan [1977] discretizes the Euler equations (2.1a)-(2.1c¢)
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and (2.3) as follows:
N
pi = Z m;Wij, (2.8a)
j=1
dv; N . )
l:_ij % p—é—kHij 'V‘/Vij, (2.8b)
de: N pi P
P (Bt b e
j=1 i J
dl‘i
Ty 2.8d
ar " (25d)

where the subscript i denotes the number of particle #;. The term W;; = W (r;,r j) is the
interpolation kernel centered in r; and VW;; is its gradient with respect to r;. Among the

available kernel functions we choose the cubic spline kernel [Monaghan, 2005]:

) 1/3—q;+q/2, if0<gi<]1,
Wij=1v\Q2—a)*+q, ifl1<q;<2 (29)
ij
0, ifq,'j>07

because it is less demanding in terms of computational time than other possible choices
such as the standard Gaussian kernel [Ferrari et al., 2009]. In Eqn. (4.13), g;; is defined
as qjj = Hrj —r,~H /hij, K is a normalization constant so that [y WdV =1 and v is the
number of space dimensions, i.e. Vv = 2 in our applications. The term #;; is the smoothing
length [Monaghan, 1994, 2005] and it can be locally variable according to the following

expressions:
1

: m;j
hij == (hi+hj), with  h=0y/—, (2.10)

2 Pj
where G is a suitable constant chosen in such a way that enough particles are in within
the compact support of each kernel. We usually choose 6 € [1.5;2.0], which leads to
approximately 40-50 interpolation particles in the compact support of each kernel. The

term II;; is an artificial viscosity added to the momentum equation and to the energy
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equation in order to reduce unphysical oscillations at discontinuities. It is given by:

- ijm, if vjj-m;j <0, @.11)
R ij
ij = .
0, ifV,'j-n,'j>07
Vi
Hij = /’lij—lj Y , with Vij=Vj—V. (2.12)
v =]

We emphasize that, according to Eqn. (2.12), the artificial viscosity vanishes as the distance
between the particles increases and it depends on the parameters o and 3 which require a

specific numerical calibration for each case.

2.2.2 The SPH formulation of Vila and Ben Moussa

The semi-discrete form of the Vila & Ben Moussa approach discretizes the Euler

equations (Eqn. 2.4) as

dviQ, N
ait i _ —)j:ViVjZGi]"V‘/Vij» (2.13)
Vi ¥ _
= Zj ViVi2(¥ij = vi) VWij, 214
dr;
d_t’ —v, (2.15)

where V; is the volume of each particle that evolves according to Eqn (2.14), G;; is the
numerical flux tensor and v;; = %(V,- +v;) is the velocity at the interface between the
two interacting particles %; and P;. Similar to the finite volume formalism, Eqn (2.13)
describes the interaction between pairs of control volumes V; and V; along the direction
n;; with a discontinuity at the midpoint. The flux G;; is given by an exact or approximate
Riemann solver in the co-moving frame. For example in Vila [1999] Vila proposes to use a
first order Godunov method that assumes piecewise constant initial data for the Riemann

problem and that reads as:

Gij =Gij(Q;,Q;) =Fij(Qr) — Qe @ ¥y, (2.16)
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where F;;(Qg) is the flux tensor evaluated at the state Qz = Q(Q;,Q;), which is the exact
solution of the associated one-dimensional Riemann problem between two interacting
particles ; and P}, i.e. the so-called Godunov state. In this approach also the interface
velocity v;; could be computed by the exact solution of the one-dimensional Riemann
problem. In the same work Vila [1999] also introduces a second order MUSCL-type
scheme in the SPH framework, based on linear kernel interpolation of the derivative and
the use of TVD slope limiters.

The new SPH formulation proposed in this chapter evaluates the numerical fluxes
at the midpoint between two interacting particles %; and P; using high order WENO
reconstruction polynomials as G;; = G,-_,-(Ql-_j,Qi*j). The general idea is to perform a
piecewise high order accurate essentially non-oscillatory reconstruction around each
particle’s position r; knowing the point values Q; of particles in its surrounding. As
summarized in Fig. 3.1.2 we first define local high order reconstruction polynomials Q;(r)
and Q;(r) for each couple of interacting particles #; and ?; and then we evaluate these
reconstruction polynomials at the midpoint F;; = %(ri +r;). The left state Q;; = Qi(Fi;)
is obtained by extrapolating the reconstruction around particle Z; to the midpoint and
the right state Q;; = Q;(Fi;) by extrapolating the reconstruction around particle P; to
the midpoint. The approach combines the Moving Least Squares (MLS) method of
reconstructing continuous functions from known points values with a nonlinear WENO
technique in order to avoid spurious oscillations in the presence of strong gradients or
discontinuities.

In its essence our scheme is the combination of MLS with WENO within the more
general SPH formulation of Vila & Ben Moussa. In the following we denote the resulting
scheme by MWSPH. We emphasize that the MWSPH does not use kernel interpolation or
the kernel convolution integral to introduce Riemann solvers in SPH as in GSPH schemes.
For the sake of clarity, we call hereafter the original Vila & Ben Moussa SPH formulation
V-B-SPH.

2.2.3 Numerical Fluxes

In this work we use two Riemann solvers to define the numerical flux G;;: the simple
Rusanov flux [Toro, 1997] and the Osher-type solver proposed in Dumbser and Toro
[2011b,a]. Both solvers can be applied to the V-B-SPH and to the new MWSPH presented
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here. The only difference lies in the fact that the former method uses the particle states
Q; and Q, while the latter uses the reconstructed states Q;j and Q;; extrapolated to the
particle interface located at the midpoint F;;.

The Rusanov flux assumes the following expression:

1 _ o Cij _ _ 1, _
Gij = E <H< ;;7Vij> +H <Q,‘j7vij>) - % (Q; _Qij> ®n;j, Vij = i(vij +V?]_'>7
(2.17)
where H is the flux tensor of the Euler equations in a reference frame moving with velocity
v:

H(Q.v) =F(Q)-Q®v. (2.18)

We remark that the translation velocity itself is computed from the reconstructed variables,
see Eqn (3.10). The term ¢;; is instead the maximum absolute value of the eigenvalues of
the Jacobian matrix Ap = Ay (Q,v) = dH/dQ - n;;, evaluated along the direction n;; in a

moving frame, which reads as:

cij = max(|A(Q;;)|, [A(QH))), (2.19)

with A being the diagonal matrix of the eigenvalues of A,(Q, V).
The second flux is an Osher-type flux [Dumbser and Toro, 2011b,a] and reads
1 +5 - % + - S L
Gij=3 (H (Qj v,-,-) +H(Q; ,Vij)) -© (Qj -Q ) omij, - Vij =S (V).
(2.20)
where O is the dissipation matrix in the reference frame moving with velocity v;;. Follow-

ing [Dumbser and Toro, 2011b,a; Boscheri and Dumbser, 2013a] © is written as

1
I
®— E/\l«s‘n(lp(s),‘-z,-j)|ds, (2.21)
0

with Ay, evaluated along n;; and ¥ being the straight-line segment path connecting the left

and right state in phase-space:
W(s) =¥(5,Q}.Q;) = Q;; +5(Q — Q;))- (2.22)

The integral ® is approximated using a three point Gauss-Legendre quadrature with points
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sy and associated weights mﬁ, namely:

1 G
EZ F 1 (An(W(st), Vi) (2.23)

where the absolute value of the matrix A, is defined as usual as
|An| = RIAIR™, (2.24)

where R is the matrix of right-eigenvectors of A, and R™! is its inverse.
In a second step we introduce two fundamental changes into the original V-B-SPH
formulation. We add an additional term in Eqn. (2.13), which at the continuous level has a

null contribution:
dv;Q;

N
Pake —ZV,'VJQ (Gij — Hi) -VW;; (2.25)
J

This additional term, H;(Q;,v;) = F(Q;) — Q; ® v; is the Lagrangian flux tensor computed
at the state of the i-th particle and leads to a flux-difference formulation of the SPH scheme,
which is similar to the idea of flux-difference formulations used in the finite volume
context. According to general SPH derivative rules this term has a null contribution at
the continuous level ([ H;VWdV = H; [ VWdV = 0), but it has in general a non-zero
contribution at the discrete level () ; H;VW;; = 0). However, at the discrete level it ensures
at least zeroth order consistency, i.e. it allows the scheme to maintain a constant solution
exactly.

Furthermore, instead of using Eqn. (2.15) we decide to move the particles according to
the rule
N —
ir, %VijVjWij

7 (2.26)

i
LV;Wij
J

Eqn. (2.26) uses a smoothed velocity field for the particle motion, which is based on the
interface velocities V;;. In this manner the final particle velocity is chosen consistently
with the interface velocities V;; used in the ALE fluxes (2.18).
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Figure 2.1: Examples of central reconstruction stencils Sf) and Sé for a generic pair of inter-
acting particles P; and P; (left). One-dimensional cut through the reconstruction polynomials
Qi(r) and Q(r) along the line connecting ‘F; and P;, as well as the states Qi and ij extrapo-
lated to the midpoint ¥;;j between the interacting particles (right).
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2.3 Moving-Least-Squares WENO reconstruction

The main ingredient of the nonlinear spatial reconstruction operator is the polynomial
WENO method developed by Friedrich [1998], Kdser and Iske [2005] and Dumbser et al.
[2007] as an alternative to the classical point-wise WENO reconstruction [Jiang and Shu,
1996; Hu and Shu, 1999]. Following the general guidelines given in [Dumbser and Kaéser,
2007; Dumbser et al., 2007] we first construct a set of reconstruction stencils for each

particle as follows:
neg

Si=J2w 2.27)
k

where k with 1 < k < ne; is a local index, counting the particles ©; in each stencil, j = j (k)
is the mapping from the local index k to the global indexation of the particles in the
computational domain €2, ne; is the number of particles in each stencil and n; is the number
of stencils. As in the mesh-based WENO scheme [Dumbser and Kaéser, 2007; Dumbser
et al., 2007] the set of stencils consists of one central stencil 56 and a set of one-sided
stencils (1 <5 < 8). We choose 8 one-sided stencils to cover all possible directions. Fig.
2.2 shows a sketch of the stencils associated to the particle #;. The first stencil, i.e. the
central stencil, is obtained by the union of the central particle %; and its surrounding

particles P; as
neg

S=UPw> il < ki, (2.28)
k

while the one-sided stencils are defined as :

neg

5;‘:Ufpj(k), ||rl~j||g2h,-7m,s and 0 ¢€[(s—1)m/4,sm/4], (2.29)
k

where h; 5 1s a characteristic length scale defined later and 6 is the angle formed by the
vector r;; = r; —r; connecting the two particles %; and P; and the x-axis,
tan() = 211 (2.30)
Xj—Xi
In practice, the particle search algorithm for defining the reconstruction stencils ! is
implemented as follows. The computational domain is covered by a fixed virtual Cartesian

background grid of size 2max(5; ,,5), the so-called book-keeping cells or macro-cells, see
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e.g. Hockney and Eastwood [1981]; Monaghan [1992, 1994, 2005]; Ferrari et al. [2009].
At the beginning of each Runge-Kutta substage, each particle can be easily located on
this background grid and is added into a linked list associated with the corresponding
Cartesian macro-cell containing the particle. Then, the stencil search algorithm for particle
‘P; loops over the linked list associated with the macro-cell containing particle %; and over
the linked lists of the neighbors of the book-keeping cell containing 7. It stops when the
necessary number of particles neg has been found. In cases where it is not possible to find
enough particles for a stencil (e.g. on the boundary of the computational domain), the
corresponding stencil is simply deactivated.

After this definition of several candidate stencils, which is in common with mesh-based
WENO schemes, we apply a Moving-Least-Squares interpolation. In particular, for each

particle the reconstruction polynomials assume the following form:

Qf(f.wﬂ) = Qi + Z {’\Vm,sq)m(&an)? (2-31)

1<|m|<M

for each of the nine stencils S! (Fig. 2.2). In Eqn. (3.16) & and m are normalized
spatial coordinates in a 2D reference coordinate system defined as & = (x —x;)/h; s and
N = (y — ¥i)/himis» where x; and y; denote the position of the i-th particle in the global
coordinate system while {’\Vm, s denotes the set of unknown coefficients of the reconstruction
polynomial on stencil number s and ¢,, are the associated basis functions. With the basis
functions given in Eqn. (3.18) below, the series in Eqn. (3.16) is a Taylor series expansion
of order M around the position of the particle Z;. The number of unknown coefficients and
basis functions in Eqn. (3.16) is given by nc — 1. In two space dimensions rnc is defined as
(M+2)(M+1)

— . 2.32
ne 5 (2.32)

Finally, the basis functions ¢,,(&,m) in Eqn. (3.16) are defined as

Om(E,m) =8", (2.33)

with & = (&,1) and the multi-index m with O < |m| < M. The use of reference coordinates

& and 1 helps to avoid ill-conditioned reconstruction matrices. The unknown coefficients
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Wp,s are computed on each stencil S! from the following set of reconstruction equations:

nc—1

Y 0w (&) Wns = Qi — Qi VP, € S (2.34)
m=1

According to eqn. (3.19) we interpret the SPH data as local point-values, i.e. in a finite-
difference manner. Although eqn. (2.13) would suggest a finite-volume type interpretation,
it is not clear how to define the control volumes in a meshless particle method, and even
a kernel-weighted volume integral would be very difficult and expensive to carry out.
We therefore opted for the expression (3.19) above, which is easy to implement and in
which data are well-defined as local point values. Further investigations concerning a
finite-volume type reconstruction are still necessary, but are beyond the scope of this
chapter. The number of particles ne; in each stencil S! is chosen in such a way that the
number of equations in the system (3.19) is larger that the number of unknown degrees
of freedom, hence nes; > nc. Therefore, Eqn. (3.19) constitutes an overdetermined linear
algebraic system for the coefficients, which is solved using a least square technique [Barth
and Frederickson, 1990; Agossler Albert, 2001; Dumbser et al., 2008a,b]. In order to
ensure linear stability, we suggest to use at least ne; = 2nc particles in each stencil for
linear stability purposes [Dumbser and Kaéser, 2007; Dumbser et al., 2007].

As in mesh-based WENO schemes, see for example [Jiang and Shu, 1996; Hu and
Shu, 1999; Balsara and Shu, 2000; Titarev et al., 2010; Tsoutsanis et al., 2011], the final
non-linear WENO reconstruction polynomial Q;(§,m) of degree M is obtained by a non-

linear combination of the nine polynomials Qf(&,m) of degree M reconstructed on the ng

stencils: .
ng—
Q(En) =Y oQiEmn), (2.35)
s=0
with the normalized nonlinear weights
@y
0 = 5 —, (2.36)
Y O
r=1
with @ that assume the following form [Dumbser et al., 2008a,b]:
As
Ny=—— 2.37
A (8 + Gs)r 9 ( )
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where € = 10714, = 4 and the linear weights are set to Ay = 10° for the central stencil and
As = 1 for the one-sided stencils (1 < s < 8). Finally, due to the complexity of mesh-free
methods we propose to compute the smoothness indicator in a very simple manner that is

independent of the current particle distribution:

o= Y W (238)

m,s*
1<|m|<M

As for standard WENO schemes, the reconstruction can be carried out either in
conservative variables or in local characteristic variables [Jiang and Shu, 1996; Titarev and
Toro, 2004]. In the first case the expressions (3.16)-(2.38) are used for each component of
the vector of conservative variables Q. In the second case we first transform conservative
variables to characteristic variables along the velocity vector v; (since there is no preferred
direction in SPH schemes) and then we transform back to conservative variables.

Finally, as for the smoothing length in the kernel interpolation, we introduce a variable

stencil length 4,,;; for each particle 2;:

hi,mls = Gmls\v/vi (2.39)

with G,,;, a suitable constant. This ensures that enough particles are found in at least one
of the nine stencils also where particle density is low. In our numerical experiments we
found also that a lower bound ensures robustness to the meshfree WENO reconstruction,

although more numerical experiments in this direction would be desirable.
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(a) Central stencil. (b) One-sided stencils.

Figure 2.2: Sketch of the central and one-sided WENO reconstruction stencils for a random
particle distribution. The particle ‘P; is shown in red color.
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2.4 Numerical Test Cases

In the following section we first verify the effectiveness of the Moving-Least-Squares
WENO reconstruction in approximating a function from given point values, and succes-
sively we compare MW SPH with the standard SPH scheme and the V-B-SPH scheme.
Furthermore, comparisons against exact or numerical reference solutions are provided in
one- and two-dimensional setups. As discussed in [Ferrari et al., 2009] the semi-discrete
form of SPH reduces the original PDE system (2.1) to a set of nonlinear ordinary differen-
tial equations (ODEs), which can be solved by using any stable time integration algorithm
[Ferrari et al., 2009; Monaghan, 2005]. In the present work we adopt the third order TVD
Runge-Kutta scheme [Gottlieb and wang Shu, 1998].

2.4.1 Assessment of the MLS-WENO reconstruction

The high order MLS reconstruction is the most important step in our MWSPH scheme
and represents the main novelty with respect to existing SPH schemes. Therefore, the
accuracy of the new Moving-Least-Squares-WENO (MLS-WENO) method in reconstruct-
ing a known function from given point values is first verified for the case of a continuous
and then for a piecewise continuous function. We point out that here we focus on WENO
combined with Moving-Least-Squares, here referred as MLS-WENO, and not on the entire
MWSPH scheme. The numerical results from the standard SPH are given for comparison.
Also in this case we use SPH only to compute reconstructed point values. The assessment
is carried out by assigning a point value of a known function to each particle and then
obtaining reconstructed values on a different regular Cartesian lattice. The particles are
distributed in a circle of radius R = 1.0, with the center located at (0,0). We consider both,
equidistant and non-equidistant particle distributions within the computational domain (see
Figs. 2.3a and 2.3b). The latter case is obtained by perturbing the initial position of the
particles, at the nodes of a regular grid with spacing Ax = Ay, with pseudo-random numbers
from the uniform distribution within the range [0, 1]Ax. Testing the MLS-WENO scheme
with an irregular particle distribution is important because in SPH schemes particles move
according to the local fluid velocity field resulting in the distortion of initially regular
positions. Fig. 2.3 shows the regular lattice where the reconstructed values are computed
and compared with the exact solution as well as the particle positions for both equidistant

and non-equidistant cases.
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0 -0.5 0.0 0.5 1.0 1.0 -0.5 0.0 0.5 1.0
X X
(a) Equidistant particle distribution. (b) Random particle distribution.

Figure 2.3: Equidistant particle distribution on the left panel and non-equidistant particle
distribution on the right panel. Particles are in black. The regular Cartesian lattice used for
verification of the reconstruction is shown in red.

2.4.1.1 Reconstruction of a smooth function

In this test case we perform the reconstruction of a smooth function on the grid shown

in Fig. 2.3 where particle 7, takes the value Q;(x;,yi) = Qe(xi, i), with
Qc(x,y) = €2 (cos(4x) +sin(4y)) (2.40)

and where (x;,y;) denotes the particle position within the computational domain. Fig. 2.4
shows the reconstructed results for the function for both equidistant and non-equidistant
particle distributions. In all cases MLS-WENO produces excellent approximations while
SPH shows significant deviations from the original function. In the case of equidistant
particles SPH underestimates the exact solution and spurious oscillations emerge when the
particles are not equidistant. A quantitative comparison of the accuracy of the schemes is
offered by the L, norm:

N (1/q)
Ly= | Y |0i(¥},Y}) = Qely))]| /N, (2.41)
=1
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where Q,(x;,)) is the given exact solution at (x/,y;) and Q;(x’;,) is the reconstructed
value. Notice that the (x;., y’J) are the coordinates of the regular lattice used for verification
of the reconstruction and is not identical with the original particle positions. The L. norm
is computed by taking the maximum error among all vertices. As expected, MLS-WENO
reaches the nominal order M + 1, regardless of the distribution of the particles (Table 2.1).
This is in agreement with mesh-based WENO scheme developed in [Dumbser and Kaéser,
2007] and [Dumbser et al., 2007] and here extended to the meshfree case. On the contrary,
SPH exhibits a convergence rate O(h?) in case of equidistant particles and lower order

convergence for non-equidistant particles.
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Figure 2.4: Comparison of the exact function and the reconstruction for the smooth case
computed with standard SPH and with the new MLS-WENO. Particle values on computational
domain with equidistant distribution (a) and non-equidistant distribution (b). Cut through the
reconstruction at y = 0 for equidistant particles (c) and non-equidistant particles (d).
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2.4.1.2 Reconstruction of a piecewise smooth function

In this additional example the imposed function is piecewise continuous according to:

2.5, if [|r[] 0.2,
2, if 0.2 < ||r|| < 0.4,

0.(r) = 102 < rl 242)
r|| —0.2, if 0.4 < ||r|| < 0.6,

(0.6 —|r|)>+2.2, if0.6<]|r|<1,

where r is the pos