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Abstract- As recently shown in laboratory bench scale experiments, chemotaxis, i.e.

the movement of microorganisms toward or away from the concentration gradient of a

chemical species, could have a fundamental role in the transport of bacteria through

saturated porous media. Chemotactic bacteria could enhance bioremediation by directing

their own motions to residual contaminants in less conductive zones in aquifers. The aim

of the present work is to develop a proper numerical scheme to define and to quantify the

magnitude and the role of chemotaxis in the complex groundwater system framework.

We present a new class of meshless Lagrangian particle methods based on the Smooth

Particle Hydrodinamics (SPH) formulation of Vila & Ben Moussa, combined with a new

Weighted Essentially Non-Oscillatory (WENO) reconstruction technique on moving point

clouds in multiple space dimensions. The purpose of this new scheme is to fully exploit the

advantages of SPH among traditional meshbased and meshfree schemes and to overcome

its inapplicability for modeling chemotaxis in porous media.

The key idea is to produce for each particle first a set of high order accurate Moving

Least Squares (MLS) reconstructions on a set of different reconstruction stencils. Then,

these reconstructions are combined with each other using a nonlinear WENO technique in

order to capture at the same time discontinuities and to maintain accuracy and low numer-

ical dissipation in smooth regions. The numerical fluxes between interacting particles are

subsequently evaluated using this MLS-WENO reconstruction at the midpoint between two

particles, in combination with a Riemann solver that provides the necessary stabilization

of the scheme based on the underlying physics of the governing equations. We propose

the use of two different Riemann solvers: the Rusanov flux and an Osher-type flux. The

use of monotone fluxes together with a WENO reconstruction ensures accuracy, stability,

robustness and an essentially non oscillatory solution without the artificial viscosity term

usually employed in conventional SPH schemes. To our knowledge, this is the first time

that the WENO method, which has originally been developed for mesh-based schemes

in the Eulerian framework on fixed grids, is extended to meshfree Lagrangian particle

methods like SPH in multiple space dimensions.

In the first part, we test the new algorithm on two dimensional blast wave problems

and on the classical one-dimensional Sod shock tube problem for the Euler equations of

compressible gas dynamics. We obtain a good agreement with the exact or numerical

reference solution in all cases and an improved accuracy and robustness compared to

existing standard SPH schemes.
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In the second part, the new SPH scheme is applied to advection-diffusion equation in

heterogeneous porous media with anisotropic diffusion tensor. Several numerical test case

shows that the new scheme is accurate. Unlike standard SPH, it reduces the occurrence of

negative concentration.

In the third part, we show the applicability of the new scheme for modeling chemotaxis

in porous media. We test the new scheme against analytical reference solutions. Under the

assumption of complete mixing at the Darcy scale, we perform different two-dimensional

conservative solute transport simulations under steady-state conditions with instant injec-

tion showing that chemotaxis significantly affect the quantification of field-scale mixing

processes.
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1 Introduction

Chemotaxis is the orientation or movement of cells, bacteria or multicellular organisms
along a chemical concentration gradient (attractants) either toward or away from the
chemical stimulus (chemorepellents) [Eisenbach and Lengeler, 2004]. In human biology
chemoattaction have a fundamental role in vascular patterns development[Serini et al.,
2003], in tumor angiogenesis [Roussos et al., 2011] or in atherogenesis [Ibragimov et al.,
2005] and even in neural network grouth and self-organization [Segev and Ben-Jacob,
2000]. Chemotaxis has been observed as in simple animal behavioral mechanism [Ward,
1973] [Zuckerman and Jansson, 1984] as in plants and big animals reproductive system
[Zimmera and Riffellc, 2011]. A complete chemotaxis theory was reported for the first time
at the end of the nineteenth century when Pfeffer [1887] and Engelmann [1881] analyzed
chemotactic aggregation of bacteria in regions of high attractant concentration (see Fig.
1.1).

In the last century, bacterial chemotaxis has been an area of increasing interest to
both experimentalists and theoreticians [Tindall et al., 2008]; chemotactic behaviour
was observed in many bacteria, such as Escherichia coli, Rhodobacter sphaeroides and
Bacillus subtilus [Tindall et al., 2008]1; and in acqueos system bacteria chemotaxis is well
documented and charaterized [Mesibov R. and Adler, 1973],[Tindall et al., 2008].

In contrast, chemotaxis in porous media was distinguished and documented only re-
cently [Wang and Ford, 2009]. For the first time, applying magnetic resonance imaging,
Olson [2004] quantifies bacterial chemotactic parameters within a packed column sug-
gesting that chemotaxis biodegradation in low permeability areas. Long and Ford [2009]
reported enhancements in bacteria migration due to attractant gradient under groundwater

1For a comprehensive list of chemotactic bacterial species and the differences between them see [Eisenbach
and Lengeler, 2004]
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1. Introduction

Figure 1.1: Aggregation of chemotactic bacteria in regions of high attractant concentration as
originally shown by Pfeffer [1887].

flow condition both in homogeneous and heterogeneous laboratory test cases [Wang and

Ford, 2009]. Pore scale simulations suggest that traveling bacteria bands may potentially
reach velocity comparable to groundwater flow velocity [Long and Hilpert, 2008].

These experimental and theoretical researches clearly suggest chemotaxis as important
process in microbial dynamics in porous media, and recently studies on role of chemotaxis
in the transport and dynamics of bacteria at field scales are starting to take place (see
for instance [Long and Ford, 2009],[Valdés-Parada et al., 2009b],[Wang et al., 2008]).
However, the complexity of field scale, i.e. groundwater flow variability, heterogenety,
biologial dynamics and spacial and temporal scale, has not yet allowed to define the
magnitude and effect of chemotaxis.

The motile motion of a single bacteria relies on series of run and trumbles [Tindalla

et al., 2008] resulting in a random walk as the Brownian motion of particles in fluid
[Valdés-Parada et al., 2009b]. In presence of attractant this random walk is distorted so
that the movement towards a better environment is favored [Tindalla et al., 2008]. Starting
from this single bacteria motion Keller and Segel [1971a] proposed a mathematical models
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for bacterial populations flux Nb in homogeneous fluid phase containing an attractanta as:

Nb =−Db∇cb +vccb (1.1)

The first term in expression (1.1) is the diffusive bacteria flux and represents the random
component of bacteria motion. It is proportional to the bacteria concentration cb where
Db is the the random mobility coefficient that quantifies the diffusive behavior of bacterial
populations [Ford and Harvey, 2007b]. The second component is the adventive flux and it
represents the bacterial population response to the attractant in term of chemotatic velocity
[Ford and Harvey, 2007b] [Valdés-Parada et al., 2009b]. The mathematical formulation
of chemotaxis velocity was derived by Chen et al. [1998] starting from experimental
observations on individual bacteria movement and then generalized by Rivero et al. [1989]
as:

vc =
2
3

vstanh

(
χ0

2vs

kd‖∇ca‖
(kd + ca)

2

)
∇ca

‖∇ca‖
(1.2)

where kd is the dissociation constant that represents the propensity of bacteria to sense
gradient, vs is the mean bacteria velocity speed, χ0 is the sensitivity coefficients taking
into account the bacteria response to attractants or repellents [Ford and Harvey, 2007b]
[Valdés-Parada et al., 2009b] and ca is the attractant concentration. According to Eqn.(1.2)
chemotatic bacteria concentration could have velocities comparable to groundwater flow
velocity (Fig. 1). Although equations (1.1) and (1.2) are a complete model to describe

Figure 1.2: Chemotatic velocity for different attractant concentrations and attractant gradients
according to Rivero et al. [1989]’s formulation.
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bacteria chemotaxis, bacteria transport in porous media involves many other chemical,
physical and biological processes which not only are closely linked but also strongly
depend on porous media structure and on multiple time and space scales [Murphy and

Ginn, 2000]. As a matter of fact the role and magnitude of chemotaxis can only be
evaluated in this complex framework.

1.1 Mathematical model

The governing pore scale equation for the system under consideration are:

µ∇
2v f (r) = ∇p(r)−ρ f g, (1.3a)

∇ ·v f (r) = 0, (1.3b)

∂ca,i(r, t)
∂t

+∇ ·
(
v f (r)ca,i(r, t)

)
= ∇(Da,i∇ca,i(r, t))+ sa,i, (1.3c)

∂cb,i(r, t)
∂t

+∇ ·
((

v f (r)+vi,c(r, t)
)

cb,i(r, t)
)
= ∇

(
Db,i∇cb,i(r, t)

)
+ sb,i. (1.3d)

Eqns. (1.3a) and (1.3b) are the momentum and continuity equation for fluid phase re-
spectively, both in case of stationary flow [Bear, 1988], where the term v f is the fluid
velocity, µ is fluid viscosity, ρ f the fluid density, p the fluid pressure and g is the gravity
acceleration. Eqn. (1.3c) and (1.3d) represent the attractant solutes and bacteria species
mass conservation equations respectively. The reader can note that bacteria transport is
driven not only by convection and diffusion but also by chemotactic, where vc,i is the is the
bacteria chemotactic velocity for i− th bacteria species [Valdés-Parada et al., 2009b]. This
mathematical model states that the attractant and bacteria concentration has no influence
on fluid density and that solid are impermeable to bacteria. The term Da,i is the attractant
molecular diffusion and Db,e f f ,i is the effective random mobility coefficient which is the
analog of the diffusion coefficient of molecules Valdés-Parada et al. [2009b].

However, the solution of the pore scale model is not feasible to study and to understand
chemotaxis at laboratory or more important at field scale [Valdés-Parada et al., 2009b;
Porter et al., 2011]. As a matter of fact, by an up-scaling procedure, usually based on
volume averaging [Whitaker, 1999], the pore scale continuum equations are referred to a
Reference Elementary Volume (REV). The REV, often called Darcy’s scale, has a length
scale equal to many pore lengths [Bear, 1988; Steefel et al., 2005], where we consider
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effective hydraulic properties and where the concentration are computed [Herrera, 2009].
The resulting macro scale model transport model is expressed as:

V f (r) =−
K(r)

φ
∇h(r), (1.4a)

∇ · (K(r)h(r)) = 0, (1.4b)

where Eqns (1.4a) and (1.4b) are the flows equations in case of stationary flow with V f

the Darcy’s velocity, K the hydraulic conductivity tensor, φ the porosity, and h(r) the total
hydraulic head [Bear, 1988].

The governing equation for the attractants is the well known advection diffusion
reactions equation, that reads as:

∂Ca,i

∂t
+∇ ·

(
V fCa,i

)
= ∇ · (Da,i (∇Ca,i))+Ra,i (1.5)

Eqn. (1.5) is referred to the continuum scale where Ca,i is the i− th solute concentration
which is regarded as homogeneous over the REV, where is the total reaction rate for i− th

component and Da,i is the total hydrodynamic dispersion tensor. The term Da,i is the sum
of molecular diffusion and dispersion and it takes into account in the up-scaled model of
pore scale flow fluctuations on diffusion [Luo et al., 2008].

Similarly, the macroscale transport model for bacteria reads as follows[Valdés-Parada

et al., 2009b]:

∂Cb,i

∂t
+∇ ·

((
V f +Vc

)
Cb,i
)
= ∇ ·

(
Db,i,e f f

(
∇Cb,i

))
+Rb,i (1.6)

where Cb,i is the i− th bacteria species concentration at Darcy’s scale and Rb,i is the total
reaction rate for bacteria species i− th. The term Db,i,e f f is the total dispersion tensor for
bacteria which is the sum of the effective bacteria mobility, the hydrodynamic dispersion
and the contribution of chemotactic velocity to bacteria dispersion [Porter et al., 2011;
Valdés-Parada et al., 2009b]. In Eqn. (1.6), Vc is the effective chemotactic velocity at
Darcy’ scale, which depends on bacteria transport properties as well on porous media
structure [Porter et al., 2011; Valdés-Parada et al., 2009b]. In this contest, both Vc and
Db,i,e f f are usually quantified by adopting an empirical approach [Porter et al., 2011]
based on fitting attractant and bacteria measured data scaling bacteria random mobility
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and chemotactic velocity with porous medium tortuosity or porosity [Ford and Harvey,
2007b; Wang et al., 2008; Long and Ford, 2009; Wang and Ford, 2009]. Valdés-Parada

et al. [2009b], by volume averaging, derives the effective chemotactic parameters under
the assumptions on pore structure and attractant concentrations.

1.2 Numerical model

The chemotaxis add unique challenges to the particularities of flow and transport
in porous media. As reported by Sudicky [1986], the hydraulic conductivity varies by
several orders of magnitudes within short distances which implies a heterogeneous flow
field both in magnitude and direction. As a result, the solute transport produces large
variations of concentration within short distances. Due to the strongly and non-linearly
dependence of chemotaxis velocity on attractant concentrations and attractant gradient, a
correct representation of concentration and concentration gradient became fundamental and
decisive in studying chemotaxis. Unfortunately, most of the standard numerical scheme
add artificial numerical diffusion [Herrera et al., 2009, 2010; Boso et al., 2013]. This
implies that the gradient are underestimate inhibiting the real bacteria chemotactic response.
Similarly, particular attention should be paid to the low attractant concentration modeling
where the chemotactic response is greater.

Recently Herrera et al. [2009, 2010] and Boso et al. [2013] show the advantages of the
Smooth Particle hydrodynamics (SPH) [Monaghan, 2012] in modeling solute transport in
porous media. The SPH is a fully meshfree scheme, it is free from grid orientation and
with low numerical diffusion. Unlike standard particle based scheme, for example Random
Walk Particle Tracking, particles carry solute concentration and not solute mass, implying
twofold advantages: it can represent concentration values up to hardware precision and it
is possible to compute reactions at individual particles without remapping.

The example (1.2) Herrera et al. [2009] gives an illustrative comparison of SPH against
TVD solver and HMOC scheme in case of only advection. It is clear that, TVD and HMOC
can not avoid numerical dispersion, smoothing sharp interfaces at the fringes of the plume
and inhibiting artificially a possible chemotaxis response.

Unfortunately, there are some limitation in SPH extension to simulate chemotaxis: It
can not handle multiple advection fields like in case of chemotaxis velocities and flow
field velocity and it is very sensitive to particle disorder especially in gradient computation.
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Moreover in case of anisotropic dispersion it produce negative concentrations.
These limitations of the standard SPH for the simulation of the advection diffusion plus

chemotaxis transport in porous media provide the motivation for the research in this thesis.

Figure 1.3: Spatial concentration distribution at dimensionless for Pe = ∞. TVD solver (top),
HMOC solver (middle), and SPH (bottom). Courtesy of Herrera et al. [2009]
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1.3 Objectives

The objective of this thesis is to develop, implement, and evaluate new numerical
meshless methods scheme to correctly simulate the chemotaxis in porous media. We have
the following specific objectives:

1. To derive and implement a new meshless scheme and test it with well known test
cases;

2. To apply the new scheme in passive solute transport in porous media;

3. To compare the new scheme with traditional particle Lagrangian scheme;

4. To evaluate the suitability of using the new meshless in order to simulate chemotaxis
in porous media;

1.4 Organization

Chapter 2 presents the derivation of a new numerical scheme focusing on the numerical
solutions of Euler equations. The purpose of this Chapter is to introduce the new numerical
Lagrangian scheme rather than to solve a specific problem and the solution of the inviscid
flow problem is an appropriate test case providing both shock and rarefaction waves with
reference and exact solutions. We develop a new class of meshless Lagrangian particle
methods based on the SPH formulation of Vila & Ben Moussa [Ben Moussa et al., 1999;
Ben Moussa, 2006], combined with a new Weighted Essentially Non-Oscillatory (WENO)
[Dumbser et al., 2007, 2008a,b] reconstruction technique on moving point clouds in
multiple space dimensions. The key idea is to produce for each particle first a set of
high order accurate Moving Least Squares (MLS) [Breitkopf et al., 2005] reconstructions
on a set of different reconstruction stencils. Then, these reconstructions are combined
with each other using a nonlinear WENO technique in order to capture at the same time
discontinuities and to maintain accuracy and low numerical dissipation in smooth regions.
The numerical fluxes between interacting particles are subsequently evaluated using this
MLS-WENO reconstruction at the midpoint between two particles, in combination with a
Riemann solver [Toro, 1997] that provides the necessary stabilization of the scheme based
on the underlying physics of the governing equations. We propose the use of two different
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Riemann solvers: the Rusanov flux and an Osher-type flux [Dumbser and Toro, 2011a]. The
use of monotone fluxes together with a WENO reconstruction ensures accuracy, stability,
robustness and an essentially non oscillatory solution without the artificial viscosity term
usually employed in conventional SPH schemes. To our knowledge, this is the first time
that the WENO method, which has originally been developed for mesh-based schemes
in the Eulerian framework on fixed grids, is extended to meshfree Lagrangian particle
methods like SPH in multiple space dimensions. We test the new algorithm on two
dimensional blast wave problems and on the classical one-dimensional Sod shock tube
problem [Sod, 1978] for the Euler equations of compressible gas dynamics [Toro, 1997].
We obtain a good agreement with the exact or numerical reference solution in all cases and
an improved accuracy and robustness compared to existing standard SPH schemes.

We extend the MWSPH to approximate advection diffusion equations with anisotropic
diffusion tensor. We demonstrate that the MWSPH, is stable and accurate and that it
reduces the occurrence of negative concentrations. We compare then the new MWSPH
with standard SPH scheme in modeling advection-diffusion equations in case of anisotropic
dispersion. The comparison is performed by considering analytical solutions and some
indicators such as minimum concentration, maximum concentration, dilution index and
dissipation rate.

Chapter 4 analyzes the limits of standard SPH in modeling chemotaxis. Then we
presents the numerical strategy to model the chemotaxis with the MWSPH. A key element
of the proposed approach is that the advection chemotactic flux is appropriated in a relative
moving frame with fluid motion using Riemann solvers in complete meshfree framework.
The MWSPH solutions of bacteria chemotaxis are compared with reference solutions,
obtaining a satisfactory agreement. We perform some numerical experiments in order to
analyze the effect of chemotaxis on bacteria transport

Finally, a summary of the results and main findings are given in Chapter 5. In this work,
the each Chapter is stand-alone piece of work including individual introduction, method-
ology and results. Thus, for sake of clarity, equations and notations are independently
redefined.
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2 A New Class of Moving-Least-Squares
WENO-SPH Schemes

1

Smooth Particle Hydrodynamics (SPH) is a truly [Liu and Liu, 2010] meshfree La-
grangian scheme developed by Lucy [1977]; Gingold and Monaghan [1977] for astrophys-
ical applications and successively extended to solid mechanics [Libersky and Petschek,
1991; Libersky et al., 1993; Johnson and Beissel, 1996], free surface flow [Monaghan,
1994, 2005; Ferrari et al., 2009], multiphase transport [Hu and Adams, 2006; Deng et al.,
2013; Adami et al., 2010b] and diffusive transport problems [Cleary and Monaghan, 1999;
Español and Revenga, 2003; Herrera et al., 2009, 2010; Boso et al., 2013]. Comprehensive
reviews of different SPH schemes that have been developed so far can be found in Vignjevic

and Campbell [2009]; Liu and Liu [2010] and Monaghan [2012].
In SPH the continuum is discretized by a finite set of interpolation points, which are

particles that carry physical properties such as mass, density, pressure and velocity [Fang

et al., 2009; Monaghan, 1994]. Since SPH is a Lagrangian particle method, the particles
move with the local fluid velocity. This makes SPH suitable for advection- dominated
dynamics [Fang et al., 2009; Liu et al., 2003b,a] and complex flow problems [Adami et al.,
2010a; Colagrossi and Landrini, 2003; Ferrari et al., 2009]. Moreover, the meshfree
particle nature of SPH has opened also applications to molecular dynamics at nano and
microscale [Ellero, 2009; Gholami et al., 2013] and microrheology [Vauez-Quesada et al.,
2012].

In its original formulation SPH suffers from the lack of consistency [Belytschko et al.,
1998], low order of accuracy and the so-called tensile instability [Swegle et al., 1995].

1A version of this chapter has been accepted for publication in Journal of Computational Physics
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Consequently, many modifications and improvements have been proposed over the years.
A set of papers (see for example [Liu et al., 1995; Dilts, 1999; Zhang and Batra, 2004;
Monaghan, 2005; Liu and Liu, 2006]) have addressed the consistency problem by improv-
ing the interpolation kernel function and its derivative. However, satisfying the consistency
condition for the kernel at the continuous level does not necessary lead to consistency
in the SPH scheme at the discrete level Liu and Liu [2010]. On the other hand, solving
the compressible Euler equations with the original SPH scheme may lead to unphysi-
cal oscillations, such as the so-called tensile instability [Monaghan, 2000]. Monaghan

[2000] introduced artificial viscosity and velocity smoothing terms to handle both tensile
instability and discontinuities in the solution. However, even with these modifications
a spike may appear in the pressure field at the location of the contact discontinuity and
additional numerical diffusion is added also in regions away from shocks. To attenuate
these problems, Balsara [1995] introduced an upper bound for the artificial viscosity, while
Gingold and Monaghan [1977] used a variable viscosity coefficient to reduce numerical
diffusion in smooth regions.

Regarding incompressible fluid dynamics different modifications have been proposed
to reduce tensile instability and unphysical oscillations. The ISPH (Incompressible-SPH)
formulation solves the Poisson equation for the pressure and enforces the divergence
condition for the velocity field, see e.g. [Hu and Adams, 2009; Xu et al., 2009]. Ellero

et al. [2007] instead achieve incompressibility by imposing that particle volumes do not
change. In the WCSPH (Weakly Compressible Smooth Particle Hydrodynamics) the fluid
is considered weakly compressible and a constant background pressure field ensures non-
negative pressures and reduces tensile instability, see e.g. [Colagrossi and Landrini, 2003;
Adami et al., 2010a]. However the background pressure can introduce additional numerical
viscosity. Recently Adami et al. [2013] proposed an alternative WCSPH based on a
different formulation of particle momentum velocity and the particle advection velocity.

Vila [1999] and Ben Moussa [2006] introduced a different SPH formulation that is very
close to the finite volume formalism and is based on Riemann solvers. It does not require
any artificial viscosity terms for stabilization. In this formulation the artificial viscosity
is replaced by the intrinsic numerical viscosity of the Riemann solver. This completely
avoids the use of the artificial viscosity term and its cumbersome calibration. In addition
Vila and Ben Moussa showed that their scheme is L∞ stable under CFL condition for
monotone fluxes. For example, Ferrari et al. [2009] obtained monotone pressure fields
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for free surface flows by using a monotone Rusanov flux in contrast to standard SPH.
Unfortunately, despite its advantages, this alternative formulation is excessively diffusive
even when applying Gudonov’s flux based on the exact Riemann solver [Ferrari et al.,
2009]. Similarly, Inutsuka [2002] reformulates the SPH with Riemann solvers in the so
called Godunov-SPH schemes (GSPH) where the Riemann solvers are based on kernel
interpolation and Taylor series kernel interpolation of primitive variables in the region of
interacting particles. Recently, in a review on SPH schemes applied to the compressible
Euler equations [Puri and Ramachandran, 2014] the authors show that also GSPH may
produce unphysical oscillations and does not eliminate the spike of the pressure field
at the contact wave in the one-dimensional case. One also should mention the recently
developed rpSPH method Abel [2011], which improves the behavior of the pressure field
in the presence of shear waves.

The motivation of this chapter is therefore to develop and to apply a new SPH scheme
that is not affected by the tensile instability or other known SPH instabilities and which does
not produce excessive numerical dissipation. Our method is based on the approach of Vila
& Ben Moussa and achieves at the same time higher accuracy and more robustness than
standard SPH schemes. The key difference with respect to the existing SPH schemes is the
introduction of a new high order accurate nonlinear meshfree MLS-WENO reconstruction
operator into SPH and to use this higher order non-oscillatory data in combination with a
Riemann solver to compute the particle interactions.

Preliminary investigations about the use of high order reconstructions within the SPH
framework have been carried out in one space dimension in [Renaut et al., 2013; Xueying

et al., 2013]. However, to the best knowledge of the authors, such techniques have never
been used in multiple space dimensions, which is the declared scope of the present chapter.
A further limitation of the method presented in [Xueying et al., 2013] is that the particle
volumes do not evolve in time and that the particles do not move, i.e. the scheme essentially
reduces to a one-dimensional Eulerian approach on fixed grids. In contrast, the new method
presented in this article is a meshless Lagrangian particle method based on MLS-WENO
reconstruction on moving point clouds in multiple space dimensions. For the use of higher
order ENO and WENO reconstructions in mesh-based cell-centered Lagrangian finite
volume schemes see Cheng and Shu [2007]; Liu et al. [2009]; Boscheri and Dumbser

[2013b]; Dumbser and Boscheri [2013]; Boscheri et al. [2014].
The rest of the Chapter is organized as follows. In Section 3.1 we introduce the Euler
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equations of compressible gas dynamics in conservative and non-conservative form. In
Section 2.2.1 we briefly describe the standard SPH scheme and in Section 2.2.2 we present
the SPH approach based on Riemann solvers proposed by Vila & Ben Moussa. The
Riemann solvers used in this chapter are explained in Section 2.2.3, while in Section
2.3 we introduce our new meshfree MLS-WENO reconstruction giving all details of the
reconstruction procedure. In Section 2.4.1, the MLS-WENO SPH scheme (in the following
denoted by MWSPH) is compared with the standard SPH method and, in particular, its
robustness with respect to particle disorder is assessed. In Section 2.4.2 the new MWSPH
scheme is applied to inviscid compressible gas dynamics and comparisons with standard
SPH and the SPH of Vila & Ben Moussa are made. Finally, Section 2.5 gives some
concluding remarks and an outlook to future research.

2.1 Governing equations

In a Lagrangian frame the two-dimensional Euler equations for an ideal compressible
fluid assume the following non-conservative form:

dρ

dt
=−ρ∇ ·v, (2.1a)

dv
dt

=−∇p
ρ

, (2.1b)

de
dt

=− p
ρ

∇ ·v, (2.1c)

where (2.1a) is the continuity equation, (2.1b) is the momentum balance equation and (2.1c)
is the energy conservation equation. Here d

dt denotes the total derivative, ρ is the density of
the fluid, v = (u,v) the velocity vector, p the pressure and e is the specific internal energy
per unit mass. For ideal gases the following constitutive equation is typically adopted:

e =
p

(γ−1)ρ
, (2.2)

in which γ is a constant representing the ratio of specific heat capacities of the fluid [Toro,
1997]. System (2.1) in completed by the equation of motion which reads

dr
dt

= v, (2.3)
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where r = (x,y) is the position of a given infinitesimal control volume. According to Vila’s
formalism it is useful to rewrite the system (2.1) in the following compact conservative
form

∂Q
∂t

+∇ ·F(Q) = 0, (2.4)

where Q is the vector of conservative variables and F = (f,g) is the flux tensor. For the
compressible Euler equations they read

Q =


ρ

ρu

ρv

E

 , f =


ρu

ρu2 + p

ρuv

u(E + p)

 , g =


ρv

ρuv

ρv2 + p

v(E + p)

 . (2.5)

Here, E is the total energy density defined as

E = ρe+
1
2

ρ
(
u2 + v2) , (2.6)

hence the pressure can be written as follows:

p = (γ−1)
(

E− 1
2

ρ
(
u2 + v2)) . (2.7)

2.2 SPH formulations

2.2.1 The standard SPH formulation

Following the SPH formalism the computational domain Ω is discretized by a finite
set of N particles Pi (i≤ 1≤ N), with positions ri and mass mi. The original SPH form
presented by Gingold and Monaghan [1977] discretizes the Euler equations (2.1a)-(2.1c)
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and (2.3) as follows:

ρi =
N

∑
j=1

m jWi j, (2.8a)

dvi

dt
=−

N

∑
j=1

m j

(
pi

ρ2
i
+

p j

ρ2
j
+Πi j

)
·∇Wi j, (2.8b)

dei

dt
=−

N

∑
j=1

m j

(
pi

ρ2
i
+

p j

ρ2
j
+Πi j

)(
v j−vi

)
·∇Wi j, (2.8c)

dri

dt
= vi, (2.8d)

where the subscript i denotes the number of particle Pi. The term Wi j =W (ri,r j) is the
interpolation kernel centered in ri and ∇Wi j is its gradient with respect to ri. Among the
available kernel functions we choose the cubic spline kernel [Monaghan, 2005]:

Wi j =
κ

hν
i j


1/3−q2

i j +q3
i j/2, if 0≤ qi j < 1,

(2−qi j)
2 +q3

i j, if 1≤ qi j ≤ 2,

0, if qi j > 0,

(2.9)

because it is less demanding in terms of computational time than other possible choices
such as the standard Gaussian kernel [Ferrari et al., 2009]. In Eqn. (4.13), qi j is defined
as qi j =

∥∥r j− ri
∥∥/hi j, κ is a normalization constant so that

∫
Rν WdV = 1 and ν is the

number of space dimensions, i.e. ν = 2 in our applications. The term hi j is the smoothing
length [Monaghan, 1994, 2005] and it can be locally variable according to the following
expressions:

hi j =
1
2
(
hi +h j

)
, with hi = σ ν

√
m j

ρ j
, (2.10)

where σ is a suitable constant chosen in such a way that enough particles are in within
the compact support of each kernel. We usually choose σ ∈ [1.5;2.0], which leads to
approximately 40-50 interpolation particles in the compact support of each kernel. The
term Πi j is an artificial viscosity added to the momentum equation and to the energy
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equation in order to reduce unphysical oscillations at discontinuities. It is given by:

Πi j =

µi j
βµi j−αρi j

ρi j
, if vi j ·ni j ≤ 0,

0, if vi j ·ni j > 0,
(2.11)

µi j = hi j
vi j ·ni j∥∥r j− ri

∥∥ , with vi j = v j−vi. (2.12)

We emphasize that, according to Eqn. (2.12), the artificial viscosity vanishes as the distance
between the particles increases and it depends on the parameters α and β which require a
specific numerical calibration for each case.

2.2.2 The SPH formulation of Vila and Ben Moussa

The semi-discrete form of the Vila & Ben Moussa approach discretizes the Euler
equations (Eqn. 2.4) as

dViQi

dt
=−

N

∑
j

ViVj2Gi j ·∇Wi j, (2.13)

dVi

dt
=

N

∑
j

ViVj2(v̄i j−vi)∇Wi j, (2.14)

dri

dt
= vi, (2.15)

where Vi is the volume of each particle that evolves according to Eqn (2.14), Gi j is the
numerical flux tensor and v̄i j =

1
2(vi + v j) is the velocity at the interface between the

two interacting particles Pi and P j. Similar to the finite volume formalism, Eqn (2.13)
describes the interaction between pairs of control volumes Vi and Vj along the direction
ni j with a discontinuity at the midpoint. The flux Gi j is given by an exact or approximate
Riemann solver in the co-moving frame. For example in Vila [1999] Vila proposes to use a
first order Godunov method that assumes piecewise constant initial data for the Riemann
problem and that reads as:

Gi j = Gi j(Qi,Q j) = Fi j(QE)−QE ⊗ v̄i j, (2.16)
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where Fi j(QE) is the flux tensor evaluated at the state QE = QE(Qi,Q j), which is the exact
solution of the associated one-dimensional Riemann problem between two interacting
particles Pi and P j, i.e. the so-called Godunov state. In this approach also the interface
velocity v̄i j could be computed by the exact solution of the one-dimensional Riemann
problem. In the same work Vila [1999] also introduces a second order MUSCL-type
scheme in the SPH framework, based on linear kernel interpolation of the derivative and
the use of TVD slope limiters.

The new SPH formulation proposed in this chapter evaluates the numerical fluxes
at the midpoint between two interacting particles Pi and P j using high order WENO
reconstruction polynomials as Gi j = Gi j(Q−i j ,Q

+
i j). The general idea is to perform a

piecewise high order accurate essentially non-oscillatory reconstruction around each
particle’s position ri knowing the point values Q j of particles in its surrounding. As
summarized in Fig. 3.1.2 we first define local high order reconstruction polynomials Qi(r)
and Q j(r) for each couple of interacting particles Pi and P j and then we evaluate these
reconstruction polynomials at the midpoint r̄i j =

1
2(ri + r j). The left state Q−i j = Qi(r̄i j)

is obtained by extrapolating the reconstruction around particle Pi to the midpoint and
the right state Q+

i j = Q j(r̄i j) by extrapolating the reconstruction around particle P j to
the midpoint. The approach combines the Moving Least Squares (MLS) method of
reconstructing continuous functions from known points values with a nonlinear WENO
technique in order to avoid spurious oscillations in the presence of strong gradients or
discontinuities.

In its essence our scheme is the combination of MLS with WENO within the more
general SPH formulation of Vila & Ben Moussa. In the following we denote the resulting
scheme by MWSPH. We emphasize that the MWSPH does not use kernel interpolation or
the kernel convolution integral to introduce Riemann solvers in SPH as in GSPH schemes.
For the sake of clarity, we call hereafter the original Vila & Ben Moussa SPH formulation
V-B-SPH.

2.2.3 Numerical Fluxes

In this work we use two Riemann solvers to define the numerical flux Gi j: the simple
Rusanov flux [Toro, 1997] and the Osher-type solver proposed in Dumbser and Toro

[2011b,a]. Both solvers can be applied to the V-B-SPH and to the new MWSPH presented
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here. The only difference lies in the fact that the former method uses the particle states
Qi and Q j, while the latter uses the reconstructed states Q−i j and Q+

i j extrapolated to the
particle interface located at the midpoint r̄i j.

The Rusanov flux assumes the following expression:

Gi j =
1
2

(
H
(

Q+
i j , v̄i j

)
+H

(
Q−i j , v̄i j

))
− ci j

2

(
Q+

i j −Q−i j

)
⊗ni j, v̄i j =

1
2
(v−i j +v+i j),

(2.17)
where H is the flux tensor of the Euler equations in a reference frame moving with velocity
v:

H(Q,v) = F(Q)−Q⊗v. (2.18)

We remark that the translation velocity itself is computed from the reconstructed variables,
see Eqn (3.10). The term ci j is instead the maximum absolute value of the eigenvalues of
the Jacobian matrix An = An(Q,v) = ∂H/∂Q ·ni j, evaluated along the direction ni j in a
moving frame, which reads as:

ci j = max(|Λ(Q−i j)|, |Λ(Q+
i j)|), (2.19)

with Λ being the diagonal matrix of the eigenvalues of An(Q,v).
The second flux is an Osher-type flux [Dumbser and Toro, 2011b,a] and reads

Gi j =
1
2

(
H
(

Q+
j v̄i j

)
+H

(
Q−i , v̄i j

))
−Θ

(
Q+

j −Q−i
)
⊗ni j, v̄i j =

1
2
(v−i j +v+i j),

(2.20)
where Θ is the dissipation matrix in the reference frame moving with velocity v̄i j. Follow-
ing [Dumbser and Toro, 2011b,a; Boscheri and Dumbser, 2013a] Θ is written as

Θ =
1
2

1∫
0

∣∣An(Ψ(s), v̄i j)
∣∣ds, (2.21)

with An evaluated along ni j and Ψ being the straight-line segment path connecting the left
and right state in phase-space:

Ψ(s) = Ψ(s,Q+
i j ,Q

−
i j) = Q−i j + s(Q+

i j −Q−i j). (2.22)

The integral Θ is approximated using a three point Gauss-Legendre quadrature with points
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sk and associated weights ω
g
k , namely:

Θ≈ 1
2

G

∑
k=1

ω
g
k

∣∣(An(Ψ(sk), v̄i j)
∣∣ , (2.23)

where the absolute value of the matrix An is defined as usual as

|An|= R|Λ|R−1, (2.24)

where R is the matrix of right-eigenvectors of An and R−1 is its inverse.
In a second step we introduce two fundamental changes into the original V-B-SPH

formulation. We add an additional term in Eqn. (2.13), which at the continuous level has a
null contribution:

dViQi

dt
=−

N

∑
j

ViVj2
(
Gi j−Hi

)
·∇Wi j (2.25)

This additional term, Hi(Qi,vi) = F(Qi)−Qi⊗vi is the Lagrangian flux tensor computed
at the state of the i-th particle and leads to a flux-difference formulation of the SPH scheme,
which is similar to the idea of flux-difference formulations used in the finite volume
context. According to general SPH derivative rules this term has a null contribution at
the continuous level (

∫
Hi∇WdV = Hi

∫
∇WdV = 0), but it has in general a non-zero

contribution at the discrete level (∑ j Hi∇Wi j 6= 0). However, at the discrete level it ensures
at least zeroth order consistency, i.e. it allows the scheme to maintain a constant solution
exactly.

Furthermore, instead of using Eqn. (2.15) we decide to move the particles according to
the rule

dri

dt
=

N
∑
j

v̄i jVjWi j

N
∑
j
VjWi j

. (2.26)

Eqn. (2.26) uses a smoothed velocity field for the particle motion, which is based on the
interface velocities v̄i j. In this manner the final particle velocity is chosen consistently
with the interface velocities v̄i j used in the ALE fluxes (2.18).
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i

j

Si0

Sj0

(a)

i jrij

Qi(ξ, η)

Qj(ξ, η)

Q−ij Q+
ij

(b)

Figure 2.1: Examples of central reconstruction stencils Si
0 and S j

0 for a generic pair of inter-
acting particles Pi and P j (left). One-dimensional cut through the reconstruction polynomials
Qi(r) and Q j(r) along the line connecting Pi and P j, as well as the states Q−i j and Q+

i j extrapo-
lated to the midpoint r̄i j between the interacting particles (right).
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2.3 Moving-Least-Squares WENO reconstruction

The main ingredient of the nonlinear spatial reconstruction operator is the polynomial
WENO method developed by Friedrich [1998], Käser and Iske [2005] and Dumbser et al.

[2007] as an alternative to the classical point-wise WENO reconstruction [Jiang and Shu,
1996; Hu and Shu, 1999]. Following the general guidelines given in [Dumbser and Kaëser,
2007; Dumbser et al., 2007] we first construct a set of reconstruction stencils for each
particle as follows:

S i
s =

nes⋃
k

P j(k), (2.27)

where k with 1≤ k≤ nes is a local index, counting the particles P j in each stencil, j = j(k)

is the mapping from the local index k to the global indexation of the particles in the
computational domain Ω, nes is the number of particles in each stencil and ns is the number
of stencils. As in the mesh-based WENO scheme [Dumbser and Kaëser, 2007; Dumbser

et al., 2007] the set of stencils consists of one central stencil S i
0 and a set of one-sided

stencils (1≤ s≤ 8). We choose 8 one-sided stencils to cover all possible directions. Fig.
2.2 shows a sketch of the stencils associated to the particle Pi. The first stencil, i.e. the
central stencil, is obtained by the union of the central particle Pi and its surrounding
particles P j as

S i
0 =

nes⋃
k

P j(k),
∥∥ri j

∥∥≤ hi,mls, (2.28)

while the one-sided stencils are defined as :

S i
s =

nes⋃
k

P j(k),
∥∥ri j

∥∥≤ 2hi,mls and θ ∈ [(s−1)π/4,sπ/4], (2.29)

where hi,mls is a characteristic length scale defined later and θ is the angle formed by the
vector ri j = r j− ri connecting the two particles Pi and P j and the x-axis,

tan(θ) =
y j− yi

x j− xi
. (2.30)

In practice, the particle search algorithm for defining the reconstruction stencils S i
s is

implemented as follows. The computational domain is covered by a fixed virtual Cartesian
background grid of size 2max(hi,mls), the so-called book-keeping cells or macro-cells, see
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e.g. Hockney and Eastwood [1981]; Monaghan [1992, 1994, 2005]; Ferrari et al. [2009].
At the beginning of each Runge-Kutta substage, each particle can be easily located on
this background grid and is added into a linked list associated with the corresponding
Cartesian macro-cell containing the particle. Then, the stencil search algorithm for particle
Pi loops over the linked list associated with the macro-cell containing particle Pi and over
the linked lists of the neighbors of the book-keeping cell containing Pi. It stops when the
necessary number of particles nes has been found. In cases where it is not possible to find
enough particles for a stencil (e.g. on the boundary of the computational domain), the
corresponding stencil is simply deactivated.

After this definition of several candidate stencils, which is in common with mesh-based
WENO schemes, we apply a Moving-Least-Squares interpolation. In particular, for each
particle the reconstruction polynomials assume the following form:

Qs
i (ξ,η) = Qi + ∑

1≤|m|≤M
ŵm,sφm(ξ,η), (2.31)

for each of the nine stencils S i
s (Fig. 2.2). In Eqn. (3.16) ξ and η are normalized

spatial coordinates in a 2D reference coordinate system defined as ξ = (x− xi)/hi,mls and
η = (y− yi)/hi,mls, where xi and yi denote the position of the i-th particle in the global
coordinate system while ŵm,s denotes the set of unknown coefficients of the reconstruction
polynomial on stencil number s and φm are the associated basis functions. With the basis
functions given in Eqn. (3.18) below, the series in Eqn. (3.16) is a Taylor series expansion
of order M around the position of the particle Pi. The number of unknown coefficients and
basis functions in Eqn. (3.16) is given by nc−1. In two space dimensions nc is defined as

nc =
(M+2)(M+1)

2
. (2.32)

Finally, the basis functions φm(ξ,η) in Eqn. (3.16) are defined as

φm(ξ,η) = ξ
m, (2.33)

with ξ = (ξ,η) and the multi-index m with 0 < |m| ≤M. The use of reference coordinates
ξ and η helps to avoid ill-conditioned reconstruction matrices. The unknown coefficients
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ŵm,s are computed on each stencil S i
s from the following set of reconstruction equations:

nc−1

∑
m=1

φm
(
ξ j,η j

)
ŵm,s = Q j−Qi, ∀P j ∈ S i

s. (2.34)

According to eqn. (3.19) we interpret the SPH data as local point-values, i.e. in a finite-
difference manner. Although eqn. (2.13) would suggest a finite-volume type interpretation,
it is not clear how to define the control volumes in a meshless particle method, and even
a kernel-weighted volume integral would be very difficult and expensive to carry out.
We therefore opted for the expression (3.19) above, which is easy to implement and in
which data are well-defined as local point values. Further investigations concerning a
finite-volume type reconstruction are still necessary, but are beyond the scope of this
chapter. The number of particles nes in each stencil S i

s is chosen in such a way that the
number of equations in the system (3.19) is larger that the number of unknown degrees
of freedom, hence nes > nc. Therefore, Eqn. (3.19) constitutes an overdetermined linear
algebraic system for the coefficients, which is solved using a least square technique [Barth

and Frederickson, 1990; Agossler Albert, 2001; Dumbser et al., 2008a,b]. In order to
ensure linear stability, we suggest to use at least nes = 2nc particles in each stencil for
linear stability purposes [Dumbser and Kaëser, 2007; Dumbser et al., 2007].

As in mesh-based WENO schemes, see for example [Jiang and Shu, 1996; Hu and

Shu, 1999; Balsara and Shu, 2000; Titarev et al., 2010; Tsoutsanis et al., 2011], the final
non-linear WENO reconstruction polynomial Qi(ξ,η) of degree M is obtained by a non-
linear combination of the nine polynomials Qs

i (ξ,η) of degree M reconstructed on the ns

stencils:

Qi(ξ,η) =
ns−1

∑
s=0

ωsQs
i (ξ,η), (2.35)

with the normalized nonlinear weights

ωs =
ω̃s

ns
∑

r=1
ω̃r

, (2.36)

with ω̃s that assume the following form [Dumbser et al., 2008a,b]:

ω̃s =
λs

(ε+σs)r , (2.37)
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where ε = 10−14, r = 4 and the linear weights are set to λ0 = 105 for the central stencil and
λs = 1 for the one-sided stencils (1≤ s≤ 8). Finally, due to the complexity of mesh-free
methods we propose to compute the smoothness indicator in a very simple manner that is
independent of the current particle distribution:

σs = ∑
1≤|m|≤M

ŵ2
m,s. (2.38)

As for standard WENO schemes, the reconstruction can be carried out either in
conservative variables or in local characteristic variables [Jiang and Shu, 1996; Titarev and

Toro, 2004]. In the first case the expressions (3.16)-(2.38) are used for each component of
the vector of conservative variables Q. In the second case we first transform conservative
variables to characteristic variables along the velocity vector vi (since there is no preferred
direction in SPH schemes) and then we transform back to conservative variables.

Finally, as for the smoothing length in the kernel interpolation, we introduce a variable
stencil length hmls for each particle Pi:

hi,mls = σmls
ν
√

Vi (2.39)

with σmls a suitable constant. This ensures that enough particles are found in at least one
of the nine stencils also where particle density is low. In our numerical experiments we
found also that a lower bound ensures robustness to the meshfree WENO reconstruction,
although more numerical experiments in this direction would be desirable.
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i

Si0

(a) Central stencil.

i

Si1

Si2Si3

Si4

Si5

Si6 Si7

Si8

(b) One-sided stencils.

Figure 2.2: Sketch of the central and one-sided WENO reconstruction stencils for a random
particle distribution. The particle Pi is shown in red color.
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2.4 Numerical Test Cases

In the following section we first verify the effectiveness of the Moving-Least-Squares
WENO reconstruction in approximating a function from given point values, and succes-
sively we compare MWSPH with the standard SPH scheme and the V-B-SPH scheme.
Furthermore, comparisons against exact or numerical reference solutions are provided in
one- and two-dimensional setups. As discussed in [Ferrari et al., 2009] the semi-discrete
form of SPH reduces the original PDE system (2.1) to a set of nonlinear ordinary differen-
tial equations (ODEs), which can be solved by using any stable time integration algorithm
[Ferrari et al., 2009; Monaghan, 2005]. In the present work we adopt the third order TVD
Runge-Kutta scheme [Gottlieb and wang Shu, 1998].

2.4.1 Assessment of the MLS-WENO reconstruction

The high order MLS reconstruction is the most important step in our MWSPH scheme
and represents the main novelty with respect to existing SPH schemes. Therefore, the
accuracy of the new Moving-Least-Squares-WENO (MLS-WENO) method in reconstruct-
ing a known function from given point values is first verified for the case of a continuous
and then for a piecewise continuous function. We point out that here we focus on WENO
combined with Moving-Least-Squares, here referred as MLS-WENO, and not on the entire
MWSPH scheme. The numerical results from the standard SPH are given for comparison.
Also in this case we use SPH only to compute reconstructed point values. The assessment
is carried out by assigning a point value of a known function to each particle and then
obtaining reconstructed values on a different regular Cartesian lattice. The particles are
distributed in a circle of radius R = 1.0, with the center located at (0,0). We consider both,
equidistant and non-equidistant particle distributions within the computational domain (see
Figs. 2.3a and 2.3b). The latter case is obtained by perturbing the initial position of the
particles, at the nodes of a regular grid with spacing ∆x = ∆y, with pseudo-random numbers
from the uniform distribution within the range [0,1]∆x. Testing the MLS-WENO scheme
with an irregular particle distribution is important because in SPH schemes particles move
according to the local fluid velocity field resulting in the distortion of initially regular
positions. Fig. 2.3 shows the regular lattice where the reconstructed values are computed
and compared with the exact solution as well as the particle positions for both equidistant
and non-equidistant cases.
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(a) Equidistant particle distribution. (b) Random particle distribution.

Figure 2.3: Equidistant particle distribution on the left panel and non-equidistant particle
distribution on the right panel. Particles are in black. The regular Cartesian lattice used for
verification of the reconstruction is shown in red.

2.4.1.1 Reconstruction of a smooth function

In this test case we perform the reconstruction of a smooth function on the grid shown
in Fig. 2.3 where particle Pi takes the value Qi(xi,yi) = Qe(xi,yi), with

Qe(x,y) = e−0.2(x+y) (cos(4x)+ sin(4y)) , (2.40)

and where (xi,yi) denotes the particle position within the computational domain. Fig. 2.4
shows the reconstructed results for the function for both equidistant and non-equidistant
particle distributions. In all cases MLS-WENO produces excellent approximations while
SPH shows significant deviations from the original function. In the case of equidistant
particles SPH underestimates the exact solution and spurious oscillations emerge when the
particles are not equidistant. A quantitative comparison of the accuracy of the schemes is
offered by the Lp norm:

Lq =

(
N

∑
j=1

∣∣Qi(x′j,y
′
j)−Qe(x′j,y

′
j)
∣∣q)(1/q)

/N, (2.41)
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where Qe(x′j,y
′
j) is the given exact solution at (x′j,y

′
j) and Qi(x′j,y

′
j) is the reconstructed

value. Notice that the (x′j,y
′
j) are the coordinates of the regular lattice used for verification

of the reconstruction and is not identical with the original particle positions. The L∞ norm
is computed by taking the maximum error among all vertices. As expected, MLS-WENO
reaches the nominal order M+1, regardless of the distribution of the particles (Table 2.1).
This is in agreement with mesh-based WENO scheme developed in [Dumbser and Kaëser,
2007] and [Dumbser et al., 2007] and here extended to the meshfree case. On the contrary,
SPH exhibits a convergence rate O(h2) in case of equidistant particles and lower order
convergence for non-equidistant particles.
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Figure 2.4: Comparison of the exact function and the reconstruction for the smooth case
computed with standard SPH and with the new MLS-WENO. Particle values on computational
domain with equidistant distribution (a) and non-equidistant distribution (b). Cut through the
reconstruction at y = 0 for equidistant particles (c) and non-equidistant particles (d).
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2.4.1.2 Reconstruction of a piecewise smooth function

In this additional example the imposed function is piecewise continuous according to:

Qe(r) =


2.5, if ‖r‖ ≤ 0.2,
2, if 0.2 < ‖r‖ ≤ 0.4,
‖r‖−0.2, if 0.4 < ‖r‖ ≤ 0.6,
(0.6−‖r‖)2 +2.2, if 0.6 < ‖r‖ ≤ 1,

(2.42)

where r is the position vector in the computational domain. Figs. 2.5a and 2.5b show
particle positions and reconstructed values for both cases: equidistant and non-equidistant.
From Figs. 2.5c and 2.5d one can notice that standard SPH does not correctly capture
the discontinuities, especially for the non-equidistant case. This is due to well known
inconsistency problems of the standard SPH [Monaghan, 2005]. Instead, the new MLS-
WENO formulation not only successfully reconstructs the piecewise smooth function at
discontinuities, but also at the boundary. We believe that this is an important result. Unlike
DSPH [Liu et al., 2003a; Xu et al., 2013], we show that we have an automatic treatment
and detection of both the discontinuity and boundary conditions where no oscillations are
present. However, concerning the implementation of reflective wall boundary conditions
or inflow and outflow boundaries, our approach has the same difficulties as any other SPH
scheme.

33



2. A New Class of Moving-Least-Squares WENO-SPH Schemes

(This page has been intentionally left blank)

34



2. A New Class of Moving-Least-Squares WENO-SPH Schemes

x

-1.0
-0.5

0.0
0.5

1.0
y

-1.0

-0.5

0.0

0.5

1.0

Q

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Section

(a) Equidistant particle distribution.

x

-1.0
-0.5

0.0
0.5

1.0

y

-1.0

-0.5

0.0

0.5

1.0

Q

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Section

(b) Random particle distribution. 35



2. A New Class of Moving-Least-Squares WENO-SPH Schemes

−1.0 −0.5 0.0 0.5 1.0
x

1.4

1.6

1.8

2.0

2.2

2.4

Q
Exact
MLS WENO
SPH

(c) Equidistant particle distribution.
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Figure 2.5: Comparison of the exact function and the reconstruction for the piecewise smooth
case computed with standard SPH and with the new MLS-WENO. Particle values on com-
putational domain with equidistant distribution (a) and non-equidistant distribution (b). Cut
through the reconstruction at y = 0 for equidistant particles (c) and non-equidistant particles
(d).
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2.4.2 Circular blast wave problems

We consider a two dimensional blast wave problem with initial data taken from the
1D Sod problem [Sod, 1978]. The domain has a circular shape with radius R = 1.5 and
center in (0,0). The computational domain is discretized with 70933 particles located on a
regular and radially symmetric grid, Fig. 2.6. We consider the following initial condition:

(ρ,u,v, p)(r,0) =

{
(ρin,0,0, pin), if ‖r‖ ≤ 0.5,
(ρout ,0,0, pout), otherwise,

(2.43)

where the subscripts in and out denote the inner and the outer states, similar to the left and
right states of a classic Riemann problem in 1D, see Tables 2.2 and 2.3. The numerical
results are compared with a radial reference solution of the one-dimensional Euler equations
with a geometrical source term, see section 17.5 of Toro [1997] for details.

ρ u v p
Qin 1.0 0.0 0.0 1.0
Qout 0.125 0.0 0.0 0.1

Table 2.2: Initial states Qin (inner) and Qout (outer) for the first 2D explosion problem (EP1).

ρ u v p
Qin 1.0 0.0 0.0 2.0
Qout 1.0 0.0 0.0 1.0

Table 2.3: Initial states Qin (inner) and Qout (outer) for the second 2D explosion problem
(EP2).

Blast wave problem EP1 Figs. 2.7 and 2.8 show a comparison between the reference
solution, V-B-SPH and MWSPH respectively with σ = 2 and σmls = 4. We observe that
the MWSPH produces a more accurate solution of the problem. The MWSPH captures the
plateau in the density profile unlike the more dissipative V-B-SPH scheme, see Figs. 2.7c
and 2.8c. This in clear also from Figs. 2.7a, 2.7b, 2.8b and 2.8a, where the density and
pressure distributions on the z-plane are reported for MWSPH and V-B-SPH.

MWSPH and V-B-SPH do not exhibit spurious oscillations, which are observed in the
standard SPH, Fig. 2.9. It is shown how MWSPH can handle correctly both, discontinuities
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Figure 2.6: Computational domain and initial particle distribution for the cylindrical explosion
problem.

and rarefaction waves. The use of the Osher-type flux further improves the accuracy of the
numerical solution (Fig. 2.10). In particular the MWSPH scheme with Osher-type flux is
able to resolve the contact wave in the density profile with only one intermediate point, as
it should be for a Lagrangian scheme.

Fig. 2.12 shows the particle positions at the final time. The particle positions computed
with V-B-SPH and MWSPH are more uniformly distributed than standard SPH particles.
We notice both high particle density and low particle density regions. In both cases
MWSPH can handle piecewise high order reconstructions thanks to a variable stencil width
due to a variable smoothing length, see Eqn. (2.39).

Since the presented MWSPH scheme is an Arbitrary-Lagrangian-Eulerian scheme,
where the particles could in principle move with an arbitrary velocity v, we repeat the
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MWSPH simulations for this test problem in an Eulerian framework where the particles are
fixed and where the ALE flux simply reduces to the classical Eulerian flux, i.e. H(Q,v) =
F(Q) by setting v̄i j = 0. The results of the simulations are shown in Fig. 2.11, in direct
comparison with the Lagrangian MWSPH results obtained previously. Again, the MWSPH
results agree very well with the 1D reference solution, but this time the contact wave
is subject to visible smearing due to the use of an Eulerian formulation while in the
Lagrangian context the contact wave is much better resolved.
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(b)
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Figure 2.7: Two dimensional numerical results of the blast wave problem with initial data
given by Table 2.2 computed with V-B-SPH (Rusanov flux, σ = 2) at time t = 0.2s. Density and
pressure (a), (b). Cut at y = 0 compared with 1D reference solution (continuous line) (c), (d).
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(a)

(b)
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(c)

(d)

Figure 2.8: Two dimensional numerical results of the blast wave problem EP1 with initial
data given by Table 2.2 computed with MWSPH (Rusanov flux, σ = 2, σmls = 4, M=3) at time
t = 0.2s. Density and pressure (a), (b). Cut at y = 0 compared with 1D reference solution
(continuous line) (c), (d).
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Figure 2.9: Numerical results for EP1 obtained with the standard SPH at time t = 0.2s, σ = 2.
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(c)

(d)

Figure 2.10: Two dimensional numerical results of the blast wave problem EP1 with initial
data given by Table 2.2 computed with MWSPH (Osher flux, σ = 2, σmls = 4, M=3) at time
t = 0.2s. Density and pressure (a), (b). Cut at y = 0 compared with 1D reference solution
(continuous line) (c), (d).
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(a)

(b)

Figure 2.11: Comparison of the Lagrangian MWSPH simulation with moving particles (top)
and an Eulerian MWSPH simulation with fixed particles (bottom).
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(a) (b)

(c) (d)

Figure 2.12: Two dimensional particle positions for the blast wave problem EP1 at the final
time t = 0.2s. Standard SPH (2.12a) σ = 2, V-B-SPH (2.12b) σ = 2, MWSPH with Rusanov
flux (2.12c) and MWSPH with Osher flux (2.12d) with polynomial degree M = 3, σ = 2 and
σmls = 4).
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Blast wave problem EP2 In the following, a second blast wave problem is solved, with
initial data given in Table 2.3. Here, the density is initially constant. Fig. 2.13 shows the
comparison between the reference solution, V-B-SPH and MWSPH with both Rusanov
and Osher-type fluxes and also in this case the new MWSPH scheme yields a better
accuracy than the V-B-SPH. For this blast wave problem EP2 we also study the effect of
initial particle disorder on the quality of the numerical results. For this purpose, a second
simulation is carried out where the particles are initially located at the barycenters of an
unstructured triangular mesh. This allows the correct computation of the initial particle
volumes Vi needed by the scheme. The mesh has been generated with the PDE toolbox
of MATLAB and is depicted in Fig. 2.14. The computational results obtained with the
Rusanov flux and the Osher-type flux are depicted in Fig. 2.15, where in both cases a good
agreement with the reference solution can be observed.
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Figure 2.13: Two dimensional numerical results of the blast wave problem EP2 with initial data
given by Table 2.3 computed with V-B-SPH (Rusanov, σ = 2) and MWSPH (Osher flux, σ = 2,
σmls = 4, M=3) at time t = 0.2s. Two dimensional pressure profile for V-B-SPH (Rusanov) and
MWSPH (Osher) the top. Cut at y = 0 compared with 1D reference solution (continuous line)
for pressure and density.
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Figure 2.14: Unstructured triangular mesh used for the assessment of initial particle disorder
in the case of blast wave problem EP2.
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(a)

(b)

57



2. A New Class of Moving-Least-Squares WENO-SPH Schemes

(c)

(d)

Figure 2.15: Numerical results for the blast wave problem EP2 with initial particles distributed
on an unstructured triangular grid. Rusanov-type flux (a), (c). Osher-type flux (b), (d).
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CPU time per particle and time step The present MWSPH scheme has been imple-
mented in FORTRAN 90, but the computer code has not been optimized. For the simu-
lations presented in this work, the method needed about 10−2 s of CPU time per particle
and time step using a fourth order MLS-WENO reconstruction with M = 3 and the Ru-
sanov flux on an Intel(R) Core(TM) i7-2640M CPU with 2.80GHz and 8 GB of RAM.
For comparison, an optimized fourth order (M = 3) ADER-WENO finite volume scheme
Dumbser et al. [2007, 2008a] on an unstructured triangular mesh with characteristic WENO
reconstruction and Osher-type flux Dumbser and Toro [2011b] needs about 10−4 s per
element and time step. To improve the computational efficiency of our MWSPH scheme,
we therefore intend to use a more efficient ADER-type one-step time integration Titarev

and Toro [2005]; Dumbser et al. [2007, 2008b,a] in the near future, since this would require
only one MLS-WENO reconstruction and associated neighbor search per time step, instead
of one for each Runge-Kutta substage, as in the current implementation of our MWSPH
scheme.

2.4.3 1D Sod shock tube problem

For the sake of completeness, Fig (2.16) shows the density and pressure profiles
computed with MWSPH using the Osher-type and the Rusanov flux for a purely one-
dimensional test case. In 1D only three stencils are used: one centered stencil, and two
one-sided stencils. The domain [0;1] is discretized using 200 initially equidistant particles.
The initial condition is given by

(ρ,u, p)(x,0) =

{
(ρin,0, pin), if x≤ 0.5,
(ρout ,0, pout), otherwise,

(2.44)

where the inner and outer states denoted by the subscripts in and out are the same as for the
2D test case shown in Table 2.2. In the 1D case we consider a second degree reconstruction
polynomial (M = 2), a smoothing length defined by σ = 2 and a MLS stencil width defined
by σmls = 4. We can note an excellent agreement with the exact solution given by the
algorithm detailed in Toro [1997]. In particular when using the Osher-type flux, we can
note a very sharp resolution of the contact discontinuity. We further observe that our
scheme does not produce any spurious pressure oscillations at the contact wave, in contrast
to standard SPH.
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Figure 2.16: Numerical results for 1D Sod’s problem compared with exact solution at the time
t = 0.2s computed with 1D MWSPH: Rusanov flux on the top and Osher flux on the bottom.
Polynomial degree M = 2, σ = 2.
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2.5 Conclusions

In this chapter we have presented a new SPH formulation based on a novel piecewise
high order moving-least-squares WENO reconstruction and on the use of Riemann solvers.
To our knowledge, this is the first time that an SPH scheme uses a piecewise high order
meshfree WENO reconstruction on moving point clouds in multiple space dimensions.
The MLS-WENO method is based on a nonlinear weighted Moving-Least-Squares inter-
polation on a set of different stencils and produces essentially non-oscillatory polynomial
reconstructions. We have shown numerical evidence that the new meshfree MLS-WENO
approach can produce higher order reconstruction polynomials that are accurate for smooth
problems and essentially non oscillatory for problems with discontinuities.

As the SPH method of Vila and Ben Moussa our new MWSPH formulation uses
Riemann solvers to avoid the use of artificial viscosity, but the new higher order WENO
reconstruction results in improved accuracy and less numerical dissipation compared to
the SPH scheme of Vila and Ben Moussa.

We have presented numerical results for two dimensional blast wave problems and for
a one-dimensional shock tube problem. The results indicate that MWSPH increases the
accuracy compared to the standard SPH scheme with artificial viscosity. Unlike standard
SPH it does not produce unphysical oscillations in the pressure and density fields. We
observed that MWSPH can handle properly both rarefaction and shock waves producing
essentially non oscillatory profiles at discontinuities. Significant improvements in the
resolution of contact waves can be achieved when using the Osher-type flux instead of the
Rusanov flux.

Future work will include a thorough code optimization together with a parallel imple-
mentation, as well as numerical simulations of advection-diffusion equations with stiff
source terms. Following Aboiyar et al. [2010] further research could also concern the use
of kernel-based polyharmonic spline reconstructions instead of the moving-least-squares
(MLS) method in order to further increase accuracy and flexibility. In order to reduce the
cost of the MLS-WENO reconstruction and the associated neighbor search, we plan to
implement an ADER-type one-step time integration Titarev and Toro [2005]; Dumbser

et al. [2007, 2008b,a] in the near future, since in this manner the expensive reconstruction
step will be carried out only once per time step and not in each Runge-Kutta substage
again.
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3 MWSPH schemes for Advection
Diffusion transport in porous media

Smooth Particle Hydrodynamics (SPH) is a Lagrangian meshless numerical scheme
developed by Lucy [1977] and Gingold and Monaghan [1977] and originally applied
to advection dynamics, see for examples [Monaghan, 1994, 2005; Ferrari et al., 2009]
and then extended to advection diffusion equations (see [Brookshaw, 1985; Cleary and

Monaghan, 1999; Español and Revenga, 2003; Aristodemo et al., 2010]). SPH has been
applied by Zhu and Fox [2001, 2002] to simulate diffusion in a periodic porous media and
Tartakovsky et al. [2007] used the SPH to study reactive solute transport in homogeneous
porous media. Recently Herrera [2009]; Herrera et al. [2010]; Herrera and Beckie [2012];
Boso et al. [2013] extended SPH to solute transport in heterogeneous porous media.

SPH offers several advantages with respect to traditional Eulerian and Lagrangian
numerical schemes. First, it does not suffer from grid orientation effects, which is one of
the main problems of the standard Eulerian schemes [Herrera et al., 2010] and it ensures
accuracy by introducing little numerical diffusion [Herrera et al., 2009, 2010; Boso et al.,
2013]. Unlike particle tracking based methods SPH is able to track low concentrations
[Tompson, 1993; Obi and Blunt, 2004; Herrera et al., 2010] and does not require a
background grid to simulate chemical reactions [Herrera et al., 2010]. SPH, however,
has also some limitations. A relevant limitation is the occurrence of both unphysical
oscillations and negative concentrations when the diffusion is anisotropic [Herrera, 2009;
Herrera et al., 2010; Herrera and Beckie, 2012]. In an attempt to alleviate this problem
Herrera et al. [2010] developed a new hybrid numerical scheme which applies SPH in
a streamline oriented framework. In this scheme, anisotropic dispersion is split into an
anisotropic component with only the component along the streamline different from zero
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and an isotropic component. The one-dimensional advection diffusion equation resulting
from the first component is solved by using a finite difference scheme, while the second
component is solved by SPH. A modification of this scheme has been proposed by Boso

et al. [2013], which takes into account that the volume associated to the points where SPH
is applied changes along the streamlines. With this modification the method is similar, in
term of accuracy, to the standard SPH, but much less demanding in term of computational
time.

The objective of the present work is to extend a new class of SPH, the MWSPH [Avesani

et al., 2014], originally applied to gas dynamics to advection diffusion equation overcoming
the difficulties of existing SPH based schemes in simulating anisotropic dispersion porous
media. This new class of SPH, uses high order accurate nonlinear WENO reconstruction
operator into SPH, which is usually applied in the context of mesh based finite volume
schemes. This yields a nonlinear scheme for the evaluation of the diffusive mass transfer
between interacting particles.

The main contribution of this work are: i) the extension of MWSPH to diffusion and
anisotropic dispersion problems, ii) the use and the comparison of different schemes for
diffusive flux reconstructions, iii) the study of positivity preserving properties and accuracy
of the proposed scheme and iv) the comparison of the new scheme with the traditional
SPH for advection-diffusion equation.

The outline of this paper is organized as follows. In Section 3.1 we introduce the
mathematical model for advection-diffusion equation in the Lagrangian formulation and
we describe the new formulation of SPH for diffusion equation. In Section 3.2 we briefly
describe the Moving-Least-Square Weno reconstruction. Hence in Section 3.3 we compare
mesh-free WENO reconstruction with standard SPH for diffusive fluxes. In Section 3.4
we test the new scheme for both homogeneous and heterogeneous cases comparing with
standard SPH. Finally Section 4.5 discusses the advantages of the scheme simulating
passive solute transport in porous media.
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3.1 Smooth Particle Hydrodynamics

We focus on the advection-diffusion equation, which is commonly used to model solute
transport in porous media. Written in a Lagrangian formulation it reads as:

dr(t)
dt

= v(r(t), t) (3.1)

dC(t,r)
dt

= ∇ · (D(t,r)∇C(t,r)) (3.2)

where Eqns. (3.1) and (3.2) describe the movement of the fluid and the change of concen-
tration due to hydrodynamic dispersion, respectively. The variables are the position r, the
given fluid velocity v, the coefficient of hydrodynamic dispersion D(t,r), the concentration
C and simulation time t. For the sake of simplicity, hereafter we omit the time and space
dependence indication in r,v, C and D. According to Bear [1972] hydrodynamic dispersion
in a isotropic porous media can be modeled as:

Dî ĵ = (αT |v|+Dm)δî ĵ +(αL−αT )
vîv ĵ

|v| (3.3)

where Dm is the molecular diffusion coefficient, î and ĵ are the main direction vectors, αL

and αT are the longitudinal and transverse dispersivities. In all SPH based schemes the
system of contiuum differential Eqns. (3.1 and 3.2) is approximated in a finite number
of points (particles), which carry the physical property of interest, in our case the solute
concentration, and which move with the fluid according to Eqn. (3.1) (see for examples
[Monaghan, 2005; Ferrari et al., 2009; Herrera et al., 2009]). Notice that the solution of
Eqn. (3.1), which provides the position of the i-th particle, is solved by a standard particle
tracking scheme (e.g. [Salamon et al., 2006; Srinivasan et al., 2010]), so that the SPH
formulation is only used to approximate the diffusive term (3.2).

3.1.1 Monaghan’s formulation

Herrera and Beckie [2012] and Español and Revenga [2003] derived the following
SPH approximation for anisotropic diffusion, which is based on the SPH formulation
developed by Monaghan for modelling thermal diffusion [Brookshaw, 1985; Cleary and
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Monaghan, 1999; Monaghan, 2005]:

dCi

dt
=

1
2

N

∑
j

m j

ρi j
(Ci−C j)∇iWi jD(ri,r j) (3.4)

where

D(ri,r j) =
ν

∑
î=1

ν

∑
ĵ=1

(
Di

î ĵ +D j
î ĵ

)[
4
(r j− ri)î(r j− ri) ĵ

|r j− ri|2

]
−δî ĵ (3.5)

Furthermore, ∇iWi j is the gradient of the interpolating kernel function centered in ri

[Ferrari et al., 2009]. Here, ν denotes the number of space dimensions, i.e. ν = 2 for the
two-dimensional simulations and ρi j can be approximated as the arithmetic average of
the particle density between particles i and j, which ensures that the diffusive fluxes are
antisymmetric [Herrera et al., 2009]. Among available options we use the cubic B-kernel
interpolating kernel functions:

Wi j =
c

(hi j)ν


2/3−q2

i j +q3
i j/2 if 0≤ qi j < 1

(2−qi j)
3/6 if 1≤ qi j < 2

0 if qi j ≥ 2

(3.6)

where qi j is the relative distance between particles i-th and j-th defined as qi j = ri−r j|/hi j

and c is a normalization constant. [Ferrari et al., 2009; Monaghan, 2005]. Here the term
hi j is the smoothing length and it determines the size of the kernel support for each particle.

3.1.2 The MWSPH formulation of advection-diffusion equation

Starting from the the new class of MWSPH schemes developed by Avesani et al. [2014]
we propose to use Riemann solvers to estimate the diffusive fluxes between two interacting
particles i and j. Following MWSPH schemes the advection-diffusion equation reads as
follows:

dVi

dt
=

N

∑
j=1

2ViVj(2vi j−vi) ·∇Wi j, (3.7)

dCi

dt
=−

N

∑
j=1

2ViVjGi j ·∇Wi j, (3.8)

66



3. MWSPH schemes for Advection Diffusion transport in porous media

where G ji is the flux tensor and Vj is the volume of the particle j, which evolves in time
according evolves according to the velocity field provided by Eqn. (3.7). The numerical
approximation of the flux tensor G ji depends on the choice of the Riemann solver. Using
for example the Rusanov-type flux, one obtains [Dumbser and Balsara, 2009; Dumbser,
2010a; Hidalgo and Dumbser, 2011]:

Gi j =
1
2

(
F(∇C−i )+F(∇C+

j )
)
−Θ(C−j −C+

i )⊗~ni j, (3.9)

where Θ is the maximum of Jacobian of the flux with respect to the gradient of C [Gassner

et al., 2007; Hidalgo and Dumbser, 2011], ~ni j is the unitary separation vector between
particles i and j; and F is the non-linear flux vector, which depends on the concentration
and on the concentration gradient. The terms C−i =Ci(r̄i j), C+

j =C j(r̄i j), ∇C−i = ∇Ci(r̄i j)

and ∇C+
j = ∇C j(r̄i j) are the concentrations and concentration gradients computed at the

midpoint r̄i j = 1/2(ri+r j) using local high order accurate reconstruction at each particle’s
position ri known the concentration values of particles in their surrounding. As summarized
in Fig. 3.1.2 we first define local high order reconstruction polynomials Ci(x,y) and C j(x,y)

for each couple of interacting particles P j and P j. We use the reconstruction polynomials
to compute the concentration and the concentration gradient at the midpoint of the two
interacting particles Pi and P j (Fig. 3.1.2). For sake of clearness the fluxes Gi j between
two interacting particles in Eqn. (3.8) can be defined as:

Gi j =
1
2
(Di∇C+

i +D j∇C−j )−Θi j(C+
j −C−i )⊗~ni j, (3.10)

with D the diffusion tensor also evaluated at particle interfaces. The term vi j is the velocity
at interface between the two interacting particles Pi and P j.

3.2 Moving-Least-Square and WENO fluxes
reconstruction

For details of the meshfree Moving-Least-Square and WENO reconstruction we refer
the reader to [Avesani et al., 2014] and we only briefly recall the main points here. First,
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i

j

Si1

Sj1

(a)

i jrij

Ci(ξ, η)

Cj(ξ, η)

C−i
∇C−i

C+
j

∇C+
j

(b)

Figure 3.1: Particle central stencils and recontructions polynomials.

we construct a set of reconstruction stencils for each particle Pi as follows:

S i
s =

nes⋃
k

P j(k), (3.11)

where k with 1≤ k≤ nes is a local index, counting the particles P j in each stencil, j = j(k)

is the mapping from the local index k to the global indexation of the particles in the
computational domain Ω, nes is the number of particles in each stencil and ns is the number
of stencils. The set of stencils consists of one central stencil S i

0 and a set of one-sided
stencils (1≤ s≤ 8). The first stencil, i.e. the central stencil, is obtained by the union of the
central particle Pi and its surrounding particles P j as

S i
0 =

nes⋃
k

P j(k),
∥∥ri j

∥∥≤ h, (3.12)

while the one-sided stencils are defined as :

S i
s =

nes⋃
k

P j(k),
∥∥ri j

∥∥≤ 2h and θ ∈ [(s−1)π/4,sπ/4], (3.13)
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3. MWSPH schemes for Advection Diffusion transport in porous media

where hi,mls is a characteristic length and θ is the angle formed by the vector ri j = r j− ri

connecting the two particles Pi and P j and the x-axis,

tan(θ) =
y j− yi

x j− xi
. (3.14)

As the smoothing length in the kernel interpolation hi,mls is locally variables:

hi,mls = σmls
√

mi/ρi (3.15)

with σmls suitable constant.
After these preparatory steps, we apply a Moving-Least-Square scheme. In particular,

for each particle we consider nine reconstruction polynomials:

Cs
i (ξ,η) =Ci +

nc−1

∑
m=1

ŵm,sφm(ξ,η), (3.16)

one for each of its nine stencils S pi
s , where ξ and η are reference coordinates in a 2D

coordinate system defined as ξ = (x− xi)/h and η = (y− yi)/h where xi and yi denote
coordinates of particle positions in the two dimensional coordinates system, ŵm,s denotes
the set of nc undetermined coefficients of the s-th polynomial and φm are the associated
basis functions. Eqn. (3.16) is a Taylor series expansion of arbitrary order M of the
concentration around the position of the particle pi. In Eqn. (3.16) the index m ranges from
1 to its maximum nc that depends on the number of space dimensions. In two dimensional
domain nc is given by

nc =
(M+2)(M+1)

2
. (3.17)

Finally, the nc basis functions in Eqn. (3.16) are defined as follows:

φm(ξ,η) =
ξaηb

h(a+b)
(3.18)

where a+b = l and l ranges from 1 to M [Zwillinger, 2003] [Agossler Albert, 2001]. The
smoothing length h used in Eqn. (3.18) ensures that for small particles distances the basis
function values do not approach the computer’s floating precision [Agossler Albert, 2001]
and to avoid ill-conditioned reconstruction matrices. The unknown coefficients ŵm,s are
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3. MWSPH schemes for Advection Diffusion transport in porous media

computed applying a set of reconstruction equations on each stencil Ss as follows:

C j−Ci =
nes

∑
j=1

(
nc−1

∑
m=1

ŵm,sφm(r j− ri)

)
(3.19)

where nes is the number of particles in stencil Ss, which are chosen in such a way that the
number of equations in the system (3.19) is larger than the number of degrees nc. Therefore,
Eqns. (3.19) constitute an overdetermined linear algebraic system for the coefficients,
which is solved using a least square technique [Agossler Albert, 2001; Dumbser et al.,
2008a,b]. In order to ensure linear stability, we suggest to use at least 2nc particles in each
stencil for linear stability purposes [Dumbser and Kaëser, 2007; Dumbser et al., 2007].

The final non-linear WENO reconstruction polynomial Ci,WENO(ξ,η) of degree M is
obtained by a non-linear combination of the nine polynomials Cs

i of degree M reconstructed
on the ns stencils:

Ci,WENO(ξ,η) =
ns

∑
l=1

ωlCs
i (3.20)

with the normalized nonlinear weights

ωl =
ω̃l

∑
ns
r=1 ω̃r

. (3.21)

computed from the non-normalized weights ω̃l [Dumbser et al., 2008a,b] as

ω̃l =
λr

(ε+σs)r (3.22)

where ε = 10−14, r = 4 and the linear weights are set λ1 = 105 for central stencil and
λl = 1 for one side stencil (2≤ l ≤ 9). Finally, due to the complexity of mesh-free methods
space, we propose to compute the smoothness indicator in a mesh-independent manner as:

σl =
M

∑
r=1

r

∑
α=0

r−α

∑
β=0

(
∂r

∂αξ∂βη
Cl

i

)2

(3.23)

where the integration of the derivatives in the central cell is implicitly taken into ac-
count. Once defined the WENO reconstruction polynomial, the gradient reconstruction
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3. MWSPH schemes for Advection Diffusion transport in porous media

polynomial is directly computed from the derivatives of the basis functions as follows:

∇Ci,WENO(ξ,η) =
nc

∑
m=1

ω̂m
∂φm

∂ξ
,

=
nc

∑
m=1

ω̂m
∂φm

∂η
. (3.24)

3.3 Gradient reconstruction

A key point of the MWSPH is the concentration and concentration gradient reconstruc-
tion at particle interfaces. The aim of this section is therefore to analyze the accuracy of
Moving-Least-Square WENO scheme in gradient computation. Notice that we take into
account only reconstruction, this means that we focus only on WENO combined with
Moving-Least-Square, here referred as MLS-WENO, and not on the all MWSPH scheme.
We compare the new MLS-WENO with the standard SPH which is often used for gradient
reconstruction [Liu and Liu, 2010; Di Blasi et al., 2011]. According to [Li and Liu, 2004]
we use the following expression to compute concentration gradient with standard SPH to
reach at least zero-th order consistency:

∇Ci

ρi
=

N

∑
j=1

(
C j

ρ2
j
+

Ci

ρ2
i

)
∇Wi jm j. (3.25)

We illustrate the capabilities of our method by considering both equispaced particles and
not-equispaced particles. The latter case is obtained by perturbing the initial position of the
particles, at the nodes of a grid with spacing dx = dy, with pseudo-random numbers from
the uniform distribution within the range [0,1). We considerer not equispaced particles
for mainly two reason. Firstly in a real application the initial concentration informations
could be irregularly distributed. Secondly in a heterogeneous flow field, as particles move
carried by the flow irregularly velocity, we have the distortion of regular initial positions
[Herrera and Beckie, 2012].

In the test case, we assign an initial concentration to each particle, and then we compute
the gradient by using both standard SPH and MLS-WENO methods. In order to perform
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3. MWSPH schemes for Advection Diffusion transport in porous media

accuracy and convergence analyses we compute the Lp norms according to:

Lp =

(
N

∑
j=1
|Ci−Ce(xi,yi)|

)(1/p)

/N (3.26)

where Ce(xi,yi) is the analytical solution at (xi,yi), the position of the i− th particle. The
L∞ norm is approximated by taking the maximum error among the particles.

3.3.1 Smooth case

The first test case consists in the computation of the gradient of a two-dimensional
bell shape function with the maximum C(0,0) = 1 at (x,y) = (0,0) and variance σ2 = 0.2.
The computational domain is a square with the lower left corner at (x,y) = (−1,−1)
and the upper right corner at (x,y) = (1,1). Sub-Fig. 3.2a and Sub-Fig. 3.2c show the
gradient computed by using equispaced particles, while Sub-Fig. 3.2b and Sub-Fig. 3.2d
show the gradient computed by using irregularly distributed particles. In both cases our
MLS-WENO scheme produces excellent approximations of the gradient, while in case of
equispaced particles the standard’s SPH scheme underestimates the gradient. Moreover, for
not equispaced test case, the standard SPH shows strong oscillations around the exact value.
This is consistent with the findings of Liu and Liu [2006]. Table 3.5 and Table 3.2 show the
errors and the orders of convergence measured for equispaced and non-equispaced particles
where hmls is the central stencil radius and dx is the particle mean distance. We remark
that MLS-WENO reconstruction reaches the nominal order of accuracy M regardless of
the distribution of the particles within the stencil, which can be highly inhomogeneous
without impacting negatively the gradient. The only imposed condition is that every stencil
has at least 2M number of particles. Finally for sake of completeness we report in Table
3.3 the convergence rate of standard SPH in gradient reconstruction: in case of equispaced
particles the error is O(h2), while in case of not-equispaced particles the behavior of
the scheme is totally unpredictable with even negative convergence rate in some cases.
Negative convergence rate has been already reported for anisotropic dispersion application
in Herrera and Beckie [2012].
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Figure 3.2: Comparison of exact and numerical gradient reconstruction for the case of a
smooth solution, obtained with standard SPH approach and with the MLS-WENO reconstruc-
tion. Equispaced particles and the cut of at y=0 evaluating the reconstructed polynomials on
100 equispaced points (a), (c). Not-equispaced particles and the cut of at y=0 evaluating the
reconstructed polynomials on 100 equispaced points (b), (d). Polynomial reconstruction order
M = 3, σ = 1.5, σmls = 3.
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3. MWSPH schemes for Advection Diffusion transport in porous media

3.3.2 Piecewise smooth test case with discontinuity

As a further test we consider the gradient reconstruction of the following two-dimensional
piecewise constant function:

C(x,y) =

 C0exp−
(
(x−x0)

2σ2 +
(y−y0)

2σ2

)
: r ≤ 0.3

0 : r > 0.3

where r =
√
(x− x0)2 +(y− y0)2 is the distance from the center of the domain. We

propose this test case to show the essentially non-oscillatory reconstruction polynomial
behavior that limits the non-monotonic behavior of the MLS reconstruction, although it
does not ensure a monotonic preserving reconstruction scheme.

Fig 3.3 shows the gradient reconstruction piecewise smooth test case with discontinuity
compare the MLS-WENO and standard SHP numerical solutions with the exact solution.
Sub-Figs. 3.3a and 3.3c show the equispaced particles case, and Sub-Figs. 3.3b and 3.3d
show the not-equispaced spaced particles case. Similarly to the smooth case, MLS-WENO
produces an accurate gradient reconstruction and it does not exhibit oscillations. While,
the standard SPH suffers from oscillations of the gradient, which are particularly evident
close to the discontinuity for the case of not-equispaced particles.
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Figure 3.3: Piecewise smooth test case with discontinuity: gradient reconstruction, comparison
of exact and numerical solutions obtained with standard SPH approach and with the MLS-
WENO reconstruction. Equispaced particles and the cut of at y=0 evaluating the reconstructed
polynomials on 100 equispaced points (a), (c). Non-equispaced particles and the cut of at
y=0 evaluating the reconstructed polynomials on 100 equispaced points (b), (d). Polynomial
reconstruction order M = 3, σ = 1.5, σmls = 3.
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3. MWSPH schemes for Advection Diffusion transport in porous media

3.4 Test case

The aim of this section is to investigate the standard SPH and MWSPH accuracy and
positivity preserving properties in case of diffusion phenomena. We consider both homoge-
neous and heterogeneous flow field. For clarity, we call the MWSPH with third order flux
reconstruction MWSPH-M3 as well the MWSPH with fourth order flux reconstruction
MWSPH-M4. We take into account anisotropic ratio αT/αL in the range [0.1,0.01] which
are similar to the values reported in Herrera and Beckie [2012] and based on reasonable
physical assumptions.

Following Boso et al. [2013], we introduce the dilution index as index of accuracy of
the numerical schemes. The dilution index quantifies the distribution in space of the solute
mass [Kitanidis, 1994]. This means that the intrinsic numerical diffusion directly effects
the dilution index. The diluition index is defined as [Kitanidis, 1994]:

E(t) = exp

(
−

N

∑
k=1

PklnPk

)
(3.27)

where Pk =Ck/M with M the total solute mass in time. In Eqn. (3.27) we consider only
concentration larger then 1.e−16 in order to avoid negative value in logarithm expression.
In addition we consider also the dissipation rate χ:

χ(t) =
∫

Ω

∇CD ·∇CdΩ (3.28)

with Ω the computational domain. For the set of discrete particle the dissipation rate is
approximated as:

χ(t) = ∑
i
= NVi∇CiDi ·∇Ci. (3.29)

We believe that the χ(t) is a good index for accuracy estimation of the gradient approxima-
tion.

3.4.1 Homogeneous

In the present section, we analyze the accuracy and monotonicity properties of standard
SPH and MWSPH. We simulate the instantaneous realize of a solute mass in a constant
velocity field v forming an angle of 30o with respect to the x-axis. This two-dimensional
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3. MWSPH schemes for Advection Diffusion transport in porous media

test case is similar to that originally proposed Herrera and Beckie [2012] where the
analytical solution for the solute concentration in time is given by [Javandel et al., 1984]:

C(x,y) =
C1

C4
exp

−(x− x0)
2
(

2tD ĵ ĵ +w2
)
− (y− y0)

2
(
2tDîî +w2

)
+4t(x− x0)(y− y0)Dî ĵ

8t2C2
2 +4w2tC3 +2w4

 (3.30)

with C1 = C0w2, C2 = DîîD ĵ ĵ− 4D2
ĵî
, C3 = Dîî +D ĵ ĵ and C4 =

√
(4t2C2 +2twC3 +w4).

The exact solution serves as initial condition. Without loss of generality we simulate
only the dispersion process neglecting the contribution of advection which can be easily
incorporated with a particle tracking without introducing numerical error in case of homo-
geneous velocity field [Herrera, 2009]. In other words, we use the velocity field to define
the transport process through the dispersion tensor given by Eqn. (4.8) neglecting the
advection contribution given by Eqn. (3.1). As for Section 3.3 we consider both equispaced
and not equispaced particles. Table 4.2 shows the parameters in the homogeneous test
case.

Parameter Symbol Value Unit
Initial plume width w 0.2 cm
Maximum initial concentration C0 1 mg/L
Length numerical domain L 1 cm
Longitudinal dispersivity αL 0.004 cm
Trasversal dispersivity αT 0.0004 cm

Table 3.4: Homogeneous test case parameters.

Figs. 3.4-3.5 show the comparison between the numerical solution obtained with
standard SPH and with MWSPH with third and fourth order MLS-WENO flux reconstruc-
tion. In case of equispaced particles the MWSPH-M3 underestimates the maximum and
the standard SPH slightly overestimates the exact solution. However, standard SPH and
MWSPH results are comparable. On the contrary, in case of not-equispaced particles, one
can clearly see the increase of the accuracy of the MWSPH numerical solution comparing
with standard SPH one.

Fig. 3.6 show the maximum concentration in time for standard SPH, MWSPH-M3,
MWSPH-M4 and MWSPH-M6 for different smoothing lengths. As already reported
by Herrera [2009] standard SPH overestimates the maximum concentration. On the
other hand MWSPH-M3 tends to underestimates the maximum concentration in time
especially for low smooth length. The MWSPH-M4 with higher smoothing length does not
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3. MWSPH schemes for Advection Diffusion transport in porous media

underestimate the maximum concentration and it is closer to the analytical solution. All of
these behaviors increase in all not-equispaced case. In particular, the error increases in the
case of not-equispaced particles for the SPH which is very sensitive to particle positions.
On the other hand MWSPH is less sensitive to particle positions and the error in maximum
concentration computation stabilizes in time. As expected the MWSPH-M6 produces
better results.

Fig. 3.7 compares the evolution of E(t) for different anisotropic ratios for both
equispaced and not equispaced particles. The reference solution is computed with the
analytic concentration in time provided by Eqn. (4.37). As expected from maximum
value analyses, MWSPH-M3 simulates E(t) greater than the reference solution. On the
contrary standard SPH and MWSPH-M4 have results similar to the reference solution
in case of equispaced particles and lower anisotropic ratio. MWSPH-M4 results slightly
more diffusive than standard SPH for higher anisotropic ratio but less sensitive to particle
positions. Fig. 3.7.b shows that standard SPH deviates from references solutions for not-
equispaced case, in this case E(t) is lower. It indicates that standard SPH underestimates
the diffusion between particles. On the other hand, the MWSPH-M6 has better results
which are comparable with reference solution in both cases, with equispaced and not
equispaced particles.

Fig. 3.8 shows the dissipation rate χ(t). In all cases taken into account, the MWSPH
matches the reference solution. As expected from gradient test cases, standard SPH
underestimates the reference solution and it results sensitive to particle positions.

Regarding the positivity preserving properties of the standard SPH and the proposed
MWSPH, we study the temporal evolution of minimum simulated concentration as shown
in Fig. 3.9. The MWSPH simulates minimum concentration values that are many or-
ders of magnitude smaller than the ones computed with the standard SPH scheme. As
the standard Eulerian mesh based WENO, MWSPH has an oscillatory behavior in the
minimum concentration that stabilizes in time. Unlike the standard SPH, the minimum
in absolute value does not increase with time. This further demonstrates that also in this
case the WENO is able to limit the effects of non monotonicity inherent in a high order
reconstruction even for long simulation times. On the contrary in the SPH the positivity
preserving property decreases in time. The degree of anisotropy has virtually no influence
on MWSPH. On the contrary the minimum concentration computed with standard SPH
increases in absolute value with the anisotropic ratio. Similarly standard SPH is sensitive
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3. MWSPH schemes for Advection Diffusion transport in porous media

(a) 2D concentration distribution.
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Figure 3.4: Comparison of exact and numerical solutions for equispaced particles at time
t = 1000 obtained with standard SPH and different MWSPH with different reconstruction order.
Three cuts along different sections (see Fig. 3.4a) are shown evaluating the numerical solution
on 200×200 not-equispaced particles after 61 time step. σ = 2.5, σmls = 4.5, CFL = 0.9 and
β = 30◦.

to the smoothing length, which is less evident in the MWSPH. Fig. 3.10 shows where
negative concentrations occur. Standard SPH exhibits negative concentrations in bands
aligned with the main direction of the flow. This behavior of standard SPH has been already
reported in Herrera and Beckie [2012]. Similarly MWSPH has negative concentration
bands but in this case they are at the boundary of the computational domain and far from
the plume.

Finally we perform a comparative numerical convergence analysis between MWSPH
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(a) 2D concentration distribution.
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Figure 3.5: Comparison of exact and numerical solutions for not-equispaced particles at time
t = 1000 obtained with standard SPH and different MWSPH with different reconstruction order.
Three cuts along different sections (see Fig. 3.4a) are shown evaluating the numerical solution
on 200×200 not-equispaced particles after 61 time step. σ = 2.5, σmls = 4.5, CFL = 0.9 and
β = 30◦.

and standard SPH using a sequence of successively refined particles. These different runs
and results are summarized in Table 3.5. The computational errors of MWSPH and SPH
are similar only in the case of the largest particle spacing test. We noted a marked increase
in the convergence rate when the highest number of particles are considered. Similarly,
MWSPH shows higher accuracy than standard SPH increasing the number of particles.
For sake of completeness a graphical illustration of the L1 error and convergence rate are
given in Fig. (3.11). From Fig. 3.12 it is also clear the increase of the numerical accuracy
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Figure 3.6: Difference between maximum concentration values of numerical (CN) and analyti-
cal (CA) solutions as function of time for equispaced particles (on the left) and not-equispaced
particles (on the right), for different σ, comparing standard SPH and MWSPH with different
reconstruction order M, σmls = 4.5 and CFL = 0.9.
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Figure 3.7: Dilution index for equispaced particles and not-equispaced particles, αT/αL = 0.1
(on the left) and αT/αL = 0.01 (on the right), comparing standard SPH and MWSPH with
different reconstruction order M, σmls = 4.5, CFL = 0.9 and σ = 3.

of the MWSPH numerical solution comparing with standard SPH when using high order
polynomial reconstructions. To give the reader a possibility to assess the computational
effort, we report the computational time in Table 3.5 and we give a graphical summary
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Figure 3.8: Dissipation rate rate for equispaced particles and not-equispaced particles,
αT/αL = 0.1 (on the left) and αT/αL = 0.01 (on the right), comparing standard SPH and
MWSPH with different reconstruction order M, σmls = 4.5, CFL = 0.9 and σ = 3.
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Figure 3.9: Minimum concentration for different anisotropic ratio, αT/αL = 0.1 (on the left)
and αT/αL = 0.01 (on the right), for different σ. Standard SPH and MWSPH with different
reconstruction order M, σmls = 4.5 and CFL = 0.9.

illustration of CPU time in Fig. 3.12. We note that MWSPH increases the total CPU
time at most by a factor of two order of magnitude compared to standard SPH. This is
essentially due to MLS-WENO reconstruction and to build-up of the stencils. However,
MWSPH exhibits an higher convergence rate and accuracy making MWSPH advantageous
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3. MWSPH schemes for Advection Diffusion transport in porous media

Figure 3.10: Concentration distribution at time t=10 obtained with standard SPH scheme and
different MWSPH orders, for different anisotropic ratio on 200× 200 equispaced particles
after 74 time step. σ = 3.0, σmls = 4.5, CFL = 0.9 and β = 30◦. All cases exhibit negative
concentrations (gray bands).

in cases where a high accuracy is required.
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3. MWSPH schemes for Advection Diffusion transport in porous media
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Figure 3.11: Error norm L1 computed for homogeneous test case with equispaced particles,
σ = 3, CFL = 0.9.
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Figure 3.12: Error norm L1 computed for homogeneous test case with equispaced particles
and computational time on a single processor Intel(R) Core(TM) i7-2640M CPU 2.80GHz.
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3. MWSPH schemes for Advection Diffusion transport in porous media

3.4.2 Heterogeneous

In this section, previous test cases are modified using heterogeneous flow field. The
flow field is taken from the Reference Nakshatrala et al. which is defined as

vx(x,y) = 1+
3

∑
k=1

Ak
nykπ

Ly
cos
(

nxkπx
Lx
− π

2

)
cos
(

nykπy
Ly

)
(3.31a)

vy(x,y) = 1+
3

∑
k=1

Ak
nykπ

Lx
sin
(

nxkπx
Lx
− π

2

)
sin
(

nykπy
Ly

)
(3.31b)

where m = 3, (nx1,nx2,nx3) = (4,5,10), (ny1,ny2,ny3) = (1,5,10), (A1,A2,A3) = (8,2,1),
and Lx = Ly = 81. Fig. (3.13b) shows the velocity field. Figure (3.13a) shows the initial
conditions: an instant injection in a square zone with width Sx = Sy = 30 with initial
concentration C0 = 1. The particles are initially equispaced on a regular square lattice as
shown (3.13b) and the longitudinal dispersivity αL is set equal as 0.1.

Fig. 3.14 shows that, in heterogeneous case, the same trends illustrated for homoge-
neous cases occurs. All numerical schemes exhibit negative concentration: the standard
SPH exhibits negative concentrations on all computational domain and standard SPH is
more sensitive to anisotropic ratio. In standard SPH, the number of particles effected by
negative concentrations increases with the anisotropic ratio and the negative concentrations
are closer to the main plume.

In addition Fig. 3.15 shows that standard SPH not only has higher negative concen-
tration than MWSPH, but that negative concentration increases in proximity of the main
plume.

Fig. 3.16 further underlines the difference between the two schemes. As for homoge-
neous case, standard SPH has the minimum concentration lower than MWSPH of different
magnitude order and the minimum concentration increases with the anisotropic ratio. On
the other hand, MWSPH-M3 and MWSPH-M4 have a more marked difference in the
minimum concentrations.

Fig. 3.18 compares the dilution index for different anisotropic ratios. In particular the
standard SPH shows lower values in time with respect to MWSPH. On the other hand both
MWSPH-M3 and MWSPH-M4 exhibit similar results. We believe that this behavior is
due to not monotonicity preserving property of SPH. The standard SPH overestimates the
maximum concentrations (Fig. 3.17) leading to a higher values in the dilution index.
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3. MWSPH schemes for Advection Diffusion transport in porous media

(a) Initial conditions and particle positions
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Figure 3.13: Initial conditions on the left and velocity field on the right for heterogeneous test
cases.
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3. MWSPH schemes for Advection Diffusion transport in porous media

Figure 3.14: Concentration distribution at time t = 1000 obtained with standard SPH scheme
and different MWSPH orders, for different anisotropic ratio with 200× 200 particles after
32 time step for heterogeneous test cases. σ = 3.0, σmls = 4.5, CFL = 0.9. All cases exhibit
negative concentrations (gray bands).
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3. MWSPH schemes for Advection Diffusion transport in porous media

(a) standard SPH, anisotropic ratio 0.1 (b) standard SPH, anisotropic ratio 0.001

(c) MWSPH M=3, anisotropic ratio 0.1 (d) MWSPH M=3, anisotropic ratio 0.001

(e) MWSPH M=4, anisotropic ratio 0.1 (f) MWSPH M=4, anisotropic ratio 0.001

Figure 3.15: Negative concentration distribution for heterogeneous case at final simulation
time. Comparison of the standard SPH with the MWSPH scheme for different reconstruction
order of accuracy, σ = 3.0, σmls = 4.5, CFL = 0.9. 95
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Figure 3.16: Negative concentration distribution for heterogeneous case. Comparison of the
standard SPH with the MWSPH scheme with third reconstruction order of accuracy, σ = 3.0,
σmls = 4.5, CFL = 0.9.
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Figure 3.17: Maximum concentration in time for standard SPH and MWSPH scheme with
third and fourth flux reconstruction order of accuracy, σ = 3.0, σmls = 4.5, CFL = 0.9.
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Figure 3.18: Dilution index, heterogeneous case, σ = 3, σmls = 4, CFL = 0.9.
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3.5 Conclusion

In this work we have derived a new SPH formulation based on MWSPH to simulate
anisotropic diffusion in porous media. We have compared the performance of MWSPH
simulating the instantaneous release of a solute mass with anisotropic diffusion tensor
considering different anisotropic ratios and particle distributions in both homogeneous
and and heterogeneous flow field. Both the standard SPH and the MWSPH exhibit
negative concentrations. Nevertheless, in case of the MWSPH, the unphysical negative
concentration results limited in time and lower of many order of magnitude than negative
concentration computed with the standard SPH. Convergence analysis show that the
MWSPH is more accurate than standard SPH, which is less computation time demanding
but with a lower convergence rate with respect to MWSPH.

In the more general SPH scheme framework, MWSPH seems to be the only option
when the anisotropic diffusion equation can not be solve uncoupled with the flow fields,
the MWSPH ensures at the same time accuracy and it limits the not-positivity preserving
properties of SPH.
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4 An alternative SPH formulation to
model chemotaxis in porous media

Chemotaxis is the ability of some bacteria to swim toward or away chemical concentra-
tions [Long and Ford, 2009; Pedit et al., 2002; Alt, 1980; Erban et al., 2004]. Chemotactic
bacteria can sense and measure local chemical gradient and direct their tumble motion
in the direction of chemical attractant [Ford and Harvey, 2007a]. This single bacteria
migration results in concentration bacteria motion that can reach velocity comparable
to groundwater flow velocity [Rivero et al., 1989; Long and Ford, 2009; Valdés-Parada

et al., 2009a]. This means that bacteria can potentially reach low permeability area, where
usually the contaminant are trapped, improving the standard bioremediation techniques.

Early works focused on the development of effective medium coefficients of chemo-
taxis within porous medium [Duffy et al., 1997; Ford and Harvey, 2007a]. Long and Ford

[2009]; Wang and Ford [2009] reported an increase of transverse migration of bacteria
induced by chemotaxis in laboratory scale porous media models for both homogeneous and
heterogeneous cases. Lattice Boltzmann and Monte Carlo approaches have been developed
to study chemotaxis in porous medium under groundwater flow conditions. Valdés-Parada

et al. [2009a] derives the effective-medium advection-diffusion with chemotaxis equa-
tions with the method of volume averaging and Porter et al. [2011] presents a predictive
multiscale modeling framework for chemotaxis in porous media. These experimental
and theoretical works suggest that the effects of chemotaxis are visible where the flow
conditions are such as not dissipate the chemical solute gradients within the porous media.
Therefore, modeling chemotaxis requires special care of low solute concentrations and
solute gradients to correctly simulate chemotactic bacteria response. Unfortunately, tradi-
tional numerical scheme adds artificial numerical diffusion, this leads to the dissipation of

99



4. An alternative SPH formulation to model chemotaxis in porous media

the real solute interfaces gradient canceling or inhibiting the chemotaxis bacteria behavior.
Recently Boso et al. [2013] compared the accuracy of five different numerical schemes

in solving the solute transport equation and analyzing the artificial numerical diffusion
add in the discretization of both passive and reactive solute transport in porous media.
This work indicates that the Smooth Particle Hydrodynamics (SPH) scheme add a null
or small amount of artificial diffusion even in advection dominant flow, where usually
traditional schemes fail. The SPH is a meshless numerical scheme where the continuum
is discretized with a set of particles carrying solute concentrations [Herrera et al., 2009,
2010]. Unlike traditional Random Walk Particle Tracking scheme, particles do not carry
solute mass. This implies that the numerical precision to represent the concentration values
does not depend on the number of particles but on the hardware representation precision.
The reactions can be computed at each particles without any background grid. SPH results
accurate and able to reproduce correctly small scale concentrations [Boso et al., 2013;
Herrera et al., 2009, 2010]. These features makes the SPH the ideal scheme for the study
of chemotaxis in porous media.

Unfortunately, the standard SPH has some limitations. As we show later, in the case
of chemotaxis the bacteria have two advection field: one due to the fluid flow field and
one due to the chemotaxis. This makes the extension of standard SPH to chemotaxis not
straightforward. On the other hand, despite the accuracy in the numerical solution, SPH
does not compute the solute gradient properly which is fundamental in chemotaxis velocity
estimation [Avesani et al., 2014]. SPH usually underestimate the gradients or produces
unphysical oscillations in the gradient when particles are not equidistant such as when
particles moves according to a irregular flow field.

Motivated by above, the primary goal of this paper is to develop an alternative SPH
formulation to correctly model chemotaxis in porous media. Recently Avesani et al. [2014]
introduces a a new class of Moving Least Squares WENO-SPH Schemes, based on Ben
Moussa & Vila SPH formulation [Vila, 1999; Ben Moussa et al., 1999], hereafter refer
as MWSPH. The MWSPH uses high order moving-least-squares WENO reconstruction
and Riemann solvers to evaluate fluxes between interacting particles. This scheme is
very accurate in evaluations of spatial derivatives which is crucial in chemotactic velocity
estimation [Rivero et al., 1989]. The new key idea consists of model the chemotaxis
using a monotone upwind flux in a relative moving frame with moving particles. The
main advantages of the proposed method are: (i) like traditional streamlines methods, it
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is well suited to simulate solute transport in porous media because of the elimination of
artificial numerical diffusion, ii) it provides a robust mechanism to incorporate chemotaxis
in the SPH bases schemes overcoming its limitations, iii) it accurately computes gradients
regardless of the position of the particles.

The paper is organized as follows: in section 4.1 the mathematical model for chemotaxis
in porous media is briefly presented. In section 4.2, we first present the standard SPH
describing its limits in chemotaxis applications. Section 4.3 describes an alternative SPH
formulation to incorporate properly the chemotaxis in the SPH framework. In section 4.4,
the new SPH scheme is tested with respect to analytical solutions and some numerical
experiment show some possible applications. Finally in section 4.5, we discuss our general
conclusions with some remarks.

4.1 Mathematical Modeling

For sake of clearness and without losing generalization we limit ourself to one bacteria
species and one attractant species. The governing equation for bacteria transport in porous
media including chemotaxis are:

∂ca

∂t
+∇

(
v f ca

)
= ∇ · (Da∇ca) , (4.1)

for attractant and
∂cb

∂t
+∇

(
v f cb

)
+∇(vccb) = ∇ · (Db∇cb) , (4.2)

for bacteria. In Eqns. (4.1)-(4.2) ca and cb are the attractant and bacteria concentration
respectively, v f is the fluid velocity and the terms Da and Db denotes the molecular diffu-
sion coefficient for the attractant and for bacteria respectively. The so called chemotactic
velocity vector vc represents the bacteria response to attractant transport. The general
expression for chemotactic velocity reads as follows [Chen et al., 1998; Rivero et al.,
1989]:

vc =
2
3

vstanh

(
χ0

2vs

kd‖∇ca‖
(ks + ca)

2

)
∇ca

‖∇ca‖
(4.3)

where vs is the mean bacteria swimming speed, χ0 is the chemotactic sensitivity coefficient,
kd is the dissociation constant that represents the ability of the bacteria to sense gradients
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of the attractant in the surrounding. In scientific literature other different formulation have
been proposed, see for example [Keller and Segel, 1971a,b; Odell and Keller, 1976; Chen

et al., 1998; Ford and Harvey, 2007a]. For example Frymier and Ford [1997] take into
account the effect of porous media surface on chemotactic velocity.

According to SPH formalism is useful to rewrite Eqns. (4.1)-(4.2) in a Lagrangian
framework as:

dca

dt
= ∇ · (Da∇ca) ; (4.4a)

dr
dt

= v f ; (4.4b)

(4.4c)

for attractant, and

dcB

dt
= ∇ · (DB∇cB) ; (4.5a)

dr
dt

= v f +vc; (4.5b)

(4.5c)

for bacteria. Here d
dt denotes the total derivative that follows the motion of the fluid and r

the position of the infinitesimal control volume. Eqns. (4.1-4.2) represent the transports
processes in porous media at microscale, whose solutions is impracticable at field scale in
order to quantify the contribution of chemotaxis to bacteria transport.

Starting from Eqns. (4.1) and (4.2) using the method of volume averaging, Valdés-

Parada et al. [2009a] derived the effective medium mass balance equations for chemotaxis,
which reads as:

dCa

dt
= ∇ · (Da∇Ca) ; (4.6a)

dr
dt

= V f ; (4.6b)

(4.6c)
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for attractant, and

dCb

dt
= ∇ · (Db∇Cb) ; (4.7a)

dr
dt

= V f +Vc; (4.7b)

(4.7c)

for bacteria, where Ca and Cb are the intrinsic average attractant and bacteria concentrations
at Darcy’s scale and V f is the effective groundwater velocity. The terms Da and Db are the
hydrodynamic dispersion tensor, which reads as:

Dî ĵ = (αT |v|+Dm)δî ĵ +(αL−αT )
vîv ĵ

|v| (4.8)

Note that Vc if the effective chemotactic velocity at Darcy’s scale that is different form
the constitutive chemotactic velocity vc at pore scale expressed by Eqn. (4.3). Originally
Long and Ford [2009] quantify empirically Vc increasing of two order of magnitude the
sensitive coefficient χ in order reproduce the observation in their experiments. Alternatively,
Valdés-Parada et al. [2009a] derives the effective chemotactic velocity under particular
assumptions on bacteria and attractant concentrations and on attractant gradients. In this
case the effective chemotactic velocity results from the solutions of the governing equations
at pore scale and of the closure problem associated to an elementary volume. The effective
chemotactic velocity can be expressed by:

Vc =
2
3

vstanh

(
χ0

2vs

kd‖∇Ca‖
(ks +Ca)

2

)
∇Ca

‖∇Ca‖
Da

Da
. (4.9)

4.2 SPH formulation

The original SPH formulation for advection-diffusion equation has been proposed by
Español and Revenga [2003] and then extended to passive solute transport in porous media
in Herrera et al. [2009], which reads as:

dCa,i

dt
=

N

∑
j=1

m j

ρiρ j

(
ρiCa,i−ρ jCa, j

)(
Db,i +Db, j

) ri j

‖ri j‖
·∇Wi j (4.10)
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dri

dt
= v f ,i (4.11)

where the subscript i denotes the ith particle, mi is the mass of ith particle and ρi is its
density, which evolves in time according to relative particles positions as:

ρi =
N

∑
j=1

m jWi j. (4.12)

The term Wi j is the interpolating kernel function centered in ri with respect to the location
r j. As suggested by Ferrari et al. [2009], in this work we use the cubic B-spline which is
defined as follows:

Wi j =
C
hυ

i j


1/3−q2

i j +q3
i j/2 if 0≤ qi j < 1

(2−qi j)
2 +q3

i j if 1≤ qi j ≤ 2

0 if qi j > 0

(4.13)

where qi j = |r j− ri|/hi j, υ is the number of space dimension and C is the normalization
constant so that

∫
Wi j = 1. The term hi j is the so called smoothing length and it is locally

variable:

hi j =
1
2
(
hi +h j

)
, with hi = σ ν

√
m j

ρ j
(4.14)

Similarly the equation for bacteria including chemotaxis in SPH formalism reads as

dCb,i

dt
=

N

∑
j=1

m j

ρiρ j

(
ρiCb,i−ρ jCb, j

)(
Db,i +Db, j

) ri j

‖ri j‖
·∇Wi j, (4.15)

dri

dt
= V f ,i +Vc,i. (4.16)

This implies that in case of bacteria concentration each particle has two advection fields:
the fluid and chemotactic velocity. On the other hand in case of attractant concentration
the particles move only according to fluid velocity. This makes impossible the direct
application of SPH. The only possibility would be to use two sets of particles: one for the
attractant and one for the bacteria. In case of multiple bacteria species one should have a
set of particles for each bacteria species due to different chemotactic response to attractant.
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However, this raises two numerical issues. First, since the particles related to the bacteria
and attractant are different and have different motion fields, they have different positions
in the computational domain. This means that we need a scheme to transfer the attractant
concentration information from the attractant particles to bacteria particles to compute the
chemotactic velocity. For the same reason we have to compute the attractant gradient on
the particles related to bacteria. Secondly, many particles related to bacteria would move
to area where the attractant gradient and concentration are high. This means that some
areas of the computational domain would not have particles related to bacteria making the
SPH inapplicable. As point out by Herrera et al. [2009], the SPH requires particles even
where solute concentration is zero to perform mass diffusion between interacting particles.
This is the main difference between standard RWPT scheme.

Fig. 4.1 shows an illustrative example. We consider Gaussian concentration distribution
of an attractant in an homogeneous flow field whose analytic solutions is known (Fig.
4.1a). On the same computational domain we set an equidistant distribution of particles
which represents the particles carrying bacteria concentration information (4.1c). The
analytical attractant concentration distribution allows to directly compute the attractant
gradient and attractant gradient on each particles, i.e. the chemotactic flow field Fig. 4.1b .
In order to simplify the computation we neglect the attractant diffusion. Both attractant
and bacteria particles move according to the same flow field, and their relative positions
does not change. This means that the contribution of advection due to the flow field can
be neglected. However, the bacteria particle move also according to the chemotactic flow
field directly computed on each particle. Fig. 4.1d shows the particle positions at the final
time step. It is clear that we do not have enough particles in some domain areas to allows
diffusion mass exchanged between particles. We underline that in this case the attractant
concentration in known in each point of the computation domain as well its gradient. Table
4.1 shows the parameters used in this explicative example and they are taken from the work
of Long and Ford [2009]. The chemotactic velocity is computed with the Eqns. (4.3) and
increased by 35 per cent to amplify the chemotactic field effects on particles distribution
decreasing the simulation time.
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Parameter Symbol Value Unit
Maximum attractant concentration ca0 0.3e−4 mg/L
– w 0.06 −
Bacteria mean swimming velocity 4.8e−3 0.06 cm/s
Chemotactic receptor constant 4.8e−3 1.25e−4 M
Chemotactic sensitivity parameter 2.4e−4 1.25e−4 cm2/s

Table 4.1: Parameters for the explicative standard SPH test case.
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Figure 4.1: Standard SPH applied to chemotaxis, explicative test case.

107



4. An alternative SPH formulation to model chemotaxis in porous media

4.3 The new SPH approach

In attempt to have a SPH scheme but using only one set of particles, we propose
the MWSPH developed by [Avesani et al., 2014]. This alternative formulation of SPH
derives from the work of Vila [1999] and Ben Moussa et al. [1999] and it uses high
order Riemann solver to evaluate a numerical fluxes between each couple of interacting
particles. Self similar to traditional mash-based scheme the chemotaxis can be expressed
as a convective flux between each pair of interacting particles, but in a relative moving
frame. As summarized in Fig. 4.2, particles move according to the flow field carrying both
bacteria and attractant concentrations. For each particle we define high order reconstruction
polynomials with a full meshfree scheme. The diffusive and chemotactic fluxes are then
evaluated with the midpoint values between two interacting particles using a Riemann
solver. We point it out that, known the attractant and attractant gradients at particle
interfaces, the chemotactic velocity can be directly computed at the midpoint of the
interpolating particles. This means that the kernel interpolation is not only used to model
only the mass exchanged due to dispersion but also to take into account the chemotaxis.
The use of the high order reconstruction polynomials together with the Riemann solver
ensure the ability to capture the sharp bacteria concentration front which chemotactic
velocity field forms.

As a result the more general advection-diffusion equation including chemotaxis can be
rewritten as:

d
dt

r = v f , (4.17)

d
dt

Q = ∇(F(Q,∇Q)) , (4.18)

where Q = (Ca,Cb) is the vector of the concentration and F(Q,∇Q) is the nonlinear flux
vector, that depends on Q and on the gradient of Q in order to take into account both the
diffusion effects and chemotactic advection, which reads as:

F(Q,∇Q) =

[
−Da∇Ca

−Db∇Cb +VcCb

]
; (4.19)
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As a consequence, the new MWSPH scheme including chemotaxis has the following form:

d (V Q)i
dt

=−
N

∑
j=1

ViVj2Gi j ·∇Wi j, (4.20)

dVi

dt
=

N

∑
j=1

(
v̄i j−v f ,i

)
·∇Wi j, (4.21)

dri

dt
= v f ,i, (4.22)

where Gi j is the numerical flux tensor. The term Vi is the particle volume, which evolves
in time according to Eqn. (4.21) to take into account deformations due to velocity field
[Ferrari et al., 2009] and v̄i j is the velocity at the interface between the two interacting
particles Pi and P j. Following Avesani et al. [2014], the numerical flux Gi j is solved using
the Rusanov-type flux [Dumbser et al., 2008a; Dumbser, 2010b] as

Gi j =
1
2

(
Hi

(
Q−i j ,∇Q−i j , v̄ f ,i j

)
+H j

(
Q+

i j ,∇Q+
i j , v̄ f ,i j

))
−Θ

(
Q+

i j −Q−i j

)
⊗ni j. (4.23)

with
v̄ f ,i j =

1
2

(
v−i +v+j

)
(4.24)

where ni j the unitary vector of the distance particles Pi and P j and H the flux tensor in the
reference frame moving with velocity v f :

H
(
Q,∇Q,v f

)
= F(Q,∇Q)−Q⊗v f . (4.25)

where the chemotactic velocity is computed from the extrapolated left and right states. The
term Θ denotes the dissipation matrix [Hidalgo and Dumbser, 2011]:

Θ =

(
λi j−

1
‖r‖λν,i j

)
I (4.26)

where λi j is the maximum absolute value of the eigenvalues of the Jacobian matrix of the
convective part and λν,i j is the maximum absolute value of the eigenvalues of the Jacobian
matrix of the diffusive part of the flux evaluated in this case with respect to ∇Q. The
dissipation matrix is evaluated both the along the direction ni j in the moving frame with
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fluid velocity.
In the first case λi j reads as:

λi j = max(|Λ−i |, |Λ+
j |), (4.27)

with Λ being the diagonal matrix of eigenvalues of An(Q,v) = ∂H/∂Q ·ni j. In the second
λν,i j is defined as:

λν,i j = max(|Λ−
ν,i|, |Λ+

ν, j|), (4.28)

with Λν being the diagonal matrix of eigenvalues of Bn(∇Q,v) = ∂H/∂(∇Q) ·ni j. Further-
more, Q−i j and Q+

i j are the left and right states at the midpoint of the two interacting particles
obtained by the high order MLS-WENO reconstruction polynomials of degree M Qi(r)
for particle Pi and Q j(r) for particle P j. For details of the MLS-WENO reconstruction we
refer to Reference [Avesani et al., 2014].
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(a)

i
jrij

(b)

i jrij

Qi(ξ, η)

Qj(ξ, η)

Q−ij

∇Q−ij

v+−
c,ij

Q+
ij

∇Q+
ij

(c)

Figure 4.2: Meshless MWSPH method extended to chemotaxis. Particle move along instan-
taneous streamlines carrying both bacteria and attractant concentrations. They exchange
solute mass with particles that are within its kernel support both for dispersion and chemotaxis.
One dimension cut through the reconstruction polynomials along the line connecting particles
Pi and P j as well states Q−i j ,∇Q−i jand Q+

i j ,∇Q+
i jextrapolated to the midpoint and chemotactic

velocity computed form the extrapolated states.
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4.4 Test cases

In this section some test cases are performed. These test cases have the aim to verify the
accuracy and the robustness of the proposed numerical method in simulating chemotaxis
in porous media. In the first subsection we study the one-dimensional problem while in the
other subsections two dimensional problems are taken into account. In all test problems
presented, the time step has been computed according to:

dt =CFL
hmin

i j

|λmax
i j |+2|λmax

ν,i j |/hmin
i j

(4.29)

Following Ferrari et al. [2009]; Avesani et al. [2014], we implement an explicit third order
Runge-Kutta scheme in time ensuring linear stability.

4.4.1 1D chemotaxis test case

This purely one dimensional test case has the aim to verify the accuracy of the MWSPH
applied to chemotaxis. The positions of the particles are fixed during time evolution in
Lagrangian coordinates while they are exchanging mass due to chemotaxis and diffusion.
As a consequence, in this 1D test case particles do not move and the mathematical model
for chemotactic bacterial-attractant system with reaction terms reads as:

∂ca

∂t
=

D
τ

∂2ca

∂x2 + rs (4.30)

∂cb

∂t
+

1
τ

∂

∂x
(vccb) =

µ
τ

∂2cb

∂x2 −Y rs (4.31)

where rs is a Monod kinetics reaction model between the bacteria and the attractant:

rs =−q
ca

ca + ks
cb, (4.32)

which represents the rate of attractant consumption and the rate of bacteria growth. Here
the term q is the maximum reaction rate between the bacteria and the attractant, ks is
the half saturation constant, µ is the random motility coefficient of the bacteria, τ is the
tortuosity of the porous media, D is the diffusion coefficient of the attractant and Y is the
yield coefficient. The reader can find more theoretical details of model (4.30-4.31) in Alt
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[1980]; Erban et al. [2004]; Ford and Harvey [2007a].
We use the anlytical solution proposed by Long and Hilpert [2007] to validate the

numerical scheme. This analytic solution is a more general formulation of the original one
derived by Keller and Segel [1971a] which reads as:

cb

cb0
=

(
cb

cb0

)λ

exp
(
−τc

µ
(x− ct)

)
(4.33)

F
(

ca

ca0

)
−F (1) =

cb0qµ
τc2ca0

exp
(
−τc

µ
(x− ct)

)
(4.34)

with

F (X) =
X1−λ

λ−1
+

ks

ca0

X−λ

λ
(4.35)

under the following assumptions:

1. the bacteria diffusion is null (D = 0);

2. the bacterial growth and death is neglected (Y = 0);

3. the attractant concentration for large positive x equals cb0;

4. the bacteria concentration for large negative x is null;

5. The attractant concentration gradient is null for both large positive and negative x
(∂ca(x =±∞)/∂x = 0);

In this case the chemotactic velocity is defined as:

vc =
χ0ks

3ca

∂ca

∂x
(4.36)

The main difference between the original formulation proposed by Keller and Segel [1971a]
and the one developed by Long and Hilpert [2007] is that the attractant availability is
limited. The analytic solution represents the one dimensional bacterial and attractant
concentration bands that travel with constant speed c through space and whose shape does
not change in time. The expression is obtained setting the parameters such that

cb0qµ
τc2λ

= 1.
Fig. 4.3 shows the numerical results computed with the MWSPH scheme on 400

particles for different time steps. The parameters used in the numerical experiment are
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reported in the Table 4.2 and they are taken form Pedit et al. [2002]. The reactive term
is solved with an implicit Newton-Raphson scheme [Press et al., 1992]. The agreement
between numerical and reference solution is excellent. The numerical solutions move
without changing shape or underestimating the maximum concentrations.

Parameter Symbol Value Unit
Initial bacteria concentration cb0 4.9e+9 c f u/l
Initial attractant concentration ca0 2.83e−3 mg/L
Diffusion coefficient (attractant) D 7.5e−10 m2/s
Mobility µ 3.2e−11 m2/s
Maximum rate of attractant consumption q 7.9e−16 g/c f u/s
Yield coefficient Y 0 g/c f u/s
Dissociation constant kd 2.1e−3 g/l
Half saturation constant ks 1.3e−4 g/l
Chemotactic sensitivity coefficient χ 1.8e−9 m2/s
Swimming speed ν 48 µm/s

Table 4.2: Parameters for one-dimensional test case.
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Figure 4.3: Numerical solution for one dimensional test case at different time step, CLF = 0.8
σ = 2 and M = 2.
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4.4.2 2D diffusion chemotaxis

In this test case we consider an instantaneous release of both bacteria and attractant
solutes in an homogeneous flow field with velocity v0 with orientation of 30o with respect
to x-axis. The initial concentrations are given by:

Ci =
C1

C4
exp
(−(x− x0)

2w2− (y− y0)
2w2

2w4

)
(4.37)

where Ci is the species taken into account with C1 = C0w2, C2 = DîîD ĵ ĵ− 4D2
ĵî
, C3 =

Dîî +D ĵ ĵ and C4 = w2. Table 4.3 reports the numerical test case parameters and Fig. 4.4
shows the initial concentration for both attractant and bacteria. The two plumes are slightly
overlapping to enable the bacteria chemotaxis. The attractant and bacteria parameters refer
to Reference [Long and Ford, 2009].

Parameter Attractant Bacteria
Maximum initial concentration ca0 = 0.3e−4(mg/l) cb0 = 1
w 0.04 0.04
Initial plume maximum position x0 =−0.05, y0 = 0 x0 =+0.05, y0 = 0
Longitudinal dispersion αL = 0.04 αL = 0.008
Transversal dispersion dispersion αT = 0.004 αT = 0.0008
Flow field velocity v0 = 1.e−3cm/s
Flow field orientation β = 30o

l0 l0 = w

Table 4.3: Parameters for two dimensional diffusion test case.

Fig. 4.5 reports the numerical solution of bacteria transport at simulation time T = 3.76,
with T the dimensionless time defined as T = tv0/l0. The contribution of chemotaxis is
clear. The chemotactic bacteria move where the attractant concentration and attractant
gradients are higher. The concentration aligns with the velocity field. The same behavior
can be noticed in case of bacteria without the contribution of chemotaxis. Because of
the presence of attractant, there is a chemotactic advective field that effects the bacteria
transport. It can be notice that the chemotactic flow field is directed according to the
attractant gradient. As a consequence, in case of chemotaxis, the bacteria move to the
center of the attractant plume where the attractant gradient is null and where we have the
maximum of attractant concentration.

Fig. 4.6 shows the snapshots of the numerical solution of the MWSPH extended to
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Figure 4.4: Diffusion test case, initial concentration for attractant and bacteria.

chemotaxis transport at different time steps. The chemotaxis not only causes an asymmetric
shift of the plume of bacteria but also it reduces the contribution of the diffusion to bacteria
transport. Bacteria concentration at section x at different time steps.

Fig. 4.6 shows the time evolution of bacteria concentration at section x to better assess
the contribution of chemotaxis. The section x is located at y = 0 along x-axis (Fig. 4.6b).
The bacteria concentration without the contribution of chemotaxis are also included in
order to underline the chemotactic bacteria response to attractant. The reader can notice
mainly two effects of chemotaxis on bacteria transport. First, the chemotaxis reduces
the bacteria diffusion: the maximum bacteria concentration is higher when chemotaxis is
taken in account. Secondly, we have an asymmetric response of bacteria plume in case of
chemotaxis while the bacteria plume without the contribution of chemotaxis maintain its
original symmetry. The bacteria are developing self sharpening front as already shown in
experimental observations.
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(a) Attractant concentration and chemotactic velocity field generated.

(b) Bacteria with chemotaxis. (c) Bacteria without chemotaxis.

Figure 4.5: Numeral results for diffusion test case at time T = 3.76, CFL = 0.9, σ = 3,
σmls = 4. Attractant concentration and chemotactic velocity field, bacteria concentration with
or without the chemotactic.
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(a) Time evolution of bacteria and attractant concentration in section x.
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(b) Bacteria concentrations and section x. (c) Bacteria concentration plane view.

Figure 4.6: Numeral results for diffusion test case, CFL = 0.9, σ = 3, σmls = 4. Bacteria
concentration and snapshots at different time steps at section sec− x for bacteria with or
without chemotaxis.
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4.4.3 2D advection-diffusion chemotaxis

This numerical experiment is intended to illustrate how both chemotactic advection
field and advection flow field are solved simultaneously with the MWSPH in the more
general SPH framework. Fig. 4.7 shows the numerical experiment set-up to simulate layers
of porous media with different conductivities: a inner part with a higher permeability k1 and
and two external parts with lower permeability k2. Because of the different permeability
the layers have also different velocity V1 and V2. The inner part has a width w. We use the
same experimental set-up given by Wang and Ford [2009] for the computational domain
and flow field which are reported in Table 4.4. The attractant is placed at 2≤ x≤ 10 along
the central x− axis to mimic a contaminant trapped in an aquifer. The initial attractant
concentration is defined as:

Ca =Ca0
1
2

(
er f c

(
(y− y0)−w

4Dat i

)
− er f c

(
(y− y0)+w

4Dat i

))
(4.38)

A pulse of bacteria is then uniformly injected with constant concentration Cb at 1.5≤ x≤
3.5 along the y−axis.

The computational domain is defined as [0,Lx]× [0,Ly] and we use 150×200 particles
equispaced on a regular lattice [0,L1

x ]× [0,Ly]. We point out that the particles are deleted
or added during the simulation following the motion of the fluid. Basically the particles in
the inner part are removed from the downstream and added again at upstream to ensure
the buffer zone to the plumes which allows the bacteria and attractant dispersion. This
limits the total number of required particles for numerical simulation, it decreases the total
computational time. According to the initial conditions set up, the attractant produces a
chemotactic advective field that effects the bacteria transport (Fig. 4.7b).

Fig. 4.8 shows the attractant and bacteria concentrations at time 1225s after 150 time
steps. The heterogeneous flow conditions split the bacteria plume in two part: the inner
part, that moves downstream together with the attractant, and the outer part, that moves
slowly. Part of bacteria moves to the center of the plumes for the presence of chemotactic
flow field. This produces a peak in bacteria concentration located at the center of the plume.
This implies that a large portion of bacteria has migrated to the inner part of the flow field
according to the chemotactic velocity generated by the attractant and perpendicular to the
main flow direction. Furthermore, Fig. 4.9 underlines the contribution of chemotactic to
bacteria transport. We consider the bacteria concentration with or without the contribution
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Parameter Attractant Bacteria
Maximum initial concentration ca0 = 0.3e−4(mg/l) ca0 = 1
w 0.04 0.04
Initial plume maximum position x0 =−0.05, y0 = 0 x0 =+0.05, y0 = 0
Longitudinal dispersion αL = 0.004 (cm) αL = 0.0008 (cm)
Transversal dispersion dispersion αT = 0.0004 (cm) αT = 0.00008 (cm)
Initial diffusion time for the attractant t i (1200s) –
Chemotactic response parameter
Bacteria mean swimming velocity vs 4.8e−3 (cm/s)
Chemotatic receptor constant kd 1.25e−4 (M)
Chemotatic sensitivity χ0 8.0e−4 (cm2/s)
Flow field
Internal velocity V1 0.0087 (cm/s)
External velocity V2 0.00202 (cm/s)

Table 4.4: The parameters for advection-diffusion-chemotaxis test case.

of chemotaxis at section y located at bacteria plume peak. In case of chemotaxis the
maximum bacteria concentration becomes twice the maximum bacteria concentration
when chemotaxis is not taken into account.

The effectiveness of chemotaxis is quantified with the dilution index and with the
dissipation rate. The dilution quantifies the volume occupied by the solute [Kitanidis, 1994]
and the dissipation rate quantifies the mixing rate [Le Borgne et al., 2010]. Fig. 4.10 reports
the dissipation rate and the dilution index for bacteria with or without the contribution
of chemotaxis. The reader can notice that chemotaxis leads to lower dissipation rate.
This means that the bacteria plume spreads in a more narrow region. On the other hand,
the dissipation rate is higher because of the contribution of chemotaxis. This clearly
means that in case of bacteria reactive transport the chemotaxis potentially increases the
biodegradation of the attractant.
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(a) Numerical experiment set-up: initial concentrations and flow field.

(b) Initial condition attractant and chemotatic velocity field. (c) Initial condition bacteria.

Figure 4.7: Dual layers numerical set up, 250×150 particles CFL = 0.9, σ = 3 and σmls = 4.
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(a) Attractant concentration.
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(b) Chemotactic velocity field.

(c) Bacteria with chemotaxis. (d) Bacteria without chemotaxis.

Figure 4.8: Numerical results for advection-diffusion-chemotactic test case, CFL = 9, σ = 3,
σmls = 4.
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Figure 4.9: Dual layers numerical results for bacteria concentration at time 1225s, 250×150
particles CFL = 0.9, σ = 3 and σmls = 4.
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Figure 4.10: Dissipation rate and dilution index for bacteria with or without the contribution
of chemotaxis.
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4.4.3.1 2D advection-diffusion chemotaxis, case 2

In this section, we consider the same initial condition and set-up of the the numerical
example shown in section 4.4.3 but with some differences in the flow field and in the initial
condition for the attractant concentration. On the contrary of the first test case, we set
the inner part with lower permeability k1 and the outer part with higher permeability k2.
Secondly, the initial diffusion time ti (Eqn. 4.38) for the attractant is reduced to 80s in
order to increase the initial attractant gradient and the bacteria chemotactic response. In
particular, Fig. 4.11a reports the numerical solution of bacteria concentration at different
time step in order to analyze the temporal evolution of bacteria concentration. At initial
time step, section y is located along y−axis at the center of bacteria plume and it moves
downstream according to velocity fields V1. As in the test case analyzed in section 4.4.3,
the bacteria plumes split in two part: a inner part that moves slowly and a outer part that
moves faster. Because of the initial higher gradient of the attractant, the chemotatic bacteria
response is more evident. The bacteria produce multiple peaks that increase in time and
move to the inner part of attractant plume. The peaks represent the bacterial bands which
move according to the chemotactic advective field. This bacterial bands have been already
observed in many experimental works [Keller and Segel, 1971a; Rivero et al., 1989; Wang

and Ford, 2009] and here simulated numerically.
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(a) Snapshot of section y in time.
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Figure 4.11: Numerical results for advection-diffusion-chemotactic with intruction test case,
CFL = 0.9, σ = 3, σmls = 4.
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4.5 Conclusion

In this work we have proposed an alternative formulation of SPH method for the nu-
merical solutions of chemotactic bacteria transport in porous media based on the MWSPH.
This scheme takes advantage of the SPH method characteristics in the simulation of so-
lute transport in porous media overcoming its limits for modeling bacteria transport with
chemotaxis. As standard SPH scheme is a fully particles method where particles move
according the flow field and a kernel interpolation models the mass exchanged between
particles due to diffusion. We have show through numerical example that standard SPH
can not handle multiple advective fields like in case of chemotaxis. On the other hand
MWSPH provides a robust mechanism to incorporate chemotaxis in the SPH.

The MWSPH method combines flux evaluation with high order truly meshfree Moving-
Least-Squares WENO polynomial reconstruction. This allows to use only one set of
particles that move according to the flow field, and to model the chemotaxis as an advective
flux between interacting particles in a relative moving frame. Moreover, the Moving-
Least-Squares-WENO reconstruction leads to high order solute gradient concentration
evaluations, which is a fundamental characteristic for the assessment of chemotatic velocity.
Unlike standard SPH scheme, Moving-Least-Squares-WENO reconstruction is not sensible
to particles position and it can reach arbitrary order of accuracy.

We test the new scheme against reference solutions. We present also numerical
example to show its applicability for modeling chemotaxis in porous media. The scheme
is able to reproduce correctly the bacteria transport in porous media with chemotaxis
and to reproduce bacteria band patterns when the physical parameters are proper. The
numerical solutions do not show unphysical oscillations and the scheme is stable under
CFL conditions.
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5 Conclusion

The focus of the research activity has been on a new formulation of the Smoothed
Particle Hydrodynamics (SPH) method and its application to solute and microbial transport
in porous media. This new formulation has been developed specifically to deal with
self sharpening fronts, such as those developing in the transport of cells, bacteria or
multicellular organisms capable to develop autonomous motility in the direction of a
chemical concentration gradient (attractants) either toward or away from the chemical
stimulus. The ability of these organisms to move along the concentration gradients of an
attractant is called chemotaxis.

Existing studies suggest that bacteria forms traveling bands reaching velocity com-
parable to groundwater flow velocity. Experimental and theoretical studies indicated
chemotaxis as an important mechanism in a variety of subsurface processes, in addition to
its crucial role in biology. In order to obtain an accurate representation of chemotaxis at
the continuum scale we propose a new numerical scheme to model advective transport in
porous media with anisotropic dispersion which is based on a modification of the standard
Smoothing Particle Hydrodynamics method (SPH). The work can be divided up into three
parts.

In the first part we develop a new SPH scheme based on Ben Moussa & Vila’ s SPH
formulation and WENO reconstruction technique. The key idea is to produces a high
order accurate reconstruction of the solution using WENO and then evaluate the fluxes
at particle interfaces with a Riemann solver. Firstly, we extended WENO originally
developed in a Eulerian framework, to a mesh-free Lagrangian framework. We tested
two Riemann solvers: the Rusanov flux and the Osher Flux. The use of monotone fluxes
together with WENO ensure stability and non oscillations in the solutions i.e. no artificial
viscosity term is required. We validate the new scheme with a well known test case: two-
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dimensional Sod’s problem. We emphasize that the solution of the inviscid flow problem
is an appropriate test case providing both shock and rarefaction waves. We call this new
scheme MWSPH, because it is the combination of the Moving Least Square and WENO
within the more general formulation of the Vila & Ben Moussa’s SPH.

In the second part we focus on the advection-diffusion equation in heterogeneous
porous media. A typical property of most numerical schemes applied to solve the advection-
diffusion equation is the intrinsic numerical diffusion. This implies low accuracy when
advection dominates diffusion, as occurs in most application to natural heterigeneous media,
or leads to unphysical oscillations and negative concentrations in presence of anisotropic
diffusion. We extend the MWSPH to approximate advection-diffusion equations with
anisotropic diffusion tensor. We demonstrate that the MWSPH, is stable and accurate and
that it reduces the occurrence of negative concentrations. When negative concentrations
are observed, their absolute values are several order of magnitude smaller compared
to standard SPH. Another appreciable characteristic of the new scheme is that it limits
spurious oscillations in the numerical solution more effectively than standard SPH. We test
the accuracy and the essentially non oscillatory behavior of the MWSPH scheme with a
numerical convergence study and by evaluating the range of concentrations obtained with
the new scheme for different ratios of anisotropy of the diffusion tensor.

The MWSPH is finally applied to chemotaxis in porous media. The chemotaxis
advection flux is solved in the particle moving frame. This means that only one set of
particles is used, both for microorganisms and passive solute. The test cases show that this
new numerical scheme is mass conservative and with low numerical diffusion, such that
it can be used to accurately assess the nonlinear interplay between local dispersion and
chemotaxis in porous formations.
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