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The Revised Self-Monitoring Scale detects
early impairment of social cognition in
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Abstract

Background: Although social cognitive dysfunction is a major feature of frontotemporal dementia (FTD), it has
been poorly studied in familial forms. A key goal of studies is to detect early cognitive impairment using validated
measures in large patient cohorts.

Methods: We used the Revised Self-Monitoring Scale (RSMS) as a measure of socioemotional sensitivity in 730
participants from the genetic FTD initiative (GENFI) observational study: 269 mutation-negative healthy controls, 193
C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. All participants underwent the
standardised GENFI clinical assessment including the ‘CDR® plus NACC FTLD’ scale and RSMS. The RSMS total score
and its two subscores, socioemotional expressiveness (EX score) and modification of self-presentation (SP score)
were measured. Volumetric T1-weighted magnetic resonance imaging was available from 377 mutation carriers for
voxel-based morphometry (VBM) analysis.

Results: The RSMS was decreased in symptomatic mutation carriers in all genetic groups but at a prodromal stage
only in the C9orf72 (for the total score and both subscores) and GRN (for the modification of self-presentation
subscore) groups. RSMS score correlated with disease severity in all groups. The VBM analysis implicated an
overlapping network of regions including the orbitofrontal cortex, insula, temporal pole, medial temporal lobe and
striatum.
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Conclusions: The RSMS indexes socioemotional impairment at an early stage of genetic FTD and may be a suitable
outcome measure in forthcoming trials.

Keywords: Frontotemporal dementia, Familial, C9orf72, GRN, MAPT, RSMS, CDR® plus NACC FTLD, VBM

Background
Frontotemporal dementia (FTD) is a complex and het-
erogeneous neurodegenerative disease, manifesting itself
as a diverse spectrum of clinical syndromes. However,
despite differences in presentation, many people with
FTD develop impaired social cognition [1], a set of psy-
chological processes which includes the ability to evalu-
ate social and emotional cues from others and then
select an appropriate behavioural response, a
phenomenon often referred to as ‘socioemotional sensi-
tivity’ or ‘self-monitoring’. In both healthy and clinical
populations, the Revised Self-Monitoring Scale (RSMS)
[2] has often been used to study socioemotional sensitiv-
ity and responsiveness as well as the neural networks
that underlie them [3, 4].
Unlike many neurodegenerative diseases, FTD is

highly heritable with approximately a third of patients
having a causative autosomal dominant genetic muta-
tion [5]. Mutations are most commonly found in one
of three genes, chromosome 9 open reading frame 72
(C9orf72), progranulin (GRN) and microtubule-
associated protein tau (MAPT) [6], with the most
common clinical presentation being behavioural vari-
ant FTD (bvFTD) [7]. However, whilst social cognitive
dysfunction has been studied extensively in sporadic
FTD, few investigations have looked at genetic co-
horts exclusively.

The Genetic FTD Initiative (GENFI) is a multicentre
natural history study aimed at investigating early bio-
markers in a large genetic FTD cohort, including mea-
sures of cognition [5]. This study sought to assess
whether the RSMS could detect early changes in social
cognition and what the underlying neural correlates of
the RSMS were in people with mutations in C9orf72,
GRN and MAPT.

Methods
Participants
Participants were recruited from the fifth data freeze of
GENFI, incorporating data from 24 sites. Of the 849 par-
ticipants enrolled in the second phase of the study,
cross-sectional data on the RSMS was available from
730 participants, consisting of 269 healthy controls (fam-
ily members who tested negative for the mutation car-
ried within the family), 193 C9orf72 expansion carriers,
193 GRN mutation carriers and 75 MAPT mutation car-
riers (Table 1). All participants provided written in-
formed consent.

Assessments
All participants were given the standardised GENFI clin-
ical assessment battery including a medical history,
physical examination, the Mini-Mental State Examin-
ation, and the CDR® Dementia Staging Instrument with

Table 1 Demographics and the RSMS total, EX and SP scores for each genetic group, split by global CDR® plus NACC FTLD score (0,
0.5, 1+). N represents number of participants, mean (standard deviation) shown for age, education and cognitive test scores. In the
symptomatic (1+) groups, MMSE scores were significantly lower in GRN mutation carriers than in the C9orf72 expansion carrier group
but no other differences were seen, whilst no differences were seen in the CDR® plus NACC FTLD-SB

N Sex Age
(years)

Education
(years)

MMSE
(/30)

CDR plus NACC FTLD-
SB

RSMS total
(/65)

RSMS EX
(/30)

RSMS SP
(/35)

%
male

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Controls 269 42 46.2 (13.0) 14.4 (3.4) 29.3 (1.1) 0.2 (0.4) 47.8 (8.4) 23.3 (4.2) 24.5 (5.3)

C9orf72 0 93 41 43.9 (11.6) 14.3 (3.0) 29.1 (1.2) 0.0 (0.0) 47.1 (10.5) 22.8 (5.4) 24.3 (6.0)

0.5 34 44 49.7 (11.2) 14.0 (2.6) 28.4 (2.2) 1.1 (0.7) 41.9 (11.4) 19.8 (6.2) 22.1 (6.3)

1+ 66 65 62.7 (9.5) 13.0 (3.8) 23.3 (6.8) 11.1 (5.6) 23.5 (12.3) 9.6 (7.0) 14.0 (6.6)

GRN 0 122 34 45.6 (12.2) 14.7 (3.5) 29.5 (0.8) 0.0 (0.0) 47.9 (8.9) 23.6 (4.0) 24.3 (5.9)

0.5 24 46 51.3 (13.8) 14.0 (4.3) 28.6 (2.3) 0.9 (0.8) 43.8 (10.7) 21.6 (6.3) 22.2 (5.6)

1+ 47 47 63.0 (7.4) 11.7 (3.4) 20.1 (7.7) 9.8 (6.2) 28.6 (12.1) 12.9 (6.7) 15.6 (6.1)

MAPT 0 41 41 38.3 (11.0) 14.3 (3.3) 29.5 (0.8) 0.0 (0.0) 50.7 (9.7) 24.0 (4.5) 26.7 (6.0)

0.5 13 31 46.4 (12.8) 13.6 (2.5) 28.1 (2.3) 1.1 (0.8) 50.1 (14.2) 23.8 (7.5) 26.3 (7.1)

1+ 21 57 58.9 (9.4) 13.6 (4.0) 21.9 (8.1) 10.3 (6.0) 22.8 (18.9) 9.4 (9.5) 13.4 (9.8)
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the National Alzheimer Coordinating Centre Frontotem-
poral Lobar Degeneration component (CDR® plus NACC
FTLD) (Table 1). The CDR® plus NACC FTLD is a clin-
ical measure of disease severity in FTD, consisting of a
core six cognitive/functional domains with a further 2
domains addressing behaviour and language [8]. Each
domain is rated on a five-point scale ranging from 0
(normal), 0.5 (questionably or minimally impaired), 1
(mildly but definitely impaired), 2 (moderately impaired),
to 3 (severely impaired). The sum of ratings across all
eight domains is used to generate the CDR® plus NACC
FTLD sum of boxes (CDR® plus NACC FTLD-SB) (Table
1). A second measure, a global CDR® plus NACC FTLD
score can also be generated, using a specific algorithm
[9]. We used this global score to classify each of the gen-
etic groups cross-sectionally into those who scored 0
(i.e. were asymptomatic), 0.5 (possibly or mildly symp-
tomatic i.e. prodromal), and 1 or more (fully symptom-
atic mutation carriers). A neuropsychological assessment
was also performed including the Trail Making Test
Parts A and B, the WAIS-R Digit Symbol test, the D-
KEFS Color-Word Interference Test Ink Naming, cat-
egory fluency (animals), the Faux Pas recognition test,
and the Facial Emotion Recognition Test.

Demographics
Demographics are shown in Table 1. There was a signifi-
cant difference in sex between these groups: symptom-
atic C9orf72 carriers had a significantly higher
percentage of males than in the mildly symptomatic and
asymptomatic C9orf72 carrier groups and in the controls
(X2(1) = 4.08, p = 0.044, X2(1) = 9.12, p = 0.003 and
X2(1) = 11.79, p = 0.001, respectively). There was also a
significant difference in age between groups (F(9,720)) =
27.5, p < 0.001): asymptomatic MAPT mutation carriers
were significantly younger and mildly symptomatic GRN
mutation carriers were significantly older than controls
(p < 0.001 and p = 0.043 respectively). All symptomatic
mutation carriers were significantly older than controls
(p < 0.001). Analysis of differences in years spent in edu-
cation (F(9,720)) = 4.09, p < 0.001) showed that symp-
tomatic C9orf72 and GRN mutation carriers spent
significantly fewer years when compared to controls (p =
0.003 and p < 0.001, respectively). All analyses were
therefore adjusted for sex, age and education.

Revised Self-Monitoring Scale (RSMS)
The RSMS is a widely used questionnaire made up of 13
items designed to measure an individual’s awareness of
social behaviour and sensitivity to subtle emotional ex-
pressions during face-to-face interaction [10]. Items in-
clude ‘In conversations, the subject is sensitive to even
the slightest change in the facial expression of the per-
son he/she is conversing with’ and ‘If someone is lying

to the subject, he/she usually knows it at once from that
person’s manner or expression’. Each item is rated by a
participant’s informant on a 6-point scale, ranging from
‘certainly, always false’ (0 points) to ‘certainly, always
true’ (6 points). As well as a total score, two subscores of
the RSMS can also be calculated: socioemotional expres-
siveness i.e. the ability to understand subtle social cues
in others (EX score, out of 30), and modification of self-
presentation i.e. the ability to change one’s behaviour
when it is not appropriate for the current social situation
(SP score, out of 35).

Statistical analysis
Statistical analyses were performed using StataCorp.
2019. Stata Statistical Software: Release 16. College Sta-
tion, TX: StataCorp LLC. In the healthy control group,
Spearman rank correlations were performed to assess
the relationship between the RSMS total score, age, sex
and education. Cross-sectional RSMS total, EX and SP
scores were compared between groups (healthy controls,
and 0, 0.5 and 1+ in each genetic group) using a linear
regression model adjusting for age, sex and education,
with 95% bias-corrected bootstrapped confidence inter-
vals with 1000 repetitions (to correct for non-normally
distributed data). Spearman rank correlations were per-
formed in each genetic group to investigate the associ-
ation between RSMS total score and disease severity (as
measured by CDR® plus NACC FTLD-SB). Finally, non-
parametric partial correlations adjusting for age, sex,
education and disease severity were also performed to
assess the relationship between RSMS total score and
cognition.

Image acquisition and processing
Participants underwent volumetric T1-weighted mag-
netic resonance imaging according to the harmonized
GENFI protocol on a 3T scanner. All images underwent
quality control and any scans with movement or arte-
facts were eliminated from analysis. In addition, any
scans displaying moderate to severe vascular disease or
any lesion presentation were also excluded. 377 scans
were included in the analysis: 151 C9orf72 expansion
carriers, 162 GRN mutation carriers and 64 MAPT mu-
tation carriers. Voxel-based morphometry (VBM) was
subsequently performed using Statistical Parametric
Mapping (SPM) 12(www.fil.ion.ucl.ac.uk/spm), running
under Matlab R2014a (Mathworks, USA). T1-weighted
images were normalised and segmented into grey matter
(GM), white matter (WM) and cerebrospinal fluid (CSF)
probability maps using standard procedures and a fast-
diffeomorphic image registration algorithm (DARTEL)
[11]. Prior to analysis, GM segmentations were then
transformed into Montreal Neurological Institute (MNI)
space, modulated and smoothed using a Gaussian kernel
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with 6-mm fill-width at half maximum, before applying
a mask image as reported in Ridgway et al. 2009 [12]. In
order to investigate the neural correlates of socioemo-
tional sensitivity in each genetic group, multiple regres-
sion models were performed to explore the relationship
of RSMS total score and GM density in mutation car-
riers in each genetic group. Age, sex, scanner type and
total intracranial volume (TIV, calculated using SPM
[13]) were included as nuisance covariates. The Family-
Wise Error (FWE) correction for multiple comparisons
was set at 0.05. However, if no findings were observed at
that strict level of correction, results were reviewed at an
uncorrected p value of 0.001.

Results
Healthy control performance on the RSMS
Mean (standard deviation) RSMS total score was 47.8
(8.4) in controls (Tables S1 and S2). Overall, there was
no significant difference between performance in females
(n = 157: 48.5 (8.0)) and males (n = 112: 46.8 (9.0) (p =
0.21). No significant correlations between RSMS total
score and age (rho = 0.01, p = 0.87) or education (rho =
0.12, p = 0.06) were observed.

Cross-sectional analysis of mutation carriers
Mean RSMS total scores in all symptomatic (CDR 1+)
mutation carriers were significantly lower than in
healthy controls (Tables 1 and 2, Fig. 1): C9orf72 23.5
(12.3), GRN 28.6 (12.1) and MAPT 22.8 (18.9). In the
CDR 0.5 groups, the C9orf72 group also scored signifi-
cantly lower than controls with a trend for a lower score
in the GRN group and no difference in the MAPT group:
C9orf72 41.9 (11.4), GRN 43.8 (12.1) and MAPT 50.1
(14.2). No significant differences were observed between
the asymptomatic (CDR 0) mutation carrier groups and
controls.
Within each genetic group, there was a significantly

lower RSMS total score in the symptomatic group com-
pared with the CDR 0.5 and CDR 0 groups (Tables 1
and 2, Fig. 1).
Stratifying by individual global CDR® plus NACC

FTLD score (0, 0.5, 1, 2 and 3), all genetic groups show
decreasing RSMS total score with increasing CDR (Fig.
2).
RSMS EX and SP scores followed a similar pattern as

for RSMS total performance (Table 1, Tables S3 and S4,
Figures S1 and S2): the mean scores in all symptomatic
(CDR 1+) mutation carriers and the C9orf72 CDR 0.5
group were significantly lower than in healthy controls
for both EX and SP scores. However, additionally, the
GRN CDR 0.5 group had significantly lower mean SP
score than controls. Within each genetic group, there
was a significantly lower RSMS EX and SP score in the
symptomatic groups compared with the CDR 0.5 and

CDR 0 groups, with EX score also lower in the C9orf72
CDR 0.5 group compared with the CDR 0 group (Tables
S3 and S4, Figures S1 and S2).

Relationship between RSMS and CDR® plus NACC FTLD-SB
A strong negative correlation between RSMS total score
and CDR® plus NACC FTLD-SB scores was observed for
all genetic groups (Figure S3): C9orf72 (r = −0.67, p <
0.001), GRN (r = −0.59, p < 0.001) and MAPT (r =
−0.53, p < 0.001).

Relationship between RSMS and cognition
A weak positive correlation was found between RSMS
total score and one test of social cognition, the Facial
Emotion Recognition test, in the C9orf72 group only (r
= 0.18, p = 0.018; Table S5). However, no significant
correlations were found on other tests of cognition ex-
cept for category fluency where there was a weak posi-
tive correlation in both the C9orf72 (r=0.15, p = 0.047)
and GRN (r=0.15, p = 0.047) groups.

Neural correlates of RSMS in each genetic group
The VBM analysis revealed positive associations of the
RSMS total score with grey matter volume corrected for
multiple comparisons in the C9orf72 and GRN groups,
but only at an uncorrected p value of <0.001 for the
MAPT group. Overlapping neural correlates were seen
in each of the genetic groups, with an association of de-
creased score with lower grey matter volume in the orbi-
tofrontal lobe, insula, temporal pole, medial temporal
lobe and both caudate and putamen (Fig. 3, Table S6).

Discussion
In this study, we have shown that the RSMS detects so-
cial cognitive impairment in genetic FTD, including
early difficulties within the CDR 0.5 group of C9orf72
mutation carriers for the total score and for both
C9orf72 and GRN mutation carriers for the modification
of self-presentation (SP) subscore. RSMS total score is
highly correlated with ‘CDR® plus NACC FTLD’ score
and with an overlapping ‘social cognitive’ network of re-
gions including orbitofrontal, anteromedial temporal, in-
sula and striatal areas.
The results here show that the RSMS score decreases

with increasing disease severity as measured by the
CDR® plus NACC FTLD score, with a significant nega-
tive correlation between both scores in each genetic
group i.e. RSMS decreases as CDR® plus NACC FTLD
increases. This relationship has also been described in a
recent study [14], although that study did not separate
mutation carriers into separate genetic groups.
Carriers of C9orf72 repeat expansions at CDR 0.5 (i.e.

possibly or mildly symptomatic) perform significantly
worse on the total RSMS score and both subscores than
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Fig. 1 RSMS total scores in each genetic group, stratified by global CDR® plus NACC FTLD scores. Bars represent the mean score and standard
error of the mean in each group. Significant differences from controls and within each genetic group are starred. Differences between different
genetic groups are not shown

Fig. 2 Mean RSMS total scores in each genetic group by individual global CDR® plus NACC FTLD score. Error bars represent standard error of
the mean
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controls, whilst GRN mutation carriers have a signifi-
cantly lower SP subscore and a trend to lower total and
EX scores than controls. These results highlight the po-
tential for the RSMS to detect early deficits in social cog-
nition in these genetic cohorts of FTD, prior to
phenoconversion to being fully symptomatic.
The profiles of RSMS performance in MAPT mutation

carriers seem to be somewhat unique. Symptomatic
MAPT mutation carriers scored much lower at baseline
than the other MAPT mutation carriers, a result that is
consistent with findings from other cross-sectional [5,
15–17] and longitudinal [18] familial FTD studies. This
could imply that self-monitoring in MAPT mutation car-
riers is relatively stable in early disease stages until soon
before or at the point of conversion when there is a
rapid decline in social cognitive function, as opposed to
a more gradual (and earlier) deterioration in GRN and
C9orf72 mutation carriers [19–22].
Analysis of the relationship of the RSMS with cogni-

tive test scores reveals only very weak correlations, sug-
gesting that the RSMS is likely to be measuring a
different aspect of behaviour than the current psycho-
metric tests. In C9orf72 mutation carriers, there was a
weak correlation with the Facial Emotion Recognition
Test i.e. the ability to detect the emotions of others in
their faces, suggesting some overlap in social cognitive
abilities in performing these tasks within this group.
However, the term social cognition encompasses a num-
ber of different skills which are dissociable [23], and
socioemotional sensitivity (as measured by the RSMS) is
likely to be represent a distinct (if nonetheless overlap-
ping) domain. Weak correlations were also seen with
category fluency in the C9orf72 and GRN groups. The
reason for this relationship is unclear but interestingly,
prior studies have shown an association between verbal

fluency and both social relationships and activity [24,
25], hypothesizing that fluency is better when social
interaction can be maintained.
Previous studies in sporadic FTD have described links

between deficits in empathic perspective taking and a
‘social cognition network’ comprising bifrontal (particu-
larly orbitofrontal), anterior and inferior temporal and
insula cortical regions [26–28]. Subcortical structures
such as the amygdala and caudate have also been impli-
cated in driving such dysfunction [28]. Results of the
VBM analysis in this study highlighted frontal involve-
ment across all mutation carrier groups, in particular the
orbitofrontal cortex, a region known to be involved in
decision-making and coordinating complex social and
emotional behaviours [29–31] with its atrophy and cir-
cuitry disruption having been previously described in pa-
tients with behavioural variant FTD [32]. Previous
studies specifically utilising the RSMS as a tool to meas-
ure social cognition have identified a positive association
between socioemotional sensitivity and functional con-
nectivity within the brain’s salience network, largely be-
tween the right anterior insula and both cortical and
subcortical nodes [10], as well as between right supra-
marginal and angular gyri, and right frontal pole [33,
34]. Here, we demonstrate widespread insula involve-
ment, anteriorly in C9orf72 and GRN mutation carriers
and posteriorly in MAPT mutation carriers, in addition
to anterior cingulate cortex involvement in GRN muta-
tion carriers exclusively, another crucial element of the
salience network [35].
Other brain regions associated with such behavioural

deficits in FTD include the inferior and medial temporal
gyri [4], areas particularly involved in emotion percep-
tion and recognition. Grey matter volume of the tem-
poral pole was positively correlated with RSMS score in

Fig. 3 Neural correlates of RSMS total score. Results for C9orf72 and GRN groups are shown corrected at p < 0.05, with results for the MAPT group
shown at p < 0.001 uncorrected. Results are shown on a study-specific T1-weighted MRI template in MNI space
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all mutation groups, with C9orf72 carriers also exhibiting
an association with superior temporal gyrus and GRN
and MAPT carriers showing a correlation with inferior
temporal gyri specifically. Our results also show an asso-
ciation of the basal ganglia, particularly the caudate and
putamen, in all genetic groups. These subcortical regions
are also known to be implicated in emotion recognition
[36–38], an integral factor in an individual’s performance
on the RSMS.
Overall, there appears to be a network of brain regions

associated with impairment of socioemotional sensitivity
in FTD that includes frontal, temporal, insula and stri-
atal areas, including significant crossover with areas in-
volved in the salience network, thus supporting the
established role of aberrant saliency detection in FTD-
related social cognitive dysfunction.

Limitations
These data should be interpreted in light of some limita-
tions. Despite the large nature of GENFI in comparison
to other FTD studies, one limitation lies in the relatively
small numbers in some of the groups once stratified. Fu-
ture studies should aim to replicate these findings in lar-
ger cohorts, as well as investigate longitudinal changes
in socioemotional sensitivity over time.
Another limitation lies in the design of the RSMS, due

to the inclusion of reverse scoring. While every effort is
taken to ensure the informant understands how to an-
swer correctly, we cannot eliminate the chance of
misinterpretation.
Although the RSMS has been examined in a number

of studies previously, and the data presented here sug-
gests it could potentially be included as an outcome
measure in genetic FTD trials, there has been limited
validation of the questionnaire so far and more work will
be necessary e.g. investigation of test-retest reliability.
Lastly, while global CDR® plus NACC FTLD scoring is

a validated and robust tool used to measure disease se-
verity in FTD, the assessment of motor and neuropsychi-
atric symptoms is not included. With FTD representing
a diverse spectrum of symptomatic profiles, a limitation
of this study lies in possible mis-categorisation of indi-
viduals who might be at a more advanced stage of their
disease but present with symptoms that are not specific-
ally addressed by this scale.

Conclusions
In summary, this study describes the ability of the RSMS
to detect early changes in socioemotional behaviour in
distinct genetic cohorts of FTD and illustrates the neural
correlates of self-monitoring in these populations.
Whilst further studies will be needed to validate the
RSMS and explore how it changes over time, the present

data suggests it may well serve as a useful outcome
measure in future clinical trials.
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