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My own experience is that, unlike art,

causality is a concept whose definition

people know what they do not like but

few know what they do like.

GRANGER, C. W. J. (1980)





Abstract

The study of causality has drawn the attention of researchers from many different fields for

centuries. In particular, nowadays causal inference is a central question in neuroscience

and an entire body of research, called brain effective connectivity, is devoted to detecting

causal interactions between distinct brain areas. Brain effective connectivity is typically

studied by the statistical analysis of direct measurements of the neural activity.

The main purpose of this work is on methods for studying time series causality. More

in details, we focus on a well-establish criterion of causality: the Granger criterion, which

is based on the concepts of temporal precedence and predictability.

Firstly, we consider the standard parametric implementation of the Granger criterion

that is based on the multivariate autoregressive model, where we face the problem of model

identification. For this purpose, we present a new Bayesian method for linear model

identification and we explore its capability of modeling the sparsity structure of the signals.

As a second contribution, we look at the causal inference through the lens of machine

learning and we propose an approach based on the concept of learning from examples.

Thus, given a set of signals, their causal interactions are estimated by a classifier that

is trained on a synthetic dataset generated by a parametric model. This approach, that

we call supervised parametric approach, is implemented by adopting the Granger criterion

of causality and compared with the standard parametric measure of Granger causality.

Moreover, the roles of the feature space and the generative model of the training set are

investigated through a simulation study. Additionally, we show an example of application

on rat neural recordings.

Finally, we focus on the bias introduced by parametric methods when applied in a real

context, i.e. the inability of having a fully realistic generative model. For this purpose, we

analyze how the supervised parametric approach can help in making the inference more

application-dependent, by exploiting a physiologically plausible generative model.
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Dissertation





Chapter 1

Introduction

In our daily life, the observation of events largely contributes to build our experience and

in particular, our attention is drawn to events that show some sort of relation. Like a fire

with the temperature of the air around, the tides of the sea with the Moon’s phases, the

weather conditions and the atmospheric pressure etc. In all these events, the variables

are dependent on each other.

Dependence is an essential component of statistic, pattern recognition and machine

learning, and finding it between events is the purpose of a large body of science. We

could model the dependence between events, make predictions on the behavior of certain

variables of the system, interact with the system in order to reach a certain state. However,

this does not explain how the dependence arises. The origin and the motivation of a

dependence lie in the field of causality.

The study of causality is quite controversial and it involves different fields. Firstly, from

philosophy, there are many contributions since the definition itself of causal interaction

is not straightforward. Then from the side of the numerical sciences like mathematics,

physics, computer science, engineering, the effort is in developing methods for the infer-

ence of causal relations between events. And this area is where this work takes place.

Specifically, we will approach the problem of causal inference between time series with

direct attention to neuroscience applications.

Nowadays, acquiring multivariate neural recordings is a common practice in neuro-

science experiments, thanks to the technological improvements in measuring devices. The

multivariate nature of the recordings and the fact that the acquisition is concurrent be-

tween different brain regions have shifted the attention towards brain connectivity. And

this raises the need for adequate analysis methods.

Brain connectivity aims to study the pattern of interactions exhibited among distinct
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brain units within the brain [27]. This type of study can be conducted at different lev-

els of scale and according to the adopted scale, the concept of brain unit changes. For

example, brain connectivity can be studied from the microscopic level of single synap-

tic connections to the macroscopic level of brain regions. Moreover, depending on the

type of interactions of interest, brain connectivity is divided into structural, functional

and effective connectivity. In the first case, the connectivity patterns are referred to the

anatomical links i.e. the neural pathways, in the second case to the statistical dependen-

cies between brain activity in different units and in the last one to the causal interactions

between them [44]. In particular, effective connectivity provides information about the

direct influence that one or more units exert over another and aims to establish causal

interactions among them [17].

We will see that, in order to derive conclusions about the effective connectivity, there

is a necessary condition to fulfill. And it regards the capability of modeling the system

considering both the physiological structure and also its dynamics. This constraint con-

siderably increases the complexity of the problem, since it requires a deep knowledge of

the system and an explicit definition of the causal effect.

So, on the side of our application scenario, there is the need of a parametric approach

able to accurately model the system in order to facilitate the interpretation of the infer-

ence. While on the side of methods, an entire area of research has been developed to

measure causality by starting from the concepts of causal calculus and interventions [36].

This type of analysis assumes the possibility of manipulating the system, thus it is not a

standard statistical analysis.

The direct application of the interventionist approach in neuroscience is not straight-

forward. For example, it is prevented by ethical limitation on perturbing the system and

by the experimental paradigm commonly adopted in neuroscience. Moreover, it does not

allow the investigation of the inner working of the system [1] as effective connectivity

requires.

The common way to study direct interactions from brain recording is through the so-

called causal connectivity analysis. This lies in the area of statistical analysis since it

assesses parameters of a distribution from samples that are supposed to be drawn of that

distribution [37]. Thus, this is not a causal analysis but to be precise we should refer

to it as an estimate of a weaker form of causality or of a directed functional coupling

(in neuroscience terms). Probably the most used criterion of (weak) causality in causal

connectivity analysis is the Granger criterion [22]. The Granger criterion is based on

the assumption of precedence and predictability of the cause with respect to its effect.
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CHAPTER 1. INTRODUCTION

Precedence means that a cause has to temporally precede its effect. Predictability is

referred to the conditional dependence that exists between the past of the causes and the

future of the effect, conditioned on the past of the effect itself.

The focus of this thesis is on methods for causal connectivity analysis. Thus, given

a set of signals simultaneously recorded from distinct brain units, we seek for causal

connections among them, i.e. the causal structure. We consider as causal connection a

directed binary relation that carries only qualitative information [14], in the sense that

we do not quantify the strength of the interaction.

1.1 Problem statements

The standard way in which a causal connectivity method is developed starts with the

implementation of a criterion of causality. The implementation may assume a specific

stochastic model for the underlying process of data generation, in this case, we refer to

a parametric formulation of the criterion. Or in the case of a model-free approach, the

formulation is said to be non-parametric. We label these two approaches as unsupervised.

Focusing on the parametric implementation of the Granger criterion, the model usually

adopted is the multivariate autoregressive (MAR) model. And in order to derive the

corresponding causal measure, such model has to be identified from the observed data.

As we will see in Section 3.1, the MAR model can be identified by solving a multivariate

linear regression problem. A large number of solutions are available in the literature for

this type of problem but here we will focus on two relevant aspects of our domain of

application. Firstly, due to the nature of neuroscientific dataset, the number of unknowns

can be massive thus the need of regularizing the inference to overcome issues like over-

fitting and non-uniqueness of the solution. Secondly, there may be prior knowledge on the

causal structure that we would like to include in the inference process. To this purposes,

we seek for a solution that is Bayesian-based and that regularizes the inference by a

structured prior, i.e. by enforcing the sparsity structure of the unknown coefficients.

Having a more robust method for linear identification is of interest in the context of the

parametric Granger causal analysis but it still requires to adopt the MAR model in the

implementation of the criterion. On one hand, this assumption simplify the issue of the

model identification since in principle it is an easy task and well studied in the literature.

On the other, in some cases the MAR model suffers for lack of realism because it does not

consider the actual mechanism of signal generation. A straightforward alternative could

be the adoption of a more realistic model but we may face difficulties in inverting it. To
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this purpose, we propose a different approach compared with the unsupervised ones and

it is based on the concept of learning the causal structure from examples. In other words,

the proposed approach lies in the area of supervised learning, indeed we will refer to it as

the parametric supervised approach. Thus, i) we will define a feature space in which each

set of measurements is mapped, ii) a generative model will be adopted for the training

dataset and iii) we will design the classification schema to infer the connections of the

causal structure given a set of time series.

The supervised approach will be initially tested by customizing it to the case of a

MAR model and designing the features space on the Granger criterion of causality. This

may seem a contradiction since we motivated the supervised approach by stressing the

possibility to use a more realistic model for describing the stochastic process. But we

firstly want to study the idea itself of inferring the causal structure through a learning

phase by focusing only on the model identification problem and on the feature space,

without exploiting more accurate models. Moreover, this choice allows a comparison with

the standard unsupervised approach since both are built on the same assumptions.

Afterworld, we will present a dedicated activity that aims to study the case in which

a more plausible model is used instead of the MAR model. We introduce a neuro-

physiological model for the stochastic process and we used it both to evaluate the proposed

approach for causal inference and also as generative model for the training dataset. About

the feature space, it will be still kept as before, so based on the Granger criterion. This

is possible because of two reasons: i) in the supervised approach the training phase has

its own stochastic process which does not directly depend on the causal criterion that

instead is implemented in the feature space and ii) thanks to the training phase, the

model identification is not required thus the complexity of the generative model is not a

potential problem.

1.2 Contributions

The thesis is divided into three parts, that represent the three main activities of my PhD

research. These three parts refer to the problems presented in Section 1.1. Here, we will

recall them and give a summary of the proposed solutions.

In the first part, we propose a new Bayesian method for linear model identification

with a structured prior (GMEP). Our aim is to apply it as linear regression method in

the context of the parametric Granger causal inference. GMEP assumes a Gaussian scale

mixture (GM) distribution for the group sparsity prior and expectation propagation (EP)
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CHAPTER 1. INTRODUCTION

is used for approximating the posterior inference. The proposed method is investigated

both on simulated and empirical data, from which the advantages given by the flexibility

in defining the sparsity structured prior, become evident.

The second part introduces a new perspective to look into the problem of causal in-

ference, which we call supervised parametric approach. The supervised approach is based

on machine learning and, specifically on learning from examples. As example, we refer

to a set of time series together with their true causal structure. A classifier is trained to

identify causal interactions on a dataset generated by the chosen generative model. The

dataset is mapped into the proposed feature space, that is based on the adopted criterion

of causality. This approach is tested in the context of the Granger criterion of causality

and in particular by adopting its multivariate autoregressive implementation. Multiple

experiments are presented on simulated datasets, in order to investigate the properties of

the proposed feature space and the role of the chosen generative model. An example of

real application is shown on rat neural recordings.

In the last part, we focus on the importance of the generative model within the proposed

supervised causality method. In particular, from the point of view of the neuroscientific

interpretation, a causality measure can be interpreted in terms of effective connectivity

only in the case of a stochastic process that physiologically models both the structure

and the dynamics of the neural activity. Thus, this third activity is meant to investigate

the effect of adopting a more physiologically plausible generative model for evaluating

the proposed methods. In other words, the effect of violating the assumption of data

generation assumed by the parametric implementation of the causal criterion. Moreover,

this new model is also used for generating the training dataset for the learning phase of

the supervised approach. We will show that, thanks to the supervised approach, we are

in the position to accommodate a Granger-based parametric implementation of causality

to a new generative model. In particular, we evaluated the case of the Granger criterion

implemented in the feature space when applied on a generative neuronal model able to

simulate the activity of a real neuronal network.

In conclusion, the main contributions of this thesis are:

• the characterization of GMEP as linear regression method with a group sparsity prior

and its evaluation in the context of the causal inference;

• the development of a supervised method for causal graph estimation, its analysis un-

der the Granger definition of causality and its comparison with the standard Granger

index;

• the evaluation of the effect of violating the assumption made by the parametric
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1.3. STRUCTURE OF THE THESIS

implementation of the Granger criterion, on the generative model and the analysis

of how the supervised approach could reduce this effect.

1.3 Structure of the thesis

The thesis is divided into two main parts: Dissertation and Papers. The former part

summarizes the three main contributions of my PhD research and it is structured as

follows:

• Chapter 2 starts with an overview about causality focusing on the difficulty of for-

mulating its definition and difference with correlation, then the temporal dimension

is introduced and so the idea of time series causality. The Granger criterion is pre-

sented together with a review of the most common causal measures that have been

derived from it. Finally, the chapter concludes with a series of background knowledge

on the area of machine learning and neuroscience that will be used later.

• In Chapter 3 the problems of which we aim to provide a solution are stated. The

chapter is structured in three sections one for each activity that we will present. The

same structure is repeated also in the following chapters.

• Chapter 4 is about solutions. It focuses on the problems described above and starting

from how they are commonly faced in the literature, our proposed solutions are

described.

• Chapter 5 collects the outcomes of the analyses done to characterize and evaluate our

proposed solutions. A series of experiments is presented together with their related

results.

• Chapter 6 concludes the first part of the thesis. It recalls the main results presented

before and comments them by focusing on the related implications, limitations and

future works.

The second part contains the manuscripts related to the activities presented in the first

part.

• Chapter 7 contains the manuscript titled Bayesian Estimation of Directed Functional

Coupling from Brain Recordings, this work was conducted in collaboration with the

Computational Cognitive Neuroscience Lab at the Donders Institute for Brain, Cog-

nition and Behaviour (Nijmegen, NL) where I did my internship.
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CHAPTER 1. INTRODUCTION

• In Chapter 8 there is the manuscript titled Supervised Casual Graph Estimation,

this work is the results of an internal activity of the NeuroInformatics Lab that

was initially born as an attempt to compete in the Causal2014 causal inference

competition.

• To conclude, Chapter 9 has inside the manuscript Validating Unsupervised and Su-

pervised Brain Connectivity Inference Methods with Realistic Neural Network Simu-

lations that refers to a follow-up activity of the work in Chapter 8. Such manuscript

describes a collaborative work with the Neural Computation Lab at the Italian In-

stitute of Technology.
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Chapter 2

Background

This chapter introduces the concept of causal inference starting from the problem of

establishing a definition of causality and focusing on its strong link with correlation. Then,

the time dimension is considered and so the problem of time series causality. After that, a

section is dedicated to the Granger definition of causality and to methods that have been

derived from its implementation. To conclude, since this thesis is a multidisciplinary work

in which methods belonging to computer science and statistics are designed to be applied

on neuroscience data, a short overview on machine learning and brain connectivity is given.

In particular, we will focus on two central problems in the field of supervised learning that

are regression and classification. Regarding the part dedicated to neuroscience, the main

goal is to give a general introduction to brain connectivity with particular attention on

the effective and causal connectivity.

2.1 Causality

The study of causality has drawn the attention of researchers for centuries from many

different fields. In this section, we provide a general overview of some difficulties on

defining the meaning of a causal link between events and we warn against naive conclusions

that may be drawn from a correlation analysis.

2.1.1 Definition of cause of Aristotle and Hume

Defining what a cause is has been an interesting question since centuries. Aristotle gave

one of the earliest definitions of cause by relating the concept of cause to a why question.

So the meaning of cause was connected to an explanation on what the origin of the

11



2.1. CAUSALITY

phenomenon is, on what it is made from, or why it is done. In other words, identifying

causes means understanding why one thing happened instead of another.

Among the many contributions that have been had after Aristotle, David Hume in the

18th century reshaped the problem by distinguishing between the meaning of cause and

the approach to seek it. He gave to the process of finding causal relation a proper identity

and a primary role in defining the meaning itself of causal relation. Indeed, according

to Hume a causal relation is the relation that results as output of the process of causal

inference. In particular, that process regards our perception of causal relation (causal

sense) that is modulated by the observation of regular patterns of occurrences.

Thus in Hume’s view, the inference process comes from experience and it is character-

ized by the temporal precedence of the cause and the contiguity between cause and effect

both in time and space.

It is easy to see that Hume’s work on causality is not true in general and many coun-

terexamples show that it does not cover all possible cases. For instance, it does not

recognize a causal interaction in situation in which the lack of a factor causes an effect,

e.g. lack of vitamin C and scurvy.

2.1.2 Relation and differences between correlation and causality

Having related a causal interaction with the presence of regular patterns of occurrences

may erroneously implies a strong link with correlation. Actually, causation is some-

thing more than correlation and deriving causal relations from correlation studies is not

straightforward.

A first difference is that correlation is symmetric while causality might be not. Thus,

causality has a direction and it emerges from psychological experiments that time together

with prior knowledge plays a key role in the human perception of a causal direction.

Despite their difference, correlation is still commonly used to find relations between

variables, the key point is in the experimental setup and on how correlation is computed

and interpreted. This means that a large amount of work is on discarding correlations

that emerge from events that are simply observed at the same time from correlations that

really point out causality. As we stress that not always correlation implies causality, it is

important to mention that there are cases of causal relations without correlation. Thus,

correlation is neither a sufficient nor necessary condition for causality.

Some famous examples were formulated of correlated events in which the causal link is

definitely suspicious: in [33] authors reported a surprisingly very high correlation between

chocolate consumption per capita and Nobel prize assigned in a country, sleeping with
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CHAPTER 2. BACKGROUND

intense ambient light was linked to the development of myopia in children in [41], or

the relation between the price of British bread and the level of Venetian seas as shown

in [53]. The presence of a confounder or an unmeasured common cause may explain the

correlation.

Differently, there might be causal relationship without an apparent correlation, e.g.

running and weight since running might influence the appetite of the athlete then the

correlation between running and weight depends on the strength of the interaction between

these three variables.

2.1.3 Simpson’s paradox

The definition of the set of variables of which we aim to infer the casual network deserves

particular attention, since it may affect the final result. We will come back on this issue in

Section 2.2, because it is of relevance for our analysis. At this stage, in which we generally

refer to the problem of data causality, it is worthwhile to mention the so-called Simpson’s

paradox for having an idea on the importance of choosing the proper partition of variables

in our data. Simpson’s paradox refers to a phenomenon in which the association between

a pair of variables changes or reverses sign if conditioned on a third variable, regardless of

the value taken by this latter. A common example used to explain it, regards the analysis

of the effect of two medical treatments on a population of patients. Looking at the entire

population we may conclude that e.g. treatment A gives the highest recovery rate, while

conditioning the analysis on a third variable, e.g. the gender of the patient, the conclusion

may reverse and be treatment B the most effective for both males and females.

Our main aim in showing this effect is to underline the relevance of the partitioning of

the data on the final results. In addition, the link of this effect with the field of causality

is even stronger. Indeed in [38] an interesting analysis is done on this effect by proposing

a characterization of the phenomenon that includes its explanation and resolution, in the

context of the causal framework developed in [36].

Regarding a real application scenario, we commonly analyze data that are measured

from a predefined parcellation of the system, e.g. the brain in our application. And such

parcellation can be given by intrinsic constraint of the acquisition device, e.g. its spatial

resolution or by anatomical a priori information. Being aware of this effect, the outcome

of a causal analysis may be better interpreted.
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2.2 Causality over time

Beyond the association that may emerge from the data, other higher-level relations should

emerge in order to establish a causal order in the events. Here, we focus our attention

on the dynamics of the events. Thus, we consider the temporal dimension to derive

information on the causal order.

2.2.1 Time series causality

In the previous section, the problem of establishing a causal connection was posed among

data that contains discrete events, e.g. consumption of chocolate versus number of No-

bel prizes both evaluated across countries. This type of studies can be defined with the

general term of data causality, whereas by restricting the field of application to the case

of time series we refer to time series causality. Thus the dimension along with the causal

relationship is evaluated is time. A relevant difference in time series causality analyses

respect to the more general data causality analyses, is on the difficulty of performing

interventional experiments. This motivates the debate in the literature about whether

considering or not time series causal inference an actual causal analysis rather than a sim-

pler statistical analysis [32]. The need to approach the problem through an observational

framework is due to the complexity of the system under analysis. Indeed, this kind of

analysis is normally applied in fields like neuroscience, astrophysics, climate changes etc.

in which the direct intervention into the system dynamic is prevented by the complexity

of the system or by ethical limitations on perturbing it.

The need of approaching the analysis through an observational way implies the as-

sumption of complete observability of the system. Practically, when the causal interaction

between two processes is evaluated we assume there is no hidden process which is a com-

mon driver of the two ones under analysis [14]. This assumption still holds for methods in

which a forward model of the system is used since such model accounts for hidden states

that are mapped to observed quantities but it does not treat the case of a hidden process

that plays as a common driver. Moreover, another important aspect to consider is the

stationarity of the processes since this is a common assumption for the applicability of

many of the existing methods.

2.2.2 Time order and causal order

Having focused our attention on the temporal dimension, it is worthwhile spending few

words on the relation between time order and causal order. First of all, it is a very

14
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controversial problem from different perspectives, i.e. physics, philosophy, logics and a

comprehensive overview is far beyond the scope of this thesis. The idea that time and

causality are connected is something that we naturally perceive, and it was even used by

Leibniz who firstly proposed to reduce time order to causal order.

The order of events influences how we link and explain facts and it is the base of

how we infer causality from observations. It directly emerges from Hume’s theory that

the asymmetry of causal relation due to the constraint on the time order corresponds in

pointing the arrow of causality on the same direction of the temporal arrow. This seems to

lead to a comprehensive theory in which causal asymmetry and temporal asymmetric are

the two sides of the same coin. But problems like simultaneous causality or retro-causality

would be still open. From the physics point of view, causal order may be explained in

thermodynamic terms: the convention of defining positive time (and so causal order)

through growing entropy. This leads to the fact that causes (and not ends) determine

the occurrences of the present. But among physicists, it is commonly accepted that laws

that define universe are uniquely defined. Thus causality does not define a direction of

time [26]. Despite this, the causal asymmetry is used everyday in science for making

experiments and the reason why our causal sense is aligned with the temporal order is

still not formalized.

2.2.3 The principle of common causes

The problem of determining the causal order has led the so-called Principle of Common

Cause. This principle was a fundamental building block of the concept of probabilistic

causality developed by Reichenbach in [52]. Intuitively, the basic idea of probabilistic

causality is that a cause makes its effects more likely. More in details, the principle of

Common Cause states that if two random variables are dependent then one of the follow-

ing explanations holds: i) the two variables are causally connected, ii) there exists a third

random variable which is a common cause of both, or iii) there exists a third random

variable which is a common effect of both, upon which the observations are conditioned.

Common causes are related to the presence of confounding variables. Moreover, a con-

founding variable which is also unobserved is called unobserved confounder and it may

lead to spurious causal connections.

This approach of causality is not free from criticism. The fact that a dependence

between random variables is explained in terms of causality may lead to wrong conclusions.

Logical fallacies may derive from this approach like the so-called post hoc ergo propter hoc

and cum hoc ergo propter hoc. The former refers to the risk of causally relating events
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only on the basis of their time order. Two following events not necessarily are connected.

The latter refers to the phenomenon of chance coincidence, i.e. two events that occur

together do not necessarily have a common cause.

2.2.4 The problem of strong correlation

We consider here an additional issue related to the time series causality that is the high

correlation exhibited by time series both in time and space. In studying complex system

through measured multivariate time series, their auto- and cross-correlations may repre-

sent a starting point for evaluating the causal network. In particular, an entire group of

tools for doing causal inference, called correlation causality tools, is based on the eval-

uation of the lagged cross-correlation. But as we already mentioned before, correlation

can be due to many reasons. So it is crucial to disentangle between correlation that is

associated to an actual causal interaction than spurious correlation. Spurious correlations

may derive from a large number of sources, especially in the case of complex system.

A high correlation in time related to the actual dynamics of the system, may hide

causal relations across signals. Moreover, a strong autocorrelation in time violates the

assumption of independent samples commonly assumed by significance tests [42, 8].

Considering that our application scenario is neuroscience, it is worthwhile to underline

the so-called effect of volume conduction. Volume conduction refers to the effects of

recording electrical potentials at a distance from their source generator [43]. Regarding

brain recording, the recording electrodes are not in direct contact with the neurons, except

for single cell recordings. This implies that the activity of one source is recorded from

multiple sensors. And this will affect the actual cross correlation of the sensors. In order

to contrast this distortion, methods for projecting the sensor acquisition to the source

space have been proposed [12].

2.3 Granger causality

This section is meant to introduce the Granger criterion of causality and its related para-

metric and non-parametric implementations. Moreover, regarding the parametric imple-

mentation the described measures are grouped according to their domain of definition,

i.e. temporal and spectral domain.
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2.3.1 Causal inference

Granger causality is one of the most widespread criteria for causal inference among brain

recordings [50] and it is based on the assumptions of precedence and predictability of

the cause with respect to its effect. As precedence we mean that a cause has to precede

its effect and predictability is referred to the conditional dependence that exists between

the past of the causes and the future of the effect conditioned on the own past of the

effect. In the bivariate case, the criterion was originally enunciated as a condition of

non-causality. Assuming that X and Y are two processes of which we record two time

series {X} = {X1, X2, . . . , XN} and {Y } = {Y1, Y2, . . . , YN} both of N time points, the

criterion says that there is no causality from Y to X if

p(Xt+1|X t) = p(Xt+1|X t, Y t), ∀X t, Y t (2.1)

where X t and Y t mean the past of the process up to time point t. We notice that the

condition of non-causality is based on the comparison between probability distributions

thus at this stage there is no constraint on the stationarity of the processes. Moving

forward from the bivariate case and considering the potential interaction of a third process

Z the criterion becomes

p(Xt+1|X t, Zt) = p(Xt+1|X t, Y t, Zt), ∀X t, Y t, Zt (2.2)

Generalizing, Zt refers to the past of any other process that may interact with X and

Y . The accuracy of a test derived from the Granger criterion is strongly dependent on

the processes on which it is conditioned to. This is related to the assumption of complete

observability as was mentioned in 2.2.1 due to the observational nature of this type of

analysis.

A criterion to be applied has to be implemented. A criterion of causality defines which

condition has to be satisfied to establish that two (or more) processes are (or are not)

causally interacting. Given a certain criterion and according to how it is formulated,

different measure of causality can be developed. There are cases in which the measure

is defined by assuming a model for the underlying process of data generation, the so-

called parametric formulations of the criterion. Or in the case of a model-free approach,

the formulation is said to be non-parametric. Examples of implementations are provided

below for both approaches.
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2.3.2 Parametric implementations

Generally speaking, in the parametric formulation this pipeline is followed: a criterion of

causality is chosen, according to it a model of the generative process is assumed and then a

measure for causality is defined by considering the modelling assumptions. Commonly the

computation of the causality measure requires the identification of the model and this step

may be not trivial [58]. Moreover, to obtain the causal graph from the computed measures,

the significance of the non-zero values needs to be tested. This can be done for example by

bootstrapping techniques or by knowing the actual distribution under the null hypothesis.

Regarding the Granger criterion, its standard parametric implementation assumes a linear

multivariate autoregressive (MAR) modelling of the process. This assumption refers to

how time series are interacting with each other, but without explicitly modelling the

physical mechanism of generation. The autoregressive representation has led to different

formulations of measures of causal interaction both in time and spectral domain.

Time domain We refer to the temporal formulation of the autoregressive implementation

of the Granger criterion as the Geweke measure in time. Consider a system of three

stationary stochastic processes X, Y and Z. The pair-wise conditional approach examines

whether Y has a direct influence on X given the presence of Z by decomposing

Xt =
∞∑

i=1

axx,iXt−i +
∞∑

i=1

axy,iYt−i +
∞∑

i=1

axz,iZt−i + εx,t (2.3)

Afterwards, the reduced autoregressive representation of X is considered

Xt =
∞∑

i=1

a′xx,iXt−i +
∞∑

i=1

a′xz,iZt−i + ε′x,t (2.4)

The Geweke index of causality in time domain FY→X|Z evaluates which of the two

regressions (2.3) and (2.4) models better the process X by computing

FY→X|Z = ln
Σ′xx
Σxx

(2.5)

where Σ′xx = var(ε′x,t) and Σxx = var(εx,t) are the residual variances of the MAR

models (2.3) and (2.4) respectively. Equation (2.5) is interpreted as the variation in

prediction error when the past of Y is included in the regression. A meaningful reduction

of the residual variance when the candidate cause is included in the model identification,

implies a better model for the effect. Thus, the time series evaluated as possible cause is

said to Granger cause the time series evaluated as effect [9]. An important aspect is the
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statistical significance of the estimated causal measure and the common practice is to look

at Equation (2.5) as the test statistic of a log-likelihood ratio test. In particular, it results

that under the null hypothesis of zero causality H0 : axy,i = 0, ∀i the Geweke measure has

an asymptotic χ2 distribution up to a scaling factor which depends on the sample size

and with degree of freedom equals to the difference in the number of parameters between

the models in Equations (2.3) and (2.4). Under the alternative hypothesis, the scaled

test statistic has an asymptotic noncentral χ2 distribution with noncentrality parameter

that corresponds to the scaled casual measure. In a more general formulation the three

processes may be multivariate thus they may represent a set of variables. It has been

proved that this measure of causality since is based on the linear assumption of the

process, is a test of Granger causality on the first moment statistic of the underlying

probability distributions [23].

Spectral domain The autoregressive parametric formulation of the Granger criterion was

also implemented in the spectral domain. It was introduced in [19] and named Geweke

spectral measure of Granger causality. In the bivariate case, the Geweke spectral measure

from X and Y at the frequency ω, is defined as the natural logarithm of the ratio of

the power spectrum of Y computed considering the possible contribution of X and the

power spectrum of Y computed by its own, in both cases evaluated at ω. And it is

interpreted as the portion of the power spectrum associated with the residuals that do

not take into account the presence of Y [13]. The Geweke spectral measure does not have

its equivalent formulation in the information-theoretic framework. As shown in [13], the

lack of a temporal separation between the past and the future of the involved processes is

what allows a spectral formulation of a parametric criteria. Since in the non-parametric

criteria, a way to avoid the temporal separation has not been found up to now, its spectral

formulation is not available.

Other examples of causal measures developed in the spectral domain are the Partial

Directed Coherence (PDC) [5] and the Direct Transfer Function (DTF) [28]. Both were

initially developed under the assumption of identity matrix as covariance matrix of the

innovation process and then generalized in [55] where they are named the information

PDC (iPDC) and the information DTF (iDTF). Both are defined as a coherence measure

between two processes thus they have an interpretation in term of mutual information

rate. Moreover, both are measures to test for Granger causality, but only in the case of

DTF, a direct connection between the bivariate Geweke spectral measure and the bivariate

iDTF exists. iPDC assumes an autoregressive model for the process while iDTF starts

with the moving average representation of the autoregressive model.
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Especially important in the neuroscience application of these causality measures, is

their multivariate extension [39]. In the case of the bivariate iPDC and iDTF, they are

straightforwardly extended to the multivariate case [56]. Also, the Geweke measure in

time domain has a direct extension of its bivariate formulation done by conditioning on

the processes that are not included in the pair [7]. Less immediate is the extension of the

spectral representation, for a detailed explanation see [20].

2.3.3 Nonparametric implementation

Regarding the non-parametric approach. Given a criterion of causality, its definition of

causal interaction is formulated in terms of identity between probability distributions.

Afterwards, a metric is adopted in the information-theoretic framework in order to test

whether the identity holds [60, 54].

In the case of the Granger criterion, a widespread measure of its non-parametric im-

plementation is the transfer entropy. It is based on a comparison among probability

distributions that refer to the hypothesis of independence between the candidate effect

and the past of the candidate cause (2.1) [49, 3, 2]. The transfer entropy from the process

Y to X is defined as

TY→X =
∑

Xt+1,Xt,Y t

p(Xt+1, X
t, Y t) log

p(Xt+1|X t, Y t)

p(Xt+1|X t)

= H(Xt+1|X t)−H(Xt+1|X t, Y t)

= I(Xt+1;Y
t|X t)

(2.6)

where H(· ) indicates the entropy and I(· ) the mutual information. In particular,

the transfer entropy computes the KL-divergence between the probability distributions

p(Xt+1, X
t, Y t) and p(Xt+1|X t). By definition, the KL-divergence is non-negative and zero

only when the two distributions are equal thus also (2.6) is zero if (2.1) holds. Moreover,

the fact that KL-divergence does not consider any specific moments of a given order, is

particularly relevant in detecting non-linear interactions. Beyond transfer entropy, other

non-parametric measures based on different metrics, have been proposed [4], e.g. the

measure based on the Fisher information.
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2.4 Machine Learning

In this section we recall some basic concepts of machine learning. In particular, we focus

on the problems of regression and classification since they will be frequently mentioned in

the following chapters. Moreover, a short paragraph is dedicated to an evaluation method

and to a performance quantification technique. We are referring to the cross-validation

technique and the Receiver Operating Characteristic curve (ROC curve) and related Area

Under the Curve score (AUC score).

2.4.1 Regression and classification

Both regression and classification are two problems of the so-called learning theory. In

learning theory, the usual problem is to find a function that well predicts the output

variable given the values taken by the input variable. There are three main entities on

which we can base our solution: a dataset D, a function class F and a loss function `.

Consider two random variables x and y, the former is the input variable and it takes

values from X , the latter is the output variable and it takes values from Y . Define the

dataset D as

D = {(x1, y1), . . . , (xn, yn)} ∼ P n(x,y), xi ∈ X , yi ∈ Y (2.7)

the function class F as a set a functions f : X → Y and the loss function ` : Y → Y
which penalizes the error between the actual output y and its predicted value f(x). The

standard approach for solving a learning theory problem consists in finding f in order to

minimize ` given D. The difference between a regression and a classification problem is in

Y . The output yi is a continuous variable in the case of a regression problem while yi is a

categorical variable in a classification problem. Commonly, to improve the solution, f is

not directly applied on the input xi but a further function g is defined. This function is

meant to map the input in a space that facilitates the learning and it is usually known as

basis function in the case of a regression problem or we refer to the feature space as the

space in which the input is mapped by g regarding a classification problem. About the

notation, we call the set D data or measured data, and each pair (xi, yi) trial or sample.

When the problem is a regression one, the input xi is the regressor variable while the

output yi is the dependent variable. In the case of a classification problem, yi is the label

of the trial xi.
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2.4.2 Evaluation methods

Cross-validation is an approach for having an estimate of the accuracy of a predictive

model and gives an idea on how the model will generalize. Beyond an estimate of the

model accuracy itself, cross-validation is commonly used as a model selection technique.

Cross-validation splits the dataset D in two disjoint subsets: the training set Dtrain and

the validation or testing set Dtest. Then, the model is trained using the training data Dtrain
and its accuracy evaluated in the unseen validation data Dtest. There exist extensions of

cross-validation that are meant to give a more robust estimate of the model accuracy. For

example, the so-called k-fold cross-validation in which D is split into k disjoint subsets

and cross-validation is repeated k times. At each repetition, the evaluation is done on

a different subset and the training on the remaining k − 1 subsets. Another variant is

leave-p-out cross-validation. It uses p samples that are randomly selected from D, as

validation set, and the remaining samples as training set. The final accuracy of the model

is computed by combining the accuracies of each split.

The Receiver Operating Characteristic (ROC) curve is a graphical plot that shows the

performance of a binary classifier under different threshold settings. The curve is done by

plotting the true positive rate against the false positive rate. Since many classifiers have

a continuous output, in order to obtain the predicted label a further step of discretization

should be applied. And this is commonly done by setting a threshold on the real output.

Choosing a proper threshold may itself be problematic thus the ROC shows how the

classifier performs given various thresholds. The ROC space is a square of side 1, from

0 to 1 on both axises. The best possible classifier would have a point in the upper left

corner, i.e. coordinate (0,1). While a completely random guess classifier would plot points

along the diagonal from the origin to the upper right corner. This diagonal divides the

ROC space into two parts: the upper half in which accuracy is greater that chance level

and the lower part in which accuracy is less than chance level. The global performance

can be quantified by computing the Area Under the Curve (AUC). Being the ROC space

a unit square, in the case of perfect classification the AUC is 1 while it is 0.5 for a random

guess classifier.

2.5 Causality in Neuroscience

The application context of this thesis is neuroscience. Here we introduce a specific area

of neuroscience that goes under the name of brain connectivity and in which time series

causality is of interest.
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2.5.1 Brain connectivity

Brain connectivity aims to investigate the pattern of interactions between distinct units

within the brain [27]. The concept of brain units is strongly related to the level of the

adopted scale. Thus, brain connectivity can be studied from the microscopic level of sin-

gle synaptic connections to the macroscopic level of brain regions. Moreover, depending

on the type of interactions of interest, brain connectivity is divided into structural, func-

tional and effective connectivity. In the first case, the connectivity patterns are referred

to the anatomical links i.e. the neural pathways, in the second case to the statistical

dependencies between brain activities in different units and in the last one to the causal

interactions between them [44]. In particular, effective connectivity provides information

about the direct influence that one or more units exert over another and aims to establish

causal interactions among them [17].

2.5.2 Brain signals

Electrophysiological signals are among the most suitable ones for studying effective con-

nectivity. First, because they directly measure neuronal activity, even though at an

aggregated level. Second, because their temporal resolution is compatible with the pro-

cessing time at the neuronal level, that is in the order of milliseconds [48]. These data

can be measured with invasive or non-invasive methods. Invasive methods allow a high

quality and spatially precise acquisition by implanting electrodes on the brain. On the

side of the non-invasive techniques, magneto- and electro-encephalography (M/EEG) are

widely used because they directly measure neural activity with a high sampling frequency

and, by means of source reconstruction techniques, they provide increased signal-to-noise

ratio and spatial resolution [11].

Another well established technique to study brain activity is the functional magnetic

resonance imaging (fMRI). We do not enter in the details of the generation of the signal, we

only mention that the effect captured by the machine is the variation of the concentration

of deoxyhemoglobin within tissues. In particular, the origin of this variation is that

an increase of the neural activity implies an increase in the local blood flow. And more

importantly, deoxyhemoglobin is paramagnetic thus it can be detected by the scanner [21].

Differently from the previous measuring techniques, fMRI is an indirect measure of the

brain activity since the physical phenomenon acquired by the machine is a consequence

of the quantity of interest. Typically, the relationship between the measured (BOLD)

signal and the underlying brain activity is modeled by a linear time invariant (LTI)

system in which the BOLD signal is the result of the actual brain activity with the so-
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called hemodynamic response function (HRF). This filtering effect of HRF on the actual

brain activity is a key point when BOLD signal is used to study causality. Indeed, how

HRF affects the inference of time lag-based methods, e.g. Granger-based methods, is

an open problem. There are studies that state that the BOLD signal is not compatible

with the assumptions of precedence and predictability that are at the root of Granger

causality [15, 47], while others prove the robustness of Granger causality to variations

of HRF and identify other factors, e.g. SNR and time resolution, as potential issues in

causal inference [51].

2.5.3 Causal connectivity

The interest in studying causal interactions from neuroimaging data is not only limited to

effective connectivity but it has a more general scope. The original definition of effective

connectivity provided in [17], refers to the directed influences that neuronal populations

in one brain area exert on those in another one. Thus an estimator of effective connec-

tivity should consider the physiological structure and dynamics of the system [18]. This

constraint is particularly demanding since it means modeling the underlying physical pro-

cesses. To overcome this issue, a relaxed version of effective connectivity was introduced

in [10] under the name of causal connectivity. Causal connectivity refers to a causality

measure that infers the causality structure without requiring it to be representative of the

underlying neuronal network.

The term causality analysis is commonly used when studying the direct interactions

among brain signals. As highlighted in [14], a causality analysis may have different mean-

ings. Its purpose could be to infer the existence of a direct causal connection, thus the

estimate of the so-called causal structure or (binary) causal graph [16]. A different goal

is to study the mechanism underlying a causal connection. This means focusing on how

a causal connection is physiologically implemented. And a third question concerns the

quantification of the interaction, thus it requires both an appropriate modelling of the

dynamics and a clear understanding of what the causal effect coming from the causal

connection, actually means [46].
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Problem Statement

In this chapter, we present the three problems addressed by our work. From a general

point of view, all the problems are positioned in the area of causal inference among time

series, i.e. time series causality. More precisely, the first problem regards the multivariate

implementation of the Granger criterion in the standard unsupervised approach. Then

in the second problem, we consider a different strategy for tackling the problem of time

series causality and we propose an approach that lies in the area of machine learning.

We will refer to it as the supervised parametric approach. The last problem concerns

the parametric implementation of the proposed supervised approach. In particular, our

interest is on the effect of using a neuro-physiological model instead of the standard MAR

model when describing the stochastic process of data generation.

3.1 Bayesian model identification with structured prior

In the literature on causal inference, and specifically on the family of the parametric meth-

ods implementing the Granger criterion of causality, a common step is the identification

of the MAR model. In practice, this means to estimate the coefficients of the model as

well as the residual covariance matrix. There are two main approaches to estimating the

MAR model: by solving the Yule-Walker equations, or by applying a linear regression

estimator. The former approach has been largely applied, especially in the past, and it

requires the solution of a system of linear equations. Solving the Yule-Walker equation

leads to a stationary model that can be solved iteratively [40]. On the other hand, in [30]

it has been shown that the latter approach should be preferred. The application of a

linear regression method allows more flexibility in the inference process since it can better

deal with the finite number of samples, the potential high dimensionality of the problem

25



3.1. BAYESIAN MODEL IDENTIFICATION WITH STRUCTURED PRIOR

and the risk of over-fitting.

In order to state the problem of MAR identification in terms of linear regression, we

rewrite Equation 2.3 as

yt =

p∑

i=1

AT
i yt−i + et , (3.1)

where yt denotes a dy × 1 vector, representing the state of dy time series measured at

time t, and p is the order of model. Moreover, et ∼ N (0, diag(σ2
1, ..., σ

2
dy

)) is the so-called

innovation process, with temporally independent increments for which each time instant

is a realization from a dy-dimensional Gaussian distribution with zero mean and diagonal

covariance matrix. The Ai ∈ Rdy×dy with i = 1, 2, . . . , p are the coefficient matrices that

model the influence of the signal values at time t− i on the current signal values at time

t. Ai matrices are derived from the causal configuration matrix A, that represents what

a time series causality method should infer given y.

The so-called standard form of the model can be easily derived by constructing the

(dyp) × 1 vector xt = [yT
t−1,y

T
t−2 . . .y

T
t−p]

T. xt contains the past dynamics of each time

series needed to compute the current amplitude yt. All the Ai coefficient matrices of each

time lag are vertically stacked in a unique (dyp)× dy matrix W = [A1; . . . ; Ap]. Thus

yt = WTxt + et , (3.2)

which shows that the model can be identified by solving a multivariate linear regression

problem.

The problem of fitting a certain type of curve to a set of measurements has been largely

studied in science since centuries [35]. And as a consequence, the related literature is very

large. Here, we focus on two relevant aspects for our domain of application: the high

dimensionality of the problem and the availability of prior knowledge that may improve

the inference. The first aspect refers to the nature itself of neuroscientific datasets since

generally a large amount of data are collected from multiple brain regions. Thus, there is

the need of regularizing the inference to overcome issues like the over-fitting and the non-

uniqueness of the solutions. The second point is related to the possibility of including prior

knowledge on the causal structure. In order to address these two elements, a Bayesian-

based method appears to be a meaningful approach. Indeed, in the Bayesian setting,

regularization can be interpreted as imposing a particular prior on the model coefficients.

Moreover, the Bayesian inferential process allows the inclusion of prior knowledge in the

model definition, the use of the model evidence as a measure to compare hypotheses and
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Figure 3.1: Given a criterion of causality, the estimation of causality structure can be mainly implemented

in two different ways: the non-parametric approach (top) and the parametric one (bottom).

also a quantification of the residual uncertainty as captured by the posterior distribution.

In particular, our interest is in the so-called structured prior. This type of prior follows

the idea of grouped variables in the sparse regularization methods. Thus, it allows the

definition of different groups of coefficients that are separately regularized. Prior knowl-

edge on the causal structure is included by grouping coefficients that are supposed to be

drawn from the same prior distribution.

Summarizing, the purpose of this first problem of interest for this dissertation is to

define and study a Bayesian approach with a structured prior to solve a multivariate

linear regression problem in the context of Granger causality for time series.

3.2 From a criterion of causality to a causal graph

According to the literature that was revised in Section 2.3, there are two main ways to

obtain an estimate of the causal graph associated to a set of time series, see Figure 3.1.

The so-called non-parametric approach, which is based on defining a measure in the

framework of the information theory, and the parametric approach, in which the measure

is defined on a specific generative model. Here, we follow the parametric approach, and

the problem of which we aim to provide a solution is the inference of the causal graph

given both a criterion of causality and a stochastic generative model. As causal graph, or

causal configuration matrix, we refer to a n × n binary matrix that indicates the causal

interactions among a set of n time series.

By definition, in any parametric approach a generative model is assumed as represen-

tative of the stochastic process. In the domain of causal inference, the key element that
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the model needs to implement is the concept of causal link between time series. The

definition of causal link derives from the chosen criterion of causality and this latter is not

necessarily application dependent. An example is the Granger criterion and the related

MAR implementation. Indeed, they are not constrained to a specific type of application,

as suggested by their wide application in many fields of science. And this is due to the

capability of the MAR model to suit for a large variety of time series, as well as for electro-

physiological signals [24]. However, the MAR model does not consider the physiological

mechanism of data generation. This on one hand, reduces the complexity of the model

and makes it feasible to invert but, on the other hand, it doest not allow an interpretation

of the inference in terms of effective connectivity.

In the area of computational neuroscience, a large body of literature has been devel-

oped on realistic model of neural processes. Despite the level of realism of the models,

their inversion and inference remain an open problem. As an example, we mention the

Dynamical Causal Modeling (DCM) [34]. DCM overcomes the physiological plausibility

issue by adopting a more realistic generative model. It considers the dynamics exhibited

among neural populations by the definition of a forward model in which hidden states are

mapped to observed quantities. Due to its complexity, i.e. a large number of free param-

eters, DCM is not an exploratory technique. Meaning that it does not infer the causal

graph of a given set of signals. DCM estimates the posterior probability of a specific hy-

pothesis given the data, thus it is used as an approach to test predetermined hypotheses

and to discover the most likely one.

Furthermore, a crucial aspect of any Granger-based method concerns the bivariate

comparison on which the evaluation is based. More precisely, according to the definition

of Granger causality, each pair of observed variables is separately evaluated in order to

determine the presence of a causal link. Only afterwards, the conditional version has

been introduced, in order to consider the other variables under analysis but without

changing the bivariate nature of the evaluation. This type of approach does not address

the multivariate aspect of the data.

As an attempt to overcome these issues, we propose an alternative approach to the

traditional unsupervised one. Our proposal is based on the concept of learning the causal

structure from examples. In other words, the proposed approach lies in the area of

supervised learning methods. We will refer to it as the parametric supervised approach.

A detailed description of the proposed approach is given in Section 4.2.

The basic idea of the supervised approach is to unveil causal connections through

a classification schema. The main components are i) the training dataset, also called
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representative dataset, generated by the adopted generative model, ii) the feature space,

that is defined according to a specific criterion of causality and iii) the classification

schema that allows the prediction of the causal graph of the brain recordings. In order

to make the supervised approach comparable with the standard parametric unsupervised

one, we firstly evaluate it in the case of the MAR implementation of the Granger causality.

Thus, referring to the notation introduced in Section 2.4, the problem is decomposed into

subproblems that need to be separately faced in order to define the supervised approach.

• D = {(xi, yi)} where xi is a realization of a M dimensional MAR process, see Sub-

section 4.2.3;

• yi ∈ Y where Y can be [0, 1] or [0, 1, . . . , 2M(M−1)−1], it depends on the classification

schema, both will be considered see Subsection 4.2.2;

• g(·) regards the definition of the feature space that will be defined according to the

MAR implementation of the Granger criterion by considering the multivariate nature

of the input signals, see Subsection 4.2.1;

• a k-fold cross-validation framework is adopted for the evaluation part.

Each of the listed points will be instantiated in the next chapter according to the scope

of each experiment.

3.3 The role of the generative model in the parametric super-

vised approach

As we mentioned in the previous section, the generative model beyond to implement the

criterion of causality, it should also consider the specific scenario of application. Since

this work is meant to be applied in the context of neuroscience, we investigated under

specific assumptions, whether and how considering the domain of application improves

the causal inference.

More in details, our question is whether the supervised approach can be improved when

a more plausible model of the specific context of application is available. Considering our

field of application, this investigation goes in the direction of making the inference more

interpretable and so moving from a causal connectivity analysis to an effective connectivity

analysis.

Recent progresses have been done in neural network modeling and they make possible

to generate models with biophysical and anatomical properties very similar to those of
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real cortical circuits. Moreover, if these models are simulated as dynamical system, the

generated activity has been shown to have statistics very close to that of recorded cortical

activity. We aim to take advantage of the availability of these techniques by adopting this

type of generative model that we call neural network (NN) model, and generate a NN

dataset to study how the parametric causal inference performs on it.

Firstly, we will analyze the problem of directly applying the supervised approach on

the NN dataset:

• Dtrain = {(xi, yi)} where xi is a realization of a M dimensional MAR process;

• Dtest = {(zi, yi)} where zi is a realization of a M dimensional NN model;

• Y is kept the same across datasets;

• g(·) regards the definition of the feature space that will be defined according to the

MAR implementation of the Granger criterion by considering the multivariate nature

of the input signals, see Subsection 4.2.1;

• for the evaluation a similar k-fold cross-validation approach is used in order to make

results comparable although there are two different datasets for training and evalu-

ating.

Then, the NN model will be used also as generative model of the training dataset thus

as model assumed by the supervised approach as representative of the process of data

generation. The problem is structured as follows:

• D = {(xi, yi)} where xi is a realization of a M dimensional NN model;

• Y is determined by the classification schema;

• g(·) as before, so based on the MAR implementation of the Granger criterion;

• a k-fold cross-validation framework is adopted for the evaluation part.
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Chapter 4

Solutions

In this chapter, we will recall the problems presented before and a solution is proposed

to each of them. More in details, in Section 4.1 a solution to the identification of a

linear model is proposed in the context of the Bayesian inference with the possibility of

defining constraints on the sparsity structure of the independent variables. Section 4.2

is dedicated to the problem of inferring the causal graph from a given set of time series.

And a supervised parametric approach will be presented and customized in the context

of the Granger criterion of causality. Finally, Section 4.3 focuses on a specific aspect of

the supervised approach and its purpose is to study whether a more detailed generative

model with respect to the context of application, may improve the inference.

4.1 Bayesian approach for linear model identification with struc-

tured prior

In Section 3.1 we saw that the problem of identifying a MAR model can be formulated in

terms of a linear regression problem. Many solutions have been proposed starting from

the simple minimization of the root mean square error to more sophisticated penalized

regression model. In particular, a large body of literature concerns the so-called group

sparse regularization methods. This represents a sort of extension and generalization of

the concept of regularization. Regularization was introduced to overcome limitations of

the data fitting methods [45] such as overfitting, non-unique solution, high correlation be-

tween signals etc [25, 57]. It consists in including in the cost function the so-called penalty

term that controls the overall amplitude of the estimates. Regarding the group sparse

regularization methods, they are based on the idea of grouped variables. By grouped

variables, it is meant that the independent variables are clustered to allow a selection of
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explanatory variables that better explain the output. In other words, instead of regular-

izing the whole coefficient vector at once, each cluster is separately regularized. In the

Bayesian setting, regularization can be interpreted as imposing a particular prior called

structured prior on the model coefficients. The concept of structured (or group sparsity or

sparsity-enforcing) priors conveys the same idea of grouped variables. Thus, a structured

prior refers to a clustering of the coefficients in which elements in the same group are

drawn from the same prior distribution.

4.1.1 Gaussian scale Mixture Expectation Propagation (GMEP) method

We propose a novel approach for Bayesian group sparse modeling. We will refer to the

model as GMEP. The name refers to the Gaussian scale Mixture distribution that is

used to form a general class of group sparsity priors, and to the Expectation Propagation

framework that is used for approximating the inference. For a more extensive treatment of

the method, we refer to Chapter 7. Here, a general description is given by Figure 4.1 which

shows the graphical representation of GMEP. Circles represent random variables, while

rectangles denote known variables. The fixed hyperparameters µθ,0 and Σθ,0 are denoted

with dots. Considering the notation used in Section 3.1, Y = [y1, ...,yn]T is the n × dy
output variable matrix, X = [x1, ...,xn]T is the n× dx input variable (or design) matrix,

and W = [w1, ...,wdy ] is the dx×dy coefficient matrix. θ is the hyperparametr vector and

it contains both the hyperparameters of the likelihood terms and the ones of prior terms.

θ is modeled by a fixed multivariate Gaussian prior density with hyperprior mean vector

µθ,0 and hyperprior covariance matrix Σθ,0. W is modeled by a structured Gaussian scale-

mixture prior and a Gaussian observation model is used for each output variable. V and

U are known transformation matrices that select the desired model parameters according

to a specific time point and output variable. In particular, V is used for selecting the

variance hyperparameter of both the likelihood and the prior distributions, while U is

used for defining the structured priors.

4.1.2 Employed structured coefficient priors

Since a large part of this activity is concerned with the characterization of the model under

different structured priors and datasets, we give here an intuitive description of the three

structured priors adopted in the experiment part. Firstly, a uniform Gaussian prior was

defined for each output. Such configuration is strictly related to ridge regression because

the coefficients associated with each output are supposed to belong to the same group.

That means they are modelled as drawn from the same distribution. In other words,
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Figure 4.1: Graphical model of GMEP in which dependences between variables are shown by using circles

for random variables, rectangles for known variables and dots for fixed hyperparameters.

we can see this as the GMEP implementation of ridge. The second trivial configuration

that was taken into account, considers one group for each coefficient. This represents the

opposite situation with respect to the previous prior, thus now each coefficient has its

own distribution to which it belongs to. This approach is known as automatic relevance

determination (ARD) because the hyperparameters of each distribution determine the

sparsity i.e. the relevance, of the related coefficient. The third case in our comparison has

a definition of groups that reproduces the true sparsity structure of the coefficients in W.

Considering the null hypothesis of zero causality, i.e. ax,y,i = 0,∀i, we see that the same

sparsity structure is shared across time lags, i.e. the amount and position of the zero

connections are the same across Ai. This can be rephrased as: the causal configuration

is time independent, i.e. there is no dynamic in the causal interactions Therefore, we call

that prior group the lag-independent prior.

4.2 Supervised causal inference

With regard to the problem of time series causality, we formulate it in order to be solved

in the framework of the supervised machine learning.

The idea of posing causal inference as a learning theory problem is not new. An

example is [29] where the authors adopted a supervised approach for bivariate causal

inference with the use of kernel mean embeddings for feature mapping.

Here, the same idea of a supervised detection of causal interactions is used but with a
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Figure 4.2: Given a criterion of causality, the estimation of causality structure can be implemented in

three different ways: the standard non-parametric approach (top), the parametric one (mid) and the

proposed parametric supervised one (bottom).

different implementation and specifically contextualized for time series causality. In our

version, the model is not used to derive a measure but to generate a dataset that is meant

to represent the population of causal graphs of interest. The purpose of this dataset is to

be used as train set of a standard classifier, aimed to predict the causal graph of future

multivariate time series. A consequence of the proposed approach is that we need to build

a feature space in which to represent the dataset. And the definition of the feature space

is directly connected with the chosen causality criterion. Indeed, the role of the feature

space is to implement the criterion of causality in order to encode the causal structure

exhibited by the trial. Moreover, it is interesting to notice that model and feature space

do not need to derive from the same causality criterion. This means that the proposed

approach allows to disentangle the mechanism of data generation from the criterion used

to describe the causal structure. Figure 4.2 shows the parametric supervised approach

compared with the other two that we discussed in Section 3.2.

The analysis that we conducted on the supervised parametric approach is based on the

Granger criterion of causality. Similarly to what was done in the activity with GMEP,

the Granger criterion was implemented by the MAR model. And also the feature space

was defined according to the same implementation.
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4.2.1 Definition of the feature space

The feature space directly considers the MAR implementation of the Granger criterion.

As we have seen in Section 2.3.2 the bivariate conditional (or simply the bivariate) Geweke

measure in time is based on a comparison between two residual variances. Relying on the

same idea, a given trial of M time series is mapped in a vector of measures that quantifies

the ability to predict a certain time series (effect) from the past values of each possible

combination of causes. All the possible combinations of causes are the subsets that can

be defined from M time series thus
∑M

i=1

(
M
i

)
. By considering that at each combination

of causes, one of the M effects can be assigned, the total number of pairs causes/effect is∑M
i=1

(
M
i

)
M = (2M−1)M (by using the binomial theorem). We refer to each of these pairs

as a causality scenario. Table 4.1 shows the causality scenarios when M = 3. For each

Causes Effect

1 x0 xi

2 x1 xi

3 x2 xi

4 x0, x1 xi

5 x0, x2 xi

6 x1, x2 xi

7 x0, x1, x2 xi

Table 4.1: For each effect xi, i = 0, 1, 2 and M = 3, we report the 7 possible causality scenarios.

causality scenario, a plain linear regression problem is built by selecting, as dependent

variable, the time points from the signal in the effect column. Each of these dependent

variables has a regressor vector composed of the p previous time points selected from

the signals in the causes column, where p is the order of the MAR model. Finally, the

regression problem of each causality scenario is scored, by common metrics like the means

squared error. Such scores are used as features in the feature space representation.

As summarized in Table 4.1, the feature space is defined by exploiting all the possible

causality scenarios among a set of M time series. We call it the complete feature space.

But it is also worthwhile to look at the bivariate Geweke measure in time in terms of

causality scenarios. This allows the definition of a feature space that is based on the same

information that would be used in the standard unsupervised parametric approach. In

the bivariate case, given M time series and selected one as effect, its possible causes (that

are M − 1) define M − 1 causality scenarios plus the causality scenario of the reduced

univariate representation. Thus, in total for each effect, we evaluate M causality scenarios.
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This means that a feature space based on the pairwise Geweke measure has M2 features

and we will refer to it as the pairwise (pw) feature space. Similarly, by repeating the

same reasoning with the conditional pairwise measure, the only difference is in the subset

of causes since now it contains also the M − 2 time series that are not in the pair under

analysis, i.e. the variable Z in Equations 2.3 and 2.4. We will refer to this feature space

as the conditional pairwise (c-pw) feature space.

4.2.2 Classifications schema

Here, we describe two versions of the parametric supervised method. In the first, the

entire causal configuration matrix A is considered the class label of the trial. This choice

implies that one classifier has to be trained to discriminate among 2M(M−1) classes. We

will refer at this solution as the matrix-based classification (MBC). In the second version

of the parametric supervised method, each cell of the configuration matrix is analyzed

independently from the others. Since each cell can be only 0 or 1, then the whole problem

of predicting the causal configuration is transformed into M(M−1) binary problems, one

for each cell. We call this approach the cell-based classification (CBC).

4.2.3 Representative dataset and analysis of the method

Regarding the generative model, the MAR model was used to generate a class-labeled

dataset of which we refer to as L. More precisely, the generative model was not as de-

scribed in the Equation 3.1 but a variation of it that includes an additive noisy component.

L is generated considering the total number of causal graphs that can be produced by M

time series and it will be the representative dataset used as train set. In the causal con-

figuration matrix A there are M(M − 1) free binary parameters and so 2M(M−1) possible

causal configuration matrices. Considering that L must be representative of the entire

population of configurations, it is generated so that multiple trials are included for each

possible causal graph.

Concerning the analysis part, we performed experiments on both synthetic and real

data. The purpose of the experiments with synthetic data, i.e. L dataset, is to compare

the proposed supervised methods against the standard conditional pairwise Geweke mea-

sure in time. We used the method proposed in [6] as (unsupervised) implementation of

the Geweke measure and we refer to it as the GCA method. Moreover, the supervised

approach was evaluated across different feature spaces, i.e. the complete version, pw

and c-pw. Additionally, on the real data, we investigated the behavior of the supervised

approach when the underlying exact generative model is not known in advance.

36



CHAPTER 4. SOLUTIONS

4.3 Neurophisiological modelling of brain signal for supervised

causal inference

Referring to Figure 4.2 and as we mentioned before, the generative model in the supervised

approach may be not related to the adopted criterion of causality. In other words, the

representative dataset in which the classifier is trained, may not be consistent with the

criterion of causality used for the definition of the feature space. Since the purpose of this

third activity is to investigate how a more plausible generative model with respect to the

context of application, affects the inference, we used a representative dataset that is as

similar as possible to the physiological recordings.

We decide to use a model based on [31] in which a cortical network model composed of

leaky integrate and fire neurones, allows a behavior that strongly resembles the primary

visual cortex. By connection several of these cortical network models, we can generate a

simulated information flow among neural circuits that has realistic statistical properties

and for which we know the ground truth of causal configuration. Each simulated network

is composed of 5000 neurons of which 80% are taken to be excitatory and the remaining

20% are inhibitory. An inter-network directed connection is established by linking 20%

of the pairs composed of any cell from the receiver network and an excitatory cell from

the sender network. A detailed description of the model is given in Chapter 9 Subsection

II-B. We refer to the dataset generated by this model as the NN dataset.

We evaluate the capability of inferring the causal graph in NN both when the su-

pervised method (CBC) assumes the MAR model as generative one, and also when the

physiological model is chosen for the generative process. While regarding the feature

space, we always use the complete one as it is described in the Section 4.2.1. We compare

these two scenarios with the unsupervised inference done by GCA.
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Chapter 5

Results

The results collected from the analysis of the proposed solutions, are presented in this

chapter.

5.1 Evaluation of GMEP based on the structured prior

Starting from the activity related to the GMEP method, we firstly recap its main purpose:

investigate how the structured prior affects the final inference in a simulation framework.

Specifically, we aim to show that a more detailed modeling of the group sparsity prior,

through the inclusion of information related to the structure of the data, improves the

inference of GMEP. A comparison across three different priors is conducted, and we refer

to the structured priors in Section 4.1.2. Results are reported by using the uniform

Gaussian prior as baseline with which the other priors are compared. The predictive

performances are evaluated by computing the mean log predictive density (MLPD). For a

detailed explanation of the measure, refer to Chapter 7 Subsection IV-A. Higher MLPD

values corresponds to higher approximate predictive density values for test data points

on average indicating better predictive performance. Moreover from the EP iterations,

an approximation of the mean leave-one-out predictive density can be derived. We refer

to it as MLPDEP and we use it as an estimate of the future predictive performance of the

model. A third variation of MLPD is computed if the ground truth of the coefficient vector

is available. We call it MLPDw and it measures how well the posterior approximation

matches with the true coefficients. These three measures are respectively reported in

Figures 5.3, 5.2 and 5.1.

The second experiment related to GMEP is on an empirical fMRI dataset. A detailed

description of the dataset is given in Chapter 7 Subsection III-B. The purpose of this
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Figure 5.1: ∆MLPD computed with respect to the uniform Gaussian prior and evaluated on the coefficient

estimates.
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Figure 5.2: ∆MLPD computed with respect to the uniform Gaussian prior and evaluated on the EP

iterations.
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Figure 5.3: ∆MLPD computed with respect to the uniform Gaussian prior and evaluated on the test set.

experiment is to use GMEP to test hypotheses about the sparsity structure of the signals

and to exploit the possibility of including prior knowledge of the dataset in the group

sparsity prior. In this example, we assume a difference in the magnitude of the coefficients

that connect areas in the same hemisphere with respect to the ones that connect areas

across hemispheres. We encoded this assumption in a specific group sparsity prior. In

details, firstly GMEP was applied using the three structured priors that we adopted also

in the simulated dataset. Then, we considered the anatomical position associated with

each time series, thus we enriched the three initial priors by adding four new groups in

which the coefficients have been clustered according to the hemispheres that they link

with. The results of these two scenarios, i.e. the three original structured priors and their

extension with anatomical information, are compared with the prior that only models

the hemisphere structure. Summarizing, in total there are 7 different structured priors

and the comparison is done for different time series lengths, Figure 5.4. This allows an

evaluation of the inferences under both different structured priors and number of training

time points (the testing set is kept constant).

5.2 Analysis of the parametric supervised approach

Regarding the supervised approach for time series causality, we report here two groups of

experiments. In the first group, the generative model used for the representative dataset
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Figure 5.4: MLPD on the test set computed by multiple applications of GMEP under differently struc-

tured priors and by varying the number of time points in the training set.

is exactly the same of the dataset to be tested. Both the unsupervised (GCA) and

supervised methods are applied in the L dataset and the related results are shown in

Table 5.1. For the supervised approach after the mapping of the dataset to the feature

space, the logistic regression classifier with l2 regularization was applied in a 5-fold cross-

validation framework. The table quantifies the inference performances in terms of ROC

AUC. In particular, we notice that the AUC score changes from 0.72 for GCA to 0.90-0.92

for the supervised methods.

The outcomes of a second type of comparison are shown in the same table, we refer

to a comparison between different feature spaces for the supervised approach. More in

details, the AUC of the complete feature space, i.e. columns CBC and MBC, the pairwise

one, i.e. CBC pw, and the conditional pairwise, i.e. CBC c-pw, are reported. Of the same

experiment, the related ROC curves are shown in Figure 5.6.

A third comparison that we can make by looking at Table 5.1, is between the approaches

of classification, i.e. the cell-based (CBC) and the matrix-based (MBC) approaches.

Columns 2 and 5 report the AUC of respectively CBC and MBC together with that of

GCA in column 1. The related ROC curves are represented in Figure 5.5. It is worthwhile

to notice that the score of GCA when applied in L does not allow a false positive rate

lower than 0.55.

The second group of experiments aims to investigate the supervised approach when

a mismatch is introduced between the generative model of the representative (training)

dataset and the actual process of signal generation. This is the common scenario in the

practical case because generative models are only approximations of the real physical
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Figure 5.5: ROC curves estimated on the results of the three analysed causal inference methods: Granger

Causality Analysis (GCA), Cell-based Classification (CBC) and Matrix-based Classification (MBC).
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Figure 5.6: ROC curves estimated on the results of CBC when applied on three different feature spaces:

the complete one in contrast with the pw and c-pw ones. The ROC curve of GCA is shown as benchmark.
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GCA CBC CBC c-pw CBC pw MBC

L dataset 0.72 0.92 0.91 0.90 0.91

Table 5.1: AUC values related to the application of GCA, CBC (also with the reduced feature spaces)

and MBC on the L dataset.

process.

Firstly, before the application on real data, the inconsistency between representative

and validation datasets was simulated by generating a new dataset that we name LMAR.

LMAR differs from L only on the noisy component which is absent. The effect of the

additive noise on the inference was evaluated by training CBC in LMAR and then applying

it in L. The resulting AUC is 0.85.

Then the supervised method was applied in a real dataset after being trained on L.

In particular, CBC was applied on the neural recording dataset of which we expect to

infer a specific causal graph given by previous studies [59]. For a detailed description

of the dataset, refer to Chapter 8 Subsection II-B. The causal graph was repetitively

inferred with different dataset configurations, i.e. the inference was done under different

combinations of sampling frequency and time window width. As sampling frequency, we

set it to 600, 800 and 1000 Hz and the model order was computed in order to have time

windows of 5, 10, 15, 20 and 25 ms. For each pair of sampling frequency and model

order, the AUC was computed using as true causal configuration matrix the causal chain

EC3→CA1→EC5. Results are shown in Table 5.2.

5ms 10ms 15ms 20ms 25ms

600Hz 0.80 0.82 0.82 0.83 0.82

800Hz 0.82 0.82 0.82 0.73 0.62

1kHz 0.82 0.82 0.75 0.61 0.64

Table 5.2: AUC computed by applying CBC to the empirical dataset with different sampling frequencies

and time window widths.

5.3 Effect of a physiologically plausible generative model

In the previous example, we saw a real application of the supervised approach in which

both the generative model and the feature space rely on the MAR implementation of

the Granger criterion. This corresponds to assuming that the MAR model is a good

approximation of the stochastic process underlying the validation dataset. Here, we used

a more realistic model for generating a new dataset, called NN dataset. For a detailed
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Figure 5.7: ROC curves from the application of GCA and CBC on the NN dataset. CBC is applied

twice with different training phases. CBC[L → NN] indicates that the method was trained on L while

for CBC[NN] the training was done directly on the NN dataset.

description of the dataset generation, refer to Chapter 9 Subsection II-B.

On NN we run two experiments. Firstly, causality was estimated using GCA and

CBC. The application of CBC was set in order to run under the same condition of GCA.

This means that the training was done on the L dataset and the feature space was the

complete one. Results are shown in Table 5.3 in which the ROC AUCs are reported and

in Figure 5.7 that shows the ROC curves.

The second experiment wants to exploit the possibility offered by the supervised ap-

proach to disentangle the generative model from the criterion used to decode a causal

interaction. To evaluate this scenario, we inferred the causality in the NN dataset by

training CBC on a feature space whose features are still Granger-based, but it is con-

structed on a representative dataset generated by the neuro-physiological model. In Ta-

ble 5.3 and Figure 5.7 this last experiment is indicated as CBC[NN].

GCA[NN] CBC[L→ NN] CBC[NN]

AUC 0.82 0.82 0.91

Table 5.3: AUC values related to the application of GCA and CBC on NN.
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Chapter 6

Discussion and conclusion

This final chapter concludes the first part of the thesis. The main results that have been

described in Chapter 6 are now discussed. Moreover, Section 6.2 concludes our work and

some possible future developments of these activities are listed in Section 6.3.

6.1 Discussion

GMEP on the simulated dataset Through the analysis presented in Section 5.1 we char-

acterized a novel approach for Bayesian linear modeling with structured prior (GMEP).

Our goal is to apply it in the context of MAR identification as initial step of a Granger-

based estimate of the causal brain connectivity. One of the main advantages of GMEP

is its flexibility in the definition of the structured prior. In order to better understand

this property, we designed a simulation study to test how the structured prior affects

the prediction under different conditions of dimensionality and connectivity density, i.e.

sparsity. We modeled the sparsity by two types of structured priors: the ARD prior and

the lag-independent prior. Both are compared with the uniform Gaussian prior.

The lag-independent prior models the actual sparsity structure of the coefficients since

it is designed according to the assumptions of the MAR model thus forming an optimal

compromise in terms of model complexity. By looking at Figures 5.1 and 5.3, we see that

the lag-independent prior always outperforms the other priors or, in the worst case, it is

equal to the uniform Gaussian prior.

The uniform Gaussian and the ARD priors can be seen as two extreme cases in terms

of model complexity. Regarding the uniform Gaussian prior, the model complexity is very

low since all the coefficients that are involved in the modeling of the same time series,

are clustered in the same group. Thus, they are supposed to be drawn from the same
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distribution, i.e. they are assumed to share the same sparsity level. And by considering

our experimental design this assumption is realistic only in the case of very high connection

density. Indeed, under this condition the uniform Gaussian and the lag-independent priors

behave similarly. On the other hand, the ARD prior models the sparsity structure very

accurately by assigning a single group to each coefficient. Even though, theoretically it

should be able to always properly model the real sparsity of the coefficients, in practice

it is beneficial only in the case of very sparse interactions. The drawback of the high

complexity of the ARD prior is clearly shown in Figures 5.2 and 5.3 where it appears

that ARD overfits the training data. Summarizing, since the lag-independent prior is

formulated in order to hold the assumption of the MAR model thus in agreement with

the simulated dataset, the fact that it overcomes the other priors is evidence of the

effectiveness of GMEP.

GMEP on the empirical dataset Looking at the experiments on the empirical data, i.e.

Figure 5.4, the lag-independent prior performs consistently better under different data

lengths than the other two priors. This result is in agreement with the outcomes of

the comparison on the simulated datasets. And it suggests that the assumption of time

independence of the causal configuration, is more plausible than assuming a shared or

completely independent sparsity structure. Moreover, the improvement given by the

inclusion of the hemisphere partitioning in the structured prior, confirms our assumption

that the sparsity structure of the coefficients reflects the hemisphere structure.

Supervised parametric approach for causal inference We developed a classification-based

method by assuming a model for the stochastic process and a causality measure for the

mapping in the feature space. The idea is to generate a representative dataset of the

actual context of which we want to infer the causal interactions and then to map this

dataset in the predefined feature space. After that, a classifier is trained in order to

predict the causal graph of a given set of time series. This implies that the inference

is directly dependent both on the chosen generative model and on the features of the

mapping.

Simulated analyses of the supervised method We put this general framework into context

by customizing it in the case of the Geweke causal inference in time. This implies the

choice of the autoregressive model as generative process of multivariate time series and

the assumption of precedence and predictability in time for the identification of a causal

interaction.
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As Table 5.1 shows, GCA is more sensitive to the additive noise than the supervised

approaches. Moreover, Figure 5.5 confirms that the supervised methods (CBC and MBC)

perform better than GCA, indeed their curves are closer to the optimal curve than the

curve of GCA. And in particular, the inference done on L by GCA does not provide an

estimate of its ROC curve from the origin. It emerges that under a certain value of false

positive (or true positive) rate it is not possible to decrease by running GCA on this

specific dataset. This is because a large amount of interactions are equally ranked and

more precisely, they are assessed to be causal interactions with probability one. Indeed

in general, GCA tends to overestimate the causal interactions.

Focusing on the results of CBC and MBC, we notice a similar performance among

them, even if CBC performs slightly better than MBC. We just remind that the feature

space is the same for both methods, the difference is the number of classifiers and classes.

Comments on the feature space The feature space is a crucial aspect of the supervised

approach. Here, we focus on how it treats the multivariate nature of the time series.

Differently from the Geweke measure that is a conditioned pairwise method, in the

supervised case the multivariate dependencies among time series are encoded in the feature

space by evaluating all the possible causality scenarios. Indeed, the evaluated causality

scenarios do not only include all the pair combinations of time series but all the pair

combinations of causes and effect, in which as a cause there can be from 1 to M time

series.

A better insight on this aspect is provided by Figure 5.6 in which the role of the

feature space is investigated. Together with the complete feature space that is defined by

the causality scenarios in Table 4.1, two reduced versions (pw and c-pw) are considered.

As expected, c-pw and pw feature spaces are less accurate than the complete one in

detecting the causal graph. And also their order with respect to the complete case, is in

compliance with our expectations, i.e. c-pw provides a richer description of the causal

graph than pw.

Toward the real application case By definition in the parametric approaches for causal

inference, a realistic model of the generative process has to be defined. Considering

the previous analyses, this issue was not taken into account because we evaluated the

supervised methods by a cross-validation procedure. Thus, the same dataset was used

for both the training and testing phases since our focus was mainly on the feature space

and on the classification schema. It is anyway important to observe that in the real-case

scenario, there will definitely be a bias due to the model uncertainty. To have an insight
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on what would happen in the case of a mismatch between models, we firstly considered

an example in which the level of noise is the only source of bias between training and

validation data.

Looking at the application of CBC to the L dataset with the training done on LMAR,

its AUC score drops from 0.92 to 0.85. By the artificial introduction of the model bias, a

decrease was expected, but it is interesting to notice that this result is still higher than

0.72 that is the AUC of GCA on L.

Example of real application Regarding the application of the supervised method to the

neural recordings, from Table 5.2 we see how the AUC score changes according to the

sampling frequency and the time window width, i.e. the model order. We notice that in

general, the scores are good. In particular, AUCs are higher when the time window width

is of 5 and 10 ms, with the exception of the case of the sampling frequency equals to 600

Hz in which the scores are not influenced by the window width. Moreover, we notice that

the AUC decreases with both the sampling frequency and the model order. This can be

a sign of overfitting the neural signals since a higher number of time points is used in the

mapping to the feature space when we move to the bottom right corner of Table 5.2.

It needs to be remembered that this result is based on the validity of the causal chain

EC3→CA1→EC5 that is supposed to represent the actual causal configuration matrix of

each trial. Moreover, differently from the previous results, now a further bias might be

introduced due to how a causal interaction is decoded in the feature space, beyond the

violation of the modelling assumption itself.

Scalability issues on the supervised methods We discuss now some practical implications

related to the supervised framework in which we have placed the problem of causal infer-

ence.

MBC is strongly affected by the number of time series that composes a trial. Indeed,

the number of classes is a power of 2 and only the example of M = 3 is computationally

tractable. This problem related to the scalability of the method is partially solved with

CBC. CBC handles the issue of having an exponentially growing number of classes by

focusing the classification at the level of the single cell of the configuration matrix. Since

each cell is a binary variable, CBC approaches the inference as a binary classification

problem. Consequently, the number of classes is constant and the number of classifiers

has a polynomial growth rate in M . Additionally, thinking on the scalability issue from

the side of the feature space, the number of scenarios is again exponential with M , but it

is not as problematic as the number of classes was in MBC.
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A new neurologically plausible model The last activity that is presented in this thesis,

aims to investigate the effect of changing the generative model when causality is inferred by

a parametric method. Following the same trace of the previous experiments, as parametric

method we refer to the autoregressive implementation of the Granger criterion.

The novelty is on the generative model assumed for the validation dataset. Instead of

maintaining the consistency between the data generation and the working hypothesis of

the methods, a new generative model is adopted which is not strictly based on the MAR

implementation but it is more neuro-physiologically plausible.

Causality was inferred from this dataset by GCA and CBC (CBC was initially trained

on the L dataset). As we can see from Figure 5.7 and Table 5.3 GCA[NN] and CBC[L→
NN] are very similar in terms of performance level. This can be explained by considering

that both methods assume as stochastic model the MAR model and also the inference

phase is based on the MAR implementation, even though they derive from two different

approaches.

Effect of a changing the generative model The next experiment takes advantage from the

possibility offered by CBC to disentangle the generative model from the criterion used

to decode a causal interaction. While in the unsupervised approach this is not allowed

since the causal criterion is directly derived from the generative model, in the case of the

supervised one the training phase allows the chosen causal criterion to be shaped on the

adopted generative model.

By keeping the same feature space, i.e. the same causal criterion to identify a con-

nection, CBC was trained on a dataset generated by the NN model. The advantage of

using the same generative model both in the training and evaluation phases is shown in

Figure 5.7 and Table 5.3 where this experiment is labeled as CBC[NN].

This improvement of the inference capability was actually expected, since we reduced

the bias between training and evaluation phases. Beyond the fact that the effect of

this bias reduction is now quantified, it is important to remark the neuro-physiological

plausibility of the model. Thinking on the real application scenario, this outcome provides

evidence that the supervised approach associated with a neural population model may

improve the inference without the need to invert or identify the neural model.

This represents just an initial step before reaching the stage where the causal inference

is correctly performed by combining the supervised approach and the neural model, but

important for moving in this direction.
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6.2 Conclusion

This thesis focused on the problem of time series causality. Specifically, its purpose was to

develop new methods for the inference of causal interactions between neural recordings.

More in details, we focused on a well-establish criterion of causality, the Granger

criterion, and we considered some issues in its implementation and related new approaches.

In the first part (Part I) of the manuscript, we presented an overview of the research

activities that we carried out. Many details were omitted since the aim is to give an

high-level description of the work. For a complete description of the methods, datasets,

experiments and results, refer to Part II that contains the manuscripts of the three activ-

ities.

Summarizing, we addressed the problem of validating the effect of the group sparsity

prior in GMEP with simulated dataset. And we showed an application with real fMRI

data in which different hypotheses concerning the sparsity structure were tested. The aim

of this activity was to characterize GMEP so that it can be applied in the context of MAR

identification as initial step of a Granger-based estimate of the causal brain connectivity.

Moreover, we developed a new supervised method for causal graph estimation. It

was studied under the Granger definition of causality and compared with the standard

(unsupervised) Geweke measure. Two variations were proposed of the supervised method:

CBC and MBC. The experiments that we run on these methods, aimed to analyze the

roles of the feature space, the classification schema, i.e. MBC vs. CBC, and the generative

model of the representative dataset.

The third analysis that concludes this dissertation, aimed to evaluate the effect of

adopting a neuro-physiologically plausible model to generate the representative dataset.

Firstly, we evaluated the inference performance of both approaches, i.e. unsupervised and

supervised, when strictly based on the Granger criterion and applied on neural network

data. Then, we exploited the possibility offered by the supervised approach to separate

the generative model from the criterion used to decode a causal interaction. Thus, we

used the neural network model also for the generation of the representative dataset while

the same Granger-based feature space was kept. We believe in the importance of this

experiment even though it only involved simulated data, since it goes in the direction of

making the inference more interpretable from the neuroscience point of view. And thus

it is closer to the principles of effective connectivity.
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6.3 Future works

Possible extensions of this research and future works.

• The analysis on GMEP presented here focuses on the effect of changing the group

sparsity prior. However, in order to perform a causal connectivity analysis, a further

step is needed for computing the causal configuration matrix from the GMEP esti-

mates. In Chapter 7 in which the complete work on GMEP is presented, a solution

to this step is proposed. It is based on the idea of considering the posterior distri-

bution of each group, and deriving the presence of an interaction according to its

shape. This approach is limited to the use of the lag-independent prior and it was

defined by a heuristic evaluation of the simulated results. Thus, it deserves further

investigations to evaluate its applicability on real data.

• Regarding the supervised approach for causal inference, the current experiments al-

ways consider a trial as a set of 3 time series. An interesting direction for future

studies is the extension to a larger number of time series. As we said in Section 6.1,

CBC partially handles the problem of having an exponentially growing number of

classes. But the generation of a proper representative dataset and the effect that a

higher number of time series could have on the feature space, still remain open ques-

tions. We already evaluated the idea of tackling the scalability issue by decomposing

the causal inference among n time series as
(
n
3

)
inferences among 3 time series. From

this side, preliminary results have been collected.

• Beyond the characterization with simulated datasets of the supervised approach, its

evaluation with real data is of a great importance. This aspect needs to be analyzed

in particular when the neuro-physiologically plausible model is used to generate the

representative dataset.
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Bayesian Estimation of Directed Functional
Coupling from Neural Time Series

Danilo Benozzo, Pasi Jylänki, Emanuele Olivetti, Paolo Avesani, Marcel A. J. van Gerven

Abstract—In many fields of science, there is the need of
assessing the causal influences among time series. Especially
in neuroscience, understanding the causal interactions between
brain regions is of primary importance. A family of measures
have been developed from the parametric implementation of the
Granger criteria of causality based on the linear autoregressive
modelling of the signals. Objective: we propose a new Bayesian
method for linear model identification with a structured prior
(GMEP) aiming to apply it as linear regression method in the
context of the parametric Granger causal inference. Methods:
GMEP assumes a Gaussian scale mixture distribution for the
group sparsity prior and it enables flexible definition of the
coefficient groups. Approximate posterior inference is achieved
using Expectation Propagation for both the linear coefficients
and the hyperparameters. Results: GMEP is investigated both
on simulated data and on empirical fMRI data. Firstly, GMEP
is compared with others standard linear regression methods.
And secondly, the causal inferences derived both from GMEP
estimates and a standard Granger method, are compared across
simulated datasets of different dimensionality, density connection
and level of noise. Conclusions: these analyses show how adding
information on the sparsity structure of the coefficients positively
improves the inference process. Significance: GMEP allows a
better model identification and a consequent causal inference
when prior knowledge on the sparsity structure are integrated
in the structured prior.

Index Terms—Directed functional connectivity, Granger
causality, Bayesian linear regression model, Group sparsity.

I. INTRODUCTION

Wiener-Granger causality is a well-established approach to
study causality between time series [1]. This approach is
based on the definition of causality proposed by Wiener [2]
which considers one time series the cause of another if
the latter is better predicted by including information about
the first. An implementation of this concept was proposed
by Granger [3] who used it to estimate causality between
stochastic processes, modelling them as linear autoregressive
(AR) models. Specifically, the parametric implementation of
Granger causality (GC) identifies a causal interaction between
two time series by first modelling them through an AR model
and then by comparing how the prediction error changes if
each time series is modelled just using its own past values or
also including the past values of the others.

Granger causality has been applied in many different
fields [4]–[7] and it has become a popular method for iden-
tifying causal interactions due to its simplicity and intuitive

D. Benozzo, E. Olivetti and P. Avesani are with the NeuroInformatics
Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy and with the
Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy.

P. Jylänki and M.A.J. van Gerven are with the Radboud University, Donders
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meaning. This holds particularly in neuroscience, where the
understanding of causal interactions among brain areas is of
primary importance. According to the terminology adopted
in neuroscience, the Wiener-Granger method belongs to the
group of the directed functional connectivity methods [8] since
it aims to identify the direction of the statistical dependences
among a set of brain signals, without making any assumptions
about the mechanistic nature of these connections. In neurosci-
entific applications, given the concurrent acquisition of time
series from different brain regions, the problem of inferring
causal interactions should take into account the multivariate
nature of the data. This desideratum was considered in [9],
[10], where a generalization of GC was proposed that relies
on the multivariate autoregressive (MAR) model, thereby
moving beyond pairwise causal interactions. Apart from the
well-known Granger method, several others solutions have
been developed. The vast majority of them still starts from
the Wiener idea of causality and from modelling the causal
interactions through an MAR model [11], [12].

All the approaches that involve MAR modelling require
the estimation of the model coefficients as well as of the
residual covariance matrix. Since each time point is modelled
through a multivariate linear model, this estimation procedure
can be shown to be equivalent to solving a multivariate
linear regression problem. Due to the nature of neuroscientific
datasets, the number of coefficients can be massive. This
occurs because signals are acquired from a large number of
brain areas. These areas are expressed in term of single or
groups of voxels in the fMRI case, and sensors or sources in
the MEG/EEG case. Defining dy as the number of time series
and p the so-called order of the MAR model that indicates
how many time lags are involved in the modelling of the
present time point, the total number of MAR coefficients is
p × dy × dy . Hence, the number of unknown coefficients is
more than quadratic with respect to the number of time series.
This point reveals a crucial property of the multivariate linear
regression problem since it is a bottleneck for the scalability
of most of the standard linear regression techniques.

The simplest linear regression method is the ordinary least
squares (OLS) method. OLS computes the solution by mini-
mizing the root mean square error. There are many examples
in which this approach, or variations of it, are considered in the
literature [1], [11], [13]–[15]. As mentioned in [16], overfitting
is the main risk of OLS when a large number of independent
variables are used in the modelling. Even more problematic
is the regression if the number of independent variables
exceeds the number of observations since the least squares
solution will not be unique. Moreover, the high correlation
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between neural time series provides an additional challenge
to OLS estimators [17]. In order to overcome the limitations
of OLS, one may attempt to regularize the solution [18].
Regularization is done by including in the argument of the
cost function a term that controls the overall amplitude of
the estimates. This term is generally called penalty term and
the resulting approach, penalized regression model. In [19]
the authors analysed the use of different penalized regression
models, including the well known ridge regression and lasso,
for directed functional connectivity estimation. In [18] the
elastic net regularizer was considered. Elastic net considers
both the penalty terms of ridge and lasso, thus both l1 and
l2 norms of the coefficients are linearly combined in the
cost function. A more sophisticated version of the standard
penalized regression models, named group lasso, was pro-
posed in [20] where the authors introduced the concept of
grouped variables. By grouped variables, it is meant that the
independent variables are clustered in order to find important
explanatory variables in predicting the dependent variable.
The clustering of the independent variables implies a related
clustering of the coefficients at which a separate penalty term
is associated. This allows each cluster of coefficients to be
separately regularized instead of a global regularization of
the whole coefficient vector. This family of methods is often
referred to as group sparse regularisation methods. In [21], the
asymptotic properties of group lasso were analysed in terms of
consistency, normality and uniqueness of the estimate. While
in [22], a comparison between standard lasso and group lasso
is presented by focusing on the conditions under which group
lasso outperforms lasso. In the context of causal inference in
multivariate time series, group lasso was studied and compared
with non-grouped penalized regression models in [23]. In that
work, group lasso was used to enforce coefficient sparsity by
grouping together the coefficients connecting the same pair of
signals across all time lags. An example application of group
lasso with pseudo-EEG data is discussed in [16].

In the Bayesian setting, regularization can be interpreted
as imposing a particular prior on the model coefficients. As
pointed out in [24], major advantages of Bayesian inference
are: the possibility to include prior knowledge in the model
definition, the use of model evidence as a measure to compare
hypotheses, and finally a quantification of residual uncertainty
as captured by the posterior distribution. Several Bayesian
approaches were presented in the literature for group sparse
modelling, in which the idea of structured priors is exploited to
enforce sparsity on the coefficients. The concept of structured
(or group sparsity or sparsity-enforcing) priors in the Bayesian
setting conveys the same idea of grouped variables. Thus, a
structured prior refers to a clustering of the coefficients in
which elements in the same group are drawn from the same
prior distribution. In [25] a multivariate Gaussian prior was
assumed for each group and the expectation maximization
(EM) algorithm was used for the inference. A similar approach
is presented in [26] where a Dirichlet process prior was
employed as structured prior while variational Bayesian was
used for the estimate. Other examples have been developed
in [27]–[29]. Regarding the application of group sparsity
promoting methods in the context of neuroscience, we mention

the approach proposed in [30]. In that case, a multidimensional
Gaussian distribution was associated to the structured prior and
the inference was done in the variational Bayesian framework.
This approach was also used in [31]. Another example of a
sparse Bayesian regression method is that of [17]. Here, the
authors assume that the coefficients are spatially smooth within
each time lag and a closed-form solution is obtained by using
conjugate priors. The spike-and-slab distribution represents yet
another way to constrain the amplitude of the coefficients. This
distribution is investigated in [32], [33] as sparsity-enforcing
prior for linear regression.

Here, we propose a novel approach for Bayesian group
sparse modelling, called GMEP 1. The name GMEP refers to
the Gaussian scale Mixture distribution that is adopted to form
a general class of group sparsity priors, and to the Expectation
Propagation framework that is used as an efficient method for
approximate Bayesian inference. The model is formulated in
a general way that enables flexible definition of various non-
conjugate observation models. Furthermore, structured priors
can be specified using hyperparameters that themselves rely
on a multivariate Gaussian prior. The hierarchical structure
of the model allows the priors and the hyperparameter vector
not to be fixed but modelled by the chosen prior distributions.
The posterior is approximated using EP [34] for both the linear
coefficients and the hyperparameters. EP has shown to be very
accurate and reasonably fast with respect to variational Bayes
and Markov chian Monte Carlo [35]. A drawback of EP is
the no guarantee of convergence but if properly implemented,
convergence can be reliably reached [36].

In this paper, we use GMEP as the basis for a linear
regression model to identify a MAR model and to infer the
connectivity structure of a given sample of time series. The
resulting approach is evaluated both on simulated and em-
pirical fMRI data. The analysis on the simulated dataset aims
firstly to compare GMEP with the most commonly used linear
regression methods for MAR estimation. Then our approach
is evaluated under different prior definitions that represent
different sparsity structures of the coefficients. Moreover,
we compare the predictive capability of GMEP, and of the
multivariate Granger Causality toolbox (MVGC) [15], across
different noise levels. Finally, the experiments conducted on
the empirical fMRI dataset are meant to investigate the plau-
sibility of some hypotheses related to the sparsity structure of
the MAR coefficients. The most realistic hypothesis among the
considered ones, is chosen to estimate the directed functional
structure in the fMRI time series.

II. METHODS

In this section we present the multivariate autoregressive
model (MAR) that was used to generate the simulated datasets.
Next, a description of the Gaussian Mixture Expectation
Propagation (GMEP) method is provided.

A. Multivariate autoregressive model

Let yt denote a dy × 1 vector, representing the state of dy
time series measured at time t. A MAR model of order p,

1https://github.com/ccnlab/GMEP
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computes yt as the linear combination of its p previous time
points:

yt =

p∑

i=1

AT
i yt−i + et , (1)

where et ∼ N (0, diag(σ2
1 , ..., σ

2
dy

)) is the so-called innovation
process, its increments are temporally independent and each
time instant is a realization from a dy-dimensional Gaussian
distribution with zero mean and diagonal covariance matrix.
The Ai ∈ Rdy×dy with i = 1, 2, . . . , p are the coefficient
matrices that model the influence of the signal values at time
t − i on the current signal values at time t. Thus each Ai is
involved in the data generating process associated with time
lag i.

The so-called standard form of the model can be eas-
ily derived by constructing the (dyp) × 1 vector xt =
[yT
t−1,y

T
t−2 . . .y

T
t−p]

T. xt contains the past dynamics of each
time series needed to compute the current amplitude yt. All the
Ai coefficient matrices of each time lag are vertically stacked
in a unique (dyp)×dy matrix W = [A1; . . . ; Ap]. Thus, each
yt is equal to

yt = WTxt + et , (2)

which shows that the model can be identified by solving a
multivariate linear regression problem.

B. Gaussian scale Mixture Expectation Propagation method

We present a novel expectation propagation approach for
sparse hierarchical generalized linear models and use it as a
linear regression method for MAR model identification. Our
approach was originally implemented in a more general way
that allows the definition of various observation models and
coefficient priors. Here, a summary of the method is presented
in a context suitable for MAR modeling with a Gaussian
observation model and a Gaussian scale mixture distribution
for the group-sparsity prior. We will refer to it as GMEP. A
detailed description of the model in its general form is given
in the Supplementary Material.

As shown in (2), for MAR modeling purposes it suffices
to consider a linear regression problem with multiple output
variables, where the probability density of each observed dy×1
output vector yi depends on the dx×1 input vector xi through
a linear transformation WTxi, and W is a dx × dy matrix of
unknown coefficients. We assume that the observation noise
is Gaussian and independent over different output variables
as well as observations. Therefore, given n input-output pairs,
denoted by D = {xi,yi}ni=1, the observation model can be
written as

p(Y|XW,θ) =

n∏

i=1

p(yi|WTxi,θ)

=

n∏

i=1

dy∏

k=1

N
(
yi,k|wT

kxi, exp(VT
j(i,k)θ)

︸ ︷︷ ︸
=σ2

k

)
, (3)

where Y = [y1, ...,yn]T is a n × dy output variable matrix,
X = [x1, ...,xn]T is a n × dx input variable (or design
matrix) matrix, and W = [w1, ...,wdy ] is a dx×dy coefficient

matrix. In the case of a MAR model, index i enumerates all
observed time instants up to n, and dy corresponds to the
number of interacting signals. We assume that each of the
ndy likelihood terms depends on the hyperparameters θ via a
linear transformation by a known dθ× 1 vector Vj(i,k) where
j(i, k) = (i − 1)dy + k, and that the noise level for each
output is encoded as σ2

k = exp(VT
j(i,k)θ). Here we simply

assume that the noise level can differ between signals but that
the noise variance is constant over time points. This can be
achieved by including one noise parameter for each output in
θ and by making Vj(i,k) a binary vector that picks the desired
component from it for each likelihood term.

The hierarchical prior distributions is of the form p(W|θ) ∝∏n+m
j=n+1 p(U

T
jw|VT

jθ), where w = vec(W) is a dw × 1
coefficient vector obtained by vertically concatenating the
columns of W. The known transformation matrices Uj and
Vj are assumed to yield low-dimensional scalar random
variables suitable for efficient inference using EP. For MAR
identification we adopt a structured Gaussian scale-mixture
prior of the form

p(W|θ) =

dy∏

k=1

dx∏

l=1

N
(
wl,k|0, exp

(
VT
j(l,k)θ

))
, (4)

where j(l, k) = n + (k − 1)dx + l and the prior variance
of coefficient wl,k is controlled by exp(VT

j(l,k)θ). In GMEP
this is obtained by setting Uj to be unit vectors that pick
only one coefficient at a time and Vj to be binary indicator
vectors that cluster the coefficients into a certain number ng of
predefined groups. Each of the groups is assigned an unknown
variance hyperparameter exp(θg(j)) that is picked up by the
inner product θg(j) = VT

jθ for each coefficient.
We assign a fixed multivariate Gaussian prior density to the

hyperparameters θ:

p(θ) = N (µθ,0,Σθ,0), (5)

where µθ,0 is the hyperprior mean vector and Σθ,0 the
hyperprior covariance matrix. By adjusting µθ,0 and Σθ,0 we
can form coefficient priors with different sparsity-promoting
properties. For example, if we set Vj(l,k) to unit vectors
that attach only one hyperparameter to each coefficient and
assume Σθ,0 to be diagonal, we can create sparser solutions
by increasing the diagonal entries of Σθ,0 and decreasing the
prior means µθ,0. An uninformative signal-specific noise prior
can be obtained by making the corresponding elements of µθ,0
sufficiently small and including an “independent” diagonal
block in Σθ,0 with sufficiently large diagonal values. This
corresponds to setting independent log-normal priors to the
noise variances σ2

k.
Figure 1 shows the graphical model representation of

GMEP. Random variables are denoted with circles, while
known variables are denoted with rectangles. The fixed hy-
perpameters µθ,0 and Σθ,0 are denoted with dots.

This general model definition enables the implementa-
tion of various different linear models via the choice of
the transformations V1, ...,Vn for the likelihood terms and
Vn+1, ...,Vn+dydx for the prior terms. In the following we
present the three structured coefficient priors that were used
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j=(i-1)dy+1,...,idy
      i=1,...,n

xi

wdy

w1

wk
yi,k

yi,dy

θ

i=1,...,n

Uj
j=n+1,...,n+m yi,1

Vj

μθ,0
Σθ,0

j=n+1,...,n+m

Vj

Fig. 1: Graphical model of GMEP in which dependences
between variables are shown by using circles for random
variables, rectangles for known variables and dots for fixed
hyperparameters.

in the experiments. They are described in a formal and
mathematical way by considering the notation adopted until
now, their actual interpretation and meaning are reported in
Subsection III-C.

1) Uniform Gaussian prior: A uniform Gaussian prior with
unknown scalar prior variance for each output (similar to ridge
regression) can be obtained by choosing Uj = ej (dw×1) and
Vj = ek (dy×1) for j = (k−1)dx+n+1, ..., (k−1)dx+n+dx
and k = 1, .., dy . This leads to ng = dy different inference
problems, if the coefficients related to different outputs are not
coupled through the observation model;

2) Automatic relevance determination: An automatic rele-
vance determination (ARD) prior can be formed by assigning
individual scale hyperparameters to each coefficients. Thus,
we set Uj = Vj = ej (dw × 1) with j = n + 1, ..., n + dw.
This construction assumes individual scale parameters for each
coefficient ng = dw and no information sharing between the
outputs, which results in independent regression problems for
each output. This prior is very flexible because each of the
dw = dydyp coefficients can be regularized out of the model
independently, but the resulting inference problem is also more
challenging in terms of avoiding overfitting.

3) Group sparsity prior: Group sparsity priors can be con-
structed by defining possibly overlapping groups as Uj = ej
(dw × 1) and Vj = [1, 0, 1, 0, 0, ..., 0]T (ng × 1). Groups
could be defined either so that they combine coefficients
from different output units into same groups or completely
separately for each output. In particular, in our experiments
we will use a group sparsity prior defined by choosing
Uj = ej (dw × 1) and Vj = e(r−1)dy+l (dydy × 1) with
j = (k−1)dy+(r−1)dx+ l+n for l = 1, ..., dy , r = 1, .., dy
and k = 1, ..., p. From now on, we will refer to this group
sparsity prior as lag-independent sparsity since it assumes that
the coefficient sparsity structure is independent from the time
lag and also not shared between the outputs. Compared to
the ARD prior, the lag-independent sparsity is less flexible
because it combines information over different lags. However,
it still provides dy × dy free prior parameters that can explain
the causality structure between the dy interacting signals in
our MAR model.

C. Approximate inference

A deterministic Gaussian approximation to the posterior
distribution is computed using the EP algorithm [34]. The
posterior approximation for the GMEP, defined by combining
equations (3), (4) and (5), is formed by replacing the non-
Gaussian likelihood terms, N (yi,k|wT

kxi, exp(VT
j(i,k)θ)), and

the prior terms, N (wl,k|0, exp
(
VT
j(l,k)θ

)
), with joint Gaus-

sian functions of w and θ. Note that if θ was known, no EP
approximation would be needed since the terms of the model
are already Gaussian with respect to w.

The EP algorithm proceeds by initializing the approximate
factors to some sensible values, and then updates each of
them in turn. At each update, first, one of the approximate
terms is removed from the approximation and replaced with
the actual model term to give a tilted distribution, which can
be regarded as a more refined approximation to the posterior.
Then the parameters of the left-out approximate term are
updated so that the KL divergence from the tilted distribution
to the true distribution is minimized. In case of a Gaussian
approximation this corresponds to matching the mean and
covariance of the approximation with the tilted distribution.
This iteration is repeated at some order for all model terms
until convergence. In practice we update all the likelihood
terms in one batch keeping the prior term approximations
fixed, and vice versa. Finally, after convergence, posterior
summaries of the unknown model parameters and predictions
are computed using the Gaussian approximation for w and θ.

III. MATERIALS

The first two parts of this section describe the simulated and
empirical datasets that were used in the experiments. Whereas
the last part is about the structured coefficient priors adopted
in GMEP.

A. Simulated MAR datasets

The synthetic datasets were generated by an MAR model,
and our goal is to study how good is the identification
of GMEP. In order to explore the model performance in
different regimes, multiple ensembles of time series were
generated under different conditions. In our simulations the
free parameters that identify a dataset are the dimensionality
dy and the connection density c. Here, dy refers to the number
of time series contained in each trial of the dataset and c
refers to the fraction of non-zero off-diagonal connections (i.e.
causal interactions). This choice to characterise each dataset
through the pair (dy, c) is motivated by the fact that it heavily
influences the ability to accurately estimate causal interactions.

In our simulations dy ∈ {3, 7, 11} and c ∈ {0.1, 0.5, 0.9}.
Each dataset, indexed by (dy, c), consists of 100 trials (repe-
titions). Each trial Y = [y1, . . . ,yn]

T is a n×dy-dimensional
matrix, where the length of each to the dy time series is set
to n = 1500 time points. Y is generated by an MAR model
of the predefined order p = 10 and with a predefined causal
configuration matrix A. A is a binary matrix, it contains the
causal structure that determines the interactions between time
series. Specifically, A(r, s) = 1 means that signal r causes
signal s. In each time lag, the related Ai matrix is generated
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by multiplying the non-zero elements of A with Gaussian
distributed random numbers.

Each trial has its own configuration matrix A while the
connection density c is shared between trials in the same
dataset. Not all the n time points are used in the analyses
since we decided to keep the same proportion of elements in
the design matrix and unknowns (coefficients) in order to have
more comparable results across datasets. Thus the number of
actual time points involved in the experiments depends on dy .
In Table I, we report for each dy the related n and the resulting
shape of Y, X and W.

dy n Y : [n× dy ] X : [n× (dyp)] W : [(dyp)× dy ]
3 189 189×3 189×30 30×3
7 441 441×7 441×70 70×7
11 693 693×11 693×110 110×11

TABLE I: For each dy the number of time points n is specified
and the resulting shape of matrices Y, X and W.

In the last experiment conducted on the simulated data we
introduced a third free parameter: the level of noise γ, γ ∈
{0.2, 0.4, 0.6, 0.8}. Each trial is computed as Y + γYnoise,
where Ynoise has the same shape of Y and it is the output
of an univariate AR process.

B. Empirical fMRI dataset

The empirical data we used belong to the Gallant Lab
Natural Movie 4T fMRI Dataset [37], [38] and were acquired
on a 4T Varian INOVA scanner. The scanning was done using
T2*-weighted gradient echo EPI: TR=1 s, TE=28 ms, Flip
angle=56 degrees, voxel size = 2.0 × 2.0 × 2.5 mm3, and
FOV=128 × 128 mm2. A total of 18 coronal slices were
acquired and they cover the posterior portion of occipital
cortex, starting at the occipital pole. A parcellation of the
measured voxels into 26 regions of interest was provided
by the authors. Subjects were presented with natural movies
during a training and a test session. See [38] for further details
about the experimental protocol.

The time series we used in our analysis were extracted from
the training dataset of one of the three acquired subjects by
averaging signals corresponding to the same region of interest.
This gave for each subject 26 time series; one for each ROI.
Each time series had a length of 7200 s, since 12 separate
10-minute blocks of movies were presented for the training
dataset. For our analyses, we considered the concatenated
block and ignored modelling errors at the boundaries between
blocks.

C. Employed structured coefficient priors

In Section II, we explained the structured priors in analytical
terms, here we will recall them giving an interpretation of their
analytical definition from the point of view of the sparsity
structure that they assume.

Firstly, a uniform Gaussian prior was defined for each
output. Such configuration is strictly related to ridge regression
because the coefficients associated at each output are supposed
to belong to the same group that means they are modelled as

drawn from the same distribution. This implies that sparsity is
shared across all coefficients in the same column of W since
only the hyperparameters that define such distribution tune the
level of sparsity. In other words, we can see this as the GMEP
implementation of ridge.

The second trivial configuration that was taken into account,
considers one group for each coefficient. It represents the
opposite situation with respect to the previous prior, thus
now each coefficient has its own distribution to which it
belongs to. This approach is known as automatic relevance
determination (ARD) because the hyperparameters of each
distribution determine the sparsity i.e. the relevance, of the
related coefficient.

The third case in our comparison has a definition of groups
that reproduces the true sparsity structure of the coefficients
in W. Referring to Equation 1 and to the description of
how each Ai was computed from A, we can see that the
same sparsity structure is shared across time lags, i.e. the
amount and position of the zero connections are the same
across Ai. This assumption can be rephrased as: the causal
configuration is time independent, i.e. there is no dynamic in
the causal interactions. Therefore, we call that prior group the
lag-independent prior.

IV. EXPERIMENTS

This section describes the experiments that were run to
analyse GMEP and to study its application both on simulated
and empirical data.

A. Simulated MAR datasets

We start with the experiments that were run on the synthetic
data. As described below, these experiments have three unique
purposes.

The first purpose is to compare GMEP and other standard
linear regression approaches. In particular, we refer to Ordi-
nary Least Squares (OLS), Levinson-Wiggs-Robinson equa-
tions (LWR) and Ridge Regression (RR). They are all standard
methods widely used for linear regression. In particular, OLS
and LWR are both used in practice to fit the MAR parameters
in MVGC. Moreover, both are point estimator methods and
asymptotically equivalent to the maximum likelihood estimate.
The last technique, RR, is included since it contains a regu-
larization term in order to prevent overfitting.

Note that LWR derives from a multivariate extension to
Durbin recursion and it has the advantage to provide also
an estimate of the residual covariance matrix Σ̂. For further
details refer to [15], [39]. RR can be simply expressed by
adding the l2-norm of the coefficient matrix W in the objective
function of OLS [40]. In this way, the magnitude of the coef-
ficient is included in the minimization process and it is forced
to be small according to a weight parameter that controls the
amount of shrinkage. The comparison of GMEP, OLS, LWR
and RR is done by running them on each synthetic dataset and
focusing on their capability to estimate the coefficient matrix.
The model order is set equal to its true value, i.e. p = 10,
and the performance of each approach is evaluated through
the normalized root mean square error (NRMSE) computed
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between the true and the mean of posterior distribution of the
estimated coefficients. The normalization is done according to
the maximum amplitude (the difference between the maximum
and minimum) of the true coefficients. Hence, NRMSE is not
necessarily bounded in [0, 1].

The second purpose of the experiments on the simulated
data is to focus exclusively on GMEP and analyse the impact
of the structured priors. In particular, the aim is to show that
a more detailed modelling of the group sparsity prior, through
the inclusion of information related to the structure of the
data, improves the results. Thus, we are interested in proving
that there are situations in which an accurate definition of the
structured prior leads to a better inference. This improvement
is observable not only through a comparison with the true
coefficients but also by evaluating the reconstructed time
series. To understand how the structured priors affect the final
results, a comparison across three different priors is conducted.
We refer to Subsection III-C for details on the structured
coefficient priors.

The predictive performances of the different priors are
evaluated by computing the mean log predictive densities
(MLPD):

1

ntdy

nt∑

i=1

dy∑

j=1

log

∫
p(y∗i,j |wT

jx
∗
i , exp(vT

i,jθ))p(w,θ|D)dwdθ

≈
nt∑

i=1

dy∑

j=1

log

∫
p(y∗i,j |wT

jx
∗
i , exp(vT

i,jθ))q(wj)q(θ)dwjdθ,

where y∗
i = [y∗i,1, ..., y

∗
i,dy

]T is a known test observation at
test input x∗

i , and q(w,θ) =
∏
j q(wj)q(θ) is given by the

EP approximation. With a Gaussian observation model the
required integrals can be computed using one dimensional
numerical quadratures. Higher MLPD values correspond to
higher approximate predictive density values for test data
points on average indicating thus better predictive perfor-
mance. During the EP iterations we repeatedly evaluate the
normalization coefficients Ẑi,j of the tilted distributions, which
for likelihood terms are defined as

p̂i(w,θ) = Ẑ−1
i,j p(y

∗
i,j |wT

jx
∗
i , exp(vT

i,jθ))q−i(w,θ),

where

Ẑi,j =

∫
p(y∗i,j |wT

jx
∗
i , exp(vT

i,jθ))q−i(w,θ)dwdθ.

Since the cavity distributions q−i(w,θ) can be regarded as an
approximation to the posterior when observation yi,j is left out
from the training set, we can use the normalisation terms Ẑi,j
to form an approximation to the mean leave-one-out predictive
densities:

MLPDEP =
1

ndy

n∑

i=1

dy∑

j=1

log Ẑi,j .

In the experiments we use MLPDEP as an estimate of the
future predictive performance of the model and validate it with
respect to the actual MLPD score using simulated experiments.

For a known coefficient vector w∗, a similar measure that
we call MLPDw can be computed as

MLPDw = log

∫
p(w∗,θ|D)dθ ≈

dy∑

j=1

log q(w∗
j ),

which measures how well the posterior approximation matches
with the true coefficients. A higher MLPDw value indicates
a better agreement with the EP posterior approximation q(w)
and the true coefficients w∗.

The third purpose of the experiments conducted on the
simulated data is to obtain an estimate of the binary causal
configuration matrix from the results of GMEP. Such analysis
requires the choice of a specific structured prior and a way
to obtain the binary causal configuration matrix from the
results of the inference process. The proper structured prior is
chosen according to the outcome of the previous experiment by
selecting the one with the best results, as we will see later it is
the lag-independent prior. And the binary causal configuration
matrix is computed by considering that an estimate of the
variance distribution of each group is provided by GMEP. In
detail, due to the choice of the lag-independent prior each
group contains all the coefficients that link the same pair of
time series at different time lags. Thus, there is one group
for each cell of the binary configuration matrix. Moreover,
the coefficients in each group are supposed to be normally
distributed with zero mean and variance that is modelled as
a log-normal distribution. After the estimation process, the
posterior mean and standard deviation of such distribution
are used to reconstruct the causal configuration matrix of
each trial by their normalization and comparison. The causal
configuration matrices predicted by MVGC and the ones
predicted by GMEP are evaluated with the related ground
truth. Such comparison is extended also to the datasets with
the noise component, thus to all the (dy, c, γ) datasets. From
the estimated causal configuration matrix of each trial, the true
positive rate and true negative rate are computed and averaged
across trials with the same level of noise. This procedure was
repeated both for MVGC and GMEP, in order to compare
them in term of their balanced accuracy (BA). We chose the
balanced accuracy, as evaluation measure since it overcomes
the problem of unbalanced dataset [41]. BA is meant as the
mean of the true positive rate and the true negative rate across
all the trials in each (dy, c, γ) dataset.

B. Empirical fMRI dataset

The second part of the experiments focuses on the empir-
ical data. We are aware of the existing debate about using
time lag-based method with fMRI data. Indeed a number
of studies state that the BOLD response is not compatible
with the assumptions of precedence and predictability that
are at the root of Granger causality [42], [43], while others
prove the robustness of Granger causality to variations of the
hemodynamic response function and identifies the noise level
and the amount of downsampling as possible issues in causal
prediction [44]. Here, we do not enter this debate but we aim to
use the Bayesian model as a way to test hypotheses about the
sparsity structure. In this way, if prior knowledge is available
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on the structure of the data, then it is possible to test it and
to compare the results with respect to a baseline case such as
the ARD or the uniform Gaussian priors.

When working with empirical data, the main difference with
respect to the analysis conducted on the simulated one, is that
we do not have the ground truth on the sparsity structure. This
lack of information can be replaced by prior knowledge on
the data. For example, it is reasonable to assume a difference
in the magnitude of the coefficients that connect areas in the
same hemisphere respect to the ones that connect areas across
hemispheres. Such an assumption can be encoded in a specific
group sparsity prior and a comparison with other structured
priors can reveal which is the closest to the ground truth. We
defined an experiment in which the length of each time series
is gradually reduced in order to compare the performances
of GMEP under both different structured priors and number
of training time points. In detail, the experiment that we have
carried out on the empirical dataset, is the following: first, part
of the dataset is used to identify the best model order with a
grid search approach. Next, we apply GMEP using the three
structured priors that we adopted on the simulated data, see
Subsection III-C. Moreover, in the definition of the structured
prior we also consider the anatomical position associated with
each time series. That is, we enrich the three initial priors by
adding four new groups in which the coefficients are clustered
according to the hemispheres that they link with. The results of
these two scenarios, i.e. the three structured priors and their
enrichment with anatomical information, are compared with
the prior that only models the hemisphere structure. This allow
us to identify the most plausible group sparsity prior among
the tested ones. This prior is used in the final analysis, where
the aim is to compute the causal configuration matrix by using
GMEP. The approach used to obtain a binary matrix is the
same as the one used for the simulated data based on the
comparison between the posterior mean and posterior standard
deviation of the group variances.

V. RESULTS

Results are divided according to the dataset from which they
were obtained, thus the first part of this section is devoted to
the findings from the simulated MAR datasets and the latter
to the empirical fMRI dataset.

A. Simulated MAR datasets

Figure 2 shows the results of the NRMSE computed be-
tween estimated and true coefficients by OLS, LWR, RR and
GMEP. These four methods were applied at each simulated
dataset. The figure reports the median and the 25-th and 75-
th percentiles computed on the 100 trials of each dataset. In
the case of RR the strength of the regularization term was
selected through a grid search approach applied on a subset
of time points. For GMEP the uniform Gaussian coefficient
prior was adopted. The results show that, while the prediction
errors of OLS, LWR and RR do not show large differences, the
prediction error of GMEP is consistently better. As expected,
we observe that NRMSE increases with the connection density.
Moreover, the percentiles are very small thus the prediction
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Fig. 2: NRMSE related to the coefficient estimations, each in-
ference method is identified by a specific marker and its result
is reported in terms of median, 25-th and 75-th percentiles.

error is stable across trials in each dataset and for each
regression method.

Next, we analysed the performance of GMEP under differ-
ent coefficient priors. The comparison across priors is done
by using the uniform Gaussian prior as a baseline with which
other priors are compared. The predictive performance is
evaluated through the mean log predictive density (MLPD). In
particular, we will consider the variation of MLPD with respect
to the uniform Gaussian prior that we indicate as ∆MLPD.
In Figure 3 the ∆MLPDW computed on the coefficients is
shown. Figure 4 contains both the ∆MLPDEP and the actual
∆MLPD computed on a separated test set.

Figure 3 shows that the ARD prior outperforms the uni-
form Gaussian prior only for connection density equals to
0.1 and dimensionality equals to 7 and 11. Its performance
decreases as connection density is increased. In general, the
lag-independent prior performs better than the other priors,
particularly for low to medium connection densities. The
lag-independent prior becomes comparable to the uniform
Gaussian prior in the case of very dense configurations.

The same behaviour is reported in Figure 4. Both the ARD
and the lag-independent priors get worse with the increase
of the connection density with the difference that the lag-
independent prior becomes comparable to the uniform Gaus-
sian prior in the worst case. On the other hand the ARD
prior drops faster and only in few cases it is better than
the uniform prior. By comparing Figure 4(a) and (b) the
generalization capability of the ARD and the lag-independent
priors is highlighted. In fact we notice that in the ARD prior
the MLPD drops faster than the MLPDEP but in the case of the
lag-independent prior MLPD and MLPDEP behave similarly.

Figure 5 shows the difference between the balanced accu-
racy computed by applying GMEP and MVGC, under different
levels of noise. We remember that the balance accuracy BA
is defined as the mean of the true positive rate and the true
negative rate and we will refer at the difference of BA between
GMEP and MVGC as ∆BA. The noise level is quantified
by the parameter γ and indicates the proportion between the
actual signal and the univariate noise, i.e. γ = 0 means that
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Fig. 4: ∆MLPD computed with respect to the uniform Gaussian prior and evaluated on the EP iterations and on the test set.
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Fig. 3: ∆MLPD computed with respect to the uniform Gaus-
sian prior and evaluated on the coefficient estimates.

the noise component is absent. As in the previous figures, the
median and the 25-th and 75-th percentiles are reported. In
this case the marker indicates the level of noise. The figure
shows that there are no meaningful differences in the cases
of dy = 3, i.e. for low dimensionality. On the other hand,
significant differences appear when the noise level increases
and in particular when also the connection density increases.
At increasing noise levels, the predictions of GMEP become
more accurate than the predictions of MVGC. The gap of BA
between the two approaches reaches the 10% in favour of
GMEP for medium levels of noise (γ = 0.4 and γ = 0.6) and
it drops to 0 when the data are dominated by the noise, i.e.
γ = 0.8.

B. Empirical fMRI dataset

The experiments conducted on the empirical data, as de-
scribed in Section IV, are meant to test hypotheses about
the sparsity structure of the causal interactions among the
brain regions which the analysed time series correspond to. In
Figure 6, we report the MLPD under different structured priors
and number of training time points. We did not include the
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Fig. 5: ∆BA computed on the causal configuration matrices
estimated by GMEP and MVGC.

equivalent results for other performance measures since they
show the same trend. In detail, the first 500 time points were
firstly used to determine the order of the MAR model. This
analysis showed a good compromise between performance
and model complexity for p = 4. Using this model order,
GMEP was applied in conjunction with the uniform Gaussian
prior, the ARD prior and the lag-independent sparsity prior.
Figure 6 reports with lines marked by circles the results of
these priors using a different colour for each of them. The
lines marked by squares show the effect of the inclusion of the
partitioning based on the hemispheres. The black line reports
the results with only the hemisphere groups in the sparsity
structure prior. The results always show an improvement when
the hemisphere groups are included in the structured prior.
Moreover, consistent with the simulations, the lag-independent
prior achieved the highest performance.

Finally, we report the causal configuration matrix that is ob-
tained by the predictions of GMEP. Based on our findings, we
adopt the lag-independent prior associated with the hemisphere
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Fig. 6: MLPD on the test set computed by multiple applica-
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partition. The configuration matrix is computed by following
the same approach that was used in the synthetic data. About
the number of time points, the same proportion of elements
in the design matrix and unknowns was also preserved for
the empirical data. Thus, since in this dataset dy = 26, to be
consistent with the previous analyses, 1638 time points were
selected for the inference. The causal configuration matrix
is shown in Figure 7 and it contains a black square when
a causal interaction is determined from a region along the
rows to a region along the columns. Based on this matrix,
we tested the significance of the sum of the overlapping
connections between the two hemispheres, i.e. the intersection
of the two sets of connections within hemisphere. And the
significance of the sum of the connections of homologous
areas across hemispheres. In both cases, the null hypothesis
was rejected with a significance level of 0.01. The distribution
of the null hypothesis was computed by randomly permuting
the estimated connections for 1 million of iterations.

VI. DISCUSSION

In this paper we analysed a novel approach for Bayesian lin-
ear modelling with structured prior (GMEP) in the context of

the MAR identification with the aim to apply it for a Granger-
based estimate of directed functional brain connectivity.

We first made a simple comparison with other standard
linear estimators to see how GMEP is placed in relation to
them. By evaluating the NRMSE of the coefficient estimates,
GMEP showed the most accurate predictions. Our results
also provide an insight into how the connection density and
the dimensionality influence the inferences. In particular, we
obtained that given a certain dimensionality, the complexity of
the estimation problem increases with the increase in connec-
tion density. It is important to highlight that dimensionality
and number of unknowns (coefficients) are related, thus in all
of our experiments the proportion between number of elements
in the design matrix and unknowns was kept constant across
datasets.

One of the main advantages of GMEP is its flexibility in the
definition of the structured prior. Thus this aspect was studied
through several simulations. The simulations were meant to
test how the structured prior affected the predictions under
different conditions of dimensionality and connection density.
In the case of sparse datasets, i.e. datasets with low connection
density, modelling the sparsity improves the performance of
GMEP.

We modelled the sparsity by two types of structured priors.
That is, the ARD prior and the lag-independent prior, which
were compared with the uniform Gaussian prior.

The uniform Gaussian and the ARD priors can be seen as
two extreme scenarios in terms of model complexity. In the
case of the uniform Gaussian prior, the model complexity
is very low since all the coefficients that are involved in
the modelling of the same time series are clustered in the
same group. Thus they are supposed to be drawn from the
same distribution, i.e. they are assumed to have the same
sparsity. This assumption is realistic only in case of very high
connection density. Indeed, under this condition the uniform
Gaussian and the lag-independent priors behave similarly. On
the other hand, the ARD prior models the sparsity structure
very accurately by assigning a single group to each coefficient.
Even though, theoretically it should be able to properly model
the real sparsity of the coefficients, in practice it is beneficial
only in case of very sparse interactions. The drawback of the
high complexity of the ARD prior is clearly shown in the
Figure 4 where it appears that ARD overfits the training data.

The lag-independent prior was shown to always outperform
the other priors or, in the worst case, be equal to the uni-
form Gaussian prior. This result was expected since such a
prior models the actual sparsity structure of the coefficients,
forming an optimal compromise in term of model complexity.
Summarizing, these results provide evidence of the importance
of adding prior knowledge about the sparsity structure of the
coefficients in the model.

Regarding the ability to predict the causal interactions
among time series, we can conclude that GMEP reaches a
balanced accuracy that is the 10% higher than the one of
MVGC for some levels of noise. This result is important
for the application in empirical settings in which we do not
know neither the true amount of noise nor the true connection
density. Even though the experiment was restricted to just three



10

dimensions and a fixed number of time points, it shows that
GMEP can provide meaningful advantages, particularly for
medium noise levels.

The experiments on the empirical data under the three struc-
tured priors showed that, in agreement with the simulations,
the lag-independent prior performs consistently better under
different data lengths.This evidence suggests that the assump-
tion of time independence of the causal configuration, is more
plausible than assuming a shared or completely independent
sparsity structure. Moreover, the improvement given by the
inclusion of the hemisphere partitioning in the structured
prior, confirms our assumption that the sparsity structure of
the coefficients reflects the hemisphere structure. Regarding
the causal configuration matrix, the simple statistical tests
that were run on it, suggest significant symmetries on the
connections within and across hemispheres.

VII. CONCLUSION

A new Bayesian method for linear regression with structured
prior (GMEP) was proposed and applied in the context of the
MAR identification. The purpose was to identify the MAR
model in order to obtain a Granger-based estimate of the
causal configuration matrix from a given set of time series.
The main advantage of GMEP is a flexible definition of various
structured priors associated with the sparsity structure of the
MAR coefficients. We investigated GMEP among standard
linear estimators on simulated datasets with different dimen-
sionalities and connection densities. Moreover, we focused
on the effect of defining different structured priors. And we
showed the benefit of including information on the sparsity
structure of the coefficients in their prior definition. In the same
simulation framework, we identified under with conditions
the inference of the causal configuration matrices performed
by GMEP achieves better results than the inference done by
a standard Granger toolbox (MVGC). Finally, we reported
a simple example with empirical fMRI data showing that
the enrichment of the structured prior by the inclusion of
anatomical information i.e. the hemisphere partitioning, leads
to a better inference.
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Supervised Causal Graph Estimation
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Abstract—Brain effective connectivity aims to detect causal
interactions between distinct brain units and it is typically
studied through the analysis of direct measurements of the neural
activity, e.g. magneto/electroencephalography (M/EEG) signals.
The literature on methods for causal inference is vast. It includes
model-based methods in which a generative model of the data
is assumed and model-free methods that directly infer causality
from the probability distribution of the underlying stochastic
process. Here, we firstly focus on the model-based methods
developed from the Granger criterion of causality, which assumes
the autoregressive model of the data. Secondly, we introduce a
new perspective, that looks at the problem in way that is typical
of the machine learning literature. Indeed, we formulate the
problem of causality detection as a supervised learning task by
proposing a classification-based approach. A classifier is trained
to identify causal interactions in the context defined by the
chosen model and according to the adopted feature space. In this
paper, we are interested in comparing this classification-based
approach with the standard Geweke measure of causality in
the time domain through simulation study. Thus, we customized
our approach to the case of a MAR model with a feature
space which contains causality measures based on the idea of
precedence and predictability in time. Two variations of the
supervised method are proposed and compared to a standard
Granger causal analysis method. As evidence of the efficacy of
the proposed method, in addition to the results of the simulations,
we report the details of our submission to the causality detection
competition of Biomag2014, where the proposed method reached
the 2nd place. Moreover, as empirical application, an example
with neural recordings is provided.

Index Terms—causal inference, brain effective connectivity,
Granger causality, machine learning, Geweke measure in time,
causal interaction classification

I. INTRODUCTION

A main part of neuroscience research is concerned with
brain connectivity and aims to investigate the pattern of
interactions between distinct units within the brain [1]. The
concept of brain units is strongly related to the level of
the adopted scale. Thus, brain connectivity can be studied
from the microscopic level of single synaptic connections to
the macroscopic level of brain regions. Moreover, depending
on the type of interactions of interest, brain connectivity is
divided into structural, functional and effective connectivity.
In the first case the connectivity patterns are referred to the
anatomical links i.e. the neural pathways. In the second case, to
the statistical dependencies between brain activity in different
units. In the last case, the connectivity patterns are referred
to the causal interactions between them [2]. In particular,
effective connectivity provides information about the direct
influence that one or more units exert over another and aims
to establish causal interactions among them [3].

D. Benozzo, E. Olivetti and P. Avesani are with the NeuroInformatics
Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy and with the
Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy.

Electrophysiological signals are among the most suitable
ones for studying effective connectivity. First, because they
directly measure neuronal activity, even though at an ag-
gregated level. Second, because their temporal resolution is
compatible with the processing time at the neuronal level,
that is in the order of milliseconds [4]. These signals can
be measured with invasive or non-invasive methods. Invasive
methods allow a high quality and spatially precise acquisi-
tion, by implanting electrodes on the brain. On the other
side, non-invasive techniques such as magneto- and electro-
encephalography (M/EEG) are widely used because of the
high sampling frequency and, by means of source reconstruc-
tion techniques, they provide increased signal-to-noise ratio
and spatial resolution [5].

The interest in studying causal interactions from neuroimag-
ing data is not only limited to effective connectivity but it
has a more general scope. The original definition of effective
connectivity provided in [3], refers to the directed influences
that neuronal populations in one brain area exert on those
in another one. Thus an estimator of effective connectivity
should consider the physiological structure and dynamics of
the system [6]. This constraint is particularly demanding
since it means modeling the underlying physical processes.
To overcome such issue, a relaxed version of effective con-
nectivity was introduced in [7] under the name of causal
connectivity. Causal connectivity refers to a causality measure
that infers the causality structure without requiring it to be
representative of the underlying neuronal network. The term
causality analysis is commonly used when studying the direct
interactions among brain signals. As highlighted in [8], a
causality analysis may have different meanings. Its purpose
could be to infer the existence of a direct causal connection,
thus the estimate of the so-called causal structure or (binary)
causal graph [9]. A different goal is to study the mechanism
underlying a causal connection. This means focusing on how a
causal connection is physiologically implemented. And a third
question concerns the quantification of the interaction, thus it
requires both an appropriate modeling of the dynamics and a
clear understanding of what the causal effect actually means,
see [10].

In this work, we focus on the problem of inferring the binary
causal graph from a given set of time series. This means that
our purpose is to establish the existence of causal interactions
without necessarily considering the underlying mechanism and
quantification issues.

A. Approaches for causal inference

In the literature, each method of causal inference is based
on a specific causality criterion from which a measure of
causality is derived [11]. A criterion of causality defines
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which condition has to be satisfied in order to establish
that two processes are causally interacting, or not. Given
a certain criterion and according to how it is formulated,
different measure of causality can be developed. There are
cases in which the measure is defined by assuming a model
for the underling process of data generation, the so-called
parametric formulations of the criterion. Or in case of a model-
free approach, the formulation is said to be non-parametric.
Figure 1 summarizes the main blocks of these two approaches
and introduces the main blocks of the alternative approach
that is proposed in this paper, which is called the parametric
supervised approach. The figure is horizontally divided in
three parts, one for each approach. They all start by requiring
a criterion of causality and a multivariate time series, as input
dataset. And they all end with an estimate of the casual graph
of the input dataset.

In the parametric approach, a criterion of causality is
chosen and then, according to it, a model of the generative
process is assumed and a measure for causality is defined.
Commonly, the computation of the causality measure requires
the identification of the model, which, in general, is not
trivial [12]. Moreover, to obtain the causal graph from the
computed measures, the significance of the non-zero values
needs to be tested. This can be done, for example, by means
of bootstrap techniques, or by knowing the actual distribution
under the null hypothesis.

In the non-parametric approach, given a criterion of causal-
ity, its definition of causal interaction is formulated in terms
of equations between probability distributions. Afterwards, a
metric is adopted in the information-theoretic framework in
order to test whether the equality holds [13], [14].

Differently from the parametric and non-parametric ap-
proach, here we propose a novel direction to attack the
problem of detecting causality, which we call supervised
parametric approach. The supervised approach is based on
machine learning techniques and, specifically, on learning
from examples. Each example comprise a multivariate time
series together with their true causal structure. The idea of
proposing causal inference as a learning theory problem was
first presented in [15], where the authors adopted a supervised
approach for bivariate causal inference with the use of kernel
mean embeddings for feature mapping. Here, the same idea of
a supervised detection of causal interactions is used but with
a different implementation. Moreover, we specifically target
the context of time series analysis. In our variant, the model
is not used to derive a measure but to generate a dataset
of multivariate time series together with their actual causal
graphs. The purpose of this dataset is to be used as train set
for a classification algorithm, aimed to predict the causal graph
of future multivariate time series.

A consequence of the proposed approach is that we need to
build a feature space in which to represent the dataset, such
that the specific aspects of the chosen causality criterion are
represented. Moreover, it is interesting to notice that model and
feature space do not need to derive from the same causality
criterion. This means that the proposed supervised approach
allows to disentangle the mechanism of data generation from
the criterion used to describe the causal structure.

In this work, the proposed supervised parametric approach
is compared with the standard parametric formulation. For this
reason, we refer to the standard parametric approach as to the
unsupervised parametric one. In the context of the Granger
criterion of causality [16], we conduct the comparison through
a simulation study. Granger causality is the most adopted
criterion for causal inference in brain recordings [17] and it
is based on the assumptions of precedence and predictability
of the cause with respect to its effect. Precedence means that
a cause has to temporally precede its effect. Predictability is
referred to the conditional dependence that exists between the
past of the causes and the future of the effect, conditioned on
the past of the effect itself.

B. Causality measures based on the Granger criterion
In the following, we provide a brief summary of the most

important measures of causality that have been developed
from the Granger criterion, both for the non-parametric and
parametric cases.

For the non-parametric approach, a widespread causality
measure is transfer entropy, which compares the probability
distributions between the candidate effect and the past of the
candidate cause, under the hypothesis of independence [18]–
[20]. Specifically, transfer entropy computes the Kullback-
Leibler divergence between the probability distribution of the
candidate effect conditioned on it own past and the same
effect conditioned also the past of the candidate cause. By
definition, this measure is non-negative and zero only when
the two distributions are equal. Moreover, the fact that KL-
divergence does not consider any specific statistical moment
of a given order, is particularly suited for detecting non-linear
interactions. Beyond transfer entropy, other non-parametric
measures have been proposed [21], such as the measure based
on Fisher information.

The parametric representation of the Granger criterion as-
sumes a linear autoregressive model of the process. This
assumption refers to how time series are interacting with each
other, without explicitly modeling the physical mechanism of
generation. The autoregressive representation has led to differ-
ent formulations of measures of causal interaction. The tempo-
ral formulation tests the presence of causality by comparing
the residual variances of the effect in which the candidate
cause is initially excluded vs. when it is included, during
model identification. The causal measure is defined as the
natural logarithm of the ratio of the residual variances, that we
refer to as the Geweke measure in time domain. A meaningful
reduction of the residual variance when the candidate cause
is included in model identification means a better model for
the effect. In such case, the time series evaluated as possible
cause is said to Granger cause the time series evaluated as
effect [22]. It has been proven that this measure of causality
is a test of Granger causality on the first moment statistic of the
underlying probability distributions [23], since it is based on
the linear assumption of the process. This is in contrast with
transfer entropy where, by definition, the whole probability
distribution of the processes is considered [24].

The autoregressive parametric formulation of the Granger
criterion was also implemented in the spectral domain. It was
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Fig. 1: Given a criterion of causality, the estimation of causality structure can be implemented in three different ways: the
standard non-parametric approach (top), the parametric one (mid) and the proposed parametric supervised one (bottom).

introduced in [25] and named Geweke spectral measure of
Granger causality. In the bivariate case, the Geweke spectral
measure from x and y at the frequency ω, is defined as
the natural logarithm of the ratio of the power spectrum
of y computed considering the possible contribution of x
and the power spectrum of y computed alone, in both cases
evaluated at ω. It is interpreted as the portion of the power
spectrum associated with the residuals that do not take into
account the presence of y [26]. The Geweke spectral measure
does not have its equivalent formulation in the information-
theoretic framework. As shown in [26], the lack of a temporal
separation between the past and the future of the involved
processes is what defines a spectral formulation of a parametric
formulation. Differently, in the non-parametric formulation, a
spectral measure is not available, because no way to avoid
temporal separation has been proposed yet.

Other examples of causal measures developed in the spectral
domain are the Partial Directed Coherence (PDC) [27] and
the Direct Transfer Function (DTF) [28]. Both were initially
developed under the assumption of identity matrix as covari-
ance matrix of the innovation process and then generalized
in [29], where they are named the information PDC (iPDC)
and the information DTF (iDTF). Both are defined as a
coherence measure between two processes thus they have an
interpretation in term of mutual information rate. Moreover,
both are measures to test for Granger causality, but only in the
case of DTF, a direct connection between the bivariate Geweke
spectral measure and the bivariate iDTF exists. iPDC assumes
an autoregressive model for the process while iDTF starts with
the moving average representation of the autoregressive model.

In the neuroscience domain, the multivariate extension of
the causality measures introduced so far has great impor-
tance [30]. In the case of the bivariate iPDC and iDTF,
the multivariate extension are straightforward [31]. Also the
Geweke measure in time domain has a direct multivariate
extension from the bivariate case, by conditioning on the

processes that are not included in the pair [32]. Less immediate
is the extension of the spectral representation: for a detailed
explanation see [33].

C. Proposal

The aim of this work is to investigate the proposed su-
pervised formulation by adopting a parametric model of the
Granger criterion of causality. We propose a simulation study
in the context of the autoregressive model, specifically in the
time domain. With these ingredients, it is possible have a fair
comparison against the standard conditional Geweke measure
in time domain. Across the experiments, we compare the
proposed method against a standard Granger causal analysis
(GCA) method [34].

The proposed approach is analyzed in a series of exper-
iments that are grouped in two parts. What differs between
them is the generative process used for the training and for the
test/prediction phase. In the first group, the model is the same
for the train and the test phase. The first group is meant to
evaluate the proposed approach under the three main aspects
of the method: the generative model, the feature space and
the classification task. In the second group, the generative
model differs between train set and test set. This case is
quite common in practical cases, because the recorded signals
may not fully respect the assumptions of the generative model
assumed for the analysis.

In addition, we report the details of the solution com-
puted with the supervised method that we submitted to
the Biomag2014 Causality Challenge (Causal2014)b1, which
reached the second place of the ranking. Such competition
adopted an autoregressive model as generative process to
simulate brain signals. The model generated a 3-dimensional
multivariate time series, given a randomly generated causal

1http://www.biomag2014.org/competition.shtml , see “Challenge 2:
Causality Challenge”.
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graph2. The competition distributed a large set of these multi-
variate time series and the task was to reconstruct their causal
graphs.

In the second part of the experiments, we introduced a
mismatch between the generative process of the training phase
and the process of the prediction phase. The purpose of
studying such situation is to assess how strong is the bias of
the generative model, i.e. the one used to create the train set,
when predicting data coming from a (partly) different process.
Two different cases are analyzed in the second part: one with
simulated datasets and the second with neural recordings from
rats.

II. MATERIALS

In this section, we describe the multivariate autoregressive
model (MAR) used in our simulations and then the neural
recordings used for testing the proposed method in a real
setting.

A. The MAR model

The final output of the MAR model is the multivariate time
series X = {X(t), t = 0, 1, . . . , N − 1}, X(t) ∈ RM×1 that
is defined as the linear combination of two M -dimensional
multivariate time series Xs and Xn

X = (1− γ)Xs + γXn (1)

Xs carries the causal information, Xn represents the noise
corruption and γ ∈ [0, 1] tunes the signal-to-noise ratio. The
choice of this formulation of the MAR model, with additive
noise included, is motivated by the facts that Granger metrics
are strongly affected by both uncorrelated and linearly mixed
additive noise [35] and because it was also adopted in the
Causal2014 competition. Each time point of Xs and Xn is
computed by following the MAR model

Xs(t) =

p∑

τ=1

A(τ)>
s Xs(t− τ) + εs(t)

Xn(t) =

p∑

τ=1

A(τ)>
n Xn(t− τ) + εn(t)

(2)

where p is the order of the MAR model and represents the
maximal time lag, εs(t) and εn(t) are realizations from a
M -dimensional standard normal distribution and A(τ)

s , A
(τ)
n ∈

RM×M , τ = 1, . . . , p, are the coefficient matrices modeling
the influence of the signal values at time t− τ on the current
signal values, i.e. at time t. The coefficient matrices A(τ)

s are
involved in the process of causal-informative data generation.
They are computed by multiplying the non-zero elements of
the M×M binary matrix A with uniformly distributed random
numbers. In essence, A is called causal configuration matrix
and represents the causal graph that leads the MAR model.
Specifically Aij = 1 means signal i causes the signal j. On
the other hand, coefficient matrices A(τ)

n lead the noisy part
of the signals and they are obtained by randomly generating
p diagonal matrices. After that, if both sets of matrices A(τ)

s

2Represented as a 3× 3 binary matrix.

and A
(τ)
n fulfill the stationarity condition, each time point of

Xs and Xn is generated by Equation 2.

B. Neural recording dataset

The neural recording data that have been used for the real
application experiment, belong to the hc-3 dataset [36], [37].
The dataset and related details on the acquisition are available
online at https://crcns.org/data-sets/hc/hc-3. Neural time series
were recorded from rats while they were performing multiple
behavioral tasks. We only used local field potentials from
session eco013.156 of three specific shank probes, i.e. the ones
associated to the Cornu Ammonis (CA1) and the entorhinal
cortex (EC3 and EC5). Each shank has 8 recoding sites.
Signals were low pass filtered at 140 Hz, down-sampled at
600 Hz and epoched into non-overlapping segments of 5s
duration. Moreover, we averaged across recording sites in
each shank. Our final dataset contains 102 trials each of 3
time series with 5s length associated to the three brain areas
(CA1, EC3 and EC5). In order to quantify the accuracy of
the evaluated methods, the true causal configuration matrix
was defined by assuming the following chain of interactions:
EC3→CA1→EC5, as in [38].

III. METHODS

In this paper, we propose a parametric supervised approach
to the problem of causal inference. The idea is to define the
causal inference in a supervised machine learning framework,
in which a classifier learns how to discriminate among a set
of defined classes, i.e. causal configurations, though a training
phase. The approach is parametric because a model of the
generative process is assumed and used to generate examples
for the training phase. In details, there are two main ingredients
to handle the problem in a parametric supervised way: the
first is the definition of a model of the stochastic process
underling the time series and the second is the definition of
a feature space able to capture the causal relationships of a
given set of time series. The choice of the model is a step in
common with all other parametric criteria for causal inference.
The difference is that, in our case, the model is used for
the generation of the train set instead of the formulation of
a measure of causality. In order to compare the supervised
framework with the Geweke measure of causality in time
domain, we instantiated our method with the MAR model.
Moreover, we designed a feature space based on the idea
of predictability and precedence in time, as in the Geweke
measure 3. In the following we report all the details of this
procedure.

A. Data generation and causal configuration

The train dataset, that is class-labeled and denoted as L,
is generated considering the total number of causal graphs
that can be produced by a given number of time series. In a
general setting, each trial X is composed by M time series
and the final goal of causal inference is to estimate its M×M

3Python implementation at: https://github.com/danilobenozzo/supervised
causality detection.git
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binary configuration matrix A. Thus, there are M(M−1) free
binary parameters and 2M(M−1) possible causal configuration
matrices 4. Considering that L must be representative of the
entire population of configurations, it will be generated so that
multiple trials are included for each possible causal graph.

B. Classification schema: MBC and CBC

Here we describe two versions of the parametric supervised
method. In the first, the entire causal configuration matrix
A is considered the class label of the trial. This choice
means that one classifier has to be trained to discriminate
among 2M(M−1) classes. We will refer at this solution as
the matrix-based classification (MBC) method. In the second
version of the parametric supervised method, each cell of
the configuration matrix is analyzed independently from other
cells. Since each cell can be only 0 or 1, then the whole
problem of predicting the causal configuration is transformed
into M(M − 1) binary classifications problems, one for each
cell. We call this approach the cell-based classification (CBC).

C. Definition of the feature space

The feature space is defined on the same assumptions
done in the case of the autoregressive formulation of Granger
causality. Thus, each trial is mapped into a vector of measures,
each based on the ability to predict the value of one time series
at a given time point, i.e. the effect, from the past values of
each possible subset of the M time series in the trial, i.e.
the possible causes. We call the pair, made by causes and
effect, causality scenario. In other words, chosen one of the M
time series as the effect in the causality scenario, the related
possible causes are all the subsets that can be formed from
the whole set of time series. For M time series, the number
of scenarios is

∑M
i=1

(
M
i

)
M = (2M − 1)M , by using the

binomial theorem. In Table I, we report the causality scenarios
in case M = 3. Thus, the possible causality scenarios are 7
for each xi(t), i = 0, 1, 2, i.e. time series that defines a trial,
so 21 causality scenarios in total.

Causes Effect
1 x0(t) xi(t)
2 x1(t) xi(t)
3 x2(t) xi(t)
4 x0(t), x1(t) xi(t)
5 x0(t), x2(t) xi(t)
6 x1(t), x2(t) xi(t)
7 x0(t), x1(t), x2(t) xi(t)

TABLE I: For each effect xi(t) and M = 3, we report the 7
possible causality scenarios.

For each causality scenario, a plain linear regression prob-
lem is built by selecting, as dependent variable, the time points
from the signal in the effect column. Each of these dependent
variables has a regressor vector composed by the p previous
time points selected from the signals in the causes column,
where p is the order of the MAR model, see Section II-A.
Table II shows how the regression problems are defined when

4The diagonal is not relevant since by definition time series are autoregres-
sive.

0 10 20 30 40 50

x
t 0

-5

0

5 Cause

0 10 20 30 40 50

x
t 1

-5

0

5 Cause

t
0 10 20 30 40 50

x
t 2

-5

0

5 Cause E,ect

0 10 20 30 40 50
-5

0

5

x20
0 ; : : : ; x29

0 x20
1 ; : : : ; x29

1 x20
2 ; : : : ; x29

2 x30
2

Fig. 2: Example of how the sample associated at the time point
t = 30 is built in order to form the input of the last regression
problem in Table II, for the case i = 2 and p = 10.

M = 3, by specifying from which time series and time
points, regressors and dependent variables are extracted. In
the following, in order to simplify the notation, we will use
xti instead of xi(t), i = 0, 1, 2 and t ∈ T,T ⊆ {p, . . . , N−1}.
Figure 2 explains how, for the specific time point t = 30 and
for p = 10, the input of the regression problem is built for
the last causality 7 of Table II and i = 2: {x0, x1, x2} → x2.
Finally, the regression problem of each causality scenario is
scored, by common metrics like the means squared error. Such
scores are used as feature in the feature space representation
of the training set L.

D. Relationship with the Geweke measure

As summarized in Table I, the feature space is defined by
exploiting all the possible causality scenarios among a set of
M time series. Differently, in the bivariate case, the Geweke
measure separately tests for each pair (xi, xj) the cases of
xi → xj and xj → xi. In terms of the scenarios described
above, the bivariate evaluation of xi → xj corresponds to
the cases xj → xj and {xi, xj} → xj . This means that, when
considering 3 or more time series, the Geweke measure would
consider only a pairwise analysis.

Similarly, the conditional-bivariate implementation of the
Geweke measure tests the causal interaction by including in
the set of causes of each causality scenario the M − 2 time
series that are not in the pair under analysis.

In the analysis of the proposed method, we will also
consider the subsets of feature space that corresponds to
the bivariate and conditional-bivariate cases, by removing the
scenarios not included in those cases. For clarity, we call the
two reduced features spaces as pairwise (pw) and conditional-
pairwise (c-pw). In both cases, given M time series and
selected one as effect, its possible causes define M − 1
causality scenarios plus the causality scenario that involves
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Regressors (causes) Dependent variable (effect)
[xt−p

0 , . . . , xt−1
0 ] xti

[xt−p
1 , . . . , xt−1

1 ] xti
[xt−p

2 , . . . , xt−1
2 ] xti

[xt−p
0 , . . . , xt−1

0 , xt−p
1 , . . . , xt−1

1 ] xti
[xt−p

0 , . . . , xt−1
0 , xt−p

2 , . . . , xt−1
2 ] xti

[xt−p
1 , . . . , xt−1

1 , xt−p
2 , . . . , xt−1

2 ] xti
[xt−p

0 , . . . , xt−1
0 , xt−p

1 , . . . , xt−1
1 , xt−p

2 , . . . , xt−1
2 ] xti

TABLE II: Description of how the 21 linear regression problems are defined for each trial. xti, i = 0, 1, 2 and t ∈ T,T ⊆
{p, . . . , N − 1}, are the three time series of a trial.

only the effect itself, i.e. xj → xj . Thus, we evaluate M
causality scenarios for each effect, and M2 in total. In our
example of M = 3, the number of dimensions is 9, instead of
the 21.

E. Evaluation metrics

In the experiments described in Section IV, the ability to
identify the correct causal configuration on simulated and
real datasets, will be quantified in terms of receiver operating
characteristic (ROC) curve and the related area under the curve
(AUC). In this way, the obtained results will not be biased by
the possible different cost of false discovery that may change
in different applications.

The computation of the ROC curve in the cases of the
standard Granger causality analysis (GCA, see [34]) and cell-
based classification (CBC) is straightforward, because GCA is
a conditioned pair-wise method and CBC predicts the single
cells of the causality matrix. The ROC curve can then be
computed from the false positive (FP) rate and the true positive
(TP) rate obtained by varying the classification threshold5 and
by averaging over all cells and all trials.

In the case of matrix-based classification (MBC), the clas-
sification problem is multiclass and the ROC curve cannot be
obtained in a straightforward way, in general. Nevertheless,
in our specific case, each predicted causal matrix is a binary
matrix, as in the case of CBC. The only difference is that, with
MBC, all entries of the matrix are jointly predicted instead of
being individually predicted each by a different classifier, as in
CBC. Anyway, by jointly varying the classification threshold
in all entries of the matrix, we can compute the ROC curve
for MBC, allowing a fair comparison with CBC and GCA.

IV. EXPERIMENTS

The purpose of our empirical analysis is to compare the
proposed supervised methods, described in Section III, against
the best practice in the literature, which is based on an
unsupervised estimate of the parameters of the MAR model.
The comparison is performed mainly with synthetic data
where the ground truth of effective connectivity is known in
advance, by design. Additionally, on real data, we investigate
the behavior of the supervised approach when the underlying
exact generative model is not known in advance. To conclude,

5We assume to use classifiers that produce a classification score, like the
probability of having a causal interaction.

we also report the empirical investigation proposed by the
Causal2014 challenge6.

A. Data generation process and feature space

Before describing each experiment, we provide details on
the initialization of the MAR model to generate the dataset L
and on how to create and improve the feature space described
in Section III-C. The parameters of the MAR model were set
as p = 10, N = 6000 and M = 3. Regarding the parameter
γ, since the presence of additive noise affects the performance
of a Granger-based metric, we generated two versions of the
L dataset. One version that we call LMAR, contains only
the autoregressive component and no noise corruption. This
practically means keeping γ = 0 in Equation 1. In a second
version, with explicit noise corruption, γ is picked uniformly
at random for each trial. We refer to this last dataset as
L. Given this setting, there are 26 = 64 possible causal
graphs / configurations. 1000 trials were generated for each
configuration, thus in total 64000 trials comprised LMAR and
L.

As explained in Section III-C, as feature space we computed
two regression metrics: the mean square error and the coef-
ficient of determination r2. Both were included because we
noticed a significant improvement in the cross-validated score,
although, intuitively, they could seem redundant. Additionally,
we included an estimate of the Granger causality coefficients 7.
As a further step, we enriched the feature vector by applying
standard feature engineering techniques, like simple basis
functions. These consisted in extracting the 2nd power, 3rd
power and square root of the previously defined features,
together with the pairwise product of all features. Adding
extracted features was motivated by the need to overcome the
limitation of the adopted linear classifier, see [39].

B. Experiments with the same process of data generation

The experiments with simulated data were designed accord-
ing to the three main components of the supervised approach:
(i) the generative model, (ii) the encoding of the signals into
the feature space and (iii) the use of a classification task.

The first experiment aimed to investigate the effect of
including additive noise to the data generation process. Both
the unsupervised (GCA) and supervised methods were applied

6http://www.biomag2014.org/competition.shtml , see “Challenge 2:
Causality Challenge”.

7See GrangerAnlayzer in NiTime, http://nipy.org/nitime
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to the two datasets LMAR and L. For the implementation
of GCA, we adopted the toolbox proposed in [34]. For the
supervised approach, after the mapping of the datasets to the
proposed feature space, the logistic regression classifier 8, with
`2 regularisation, was applied in a 5-folds cross-validation
framework.

The second experiment aimed to characterize the properties
of the feature space proposed in Section III-C, that we call
complete feature space, and to compare it with its pairwise
(pw) and conditional-pairwise (c-pw) versions described in
Section III-D. Such restricted/reduced feature spaces were
introduced to mimic the Geweke measure, which addresses
the bivariate case. The aim is to understand the gain of
introducing the complete feature space that accounts also for
the multivariate case.

The third experiment considered the two alternative schema
to formulate the classification task: the matrix-based classifi-
cation (MBC), which jointly predicts all entries of the causal
matrix, and the cell-based classification (CBC), for which
each matrix cell refers to a different binary classifier, see
Section III-B. Since M = 3, in the case of MBC we trained
one classifier to predict among 64 different classes, one for
each possible causal configuration matrix. In the case of CBC,
6 binary classifiers were trained, one for each cell of the
causal matrix. Both versions were applied to the two simulated
datasets LMAR and L.

As an additional evaluation of the supervised approach, here
we report the detail of our submission to the Causality2014
challenge. In this setting we know in advance the generative
model, i.e. the MAR model, but the ground truth of the causal
graph of each trial is unknown. We used the L dataset as train
set with the MBC method with the complete feature space.
The posterior probabilities computed by the logistic regression
classifier were converted into predicted classes considering the
costs provided by the competition for true positives (+1) and
false negatives (-3).

C. Mismatch between generative processes

In this experiment, we artificially introduced a mismatch
between the generative model of the train set and the actual
process of signal generation. This is a frequent scenario in
practical cases, because generative models are only approx-
imations of the real physical process creating the data. For
this reason, we wanted to compare the proposed supervised
approach with respect to the standard analysis under such
scenario. In practice, we applied CBC to the L dataset after
training it on the LMAR dataset and, as feature space, we
adopted its complete version.

As a second experiment on the mismatch of the generative
processes, we trained the CBC method on the L dataset
and tested on the real neural recording dataset described in
Section II-B. The experiment was repeated with different
configurations, i.e. by changing the sampling frequency of the
neural signals and the related model order p. As sampling
frequency, we set it to 600, 800 and 1000 Hz and the model
order was computed in order to have time windows of 5,

8http://scikit-learn.org

10, 15, 20 and 25 ms. For each pair of sampling frequency
and model order the AUC was computed using as true causal
configuration matrix the causal chain reported in Section II-B,
i.e. EC3→CA1→EC5, as in [38].

V. RESULTS

In this section, we report the results of the multiple ex-
periments described in Section IV. There, we presented two
groups of experiments that we report here too.

In the first group of experiments the model of data genera-
tion is exactly the same of the dataset to be analyzed. In other
words, the simulated train set and the test of the supervised
approach are generated with the same data generation process.
The results of the first experiment, i.e. comparing GCA and
the propose supervised methods on data with and without
additive noise, are presented in Table III as ROC AUC scores
(higher is better). As expected, with no additive noise, see row
LMAR, all methods predict identically, because classification is
perfectly accurate in all cases. When adding noise, i.e. row L,
the AUC score changes from 0.72 for GCA to 0.90-0.92 for
the supervised methods.

The second experiment of the first group compares the
different features spaces for the supervised approach. In Ta-
ble III, the AUC of the complete feature space (columns CBC,
MBC), of the pairwise one (column CBC pw) and of the
conditional-pairwise one (column CBC c-pw), are reported.
The corresponding ROC curves are illustrated in Figure 4.

The third experiment of the first group, compares our two
different approaches to classification, i.e. the cell-based (CBC)
and the matrix-based (MBC) ones. In Table III, columns 2 and
5, the AUC scores are reported together with those of GCA.
The full ROC curve is presented in Figure 3.

The first group of experiments is concluded by the results
of the Causal2014 challenge, reported in Table IV. The results
are 5-fold cross-validated on the train set, because the causality
matrices of the test set of the competition were not disclosed.
The table reports the confusion matrices of GCA, CBC and
MBC estimated on L, following the competition guidelines.

The second group of experiments, investigates the effect
of a generative model that differs from the actual generation
process of the data to analyze, i.e. there is a mismatch between
the two models. The first experiment, where CBC was trained
on LMAR and tested on L, resulted in a ROC AUC score of
0.85. Despite the difference between train set and test set, the
result is superior to the 0.72 obtained by GCA, see Table III.
The results of the second experiments, of CBC on the neural
recording dataset (see Section II-B), are reported in Table V,
in terms of AUC score for different choices of the sampling
frequency and order of the MAR model (p), i.e. the window
width. We computed the AUC score also for GCA, obtaining
chance-level results, i.e. AUC ≈ 0.5, in all cases. We observed
that GCA estimated the existence of causal links in almost all
cases/interactions, clearly generating a very large number of
false positives. At the same time, we observed that the neural
recording data have high autocorrelation and cross-correlation,
which may explain such behavior.
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Pred. (GCA)
1 0

True 1 99.6% 0.4%
0 80.1% 19.9%

Pred. (CBC)
1 0

True 1 59.4% 40.6%
0 2.8% 97.2%

Pred. (MBC)
1 0

True 1 57.8% 42.2%
0 2.2% 97.8%

TABLE IV: Confusion matrices of GCA, CBC and MBC on the Causal2014 dataset, taking into account for the bias for
reducing the false-positives. The values are conditional probabilities given the true class, i.e. each row sums up to 1.

GCA CBC CBC c-pw CBC pw MBC
LMAR, i.e. γ = 0 1 1 1 1 1
L, i.e. 0 ≤ γ ≤ 1 0.72 0.92 0.91 0.90 0.91

TABLE III: AUC values of GCA, CBC (with the complete
and reduced feature spaces) and MBC on the two datasets
LMAR and L. The standard deviation is lower than 0.0015 in
all cases.
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Fig. 3: ROC curves estimated on the results of the three
analysed causal inference methods: Granger Causality Analy-
sis (GCA), Cell-based Classification (CBC) and Matrix-based
Classification (MBC).

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a new approach for causal
inference in the framework of machine learning. Specifically,
we developed a classification-based method by assuming a
model for the stochastic process and a causality measure, and
created a suitable feature space. Our idea is to use the model to
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Fig. 4: ROC curves estimated on the results of CBC when
applied on three different feature spaces: the complete one in
contrast with the pw and c-pw ones. The ROC curve of GCA
is shown as benchmark.

5ms 10ms 15ms 20ms 25ms
600Hz 0.80 0.82 0.82 0.83 0.82
800Hz 0.82 0.82 0.82 0.73 0.62
1kHz 0.82 0.82 0.75 0.61 0.64

TABLE V: AUC computed by applying CBC to the empirical
dataset with different sampling frequencies and time window
widths.

generate a simulated dataset, representative of the problem of
which we want to infer the causal interactions. Then we map
this dataset into a suitable feature space. After that, a classifier
is trained on the dataset in order to predict the causal graph
of a future set of time series, i.e. to predict a set of binary
variables. As a consequence, the causal inference is directly
dependent both on the chosen generative model and on the
designed feature space.

We put this general framework in practice, by customizing
it in the case of the Geweke causal inference in time, see
Section III, and, as a consequence, of the autoregressive
model as the generative process of the multivariate time
series. Moreover, another consequence is the assumption of
precedence and predictability in time, for the identification of
a causal interaction. In Section III and Section IV, we designed
a feature space coherent with these assumptions.

In the experiments of Section IV, we compared the perfor-
mance of different methods for causal inference, when applied
to a multivariate autoregressive dataset, with and without
additive uncorrelated noise. The results are shown in terms
of AUC value and ROC curve, see Figure 3. The estimated
AUC of each method on each dataset is reported in Table III.
In absence of correlated noise, i.e. with dataset LMAR, all
methods perfectly predicted the correct causal configurations,
which is a positive sanity check of the supervised approach.
With the presence of additive noise, predicting the correct
causal configuration become more difficult. In particular, we
observed that GCA is more sensitive to additive noise than
the supervised approaches, scoring AUC = 0.72, with respect
to 0.90 − 0.92 of the supervised methods. Figure 3 confirms
that both the supervised methods CBC and MBC perform
better than GCA. It is interesting to note that the ROC curve
of GCA does not exist for false positive rate lower than
0.55. This occurs because the poor granularity of the scores
of GCA does not allow to put thresholds that result in a
false positive rate lower than 0.55. Specifically, GCA assigns
probability 1.0 to a large amount of causal interactions that
are not existent. In these result and other experiments, we
observed that GCA tends to overestimate the presence of
causal interactions. Differently, both CBC and MBC have
much more granularity and higher AUC scores, i.e. 0.92 and
0.91 respectively. Given that both CBC and MBC operate on
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the same feature space, we can conclude that a joint prediction
of all causality interactions, which is what MBC provides, does
not result in an advantage over the individual predictions of
each interactions, which is what CBC provides.

The proposed supervised approach allows to study multi-
variate causal interactions. This is different from the Geweke
measure, that is a conditioned pairwise method. In the su-
pervised case all the multivariate dependencies among time
series are taken into account through the causality scenarios
included in the designed feature space, see Section III-C. For
this reason, the proposed approach goes beyond what the pairs
of cause/effect time series can give. In Figure 4 and Table III
are reported the results of the analysis on the role of the
proposed features space. When considering only the pairwise
(CBC pw) and conditional pairwise (CBC c-pw) portions of
the feature space, the AUC score is lower than the full feature
space (CBC), even tough by a margin.

Considering the specific case of the Causal2014 challenge,
we reported in Table IV the confusion matrices computed with
GCA, CBC and MBC on the train set through cross-validation,
considering the cost model defined in the competition, see
Section IV-B. From this example, we clearly see that GCA
provided a very large fraction of false positive, i.e. 80.1%.
Differently, both CBC and MBC correctly followed the bias
of the competition of reducing the number of false positives,
which was 2.8% and 2.2% respectively. Our submission to
the competition, with MBC 9, reached the 2nd place in the
ranking, which is positive evidence that, in the case of the
Geweke measure, the supervised approach is a meaningful
alternative to the current state of the art unsupervised causal
inference methods.

In practical cases, generative models may not accurately
describe the observed data coming from neuroimaging ex-
periments. For this reason, we wanted to test the effect of
introducing a systematic change between the train set and the
test set. Such change may have particularly negative impact
for classification-based methods. Then, CBC was trained on
LMAR and then tested on L. As reported in Section V, in this
case AUC dropped to 0.85, from 0.92 of the case where L was
both the train set and the test set. Such result is still superior
to AUC = 0.72, obtained with GCA. Such evidence supports
the hypothesis that CBC is also robust to some violations in
the assumption of the generative model.

On the neural recordings dataset introduced in Section II-B,
the assumption of the MAR model may be incorrect. In Sec-
tion IV, we reported that on such data GCA performed poorly,
around chance-level, in all cases. This may be explained by
both incorrect assumptions and by the high autocorrelation and
cross-correlation in the time series. Differently from GCA, in
Table V we show that CBC reaches high AUC scores, i.e
around 0.82, for all sampling frequencies. We notice that, for
larger time windows and higher frequencies, the AUC drops
to 0.61, probably due to the increase in high frequency noise
in the data. Nevertheless, it has to be noted that these results
assume the validity of the causal chain EC3→CA1→EC5 that
was introduced in [38].

9At the time of the competition we had developed only MBC and not CBC.

A. Computational Limitations

In the experiments proposed in this work, we limited the
number of time series to M = 3. Following the explanations
in Section III-B and Section III-C, this results in 64 classes,
in case of MBC, or 6 binary problems, in case of CBC, and a
feature space of 21 dimensions10. The first and the last number
increase exponentially with M and the second quadratically
with M . For M = 4, the three numbers become 4096, 12
and 60, respectively. For this reason, MBC becomes unfit to
be used when M > 3, because the train set necessary to fit
the parameters for a very large number of classes would be
unfeasible to obtain and to manage. Nevertheless, even the use
of CBC cannot address a large number of time series, because
the feature space grows exponentially with M .

Nevertheless, it is interesting to note that the feature space
proposed in this work is not bound to the generative model
considered here, i.e. the MAR model. The causality scenarios
defined in Section III-C are based on the causality measure,
i.e. the Geweke measure. This opens interesting avenues for
further research, which investigates how the inference based
on the same feature space would change when different models
of the generative process are used.
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Validating Unsupervised and Supervised Brain
Connectivity Inference Methods with Realistic

Neural Network Simulations
Danilo Benozzo, Jan Bin, Stefano Panzeri, Paolo Avesani.

Abstract—The study of causality is of high interest in neuro-
science since it allows the understanding of the network of direct
interactions between brain areas.

Causality is typically studied from observational data and,
in order to facilitate the interpretation of the result from the
neuroscience point of view, a parametric approach should be
preferred.

As parametric approach, we refer to a causal estimate based on
a parametric implementation of a certain criterion of causality.
The criterion that we consider in this work is the Granger
one and, as its implementation, we consider the multivariate
autoregressive.

The purpose of this paper is to evaluate an unsupervised and a
supervised brain connectivity inference methods when applied to
a realistic neural network simulation. A major difference between
unsupervised and supervised methods is that in the unsupervised
ones the step of model identification is required to infer causal
interactions while in the supervised one causal interactions are
estimated after a learning phase involving a dedicated process of
data generation.

In this work, we investigate the implications of having in the
supervised approach a training phase with its own stochastic
process. Specifically, we exploit the possibility of defining the
stochastic process of the training phase equals to the neural
network model used to generate the realistic simulations. And
we conclude that this leads to a more accurate inference and
makes the approach more application dependent avoiding the
issue of model identification.

I. INTRODUCTION

In neuroscience, communication among neurons or among
brain regions is typically studied from observational data
through the so-called causal connectivity analysis [1].

Causal connectivity refers to a statistical causality measure
that infers the direct dynamical interactions among neurons
from the observation of their activity. Only in the specific
case of an inference process that physiologically models both
the structure and the dynamics of the neuronal activity, the
causality measure can be interpreted in neuroscientific terms to
infer elements of a neural circuit diagram. Thus, this causality
measure can be considered as an estimate of the effective
connectivity [2].

The need to have a generative model in order to facilitate
the interpretation of the estimate, implies the choice of a
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parametric approach for the causal inference. As parametric
approach, we refer to a causal estimate based on a model that
encodes a certain criterion of causality and eventually also
features of the physiological process.

Regarding the parametric approach of causal inference, the
multivariate autoregressive (MAR) formulation of the Granger
criterion of causality is one of the most studied in the
literature. This modelling of the process does not consider
the physiological mechanism of generation and interaction but
simply models the dependence between past and present time
points among time series. Indeed, the MAR model is not
constrained to a specific type of signals as suggested by its
wide application in many fields of science.

The MAR model implies to assume to directly measure the
processes between which the causal interactions are exhibited.
From the neuroscience point of view, this may be a very
strong assumption. To this purpose, in [3] the so-called partial
Granger causality has been introduced in order to deal with
the problem of hidden (unrecorded) variables.

In addition to this example, many other measures of causal-
ity have been developed from the MAR formulation of the
Granger criterion. We just mention the Geweke measure in
the time domain under the assumption of stationary stochastic
processes [4]. The Geweke measure is an example of con-
ditional pair wise measure and it evaluates whether the past
of the candidate cause significantly improves the prediction
accuracy of the future of the candidate effect. The comparison
is done in terms of variances of the residuals of two MAR
models that differ in the presence or absence of the candidate
cause.

To summarize, our main comment on the MAR imple-
mentation of the Granger criterion concerns the model itself.
On one hand, the model identification is straightforward, it
is done through standard linear autoregressive methods e.g.
ordinary least square and related variations to impose sparsity
constrains, multivariate Yule-Walker equations etc. [1]. On
the other hand, this simple model suffers for lack of realism
in several applications. Moreover, beyond the simplicity, the
MAR model also assumes that the observed time series are a
direct measurement of the neural processes. This is a realistic
approximation only in the case of invasive recordings, but not
in general [5].

The scope of this paper is to investigate the effect of
changing the generative model when causality is inferred by
a parametric method. The common practice is to evaluate the
predictive capability of a causal measure by testing it on the
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parametric model from which it is derived, under different
levels and types of noise [6]. Here, we want to break the
consistency between the generative model and the parametric
implementation of the causal criterion and we want to study
how the inference reacts to it. We take advantage of the fact
that recent progress in neural network modelling makes it pos-
sible to generate models of recurrent microcircuits that have
biophysical and anatomical properties very similar to those of
real cortical circuits and that, importantly, when simulated as
dynamical systems, generate activity with statistics very close
to that of recorded cortical activity [7]–[10]. By connecting
several of these simulated microcircuits we can, as shown here,
generate a simulated information flow among neural circuits
that has realistic statistical properties and for which we know
the ground truth of causal communication. The study aims to
take advantage of the availability of these simulated data and to
show how the performance of the parametric causal inference
changes when it is approached both in an unsupervised and a
supervised way, and a physiological plausible model is used
as generative model. Regarding the parametric unsupervised
method, we chose the Geweke measure in time and for its
inference we used the toolbox proposed in [11]. As parametric
supervised method we refer to the technique proposed in [12].
In short, the idea of the supervised method is to unveil causal
connections given a set of signals, through a classification
schema. This needs a training dataset that is generated by
the adopted generative model and a feature space which is
defined according to a predefined criterion of causality. These
two approaches are analysed under two causal models. Firstly,
the MAR model is assumed, thus in line with the assumptions
of the Geweke measure. In the second case, the physiological
neuronal model is adopted in which multiple neuronal models
are connected together in order to built a network of a given
structure.

II. MATERIALS AND METHODS

In this Section, we provide details on the datasets generation
and on the parametric methods used for the causal inference.

A. MAR model and dataset

The multivariate autoregressive (MAR) dataset contains
multiple trials and each trial X = {X(t), t = 0, 1, . . . , N −
1}, X(t) ∈ RM×1 is defined as the linear combination of two
M -dimensional multivariate time series Xs and Xn

X = (1− γ)Xs + γXn (1)

Xs carries the causal information, Xn represents an additive
noise corruption and γ ∈ [0, 1] tunes the signal-to-noise ratio.
Each time point of Xs and Xn is computed by following the
stationary MAR model

Xs(t) =

p∑

τ=1

A(τ)>
s Xs(t− τ) + εs(t)

Xn(t) =

p∑

τ=1

A(τ)>
n Xn(t− τ) + εn(t)

(2)

i j y

i j y

i j y

i j y

Independent
x1

Univariate
x6

Bivariate
x12

Trivariate
x6

Fig. 1: Possible DAGs exhibited among 3 labeled nodes used
in the dataset generation.

where p is the order of the MAR model and represents
the maximal time lag. εs(t) and εn(t) are the innovation pro-
cesses, defined as realizations from a diagonal M -dimensional
standard normal distribution. A

(τ)
s , A

(τ)
n ∈ RM×M , τ =

1, . . . , p are the coefficient matrices modelling the influence
of the signal values at time t − τ on the current signal
values, i.e. at time t. The coefficient matrices A(τ)

s defines
the process of causal-informative data generation. They are
computed by randomly corrupting the non-zero elements of the
M ×M binary matrix A, called causal configuration matrix.
In essence, A represents the causal graph that leads the MAR
model. Specifically Aij = 1 means signal i causes the signal j.
On the other hand, coefficient matrices A(τ)

n lead the noisy part
of the signals and they are obtained by randomly generating
p diagonal matrices. In our experimental setup, we chose
M = 3, p = 10 and N = 6000. Moreover, for each causal
configuration matrix, 1000 trials were generated. From now on
we will refer to this dataset as L dataset. Regarding the causal
configurations, we considered the possible DAGs exhibited
among 3 labeled nodes, see Figure 1. Equivalence between
DAGs was not taken into account thus the total number of
configurations is 25.

B. Neural Network (NN) model and dataset

In order to generate data qualitatively as similar as possible
to physiological recordings, we decided to use a model based
on work of Mazzoni et. al [8]. In their work, they presented
a model of cortical network composed of leaky integrate and
fire neurons and they managed to obtain behavior that strongly
resembles primary visual cortex. For our purposes, we used the
model separately for three populations of neurons that were
connected with each other based on intended scenario.

The simulated network is composed of N = 5000 neurons.
80% of the neurons are taken to be excitatory, the remaining
20% are inhibitory [13]. The network is randomly connected:
the connection probability between any directed pair of cells
is 0.2 [14], [15]. In case of an inter-network directed con-
nection, there is also 0.2 probability of connection between
any pair composed of any cell from the receiver network
and an excitatory cell from the sender network, Fig. 2. Both
pyramidal (excitatory) neurons and interneurons (inhibitory)
are described by leaky integrate and fire (LIF) dynamics [16].
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Fig. 2: The connectivity of the network; Both populations of neurons, excitatory and inhibitory have connections within the
population and also with each other. External input is connected to every neuron in a given network. Finally, if a connection
between networks is present, there are directed connections from excitatory population of the sender to both populations in the
receiving network. A Represents univariate connection from network i to network j. B Depicts bivariate connection between
networks. The information flows from network i to network j and from there to network y.

Each neuron k is described by its membrane potential Vk that
evolves according to

τm
dVk
dt

= −Vk + IAk − IGk (3)

where τm is the membrane time constant (20 ms for
excitatory neurons, 10 ms for inhibitory neurons, [17]), IAk
are the (AMPAtype) excitatory synaptic currents received by
neuron k, while IGk are the (GABA-type) inhibitory currents
received by neuron k. Note that in (3) we have taken the resting
potential to be equal to zero. When the membrane potential
crosses the threshold Vthr (18 mV above resting potential)
the neuron fires, causing the following consequences: i) the
neuron potential is reset at a value Vres (11 mV above resting
potential), ii) the neuron can not fire again for a refractory
time τrp (2 ms for excitatory neurons, 1 ms for inhibitory
neurons).

Synaptic currents are the linear sum of contributions in-
duced by single pre-synaptic spikes, which are described by
a difference of exponentials. They can be obtained using
auxiliary variables xAk, xGk. AMPA and GABA-type currents
of neuron k are described by

τdA
dIAk
dt

= −IAk + xAk (4)

τrA
dxAk
dt

= −xAk+

+τm

(
Jk−exc

∑

exc

δ(t− tk−exc − τL)+

+Jk−int
∑

int

δ(t− tk−int − τL−int)+

+Jk−ext
∑

ext

δ(t− tk−ext − τL)

)

(5)

τdG
dIGk
dt

= −IGk + xGk (6)

τrG
dxGk
dt

= −xGk+

+τm

(
Jk−inh

∑

inh

δ(t− tk−inh − τL)

) (7)

where tk−exc/inh/int/ext is the time of the spikes received
from excitatory neurons/inhibitory neurons/inter-network exc.
neurons (if a connection from another network is present)
connected to neuron k, or from external inputs (see below).
τdA (τdG) and τrA (τrG) are respectively the decay and
rise time of the AMPA-type (GABA-type) synaptic current.
τL = 1ms and τL−int = 3 ms are latencies of post-synaptic
currents for intra- and inter-network connections respectively.
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Jk−exc/inh/int/ext is the efficacy of the connections from
excitatory neurons/inhibitory neurons/inter-network exc. neu-
rons/external inputs on the population of neurons to which k
belongs.

Each neuron is receiving an external excitatory synaptic
input (last term in the r.h.s. of (5)). These synapses are
activated by random Poisson spike trains, with a time varying
rate which is identical for all neurons. This rate is given by

νext(t) = [νsignal(t) + n(t)]+ (8)

where νsignal(t) represents the signal, and n(t) is the noise.
[· · · ]+ is a threshold-linear function, [x]+ = x if x > 0,
[x]+ = 0 otherwise, to avoid negative rates which could arise
due to the noise term. We use constant signal defined by

νsignal(t) = ν0 (9)

where ν0 is a constant rate equal to 2 spikes/ms. The
noise represented by n(t) in (8) is generated according to an
Ornstein-Uhlenbeck process.

The activity of each network was summarized by generation
of simulated local field potential (LFP). To capture in a
simple way the fact that pyramidal cells contribute the most
to LFP generation the LFPs are modeled as the sum of the
absolute values of AMPA and GABA currents (|IA| + |IG|)
on pyramidal cells in every time point of the simulation.

In all scenarios of Fig. 1 we simulated three networks with
the same set of parameters. However, their internal connections
and external inputs were generated independently. All the
parameter values were in agreement with the original work
of Mazzoni [8] with addition of synaptic efficacies for inter-
network connections Jk−int that were equal for excitatory and
inhibitory neurons and were drawn from a uniform distribution
from interval 〈0, 0.18) for every pair of networks in every trial.
From now on will refer to this dataset as NN dataset.

C. Parametric methods for causal inference

Both the two methods for causal inference that are used in
this paper, assume the MAR model in their parameterization.
In particular, the Geweke measure is a linear measure of
Granger causality and it is based on the MAR process theory.

Consider a system of three stationary stochastic processes
Xt, Yt and Zt. The pair-wise conditional approach examines
whether Y has a direct influence on X given the presence of
Z by decomposing

Xt =

∞∑

i=1

axx,iXt−i +

∞∑

i=1

axy,iYt−i +

∞∑

i=1

axz,iZt−i + εx,t

(10)
Afterwards, the reduced autoregressive representation of X

is considered

Xt =

∞∑

i=1

a′xx,iXt−i +

∞∑

i=1

a′xz,iZt−i + ε′x,t (11)

The Geweke index of causality in time domain FY→X|Z
evaluates which of the two regressions (10) and (11) models
better the process X by computing

FY→X|Z = ln
Σ′xx
Σxx

(12)

where Σ′xx = var(ε′xx) and Σxx = var(εxx) are the residual
variances of the MAR models (10) and (11) respectively. (12)
is interpreted as the variation in prediction error when the
past of Y is included in the regression. An important aspect
is the statistical significance of the estimated causal measure
and the common practice is to look at (12) as the test statistic
of a log-likelihood ratio test. In particular, it results that under
the null hypothesis of zero causality H0 : axy,i = 0,∀i the
Geweke measure has an asymptotic χ2 distribution up to a
scaling factor which depends on the sample size and with
degree of freedom equals to the difference in the number of
parameters between (10) and (11) models. Under the alter-
native hypothesis, the scaled test statistic has an asymptotic
noncentral χ2 distribution with noncentrality parameter that
corresponds to the scaled casual measure. In a more general
formulation the three processes may be multivariate thus they
may represent a set of variables. In our experiments, we used
the implementation proposed in [11] and we will refer to it as
the Granger Causal Analysis method (GCA). It is important to
underline the unsupervised nature of this method. This will be
crucial in understanding the result part and related discussion.
In order words, we refer to the fact that given a certain
criterion of causality a measure of causality is derived by a
parametric implementation of this criterion. By implementing
in a parametric way a certain criterion, a generative model is
implicitly assumed, thus also the working assumption of the
measure and its best working scenario consequently derive.

Regarding the supervised parametric approach of which we
refer to as SL, it frames the causal inference as a learning
theory problem. A model of the stochastic process is used for
generating a representative dataset of the population of causal
graphs of interest instead of implementing a certain criterion
as in the unsupervised case. This dataset is used to train a
classifier which will be applied to predict the causal graph of
an unseen trial of time series. A key point of this approach
is the definition of the feature space that is expected to
emphasize the causal structure of the trial in order to facilitate
the inference. A detailed description of the feature space is
given in [12]. Here, it is relevant to stress that the feature
space is defined on the autoregressive implementation of the
Granger criterion while the stochastic process is described by
the generative model used for the training set generation. This
allows the generative model and the implementation of the
causal criterion to be treated separately. And thanks to the
training phase, the chosen causal criterion is shaped on the
adopted generative model.

III. EXPERIMENTS AND RESULTS

In this section, experiments are described. In particular, they
are grouped in two parts. The first part focuses on the NN
dataset and it aims to investigate the generated trials in terms
of how the direct connection is exhibited. While, in the second
part the two methods for causal inference are applied on the
two datasets.
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Fig. 5: ROC curves from the application of GCA and SL in
the L dataset.

A. Characterization of the NN signal

a) Cross-correlation: We computed cross-correlation of
each pair of activities for all networks and report the results
for two causal configurations in Figure 3. In the other config-
urations we observe the same behavior. The cross-correlation
confirms connections between the networks, yielding the peak
shifted from 0, where it would be expected based on the
autocorrelation of the signal, to the time corresponding to the
transfer delay (3ms). Moreover, it captures the transitivity of
those connections, showing a peak shift between networks that
are not connected directly but via an another one.

b) Geweke measure in time domain: GCA was applied
in each trial of the causal configurations that are reported in
Figure 4 and the related results are shown by plotting the log
p-value distribution of each ordered pair of nodes. We can
see from the figure that if the nodes are not connected then
the p-values are approximately uniformly distributed, i.e. the
null hypothesis is accepted. While in the case of connection,
there is an higher concentration of low p-values under the two
vertical dashed thresholds that correspond to 0.01 and 0.05.

B. Effect of the generative model on parametric methods

As preliminary experiment, we inferred the causality in L
by applying the GCA toolbox and the supervised approach
(SL), Figure 5 and Table I. This first experiment is meant to
compare the two approaches in a scenario in which their work-
ing assumptions completely hold. Indeed, in both cases the
generative model (MAR) is coherent with the implementation
of the causal criterion in the methods. The only component
that makes the inference challenging is the signal-to-noise
ratio since the γ parameter is uniformly distributed in [0, 1],
see Subsection II-A. The related outcomes highlight the issue
of GCA of overestimating the connections in the presence of
additive noise.

GCA[L] SL[L]
AUC 0.7409±0.0011 0.9350±0.0003

TABLE I: AUC values related to the application of GCA and
SL in the L dataset.

The second experiment repeats the same analysis on the
NN dataset. Results are shown in Figure 6 and Table II and
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Fig. 6: ROC curves from the application of GCA and SL in the
NN dataset. SL is applied twice with different training phases.
SL[L→NN] indicates that the method was trained on L while
for SL[NN] the training was done directly on the NN dataset.

are named: GCA[NN] and SL[L→NN]. Both methods assume
the MAR model as generative model while they are applied on
trials generated by the NN model. Moreover, the NN model
does not implement a casual link by directly following the
MAR implementation. Even though, as we saw in Figure 4, the
Granger criterion seems to be appropriate to infer the causal
connections of NN.

Regarding the third experiment, its purpose is to test
whether the inference improves by keeping the generative
model of the training dataset consistent with the generative
model of the dataset in which the method will be applied.
Thus, we refer to SL[NN] in the Figure 6 and Table II. SL
was applied to the NN dataset after having been trained on the
same model and by using the Granger-based feature space.

GCA[NN] SL[L→NN] SL[NN]
AUC 0.8160±0.0008 0.8178±0.0007 0.9139±0.0005

TABLE II: AUC values related to the application of GCA and
SL on the NN dataset.

IV. DISCUSSION

The purpose of this research activity was to investigate
the effect of changing the generative model when causal-
ity is inferred by a parametric method. We considered two
parametric approaches for time series causality: the standard
autoregressive implementation of the Granger criterion in the
time domain (GCA) and the supervised method (SL) based
on the same criterion. Since both GCA and SL are parametric
methods, they assume a generative model for the stochastic
process of data generation. Regarding GCA, it is the MAR
model while in the case of SL we should distinguish between
the criterion adopted in the feature space and the generative
model of the training set. Specifically, the feature space
is defined by considering the MAR implementation of the
Granger criterion. And about the generation of the training
set, two alternatives are considered: the MAR model and the
NN model.

The fact that SL allows the generation of the training set
to be separated by the criterion used in the feature space, is
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Fig. 3: Properties of the data generated by the NN model. The top panel described the architecture of the network, the middle
one shows a sample of the activity of those networks and finally the last, cross-correlation between the activity.A In case of the
univariate connection, it can be observed that activity of j follows activity of i, which is also confirmed by the cross-correlation
peak at the time equal to the transfer delay. B Also in the case of bivariate transfer, it can be observed that the activities follow
each other accordingly to the architecture of the network and that it is also confirmed by the cross-correlation. The peak of
cross-correlation between i and y also shifted because of the transitivity of those connections.

the core aspect of this work. To this purpose, we evaluate
three different scenarios: i) GCA and SL were applied in the
L dataset, about SL the MAR model was used for the training
set, ii) GCA and SL were applied in the NN dataset, and SL
was trained as before on the MAR model, iii) SL was applied
in the NN dataset after having training it on a dataset generated
from the same model.

We remark that scenarios (i) and (ii) do a comparison
between methods when applied to the same dataset and we
notice that a comparison across datasets (keeping the same
method) would not be not fair because it would not explain
the inference capability of the method. Indeed, the L and
NN datasets are not generated in order to differ only in the
encoding of the causal interaction, so other confounds would
bias the comparison, e.g. the signal-to-noise ratio.

The choice of the NN model was motivated by considering
the real application scenario, and the intrinsic bias due to the
inability of having a fully realistic generative model. Thus
the idea of choosing a generative model that is not strictly
based on the MAR implementation but it is more neuro-
physiologically plausible.

Firstly, we ensured that the expected causal connections
generated by NN were detectable in terms of cross-correlation
and Granger causality. These simple preliminary analyses
show at the qualitative level that the dependencies that have
emerged, follow the ground truth. In particular, from Figure 4
we can see that the distribution of the p-values of the Geweke
test statistic is not uniform when the two nodes are directly
connected, i.e. the null hypothesis of zero causality is not
accepted. This visual inspection of the p-value distributions

gives evidence that the interaction between nodes as it is
modeled by NN, can be detected by the Granger criterion.

Regarding the second part of Section III and in particular in
Figure 5, we can see the outcomes of the causal inference done
on L by the two methods. Both methods are parametric and
based on the MAR implementation of the Granger definition
of causality. By applying them in L, their working assumptions
hold both from the side of the data generation itself and
the side of how the model encodes a causal interaction. The
additive noise included in the model is the only interfering
component in the inference process. Thus this experiment is
mainly meant for evaluating the two approaches on the ideal
case in which just the noise confounds the inference. And from
Figure 5 and Table I we conclude that SL is more robust than
GCA to the presence of noise.

The second experiment repeats the same analysis on the
NN dataset. Differently from the previous case, the working
hypotheses of both methods do not completely hold when
applied in the NN dataset. In particular, in the case of GCA
neither the generative assumption nor how a causal interaction
is implemented, are satisfied when it is applied in NN.
The same is true when SL is trained on the MAR dataset
and applied in NN. This experiment emulates the empirical
application of GCA, under the hypothesis that the NN dataset
well reproduces a real neural recording. This hypothesis is
motivated by the neuro-physiological plausibility of the NN
model. Regarding the supervised approach, it was designed in
order to run under the same condition of GCA. Indeed the
training was done on the MAR dataset and the feature space
was defined by considering the MAR implementation of the
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Fig. 4: The log p-value distributions of the Geweke test statistic computed by GCA for each ordered pair of nodes. Three
classes of trials were selected respectively from the group of univariate A, bivariate B and trivariate C configurations.

Granger causality. Said differently, in both cases neither the
actual nature of the data nor the actual encoding of a causal
interaction, were considered. From the results that are reported
in Figure 5 and Table II, it emerges that the performances of
these analyses are very similar.

The last experiment investigates the supervised learning
approach when the generative model does not derive from
the causal criterion. To evaluate this scenario, we infer the
causality in the NN dataset by training SL on a feature
space whose features are Granger-based but it is constructed
on a dataset generated by the NN model. By constraining
the training phase by assuming the same generative model
of the testing dataset, the accuracy of detecting the correct
causal interactions substantially improves. In Figure 6, the
improvement is shown by the solid line and quantified in
Table II in which we see the difference with the accuracies
of the previous experiment.

V. CONCLUSION

In this paper, we validated two different approaches for
the inference of causal brain connectivity by using realistic
neural network simulations. Specifically, our focus was on the
inference performances of the unsupervised and supervised
methods when the assumptions of data generation do not
hold. Moreover, we investigated the implications of having
in the supervised approach a training phase with its own
stochastic process which does not directly depend on the
causal criterion that instead it is implemented in the feature
space definition. This aspect of the supervised approach leads
to a more accurate inference and makes it more application
dependent without the problem of model identification. As
future work, we plan to extend the same analysis also on a
real dataset.
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[9] André M. Bastos and Jan-Mathijs M. Schoffelen. A Tutorial Review of Functional

Connectivity Analysis Methods and Their Interpretational Pitfalls. Frontiers in sys-

tems neuroscience, 9, 2015.

91



BIBLIOGRAPHY

[10] Steven L. Bressler and Anil K. Seth. Wiener-Granger causality: a well established

methodology. NeuroImage, 58(2):323–329, September 2011.

[11] M. J. Brookes, M. W. Woolrich, and G. R. Barnes. Measuring functional connectivity

in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage,

63(2):910–920, November 2012.

[12] Clemens Brunner, Martin Billinger, Martin Seeber, Timothy R. Mullen, and Scott

Makeig. Volume Conduction Influences Scalp-Based Connectivity Estimates. Fron-

tiers in Computational Neuroscience, 10, November 2016.

[13] D. Chicharro. On the spectral formulation of Granger causality. Biological Cybernet-

ics, 105(5-6):331–347, December 2011.

[14] Daniel Chicharro and Anders Ledberg. When Two Become One: The Limits of

Causality Analysis of Brain Dynamics. PLoS ONE, 7(3):e32466+, March 2012.

[15] Gopikrishna Deshpande, K. Sathian, and Xiaoping Hu. Effect of hemodynamic vari-

ability on Granger causality analysis of fMRI. NeuroImage, 52(3):884–896, September

2010.

[16] Michael Eichler. A graphical approach for evaluating effective connectivity in neu-

ral systems. Philosophical transactions of the Royal Society of London. Series B,

Biological sciences, 360(1457):953–967, May 2005.

[17] K. J. Friston. Functional and effective connectivity: a review. Brain Connectivity,

1(1):13–36, 2011.
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[56] Daniel Y. Takahashi, Luiz A. Baccalá, and Koichi Sameshima. Information theoretic

interpretation of frequency domain connectivity measures, December 2010.

95



BIBLIOGRAPHY

[57] Pedro A. Valdes-Sosa. Spatio-temporal autoregressive models defined over brain

manifolds. Neuroinformatics, 2(2):239–250, 2004.

[58] Pedro A. Valdes-Sosa, Alard Roebroeck, Jean Daunizeau, and Karl Friston. Effective

connectivity: influence, causality and biophysical modeling. NeuroImage, 58(2):339–

361, September 2011.

[59] N. M. van Strien, N. L. M. Cappaert, and M. P. Witter. The anatomy of memory: an

interactive overview of the parahippocampalhippocampal network. Nature Reviews

Neuroscience, 10(4):272–282, April 2009.

[60] Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. Transfer Entropy–

a Model-free Measure of Effective Connectivity for the Neurosciences. J. Comput.

Neurosci., 30(1):45–67, February 2011.

96


