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Abstract: High-performance composites suffer from fatigue crack propagation during service. Tradi-
tional repair methods can be expensive and time-consuming. Therefore, research on composites with
self-healing capabilities has considerably increased in the past decade. The aim of this work is to
develop a polyamide 6 (PA6) matrix with self-healing properties. Polycaprolactone (PCL) was used as
healing agent and melt compounded with PA6. PCL caused a decrease of the mechanical properties
of PA6, due to its immiscibility and low mechanical properties. Nevertheless, acceptable fracture
toughness values in quasi-static mode were obtained. Samples were thermally mended at 80 and
100 ◦C, and the healing efficiency was assessed by comparing the fracture toughness of virgin and
repaired samples both in quasi-static and in impact mode. The blend with a PCL content of 30 wt%
showed limited healing efficiency values (up to 6%) in quasi-static mode, while an interesting repair
capability (53%) was detected under impact conditions. This discrepancy was explained through
microstructural analysis and correlated to a different fracture morphology. In fact, under quasi-static
mode, the PA6 matrix was severely plasticized, while under impact a brittle fracture surface was
obtained. This morphology favored the flow of PCL during the thermal healing process.

Keywords: polyamide; polycaprolactone; blends; fracture toughness; self-healing

1. Introduction

Polymer composites are versatile and high-performing structural materials, charac-
terized by elevated strength, stiffness, fatigue, and corrosion resistance, coupled with low
density and ease of fabrication [1,2]. However, one of their biggest failure problems is
fatigue crack propagation under load, due to both interfacial delamination and matrix
cracking. This failure is particularly hard to predict, and thus the monitoring and main-
tenance of composite structures still remains a major issue [3]. Various solutions have
been implemented in order to delay crack propagation in composite materials [3,4], but
if the damage is too extensive, structural repair is not an option, and the component has
to be replaced. Considering also that repair operations can be often expensive and time-
consuming, the research in the field of self-healing composites has increased in the past
decade [5]. Self-healing composites are fabricated to heal cracks and damages, if present,
and to enhance the longevity of the structures [6]. In order to improve self-healing efficiency,
it is important to consider various factors related to the damage and repair mechanisms
in these materials. Four important concepts should be taken into account: localization,
time, mobility of the healing agent, and the actual self-healing mechanism [7,8]. First of
all, damage assessment is essential, and for this reason, localization and damage scale
need to be identified. The scale of damage can range from small surface scratches to deep
cuts and fiber debonding or delamination. Moreover, time plays an important role in the
healing process; there is a time gap between damage formation and the onset of the self-healing
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mechanism. Healing time is related to the healing agent’s mobility inside the damaged polymer.
Finally, the type of self-healing mechanism also influences the efficiency of the process.

Self-healing mechanisms are generally divided in two broad classes: extrinsic and
intrinsic [8]. These two repair methods differ in their reversibility [9]. While extrinsic
self-healing is based on microencapsulation and vascular impregnation of the self-healing
agent and is non-reversible, intrinsic healing is based on reversible bonding in the polymers
or blends constituting the matrix [10]. The main advantage of extrinsic self-healing is given
by the autonomous flow of the healing agent in the cracked area and the subsequent repair,
without the need of external stimuli [11]. In the extrinsic mode, the healing agent is deliv-
ered to the damaged area upon capsule rupture and undergoes polymerization through
the interaction with a catalyst after being released to the damaged site, thus repairing the
crack [12,13]. Although an elevated healing efficiency can be achieved with this method, the
introduction of capsules or vascular systems negatively impacts the mechanical properties
of the composite. Moreover, the extrinsic self-healing mechanism can only be exploited
once, since the broken storage sites cannot be refilled and subsequently re-polymerized
upon further damage [14]. Conversely, the intrinsic self-healing mechanism is based on the
inherent reversibility of bonding in the matrix phase or in the polymer identified as the
healing agent [12]. In these conditions, the healing functionality is thus an intrinsic part of
the matrix (either chemically or compositionally tuned), and a catalyst is not needed [15].
Intrinsic self-healing materials are also called non-autonomous, due to the necessity of
external stimuli (heat, radiation, load) to trigger the healing mechanism. Furthermore,
the biggest advantage of intrinsic self-healing materials compared to extrinsic ones is the
ability to perform multiple healing cycles. Healing cycles can be theoretically unlimited
if healing agent degradation does not occur, and this approach can be implemented for
thermoplastics, thermosets, and elastomers [16]. Intrinsic systems are generally the ideal
solution to repair minor damage, considering the close proximity of the healing agent to the
damaged site [15]. Intrinsic self-healing can be obtained through physical and/or chemical
interactions [16]; while physical mechanisms are based on molecular inter-diffusion [17],
chemical interactions are based on reversible covalent bonds [11] and supramolecular
interactions [18]. Furthermore, polymer blends [19] and shape memory polymers [20] have
been implemented in order to exploit both physical and chemical interactions.

Taking into account that in the literature, the effectiveness of intrinsic self-healing
composites constituted by a thermoplastic healing agent dispersed inside a thermosetting
matrix has been already demonstrated [21,22], this mechanism could also be extended to
thermoplastic composites (TPCs). Although less commonly employed than traditional
thermosetting composites, TPCs are rising in popularity, with a global market of 17.7
Mt in 2021, mainly driven by the automotive, construction and aerospace industries [23].
A big advantage of thermoplastic composites compared to traditional ones is their better
processability and lower cost, coupled with their ability to be recycled through grinding,
melting, and reforming operations [24,25]. The major disadvantages of TPCs compared
to thermosetting composites are their lower strength and thermal stability, which in turn
lead to the need for more repair or re-consolidation operations throughout their service
life. Although TPCs can be thermally repaired simply by melting/softening the matrix,
this operation often results in high costs and can also cause geometrical distortions of
the components. Therefore, the implementation of the intrinsic self-healing mechanism
inside the thermoplastic matrix in TPCs could bypass this limitation, thus obtaining a
cost-effective and environmentally friendly solution to maintain the structural integrity of
these composites.

Although many studies about thermosetting self-healing composites, mainly focused
on epoxy-based laminates [21,26,27], can be found in the open literature, only a few papers
have focused on the self-healing mechanism exploited in thermoplastic matrices for the
development of TPCs. Moreover, these studies are mainly focused on elastomers or
thermoplastic polyurethane [28,29]. In the present study, polyamide 6 (PA6) was chosen as
matrix material, as it is a high-performance thermoplastic polymer widely used in TPCs
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for the automotive and aircraft industry [30]. In the present paper, the polymer selected
as a healing agent is polycaprolactone (PCL), which has already proven to have healing
capability in thermosetting matrices [21,22]. Therefore, PA6/PCL blends at different relative
amounts were prepared through melt compounding, and a comprehensive rheological,
morphological, chemical, thermal, and mechanical characterization was carried out on the
resulting materials. Considering that the evaluation of healing efficiency is usually carried
out as the ratio of specific mechanical properties of the virgin and damaged materials after
healing [31], it is possible to evaluate the repair capability through the comparison of the
fracture toughness (KIC) of the virgin and healed materials, as reported in the literature [32].
Therefore, in the present work, the fracture toughness (KIC) of these blends was evaluated both
in quasi-static and impact conditions, and the samples broken in these tests were thermally
repaired by using a lab-made device. In this way, it was possible to understand the effect of the
healing agent in the worst-case scenario, i.e., the complete failure of the component.

2. Materials and Methods
2.1. Materials

The thermoplastic matrix selected for this study was a Radilon S 24E 100 NAT
polyamide 6, supplied by Radici Group Spa (Gandino, Italy) in form of polymer gran-
ules (density = 1.14 g/cm3, melting temperature = 220 ◦C). The healing agent was a
polycaprolactone (PCL), purchased by Polysciences Inc. (Warrington, PA, USA) in form of
polymer granules (density = 1.1 g/cm3, MW = 80,000 g/mol).

2.2. Sample Preparation

The blends were prepared in the molten state in a two-step process. Before processing,
PA6 pellets were dried for 12 h in a vacuum oven at a temperature of 80 ◦C, while PCL
pellets were dried in a ventilated oven at a temperature of 50 ◦C for 12 h. PA6 and
PCL granules were manually mixed at different relative amounts and subsequently melt-
compounded through a Thermo Haake Rheomix 600 internal mixer equipped with counter-
rotating rotors, operating at 60 rpm for 5 min at a temperature of 230 ◦C. The obtained
blends were then compression-molded in a Carver hot-plate press at 235 ◦C for 8 min,
under an applied pressure of 1.9 MPa. In this way, square sheets 10 × 10 × 2 mm3 were
prepared. Thicker sheets, having a thickness of 5 mm and the same lateral dimensions,
were also prepared for the evaluation of the fracture toughness (both in quasi-static and
impact conditions). The produced samples were denoted as PA6_xPCL, where “x” is the
weight fraction of PCL in the blends, with x = 5, 10, 20, and 30 wt%. Also, the samples of
the neat matrices (PA6, PCL) were prepared for comparison.

2.3. Experimental Techniques
2.3.1. Rheological Properties

Rheological measurements were performed with an HR-2 Discovery Hybrid Rheome-
ter (TA Instruments, New Castle, DE, USA) in parallel plate configuration. The diameter of
the plates was 25 mm, and a gap of 1.0 mm between the plates was utilized. Frequency
sweep experiments were carried out at 230 ◦C in air, and the frequency range was set from
0.05 to 600 rad/s at a strain amplitude of 1%. In this configuration, the trends of the storage
modulus (G′), loss modulus (G′′), and complex viscosity (η*) as a function of the frequency
were determined. At least three specimens were tested for each composition.

2.3.2. Microstructural Properties

Light microscope (LM) micrographs of the produced blends were acquired by embed-
ding the specimens in cylindrical epoxy beads and observing them through a CH–9435
Heerbrugg optical microscope (Heerbrugg, Switzerland). ImageJ® software (National
Institutes of Health campus, Bethesda, MD, USA) was used to measure the diameter of the
PCL domains inside the PA6 matrix.
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Field emission scanning electron microscopy (FESEM) images of the cryo-fractured and
the fractured surfaces, before and after the healing process, of the samples were acquired by
using a Zeiss Supra 40 microscope, operating at an accelerating voltage of 3.5 kV. Prior to the
observations, the specimens were sputtered with a Pt–Pd (80:20) conductive coating.

2.3.3. Chemical Properties

Fourier-transformed infrared (FT-IR) spectroscopy was performed in attenuated total
reflectance (ATR) mode by using a Perkin-Elmer Spectrum One instrument (Perkin-Elmer
GmbH, Waltham, MA, USA) equipped with a ZnSe crystal and operating in a wavenumber
range 650–4000 cm−1. In order to reduce the signal-to-noise ratio, a hundred scans were
collected for each spectrum (resolution 4 cm−1).

2.3.4. Thermal Properties

Differential scanning calorimetry (DSC) tests were conducted through a Mettler DSC30
machine under a nitrogen flow of 100 mL/min in a temperature range from −100 to 250 ◦C
at a heating/cooling rate of 10 ◦C/min. All the specimens, with a weight of approximately
10 mg, were subjected first to a heating scan, a cooling scan, and a second heating scan.
In this way, the thermal transitions of both the blend constituents were detected, in particu-
lar the glass transition temperature (Tg) of the PCL, the melting temperature and enthalpy
(Tm, ∆Hm) of both the PCL and PA6, and the crystallization temperature and enthalpy (Tc,
∆Hc) of both the PCL and PA6. Equation (1) shows how the degree of crystallinity (χ) of
the PA6 and PCL phases in the blends was evaluated.

χ =
∆Hm − ∆Hcc

∆H∗m ω
·100 (1)

where ∆Hcc is the enthalpy of cold crystallization of the PA6 (or PCL), ∆H∗m is the enthalpy
of melting of fully crystalline PA6 (or PCL), equal to 230 J/g [33] and 139.5 J/g [34],
respectively, and ω is the weight fraction of PA6 (or PCL) in the blends.

Thermogravimetric analysis (TGA) was performed through a Mettler TG50IR ther-
mobalance (Mettler Toledo Inc., Columbus, OH, USA), testing samples of approximately 10
mg at 10 ◦C/min from 35 ◦C up to 700 ◦C, under a nitrogen flow of 100 mL/min. This test
allowed the calculation of the temperature associated to a mass loss of 1% (T1%) and of 5%
(T5%) and of the temperature associated to the maximum mass loss rate (TD) of both PCL
and PA6 phases, considered as the peak of the mass loss derivative (DTG) curves.

2.3.5. Mechanical Properties

Quasi-static tensile tests were carried out at room temperature using an Instron® 5969
tensile testing machine (ITW Test & Measurement and Equipment, Lake Bluff, IL, USA)
equipped with a 1 kN load cell. The tests were performed on ISO 527 1BA specimens
at a crosshead speed of 10 mm/min, and at least ten specimens were tested for each
composition. In this way, the determination of the maximum stress (σmax) and of the strain
at break (εb) was performed. The elastic modulus (E) was determined through tensile tests
by using the same machine equipped with an Instron® 2620-601 extensometer, having a
gauge length of 12.5 mm, at a crosshead speed of 0.25 mm/min. It was calculated as the
secant modulus considering the stress levels associated to the strain values of 0.05% and
0.25%, as reported in the ISO-527 standard.

Regarding the modeling of the mechanical properties of the prepared blends, three
different models were selected: series model (Equation (2)), parallel model (Equation (3)),
and Maxwell–Eucken (ME) model (Equation (4)). The series and parallel models represent
the upper and lower bounds of the mechanical properties, respectively. On the other hand,
the Maxwell–Eucken (ME) model is able to predict the mechanical properties of a blend
characterized by a droplet-matrix morphology [35].

Pb = f PPA6 + (1− f )PPCL (2)
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Pb =

(
f

PPA6
+

1− f
PPCL

)
(3)

Pb =
PPA6 f + PPCL(1− f ) 3PPA6

2PPA6+PPCL

f + (1− f ) 3PPA6
2PPA6+PPCL

(4)

where Pb is the property of the blend, f is the volume fraction of PA6 in the sample, PPA6 is
the property of neat PA6, and PPCL is the property of neat PCL.

The fracture toughness of the blends was evaluated according to the procedure de-
scribed in the ASTM D5045 standard. The tests were carried out on Single Edge Notched
Bending (SENB) specimens, having dimensions of 44 × 10 × 5 mm3, an initial notch
length of 5 mm, and a span length of 40 mm. At least ten specimens were tested for each
composition. Tests in quasi-static mode were performed in three-point bending configu-
ration by using an Instron® 5969 electromechanical testing machine, at a crosshead speed
of 10 mm/min. Tests in impact mode were performed using a Charpy impact machine
provided by CEAST, following the ISO 17281 standard, and the load-displacement curves
were recorded using a tup extensometer in the hammer. A mass of the hammer equal to
0.5 kg, a starting angle of 60◦, and an impact speed of 1.5 m/s were utilized. From the
load-displacement curves, the maximum load sustained by the samples (Pmax) was determined,
and it was thus possible to obtain the critical stress intensity factor (KIC), both in quasi-static and
impact conditions, according to the expressions reported in Equations (5) and (6):

KIC =

(
Pmax

BW1/2

)
· f (x) (5)

f (x) = 6x1/2 1.99− x(1− x)
(
2.15− 3.93x + 2.7x2)

(1 + 2x)(1− x)3/2 (6)

where B is the thickness of the specimen, W is the width of the specimen, f (x) is a calibration
factor, where x = a/W, and a is the notch length. Furthermore, according to ASTM D5045
standard, from the integration of the load-displacement curves, the critical strain energy
release rate (GIC) values in quasi-static mode were also obtained, according to the expression
reported in Equation (7):

GIC =
∆U

BWϕ
(7)

where ∆U is the difference between the total energy absorbed by the sample and the energy
absorbed in the indentation tests and ϕ is an energy calibration factor, whose expression is
reported in Equations (8)–(10):

ϕ =
A + 18.64

dA/dx
(8)

A =

[
16x2

(1− x)2

][
8.9− 33.717x + 79.616 x2 − 112.952x3 + 84.815x4 − 25.672x5

]
(9)

dA
dx =

[
16x2

(1−x)2

][
−33.717 + 159.232x− 338.856x2 + 339.26x3 − 128.36 x4]

+

[
32x

(1−x)3

][
8.9− 33.717x + 79.616 x2 − 112.952x3 + 84.815x4 − 25.672x5] (10)

2.3.6. Evaluation of the Healing Efficiency

As reported in the introduction, a thermal mending process was performed to promote
the intrinsic self-healing in the prepared blends. Specimens broken in fracture toughness
tests both in quasi-static and impact mode were inserted in an iron vice with an applied
pressure of 0.5 MPa and then healed in an oven at three different temperatures: 80, 100,
and 140 ◦C. These parameters were selected after preliminary trials and on the basis of a



Appl. Sci. 2022, 12, 12357 6 of 19

previous paper by our group [36]. The selected temperatures were higher than the Tm of
PCL and could also guarantee a sufficient macromolecular mobility of the healing agent
within the PA6 matrix during the thermal mending process. A schematic representation
of the device adopted for the healing process is shown in Figure 1. Before inserting the
specimens in the iron vice, a polytetrafluoroethylene (PTFE) film was inserted below and on
the extremity of the samples in order to limit their adhesion with the vice. The healing process
was performed on neat PA6, and PA6_30PCL samples. Neat PA6 was selected as reference,
while PA6_30PCL composition was chosen for its good quasi-static mechanical properties.
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After the healing process, the samples were tested again in order to obtain the critical
stress intensity factor of the healed specimens (KIC,Healed). The healing efficiency (ηKIC)
was evaluated through a comparison with the fracture toughness of the virgin specimens
(KIC,virgin), as reported in Equation (11):

ηKIC =
KIC,Healed

KIC,Virgin
× 100 (11)

3. Results and Discussions
3.1. Rheological Properties

A complete rheological investigation was carried out on the produced blends in order
to understand their processability and the miscibility conditions [37]. Figure 2a,b report the
results obtained from the dynamic rheological measurements on the prepared blends in
terms of dynamic moduli, i.e., storage and loss modulus, and complex viscosity. The low-
frequency G′ values of the PA6_xPCL samples are slightly higher with respect to their
individual components, especially in the case of the PA6_30PCL blend. In addition, by
looking at the G′ plots, it can be observed that by increasing the PCL concentration, the
storage modulus tends to increase. The presence of small PCL domains within the PA6
matrix could result in a superior energy storage capacity of the blends with respect to the
neat constituents [38]. On the other hand, G′′ values also tend to increase with the PCL
content. Figure 2b reports the complex viscosity curves of all the produced blends, and
the classic shear thinning behavior of polymeric materials can be detected [39], with a η*
decrease at elevated frequencies [40]. The value of complex viscosity of the neat PA6 is
significantly lower in comparison to that of the neat PCL over the whole frequency range,
and an increase in the complex viscosity of the blends can be registered with the PCL
content. It is possible to infer that the presence of PCL domains inside the PA6 matrix tends
to hinder the motion of PA6 macromolecules at the molten state [41].
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One of the possible ways to investigate the morphological changes in polymer blends
at the molten state is through the so-called Cole–Cole plots. These plots represent the
description of the viscoelastic properties of polymer blends characterized by high relaxation
time distributions, thus highlighting phase separation phenomena within the blends [42].
In the Cole–Cole plot, the imaginary viscosity (η′′) is reported as a function of real viscosity
(η′), and in doing so, two different outcomes can be observed. If a smooth and semicircular
arc of a curve is present, a good compatibility between the constituents of the polymer blend
in the molten state can be predicted. On the other hand, if two different circular arcs or tails
can be observed, the existence of phase heterogeneity and immiscibility within the blend
can be demonstrated [43]. Another possible way of investigating the miscibility conditions
of polymer blends is through the Han plot, in which the log G′ versus log G′′ are reported,
generally resulting in a linear correlation [44]. The compatibility of the polymer blend can
be demonstrated if the slope of the obtained curves at different relative concentrations
of the constituents is the same [45,46]. On the contrary, if these curves show different
slopes, then the analyzed blend is considered to be immiscible [47,48]. Figure 3a reports
the Cole–Cole plots of the neat matrices and of their blends. The relaxation process of both
neat PA6 and neat PCL is described by a single circular arc, while by increasing the PCL
fraction in the blends, the appearance of two-stage relaxation phenomena can be observed,
thus proving the immiscibility of the prepared blends [49]. Furthermore, Figure 3b reports
the Han plot of neat PA6, neat PCL, and of their blends. From these plots, it is possible to
highlight a linear region at elevated G′′ values, but the slope of these lines is systematically
different, thus confirming that these blends can be considered immiscible [50,51].

3.2. Microstructural Properties

Through the optical microscopy it was possible to analyze the microstructure of the
samples, specifically the PCL domains’ dispersion inside the PA6 matrix. Figure 4a–e
shows the micrographs of the cross-section of the prepared blends obtained through light
microscopy. From these images, it can be observed how different PCL domain dimensions
can be found in the blends, especially at elevated PCL levels. Lower levels of PCL in the
blends (namely 5 and 10 wt%) generally generate domains of reduced dimensions compared
to blends with higher PCL contents (namely 20 and 30 wt%). An important fraction of
small domains is present alongside larger domains, indicating the presence of coalescence
phenomena, especially in blend compositions with higher PCL levels, as already shown
by Dell’Erba et al. in a poly-L-lactic acid/polycaprolactone blend [52]. Moreover, the size
distribution of PCL domains was fitted through a lognormal distribution, and the average
domain size was reported in Figure 4f. This plot confirms that the dimension of PCL
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domains increases with the PCL content within the blends, passing from 0.96 µm for the
PA6_5PCL sample to 1.93 µm for the PA6_30PCL composition. In any case, it is confirmed
that the prepared blends are immiscible, and a clear phase separation occurs over the whole
investigated concentration range.
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FESEM analysis was performed on cryo-fractured specimens in order to observe the
interaction between the blend constituents, and Figure 5a–f reports the micrographs of the
prepared samples. Due to the fact that the prepared blends undergo phase separation, a droplet-
matrix-type morphology can be detected [53]. The blend immiscibility is evident since the PCL
domains are easily recognizable inside the PA6 matrix, and they are visibly smaller in the samples
with lower PCL contents. These results are consistent with those obtained from the rheological
analyses and LM micrographs (see Figure 3a,b) and Figure 4a–f. The PCL domains are well
dispersed inside the PCL matrix, with a domain diameter distribution ranging from a few
micrometers to tens of micrometers. Once again, the higher domain size detected for higher
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concentrations of PCL could be attributed to coalescence phenomena [54]. Furthermore,
a rather poor interfacial adhesion can be observed between the two constituents at all
the relative concentrations. In the recent work of Marischal et al. [55], the investigation
of PA6/PCL blends filled with multiwalled carbon nanotubes was carried out, and in
that case a lack of adhesion between the constituents was also observed. This lack of
interfacial interactions could probably lead to a worsening of the mechanical properties of
the prepared blends.
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3.3. Chemical Properties

Figure 6a–c reports the FTIR spectra of the neat constituents and of the prepared
blends. In particular, Figure 6b highlights the functional groups region of single bonds
stretch (signals between 4000 cm−1 and 2500 cm−1), while Figure 6c shows the functional
groups region of double bonds stretch and fingerprint region (signals between 2000 cm−1

and 650 cm−1). The spectrum of PA6 shows a signal at 3302 cm−1, which can be assigned
to the N-H bending vibration of the amine [56]. The signal at 1646 cm−1 represents C=O
amide stretching while the signal at 1551 cm−1 is associated with the combination of N-H
and C-H stretching [57]. Moreover, the characteristic signal of polyamides corresponding to
the N-H Fermi resonance can be identified at 3086 cm−1 [58]. The two signals at 2930 cm−1

and at 2862 cm−1 are associated with asymmetric and symmetric C−H stretching vibrations
present in both polymers, respectively [59]. Considering the spectra of neat PCL, it shows a
very sharp signal at 1750 cm−1, which corresponds to the ester group [60]. Regarding the
spectra of PA6/PCL blends, most signals of the blend constituents are present with different
intensity, generally proportional to their relative concentration in the blends. However,
there are no signals which cannot be associated with either the PA6 or PCL phase in the
blend samples, and no peak shifts due to physical (or chemical) interaction between the
constituents can be detected. This is a further confirmation of the immiscibility of the
blends over the whole range of investigated compositions.
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3.4. Thermal Properties

The DSC thermograms of the analyzed blends are shown in Figure 7, while the most
important results are summarized in Table 1. Concerning PA6, double melting phenomena
can be observed at 219.8 and 226.3 ◦C, while its Tg can be detected in the proximity of
60 ◦C, even though the signal is particularly weak. Considering neat PCL, it exhibits a Tg
approximately at −60 ◦C and melting phenomena at 60 ◦C, which are in perfect agreement
with the values found in the literature [61]. It is immediately apparent how, as expected,
signal intensity changes as a function of the relative composition of the samples. Specifically,
melting and crystallization signals of PA6 experience an intensity loss with an increase in
PCL content, while the intensity of the PCL melting and crystallization signals increases
with the PCL amount. Moreover, it can be observed that there is no interaction between
PA6 and PCL, due to the fact that the thermal properties of both PA6 and PCL phases are
not substantially affected by the presence of another phase in the blends. The presence
of double melting phenomena in the PA6 phase can be ascribed to its ability to form
polymorphic crystals. Two different types of crystals can be formed; the first and most
stable is labeled α-phase (with monoclinic cell), which is formed due to low under-cooling,
whilst the second and the less stable is labeled γ-mesophase (with pseudo-hexagonal cell),
which can be genrerated due to high under-cooling [62]. Through a peak deconvolution
procedure, it was possible to discriminate the melting temperatures of both the α-phase
(Tm2) and the γ-phase (Tm1). By adding PCL to the PA6 matrix, it can be observed that the
generation of double melting phenomena tends to be enhanced, and the addition of PCL
hinders the formation of more stable PA6 α-crystallites. However, both the melting and
crystallization temperature of PA6 do not have significant variations with the PCL amount
in the blends. It is extremely interesting to notice the change in the melting temperature of PCL
between the first and second heating scans, as the second scan Tm is significantly lower than that
observed in the first heating scan. This experimental evidence can be attributed to the fact that
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the blend was kept in a controlled atmosphere before testing, and PCL was thus able to reach
a high degree of crystallinity, with a consequent increase in the melting temperature. During
the DSC analysis, PCL did not have enough time to reach the same crystallinity degree, with a
decrease in melting temperature in the second heating scan [63]. In any case, the immiscibility
of the produced blends was demonstrated also through DSC analysis.
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Table 1. Results of the DSC tests on the prepared PA6/PCL blends.

First Heating Scan

Sample Tm PCL (a) [◦C] ∆Hm_PCL
(b) [J/g] χ PCL (c) [%] Tm1 PA6 (d) [◦C] Tm2 PA6 (e) [◦C] ∆Hm_PA6

(f) [J/g] χ PA6 (g) [%]

PA6 - - - 219.8 226.3 79.8 34.7
PA6_5PCL 60.3 6.2 89.2 217.6 224.2 67.3 30.8

PA6_10PCL 62.4 10.9 78.1 - 225.2 78.0 37.7
PA6_20PCL 63.7 20.7 74.1 220.0 225.9 55.6 30.2
PA6_30PCL 64.6 26.3 62.7 220.3 226.8 54.3 33.8

PCL 66.8 74.9 53.7 - - - -

Cooling Scan

Sample Tc PA6 (h)[◦C] ∆Hc_PA6
(i) [J/g] χ PA6 [%] Tc PCL (j) [◦C] ∆Hc_PCL

(k) [J/g] χ PCL [%] Tg PCL (l) [◦C]

PA6 190.7 89.7 39.0 - - - -
PA6_5PCL 190.5 80.2 36.7 30.3 2.4 34.4 -

PA6_10PCL 190.3 75.0 36.2 30.7 5.7 40.9 -
PA6_20PCL 190.5 67.9 36.9 29.7 12.3 44.1 -
PA6_30PCL 190.6 61.9 38.4 28.5 17.7 42.3 -

PCL - - - 23.3 62.0 44.4 -61.0

Second Heating Scan

Sample Tm PCL [◦C] ∆Hm_PCL [J/g] χ PCL [%] Tm1 PA6 [◦C] Tm2 PA6 [◦C] ∆Hm_PA6 [J/g] χ PA6 [%]

PA6 - - 42.4 - 224.3 90.1 39.2
PA6_5PCL 53.5 3.0 40.7 - 224.2 79.9 36.6

PA6_10PCL 54.1 5.7 41.6 218.6 224.9 75.8 36.6
PA6_20PCL 54.3 11.6 39.3 217.9 224.3 71.2 38.7
PA6_30PCL 54.4 16.4 52.5 217.8 224.4 62.6 38.9

PCL 54.5 73.3 - - - - -

(a) Tm PCL = melting temperature of PCL, (b) ∆Hm PCL = enthalpy of melting of PCL, (c) χ PCL = degree of crys-
tallinity of PCL, (d) Tm1 PA6 = melting temperature of γ-phase PA6 crystallites, (e) Tm2 PA6 = melting temperature
of α-phase PA6 crystallites, (f) ∆Hm PA6 = enthalpy of melting of PA6, (g) χ PA6 = degree of crystallinity of PA6,
(h) Tc PA6 = crystallization temperature of PA6, (i) ∆Hc PA6 = enthalpy of crystallization of PA6, (j) Tc PCL = crystallization
temperature of PCL, (k) ∆Hc PCL = crystallization enthalpy of PCL, (l) Tg PCL = glass transition temperature of PCL.
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Figure 8a,b shows the TGA thermograms and the derivative thermogravimetric (DTG)
curves of the constituents and of the prepared blends, whilst the most important results are
summarized in Table 2. It can be observed that no residual mass is present at the end of
the analysis, since the analyzed blend is fully organic and its decomposition products are
volatiles. Given the degradation profile of the produced blends, it is thus possible to infer
that the thermal degradation resistance is decreased by increasing the PCL amount in the
blends. Both the T1% and T5% tend to decrease with the PCL concentration, going from 326.5
and 398.3 ◦C for neat PA6 down to 249.3 and 389.2 ◦C for neat PCL, respectively. However, the
produced blends maintain acceptable thermal stability even at elevated PCL amounts.
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Table 2. Results of the TGA analysis performed on the prepared PA6/PCL blends.

Sample T1%
(a) [◦C] T5%

(b) [◦C] TD PCL (c) [◦C] mD PCL (d) [%] TD PA6 (e) [◦C] mD PA6 (f) [%]

PA6 326.5 398.3 - - 461.5 32.9
PA6_5PCL 278.0 390.0 419.5 81.1 459.3 25.4
PA6_10PCL 251.3 391.5 432.3 62.3 468.7 18.2
PA6_20PCL 283.7 390.2 423.7 58.7 463.1 9.0
PA6_30PCL 227.8 384.3 416.8 52.9 457.3 5.7

PCL 249.3 389.2 420.2 48.2 - -
(a) T1% = temperature associated to a mass loss of 1%, (b) T5%= temperature associated to a mass loss of 5%, (c) TD
PCL = degradation temperature of PCL, (d) mD PCL = residual mass associated to the degradation temperature of
PCL, (e) TD PA6= degradation temperature of PA6, and (f) mD PA6 = residual mass associated to the degradation
temperature of PA6.

3.5. Mechanical Properties

Figure 9a–c reports the trends of the elastic modulus (E), of the ultimate tensile
strength (UTS), and of the elongation at break (εb) of all the prepared blends, obtained
from quasi-static tensile tests. It is worth mentioning that two different behaviors can be
identified during the test. PA6 and PA6/PCL samples do not present any yielding and
have limited strain at break values, while the neat PCL shows an evident yielding and
elevated elongation at break values (representative stress–strain curves were not reported
for brevity). Generally speaking, the mechanical properties of the produced blends tend to
decrease by increasing the PCL content. The elastic modulus decreases from 3.6 GPa for
neat PA6 to 2.0 GPa for the PA6_30PCL sample (relative drop of 44%), the UTS decreases
from 72.3 MPa for neat PA6 to 39.2 MPa for the PA6_30PCL blend (relative drop of 46%), and
the elongation at break decreases from 6.6% for neat PA6 to 5.1% for the PA6_30PCL blend
(relative drop of 23%). Several phenomena tend to influence the mechanical properties of an
immiscible polymer blend, such as cavitation during the deformation process, the limited
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mechanical properties of the dispersed phase, and the limited interfacial adhesion between
the constituents [64]. The immiscibility of the produced blends was demonstrated in
several analyses, i.e., the Cole–Cole plot (Figure 3a), in which different relaxation processes
can be observed, and the SEM micrographs (Figure 5), in which the limited interfacial
adhesion between PA6 and PCL can be observed. Thus, the limited interaction between the
constituents, together with the lower mechanical properties of the dispersed phase, leads to
a general decrease in the mechanical properties of these blends. The mechanical properties
of the prepared blends were modeled through the expressions reported in Equations (2)–(4).
It can be seen that the trend of the elastic modulus of the blends is not correctly modeled
by the used models, and in particular, it is possible to see that the ME model fails to predict
the stiffness of the blends at limited PCL amounts. Both the UTS and the εb values of the
prepared blends are overestimated by the three models considered, and the reason could
be the very low adhesion between the two constituents.
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The results reported in Table 3 describe the fracture behavior of the prepared blends
in quasi-static mode and impact mode and in particular, the trends of the KIC and of the
GIC as a function of the volume fraction of PCL. The specimens containing PCL did not
completely fulfill the elasticity requirements reported in the ASTM D5045 standard, owing
to the excessive plasticization of the PCL phase within the blends, and thus the tentative
value of the fracture toughness (KQ) was considered in this plot. The obtained KIC value
for neat PA6 is 2.8 MPa·m1/2, and, interestingly, for low amounts of PCL, both KIC and GIC
increase due to toughening mechanisms played by the presence of PCL [65]. The increase
of both KIC and GIC at limited PCL concentrations could be attributed to the toughening
mechanism known as particle debonding [66,67]. This mechanism is responsible for an
alteration of the stress state in the surrounding matrix enabling the matrix to yield at low-
stress levels, and thus initiating the plastic deformation inside the matrix, with a consequent
increase in the absorbed fracture energy [68,69]. This hypothesis will be confirmed by the
results of the microstructural analysis reported hereafter. On the other hand, at higher
percentages of PCL, the fracture toughness slightly decreases due to the lower fracture
toughness of PCL. However, the observed drop in fracture toughness at elevated PCL
amounts is not dramatic. Overall, the fracture toughness under quasi-static conditions of
the PA6 is not negatively affected by the introduction of PCL, even if the two polymers are
immiscible. Concerning the results obtained in impact mode, it can be observed that for
low concentrations of PCL, the KIC of the blends is comparable with that of neat PA6, and
the slight decrease observed for elevated PCL content can be probably attributed to the
limited adhesion between the PCL and the PA6 matrix. Moreover, the KIC values calculated
in impact mode are significantly higher than those reported in quasi-static conditions, and
a possible reason can be related to the higher deformation speed, which may lead to the
activation of different fracture mechanisms.
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Table 3. Results describing the fracture behavior of the prepared PA6/PCL blends in quasi-static and
impact mode.

Quasi-Static Impact

Sample KIC [MPa m1/2] (a) GIC [kJ/m2] (b) KIC [MPa m1/2] (c)

PA6 2.79 ± 0.08 2.20 ± 0.14 9.44 ± 0.86
PA6_5PCL 3.34 ± 0.23 3.25 ± 0.35 9.40 ± 0.87
PA6_10PCL 3.08 ± 0.31 3.33 ± 0.45 8.77 ± 1.03
PA6_20PCL 2.86 ± 0.30 3.54 ± 0.77 7.86 ± 1.36
PA6_30PCL 2.24 ± 0.31 2.68 ± 0.71 7.32 ± 0.78

(a) Critical stress intensity factor (KIC) in quasi-static mode, (b) critical strain energy release rate (GIC) in quasi-static
mode, and (c) critical stress intensity factor (KIC) in impact mode.

Figure 10 reports the SEM micrographs of the tested SENB specimens in both quasi-
static and impact mode. The surface of the tested specimens in quasi-static conditions is
noticeably different with respect to that observed in impact mode. In quasi-static mode, it is
possible to see that the fracture surface of the PA6_20PCL and PA6_30 PCL blends is quite
irregular, the PA6 matrix is plastically deformed, and the voids formed during the particle
debonding process are clearly visible. Particle debonding and PA6 matrix deformation
dissipates a large amount of energy; in these conditions crack propagation is hindered [70].
The observed morphology clearly explains the improvement in the fracture toughness of
the prepared blends observed in quasi-static conditions. On the contrary, the surfaces of
the specimens tested in impact mode are much smoother, with no plastic deformation
phenomena. Indeed, the particle debonding toughening mechanism does occur, since the
voids left by PCL domains can be clearly detected, but this effect is counterbalanced by the
lack of plastic deformation of the PA6 matrix [71].
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3.6. Evaluation of Healing Efficiency

The KIC values obtained in quasi-static and impact mode for the blend containing
30 wt% of PCL, before and after the healing process, are reported in Figure 11. By looking
at the obtained results, the healing efficiency in quasi-static mode is 5.8% and 4.9% for the
healing performed at 80 and 100 ◦C, respectively. On the other hand, in impact mode, the
healing efficiency is 51.5 and 53.0% at the same healing temperatures. Furthermore, the
healing efficiency of neat PA6 at 140 ◦C is 0%, since only PCL is capable of melting and
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flowing into the crack area during the healing process. Therefore, it is interesting to observe
that the overall healing efficiency evaluated in impact mode is significantly higher with
respect to that observed in quasi-static mode. The reason behind this discrepancy is related
to the different testing speed adopted in these two tests, which produces different fracture
surface morphology, as reported in Figure 10. The fracture surface of the specimen tested in
quasi-static mode is heavily plastically deformed, thus resulting in a high specific surface
area. On the contrary, the fracture surface of the specimens tested in impact mode does
not report any deformation, and therefore the specific surface areas are rather low. Being
that the PCL domains are evenly distributed in both quasi-static and impact mode samples,
if the specific surface area of the crack is higher, then the PCL will fill the cracked area in
a more difficult and non-efficient way, as the diffusion of the molten healing agent in the
crack zone will be hindered by the presence of a jagged surface. Surprisingly, the healing
efficiency obtained for the sample healed at 140 ◦C is zero, as the fracture surfaces were not
attached after the thermal mending treatment.
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The differences in the quasi-static and impact mode fracture surfaces, before and
after the healing process, are the key to understanding the reason for the different healing
efficiency values obtained. Thus, the SEM micrographs of the crack propagation surfaces
before and after the healing process in quasi-static mode and in impact mode of the
PA6_30PCL blend are reported in Figure 12. Regardless to the testing speed, the fracture
surfaces after the healing process have a much smoother appearance, and the PCL domains
are transformed into a thin film, as also reported in the work of Dorigato et al. on an
epoxy/PCL intrinsic self-healing matrix [72]. As previously explained, the samples tested in
quasi-static mode present a higher specific surface area with respect to those tested in impact
mode. Thus, the PCL layer is not able to fill the crack as efficiently as in the specimens
tested in impact mode. Regarding the specimens tested in impact mode, it is possible to see
that the PCL layer is covering the majority of the fracture surface, thus efficiently healing
the damaged area. On the other hand, by increasing the healing temperature to 140 ◦C,
something strange happens. The PCL only partially remains on the fractured surface, while
the greatest part flows out, over the Teflon film. The reason for this phenomenon is that
the healing temperature is too high, thus enabling the PCL to melt and flow even outside
the specimens. Although PCL could be an effective healing agent, its adhesion with the
PA6 matrix is very poor, and therefore the healing efficiency of the prepared PA6/PCL
systems is rather limited. Therefore, this work demonstrates the possibility to partially
heal PA6 matrices utilized in TPCs with the introduction of a proper amount of PCL and
the selection of a proper healing temperature. However, further improvements will be
necessary to increase the efficiency of the healing process. For instance, the overall healing
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efficiency could be increased by means of a proper compatibilizer. For instance, the use of a
glycidyl methacrylate compatibilizer could significantly improve the adhesion between
PA6 and PCL constituents. The epoxide groups present in this compatibilizer could react
with the hydroxyl group of PCL and the carboxyl groups of PA6, thus producing ester
linkages at the interface between PA6 and PCL [73]. This could lead to an increase in the
overall healing efficiency, both in quasi-static and impact mode.
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4. Conclusions

In this work, PA6/PCL blends were developed and characterized in order to ex-
plore their possible application as thermoplastic matrices for structural composites with
thermally activated self-healing properties. The healing process was carried out through
thermal mending, exploiting the limited melting temperature of the healing agent (PCL).
The interactions between blend constituents in the prepared blends were analyzed through
rheological measurements, and the blend was identified as immiscible. The morphology of
the produced blends was investigated through optical microscopy and FESEM, highlight-
ing a good dispersion of PCL domains inside the PA6 matrix, with a dimension ranging
from a few micrometers to tens of micrometers, and confirming the immiscibility of the
blends. The mechanical properties of the materials were evaluated through quasi-static
tensile tests and fracture toughness tests, performed both in quasi-static mode and impact
mode. The PCL addition caused a significant decrease in elastic modulus, passing from
3.6 GPa of neat PA6 to 1.9 GPa of PA6_30PCL. Furthermore, the ultimate tensile strength
decreased from 72.3 MPa of neat PA6 to 39.2 MPa of PA6_30PCL. The worsening of the
mechanical properties was due to the lower mechanical properties of PCL compared to
PA6 and to the blend immiscibility. On the other hand, the fracture toughness of the blends
was not dramatically affected by the PCL introduction, both in quasi-static and impact
mode. The healing efficiency values, evaluated as the ratio of the KIC before and after the
healing process, were then determined. The healing processes, performed in a temperature
interval between 80 and 100 ◦C, led to a healing efficiency for the PA6_30PCL sample up to
6% in quasi-static mode and 53% in impact conditions. Through the FESEM analysis of
the fracture surfaces before and after the healing process, it was possible to highlight that
during the mending processes at 80 and 100 ◦C, the PCL domains melted, enabling the
healing agent to flow, and thus producing a molten PCL layer across the surface. The diffu-
sion of the molten healing agent in the crack zone, and thus the resulting healing efficiency,
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was strictly correlated to the roughness of the fracture surface. Considering the obtained
results, further investigations must be performed to optimize the healing process in or-
der to increase its efficiency, also by taking into consideration the use of compatibilizers.
In the future, these matrices, coupled with reinforcing fibers, could be utilized in novel
self-healing TPCs for structural applications.
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interlayer toughening mechanisms. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106982. [CrossRef]

66. Bucknall, C.B.; Paul, D.R. Notched impact behavior of polymer blends: Part 1: New model for particle size dependence. Polymer
2009, 50, 5539–5548. [CrossRef]

67. Bucknall, C.B.; Paul, D.R. Notched impact behaviour of polymer blends: Part 2: Dependence of critical particle size on rubber
particle volume fraction. Polymer 2013, 54, 320–329. [CrossRef]

68. Argon, A.S.; Cohen, R.E. Toughenability of polymers. Polymer 2003, 44, 6013–6032. [CrossRef]
69. Bucknall, C.B. Deformation mechanisms in rubber-toughened polymers. In Polymer Blends Volume 2: Performance; Paul, D.R.,

Bucknall, C.B., Eds.; Wiley-Interscience: New York, NY, USA, 2000; pp. 83–117.
70. Chen, Z.; Zhou, Y.; Wu, Y.; Liu, S.; Huang, H.; Zhao, J. Fluorinated polyimide with polyhedral oligomeric silsesquioxane

aggregates: Toward low dielectric constant and high toughness. Compos. Sci. Technol. 2019, 181, 107700. [CrossRef]
71. Musteat,ă, A.; Pelin, G.; Botan, M.; Popescu, A.; Deleanu, L. The Behavior of Polymeric Blends (PP + PA6) in Tensile Tests. Mater.

Plast. 2020, 57, 153–166. [CrossRef]
72. Dorigato, A.; Rigotti, D.; Pegoretti, A. Novel Poly(Caprolactone)/Epoxy Blends by Additive Manufacturing. Materials 2020, 13, 819.

[CrossRef] [PubMed]
73. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT

and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [CrossRef]

http://doi.org/10.1016/j.compscitech.2014.10.024
http://doi.org/10.1002/pen.11299
http://doi.org/10.1016/S0032-3861(01)00269-5
http://doi.org/10.1002/pen.760322405
http://doi.org/10.1002/app.47075
http://doi.org/10.3390/polym11111827
http://www.ncbi.nlm.nih.gov/pubmed/31698870
http://doi.org/10.4028/www.scientific.net/AMR.189-193.3031
http://doi.org/10.1016/j.mtcomm.2014.12.002
http://doi.org/10.1021/ma701927w
http://doi.org/10.3390/nano3010141
http://doi.org/10.1002/app.28914
http://doi.org/10.1016/j.tca.2017.09.021
http://doi.org/10.3390/ma14092368
http://doi.org/10.1016/j.compositesa.2022.106982
http://doi.org/10.1016/j.polymer.2009.09.059
http://doi.org/10.1016/j.polymer.2012.11.019
http://doi.org/10.1016/S0032-3861(03)00546-9
http://doi.org/10.1016/j.compscitech.2019.107700
http://doi.org/10.37358/MP.20.1.5322
http://doi.org/10.3390/ma13040819
http://www.ncbi.nlm.nih.gov/pubmed/32054094
http://doi.org/10.1016/j.polymdegradstab.2012.06.028

	Introduction 
	Materials and Methods 
	Materials 
	Sample Preparation 
	Experimental Techniques 
	Rheological Properties 
	Microstructural Properties 
	Chemical Properties 
	Thermal Properties 
	Mechanical Properties 
	Evaluation of the Healing Efficiency 


	Results and Discussions 
	Rheological Properties 
	Microstructural Properties 
	Chemical Properties 
	Thermal Properties 
	Mechanical Properties 
	Evaluation of Healing Efficiency 

	Conclusions 
	References

