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Continuous surveillance of COVID-19 diffusion remains crucial to control its diffusion and to anticipate infection
waves. Detecting viral RNA load inwastewater samples has been suggested as an effective approach for epidemicmon-
itoring and the development of an effective warning system. However, its quantitative link to the epidemic status and
the stages of outbreak is still elusive. Modelling is thus crucial to address these challenges. In this study, we present a
novel mechanistic model-based approach to reconstruct the complete epidemic dynamics from SARS-CoV-2 viral load
in wastewater. Our approach integrates noisy wastewater data and daily case numbers into a dynamical epidemiolog-
ical model. As demonstrated for various regions and sampling protocols, it quantifies the case numbers, provides epi-
demic indicators and accurately infers future epidemic trends. Following its quantitative analysis, we also provide
recommendations for wastewater data standards and for their use as warning indicators against new infection
waves. In situations of reduced testing capacity, our modelling approach can enhance the surveillance of wastewater
for early epidemic prediction and robust and cost-effective real-time monitoring of local COVID-19 dynamics.
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1. Introduction

Effective mitigation of the COVID-19 pandemic relies on accurate esti-
mates of the epidemic dynamics. Over the pastmonths, vaccination programs
and non-pharmaceutical interventions havemanaged to contain the diffusion
of COVID-19 and many countries are aiming to return to normality, but the
virus and its appearing variants might relapse once such measures are with-
drawn. Hence, it is imperative to continue monitoring even after active RT-
PCR or antigen testing is reduced. Analysing SARS-CoV-2 abundance in
wastewater offers a cost-effective alternative to population-based large scale
testing (Farkas et al., 2020; Larsen andWigginton, 2020) and is largely inde-
pendent of healthcare-seeking behaviors, access to clinical testing and asymp-
tomatic cases (Peccia et al., 2020). It thus bears the potential for faster and
more reliable warning indications for long-term epidemic surveillance
(Weidhaas et al., 2021; Wurtzer et al., 2020; Randazzo et al., 2020). To
date, more than 50 countries and 260 universities have wastewater surveil-
lance systems in place (Naughton et al., 2021), and wastewater sampling to
search for COVID-19 traces has been effectively used in multiple occasions
(Ahmed et al., 2021; Quilliam et al., 2020; Reeves et al., 2021).

Despite its high potential, wastewater-based epidemiology has still sev-
eral hurdles to overcome, related to experimental, data processing and
modelling procedures (Daughton, 2020; Bandala et al., 2021; Lahrich
et al., 2021). In particular, the usefulness of its results would greatly im-
prove with models that can infer the size of the shedding population, ac-
count for uncertainties and infer future outcomes from current trends
(Tiwari et al., 2021). In a recent call for models, Zhu et al. (2021) stress
that modelling tools to reduce uncertainties and cope with noisy data are
highly demanded, along with othermathematical models presenting differ-
ent structures that could decently capture the correlation between viral
load inwastewater and the shedding/infected population. Recently, a num-
ber of studies have proposed methods to infer the size of the shedding pop-
ulation, based on the viral abundance sampled in wastewaters. Some are
restricted to qualitative and semi-quantitative retrospective studies of lagged
correlations (Nemudryi et al., 2020; Kumar et al., 2020), others employ
parametrical and non-parametrical regression models (Cao and Francis,
2021; Vallejo et al., 2021; Li et al., 2021; Hasan et al., 2021; Huisman et al.,
2021); an alternative is to use an epidemiological SEIR (Susceptible-Ex-
posed-Infectious-Recovered) model informed by estimates of individual
viral trajectories (McMahan et al., 2021). Thesemodels, tested on one specific
country at a time, well showed the difficulty of estimating the true number of
positive cases from wastewater samples, because of noisy data (including
those of detected case numbers), uncertain ratios of detected and true positive
cases, and the variety of individual infection periods.

In this article, we propose an alternative, automated and causal-based
approach to address the aforementioned challenges. We develop a new
method that couples a Susceptible-Exposed-Infectious-Recovered (SEIR)
epidemiological model (Anderson and May, 1979) to the extended Kalman
filter – EKF (Kalman, 1960), a natural approach for combining noisy mea-
surement data and modelling. The EKF deals effectively with the problem
of producing model simulations that are representative of real system ob-
servations, which are in turn prone to uncertainties. It has been a standard
tool in systems theory, with many applications ranging from automated
control (Nagy Stovner et al., 2018) to finance (Davis and Leo, 2013), bio-
mechanics (Marchesseau et al., 2013), time series analysis (Harvey, 1990)
etc. Such an approach allows employing a validated epidemiological model
(the SEIR, like in McMahan et al. (2021)) with a selected number of free pa-
rameters, fitted during the Kalman filtering steps using Bayesian methods.
This way, the model estimates population-level COVID-19 diffusion without
the need to rely on individual viral trajectories. It is also very flexible with re-
spect to sampling routines and considered regional areas. Hence, including
empirical measurements and tuning the model can be done in a straightfor-
ward way. In addition, the underlying SEIR model allows interpretation of
the inferred infection dynamics in terms of transmitting interactions and over-
comes the extrapolation limitations of correlation-based statistical approaches
(Cao and Francis, 2021; Li et al., 2021). A Kalmanfilter was used forwastewa-
ter viral abundance data by Cluzel et al. (2022) and Courbariaux et al. (2022),
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but they employed a linear first-order autoregressive model. This makes it a
signal processing tool primarily aimed at reducing noise in the wastewater
measurements, setting our approach apart.

After calibration, our CoWWAn (COVID-19 Wastewater Analyser)
method causally and quantitatively links the results of wastewater analysis
with those of population-wide testing, also accounting for the “dark num-
ber” (ratio of real and detected case numbers) through meta-parameters.
This way, we are able to quantify the goodness-of-fit to observed cases
(what is empiricallymeasured) and to justify the reconstruction of the shed-
ding population. Then, CoWWAn causally infers the shedding population,
estimates the effective reproduction number Reff, and provides projections
of future epidemic trends. Quantifying these variables enables assessment
of the epidemic status within a region and comparison between regions,
and supports effective mitigation policy making. We also use this model
to quantitatively assess the warning potentials of wastewater monitoring,
combined with population testing or on its own. Originally, we applied
CoWWAn in support to the Research Luxembourg COVID-19 taskforce of
our local government. Moreover, to demonstrate its general applicability,
we applied CoWWAn to public datasets from 12 regional areas from
Europe and North America, associated with different population sizes and
based on different wastewater data processing protocols.

2. Materials and methods

2.1. Data

Our pipeline requires at least three types of data to be calibrated: data
about the COVID-19 RNA load in wastewater, detected cases associated
to the area covered by the sewage system, and possibly the estimates
about the ratio of detected versus true case numbers. In addition to its rou-
tine application to Luxembourg data, CoWWAn was tested on various
datasets with different normalisation protocols for wastewater data, to
show its general applicability after proper calibration. The dataset was con-
structed according to the following criteria. First, we employed the
COVID19 Poops Dashboard (Naughton et al., 2021) to list all worldwide re-
sources about wastewater sampling projects; among those, we focused on
those having readily accessible databases. To allow proper calibration of
the model, we selected time series data starting no later than beginning
2021 covering a time range of at least six months, having at least one sam-
ple per week on average and having the corresponding detected case num-
bers available. We rejected wastewater data with smoothing among data
points to avoid introducing bias and breaking the causality of projections.
Finally, if time series from multiple treatment plants were available from
a single regional database, we selected two representative ones, usually
with the largest population. The detected case numbers were obtained
from the same publicly available databases and corresponded to officially
reported numbers, confirmed with positive RT-PCR tests. We made sure
that, for the majority of the time period considered, the selected countries
did not have a share of positive tests exceeding 5%, which would indicate
severe undertesting (according to WHO guidelines, https://bit.ly/
3dARcy1) and would thus bias the results. When available, we also traced
seroprevalence studies to better tune our pipeline to specific regional
areas (e.g. Snoeck et al. (2020); Pollán et al. (2020)).

As a result, the selected datasets are: Barcelona Prat de Llobregat
(Spain), Kitchener (Canada), Kranj (Slovenia), Lausanne (Switzerland),
Ljubljana (Slovenia), Luxembourg, Milwaukee (USA), Netherlands, Osh-
kosh (USA), Raleigh (USA), Riera de la Bisbal (Spain), Zurich
(Switzerland). Data from Luxembourg sewage sampling were made avail-
able by the Research Luxembourg COVID-19 initiative CORONASTEP
(researchluxembourg.lu/coronastep), while detected case numbers and
Reff were obtained from the Luxembourg Ministry of Health website
(COVID19.public.lu/fr/graph). The other datasets (including both waste-
water data and case numbers) were downloaded from publicly available of-
ficial sources, listed in Supplementary Table 1. All datasets are updated up
to August 2021. We refer to each source (see Supplementary Table 1) for
details about the experimental protocols, for the units of measure of

https://bit.ly/3dARcy1
https://bit.ly/3dARcy1
http://covid19.public.lu/fr/graph
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wastewater data and for their associated equivalent population, as well as
for the detected case numbers.

2.2. Preliminary analysis

Among the data collected, we observed some peculiarities. First, Ra-
leigh county reported case numbers normalised to 10,000 inhabitants and
rounded to an integer value; their subsequent up-scaling induces a further
uncertainty. Second, the countrywide wastewater data for Netherlands
are reported as averages over a week. To improve the temporal resolution
of the data, we used instead the data from all communal treatment plants,
averaging over samples from the same day. Third, the wastewater data
from Kitchener have a sudden jump on May 17, 2021 during a time when
case numbers remain stable (Supplementary Fig. 1). Interestingly, the per-
formance of our method increased considerably after scaling data after
that date by a factor of 0.4, suggesting possible sudden changes in testing
or sampling strategies. This extra analysis shows the impact of including
corrections for different testing policies. Results in the main text are
shown without this scaling, but we report results with and without scaling
in Supplementary Table 2.

We also investigated other prominent features of case numbers and
wastewater data, to inform the development of the model. Considered
time series of tested positive case numbers and of RT-qPCR wastewater
data, as well as their mutual relationship, are shown in Supplementary
Figs. 1 and 2. The figures highlight the close but not perfect correlation be-
tween case numbers and wastewater data, stressing both the usefulness of
wastewater data for epidemic monitoring, and the importance of models
based on complex epidemiological dynamics. The fact that the mutual rela-
tionship between case numbers and wastewater data is not perfectly linear
justifies the inclusion of a scaling parameter in the cost function used for pa-
rameter fitting (Eq. (5) in Section 2.5).

2.3. The SEIR stochastic model

As a basis for the Extended Kalman filter tomodel the epidemic dynam-
ics, we use a modified SEIRmodel, which has been shown to accurately de-
scribe COVID-19 epidemic dynamics (Proverbio et al., 2021; He et al.,
2020). As we aim at estimating community incidence from noisy data, we
choose a simple and descriptive model rather than a complex one, which
is difficult to calibrate and could suffer from identifiability issues (Roda
et al., 2020; Kemp et al., 2021).

The classic, deterministic SEIR model considers Susceptible S(t), Ex-
posed E(t), Infectious I(t) and Removed R(t) compartments, and population
flows governed by rate parameters. We follow the standard interpretation
of E compartment as the set of individuals who have been exposed and in-
fected, but who are not yet infectious due to incubation lag (Lai et al.,
2020). The mean incubation period α−1 models the progression to becom-
ing contagious (Kollepara et al., 2021). The total community population is
conserved, i.e. S(t) + E(t) + I(t) + R(t) = N (with constant N) and we as-
sume no possibility of re-infection during each period of infection transmis-
sion (no R → S). The latter assumption is supported by waning immunity
being estimated in a matter of months (Goldberg et al., 2021). To model in-
trinsic stochasticity in transmission processes and viral shedding, we em-
ploy a stochastic version of this SEIR model, associating each transition
between compartments with a random process:

d
dt
S tð Þ ¼ −β tð ÞS tð ÞI tð Þ

N
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β tð ÞS tð ÞI tð Þ

N

r
w1 tð Þ

d
dt
E tð Þ ¼ β tð ÞS tð ÞI tð Þ

N
−αE tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β tð ÞS tð ÞI tð Þ

N

r
w1 tð Þ−

ffiffiffiffiffiffiffiffiffiffiffi
αE tð Þ

p
w2 tð Þ

d
dt
I tð Þ ¼ αE tð Þ−τI tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
αE tð Þ

p
w2 tð Þ−

ffiffiffiffiffiffiffiffiffi
τI tð Þ

p
w3 tð Þ

d
dt
R tð Þ ¼ τI tð Þ þ

ffiffiffiffiffiffiffiffiffi
τI tð Þ

p
w3 tð Þ

8>>>>>>>>>><>>>>>>>>>>:
ð1Þ

where wj are mutually independent white noise processes. See Appendix A
for details. The β-parameter is assumed to be time-varying, reflecting
3

changes in social interaction, other mitigation measures (masks, vaccines,
etc.), and varying infectivity of emerging viral variants. β(t) will as well be
estimated by the Kalman filter.

In order tomodel viralflows intowastewater, we introduce another var-
iable A(t) tomodel the effective number of active shedding cases producing
virions to wastewater. Similarly to above, we incorporate stochastic pro-
cesses. The dynamics of A are given by:

d
dt
A tð Þ ¼ β tð ÞS tð ÞI tð Þ

N
−γA tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β tð ÞS tð ÞI tð Þ

N

r
w1 tð Þ−

ffiffiffiffiffiffiffiffiffiffi
γA tð Þ

p
w4 tð Þ: ð2Þ

The A compartment is parallel to E, I, and R, that is, it still holds that S(t) +
E(t) + I(t) + R(t) =N. The influx to the A compartment is the same as that
to the E compartment, while the outflux lumps together the dynamics of
viral production (which is known to follow some kinetic trajectory in the
hosts' body (Néant et al., 2021)), the decay rate of SARS-CoV-2 RNA in
water (Gundy et al., 2009; Sala-Comorera et al., 2021), and inertia in abun-
dance dynamics due tomixing inwastewater collecting pools. Since the pa-
rameter γ lumps together properties of the virus and details on wastewater
sampling, it is separately fitted for each region. We do not take into account
delays associated with in-sewer travel time, as it was estimated to be signif-
icantly lower than the transmission time scales (median of 3.3 h versus 1 day
(Kapo et al., 2017)). The A compartment thus allows to better follow the
time evolution, including potential decaying inertia, and to consider explic-
itly the uncertainties associated to the shedding mechanism instead of the
disease progression. Together, Eqs. (1) and (2) form the combined SEIR-
WW system.

The outputs from the model that are compared to the real-world mea-
surements are the number of daily detected cases and the virion abundance
inwastewater. The number of detected cases on day t∈ℕ is assumed to be a
share of people passing the incubation period on that day, that is,

yc tð Þ ¼ ct

Z t

t−1
αE sð Þds; ð3Þ

where ct ∈ [0,1] is the share of detected cases out of all cases, to account for
under-testing and asymptomatic cases (see Section 2.5 and Eq. (C.4) for fur-
ther discussion). ct might depend on the day of the week, since there often
are someweekday-dependent fluctuations in testing. The virion abundance
in wastewater is assumed to be linearly dependent on A,

yw tÞ ¼ νA tÞ,ðð (4)

where ν is a tuning parameter to reflect the incubation, production and
shedding of viral load from infected people (Néant et al., 2021; Wölfel
et al., 2020; Miura et al., 2021) and normalisation of the wastewater
data. We do not consider explicit corrections linked to precipitations or
other environmental factors, as previous studies evaluated them to be
poorly correlated with RT-qPCR observations (Vallejo et al., 2021; Li
et al., 2021). An implicit tuning is nonetheless included in the fitting, cf.
Eq. (5).

2.4. The complete SEIR-WW-EKF model

An Extended Kalman filter requires an underlying dynamical model
(such as a SEIR-like one), its output and associated noise covariance matri-
ces, and measurement data. The extended Kalman filter algorithm to esti-
mate the state of the SEIR-WW system, based on different types of data, is
presented in Algorithm 1. The inputs for the algorithm are the update func-
tion f(x) (implementing Eq. (1)), the observation matrices C(t) (for case
numbers and wastewater data), the state noiseQ (uncertainty on estimated
variables), and the measurement error covariance U(t) (uncertainties on
empirical data). Then, the method evaluates the set of variables of interest
(x1…6(t) = [S, E, I, A, D, β](t)) and their associated uncertainty matrix P.

The algorithm is used to calculate three different estimates using only
case number data, only wastewater data or using both case and wastewater
data. These were then used to estimate the data that were not employed for
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the state estimation, initially for calibration and reconstruction of daily
cases, and then to perform the desired predictions.

For details about the numerical implementation, the characterization of
inputs and outputs and the discussion of each matrix introduced in
Algorithm 1, we refer to Appendix B. Our current implementation is done
with custom MATLAB 2019b code (see Code Availability section).

Algorithm 1. The Extended Kalman filter for the SEIR-WW model with
time step Δt=1/M (we useM=10 d−1). Jf is the Jacobian of the function
f(x), obtained from the Jacobian of the reaction function by Jf = BJr. The
algorithm is standard, but the prediction step consists in solving a time-
discretised ODE. The observation matrix C(t) is chosen from the three
possibilities described in (B.2). Note the resetting of D tð Þ ¼ ex5 before the
prediction loop.
2.5. Model parameters

Our model comes with a number of free parameters to be fixed from the
data or with educated assumptions. As most time series data begin after the
pandemic already diffused within a region, the initial sizes for the E and I
compartments are automatically computed (cf. Appendix C for details).

Another parameter to be estimated is the average ratio of total and de-
tected cases at day t, ηt. This is necessary to link the measurements of pop-
ulation testing with those of wastewater analysis (ideally objective and
insensitive to testing capacities). Implementing the results of early preva-
lence studies (Snoeck et al., 2020), we use ηt = 3 for the first wave in
Luxembourg (until June 1, 2020). Later, we use ηt = 1.8. This choice was
cross-validated with an independent SEIR model fitted to Luxembourg
data (Kemp et al., 2021). The reduction is partially due to the launch of a
large scale testing campaign in Luxembourg (Wilmes et al., 2021), and par-
tially to overall increased testing activity. Further details on parameter
Table 1
Model parameters: Parameter symbols, descriptions, values, and their sources. The param
This is done to allow rapid changes in the beginning of the pandemic, when a strict lock
stands for “days”. When the source is not indicated, the parameter values is first initiate
Fig. 18).

Symbol Explanation

α Rate E → I
τ Rate I → R
β(0) Initial infectivity
Δt Time step length
qβ, 1 Variance of β(t + 1) − β(t) when t ≤ 30
qβ, 2 Variance of β(t + 1) − β(t) when t>30
κ EKF sensitivity parameter
N Population size
γ Rate A → ∅
ν Ratio of yw/A
ε Exponent in nonlinear mapping of WW data
UW Measurement error variance of wastewater data
E(0) Initial size of E-compartment
I(0) Initial size of I-compartment
var(E(0)) Uncertainty of E(0)
var(I(0)) Uncertainty of I(0)

4

values are discussed in Appendix C. For other regions, the available preva-
lence studies usually consider the early stages of the epidemic, but waste-
water data for the corresponding period are often not available. Large
changes between first and subsequent waves are expected for all regions,
and therefore estimates from these prevalence studies are not usable for
later stages. In the absence of additional reliable values, we maintain ηt =
1.8 for all other regions. It is possible to further calibrate such values with
further tailored prevalence studies. In principle, it is sufficient to have one
estimate for ηt to match virion abundance in wastewater with total case
numbers. Once the calibration is done, CoWWAn estimates the total num-
ber of infections, including both detected and undetected cases. In order
to obtain an estimate of detected cases, a potentially time-varying estimate
of ηt is then needed. Daily ratios ct of detected and total cases are obtained
from ηt modulated by a weekly testing rhythm that is automatically esti-
mated (cf. Appendix C). The variance of the wastewater measurements
Uw is estimated from data as discussed in Appendix C.

A final detail to consider when optimising the model to reproduce the
observations: due to dilution, non-mixing environment and other factors,
the dependency of the wastewater measurement on the number of detected
cases is not perfectly linear (Vallejo et al., 2021) (see also Supplementary
Figs. 1 and 2). Hence, we do a simple power transformation to thewastewa-
ter samples, for which the exponent ε is regarded as a tuning parameter of
slight nonlinearity. ε and the other proportional parameters γ and ν are
fitted by calculating the Kalman filter state estimate using the wastewater
data, and then minimising the cost function

min
γ;ν;ε

XM
t¼1

yc tð Þ−Cc tð Þx̂w t; γ; ν; εð Þð Þ2

such that γ∈ 0:2; 4½ �; ε∈ 0:4; 1½ �:
ð5Þ

This way, we minimise the error in estimating the case numbers by the
EKF state estimate using only wastewater data. Model parameters, either
fixed by literature or fitted from Eq. (5), are reported in Table 1. Note
that, due to different wastewater data normalisations, ν parameters are
not comparable between regions. Similarly, ε parameters might depend
on the used techniques. Data from different laboratoriesmay contain signif-
icant differences (Cluzel et al., 2022).

The sensitivity of the model performance on assumed parameter values
is assessed in Supplementary Fig. 18, which demonstrates the robustness of
the model and justifies the current parameter choices. The sensitivity anal-
ysis was performed by varying the reference parameters up to ±50% of
their original value. The results are reported in Supplementary Fig. 18,
using Luxembourg as a reference. For most parameters, the projections
are consistent and slightly vary for values very far from the reference
ones. The model is most sensitive to the parameter ct, which is usually
eter qβ, controlling the allowed change of β(t) in one day, is changed after 30 days.
down quickly suppressed its propagation and to account for errors in initial β(0). d
d as an educated guess and then tested with sensitivity analysis (see Supplementary

Value Source

0.44 d−1 (Kemp et al., 2021)
0.32 d−1 (Kemp et al., 2021)
0.44 d−1 –
0.1 d –
0.052 d−2 –
0.0052 d−2 –
4 –
Regional See Supplementary Table 1
Regional Fitted by Eq. (5)
Regional Fitted by Eq. (5)
Regional Fitted by Eq. (5)
Regional Estimated by Eq. (C.5)
Regional Estimated by Eq. (C.3)
Regional Estimated by Eq. (C.3)
Regional (E(0)/2)2

Regional (I(0)/2)2
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estimated with independent methods. The minimal error corresponds to
the reference value, while deviations induce larger errors. In our pipeline,
changes in ct are normally compensated by a change in ν by the same
amount. This observation justifies the differing fitted values reported in
Table 2 for each region and recalls that, the more accurate seroprevalence
studies are, the smaller the error associated with projections would be.
The projection error grows slower for overestimated ct than for
underestimated ct. Therefore, in case a good estimate of the share of de-
tected cases out of all cases is lacking, it is advised to use a possibly
overestimated rather than underestimated value for short-term projections.
Note, however, that this may lead to higher overshoots in long-term projec-
tions due to overestimation of the susceptible population size.

2.6. Analysis of model outputs

To obtain variables of epidemiological interest, we further analysed the
state estimates outputted by the SEIR-EKFmodel. Two estimates using only
wastewater data are computed: one without interpolating data between
sampling days (WW) and one with linear interpolation (ipWW).

The effective reproduction number Reff, the time-dependent average
number of secondary infections from a single contagious case in a suscepti-
ble population (Althaus, 2014), is directly extrapolated as (Kemp et al.,
2021)

Reff ¼ β tð Þ
τ

S tð Þ
N

; ð6Þ

where β(t) and S(t) are state estimates. For N and τ, see Table 1.
Short and mid-term projections are possible at any time t0 by stopping

the Kalman filtering and simulating the model forward in time, starting
from the latest state estimate and keeping the infectivity parameter con-
stant (β(t) = β(t0)). The effect of uncertainty in the parameter estimate
β(t0) can be quantified by simulating envelopes using β t0ð Þ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pt0 6, 6ð Þp

in the simulation (for every t, P(6,6) represents the variance associated to
β in the Kalman filter update, as discussed in Algorithm 1). Note that
other uncertainties are omitted in these simulations; therefore, the short-
term uncertainty in particular is under-estimated by the envelope.

Quantifying the quality of short-term projections using either case data
only, wastewater data only, or both provides more reliable estimates of the
epidemic unfolding over short time horizons. At each time step when
wastewater data is available, the Kalman filter state estimation is stopped,
and the SEIR-WW model is simulated T days forward without taking into
account any new data. The total number of observed cases from the projec-
tion is calculated and compared with the actual number of observed cases
during the same time horizon. Their absolute difference constitutes the pre-
diction error. The prediction errors are standardised by the square root of
Table 2
Model parameters: fitted values. Region-dependent fitted parameter values. Initial
values for SEIR compartments are in units of equivalent inhabitants.

Parameter Barcelona Kitchener Kranj Lausanne Ljubljana Luxembourg

N 2,000,000 242,000 40,000 240,000 280,000 634,730
γ 0.20 d−1 4.00 d−1 1.43 d−1 3.05 d−1 3.21 d−1 1.62 d−1

ν 4.86 ⋅ 10−2 2.73 1.38 6.67 ⋅ 1010 2.77 6.40 ⋅ 104

ε 0.40 0.40 0.40 1.00 0.526 0.613
UW 656 2.68 58.5 3.43 ⋅ 1023 511 1.75 ⋅ 1012

E(0) 1824 379 17 156 76 8
I(0) 2527 525 24 203 105 11

Parameter Milwaukee Netherlands Oshkosh Raleigh Riera Zurich

N 615,934 17,178,109 68,000 460,000 100,000 450,000
γ 4.00 d−1 0.368 d−1 4.00 d−1 4.00 d−1 1.20 d−1 0.547 d−1

ν 0.134 185 3.73 2.58 ⋅ 103 12.7 1.87 ⋅ 107

ε 1.00 0.500 0.866 0.434 0.400 0.789
UW 1.03 2.50 ⋅ 1011 50.7 6.00 ⋅ 108 1.69 ⋅ 103 3.44 ⋅ 1017

E(0) 298 4412 166 1815 4 238
I(0) 413 6112 231 2514 6 330
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the true number of cases, which represents the standard deviation estimate
(assuming case numbers on a given time are binomially distributed). The
standardised scores so obtained are then averaged over all time points on
which the prediction is made, obtaining an overall average normalised
error. To enable comparison between countries, the average standardised
error is scaled per 100,000 equivalent inhabitants. Overall, the scaled aver-
age standardised prediction error ξ is:

ξ ¼ 1
M

XM
i¼1

j yi − ŷ j
i jffiffiffiffi

yi
p 100; 000

N
; ð7Þ

where i is the index of each point in any time horizon [t0, T] withM points
in total; j is an index that considers the original type of data used for projec-
tions, i.e. j={c,w, b} for case data only, wastewater data only, or both com-
bined (note that, in the state estimate using combined data, the wastewater
data are not interpolated); hatted variables are the Kalman projections
while non-hatted variables correspond to measured data; N is the equiva-
lent population of interest (cf. Table 2).

3. Results

3.1. Data integration into a SEIR model

The workflow of our CoWWAn approach, integration of empirical data
into a SEIR model through the Extended Kalman filter, is illustrated in
Fig. 1. The implemented SEIR model contains an additional compartment
for active cases producing virions to wastewater. A detailed description of
the workflow can be found in Section 2.4 (see in particular Algorithm 1).
In a broad sense, our proposed Kalman filter combines a model of a dynam-
ical systemwithmeasurements (case numbers yc, wastewater measurement
yw or both) obtained from the real system that is being modelled. At each
time step it first predicts the next state – the set of all variables – by propa-
gating the old state estimate using the underlying model. From the pre-
dicted state estimate, the predicted measurement is calculated using the
measurementmodel. Finally, the state estimate is updated based on the dis-
crepancy of the true measurement and the model-predicted measurement.
The model's state estimate then reflects the state of the real system, and it
can be used to predict the system's dynamics in the future.

3.2. Reconstruction of case numbers

After appropriate calibration to test cases with parameter fitting,
CoWWAn quantitatively reconstructs the time evolution of observed cases
from wastewater data (Fig. 2a) by inferring the internal variables and pa-
rameters of the SEIR model. These include the susceptible, exposed and in-
fectious population fractions, daily detected cases and time-dependent
infection rate (see Section 2.4). In our case studies, full time series data
were used for calibration for each region. When clear regime shifts in test-
ing/sampling protocols are observed, the model can be re-calibrated appro-
priately to improve the performance, like for Kitchener (cf. Section 2.2 and
Supplementary Table 2). To infer the global shedding population, the
model needs additional information on the ratio of total and detected
cases, typically obtained from seroprevalence studies (see Section 2.5).
Thanks to the model structure, we could thus compare our results with
the true number of detected cases (Fig. 2a, red and black lines), before infer-
ring the global magnitude of the shedding population (Fig. 2a, blue line,
from mean estimates). The latter is an extrapolation from CoWWAn esti-
mates and information about the “dark number” of undetected cases (pro-
vided as a model parameter); further independent studies to estimate this
quantity help fine-tune the results.

We compared our results with a linear regression model (after data
curation to reduce the noise, in a similar spirit to (Vallejo et al., 2021)):
CoWWAn's inferences achieve consistently higher correlation (Fig. 2b,
blue and red sets), demonstrating the power of our mechanistic-based ap-
proach. These observations hold for all considered regions (Fig. 2c and



Fig. 1.Model workflow. The Kalman filter combinesmeasurements from the real systemwith predictions from the dynamical model, which extends a SEIRmodel. Empirical
data are daily positive cases, shown in blue as the smoothed moving average, and wastewater sampled data, shown in orange with unit of measure of RNA copies/day/
100,000 equivalent inhabitants (example for Luxembourg). Details of the SEIR blocks are described in Section 2.4.
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Supplementary Figs. 3–14): the correlation coefficient ρ between inferred
case numbers and true detected case numbers is typically in the range be-
tween 0.7 and 0.9 even for rather noisy data like Netherlands. Frequent
sampling improves the model calibration and the subsequent reconstruc-
tion performance, like for Luxembourg with ρ=0.91 for two probes/week
and Milwaukee with ρ=0.95 for two (sometimes more) probes/week com-
pared e.g. to Barcelona with ρ=0.70 with one probe/week (Fig. 2d). The
main discrepancies originate from either unnoticed changes in the share
of detected cases or from changes in testing/sampling strategies (Supple-
mentary Figs. 3–14). In addition, we notice (Fig. 2a and c) that the largest
uncertainties come together with the highest case numbers, which are
often associated to an augmented positivity rate (Ritchie et al., 2020). De-
tecting such discrepancies can provide additional evidence about potential
undertesting and could guide targeted scaling of population tests. Interpo-
latingwastewater data points before the EKF estimation can improve the re-
construction (Fig. 2b, red and yellow sets), in particular for regions with
low sampling frequency like for Barcelona Prat de Llobregat (PdL) and
Kranj. In general, the Extended Kalman filter improves its predictions as
new data points are available, so an adequate sampling rate is recom-
mended to improve its performance.

3.3. Estimation of epidemic indicators

CoWWAn allows estimation of the effective reproduction number Reff,
an essential indicator for the trends of epidemic diffusion in a community
(Huisman et al., 2021), which depends on containment measures, infectiv-
ity of viral variants, population behavior and other factors. As exemplified
for Luxembourg (Fig. 2a), the Reff values inferred by CoWWAn fromwaste-
water data (according to Eq. (6)) are consistent with the indicator reported
by the Ministry of Health on its website (see Section 2.1) and exhibit the
samenoteworthy trends: the threewaves in 2020 (March, June and lateOc-
tober), a small rebound in March 2021 attributed to the emergence of the
alpha variant and one wave in late June 2021 attributed to the emergence
of the gamma and delta variants, all characterised by Reff>1. For all other
considered regions as well, wastewater-based Reff values (estimated with
the same method and reported in Supplementary Figs. 3–14) are consistent
with those estimated from case numbers using a SEIR model, and are
6

usually smoother due to sampling frequency and independence to testing
schemes. TheReff estimates reflect the trends in the development of the pan-
demic. On average, the Reff estimates are lower in the year 2021 compared
to 2020 due to vaccine rollout, but new viral variants have still caused sig-
nificant waves despite increasing vaccination coverage.

3.4. Short-term predictions of epidemic trends

CoWWAn's underlying SEIR model permits mechanistic-based predic-
tions of the infection dynamics, for effective monitoring of the epidemic.
To predict future trends, it is possible to simulate the model forward at
any desired time, starting from the latest state estimate and keeping the
transmission parameter constant (cf. Section 2.6). For the epidemic dynam-
ics in Luxembourg, Fig. 3a shows an example of such 7-days predictions for
each day of wastewater sampling, where the number of detected cases
(blue) is compared with the predicted numbers derived from wastewater
data or from case number data. Wastewater-based short-term predictions
are well correlated both with case-based projections (ρ=0.95) and with
true case numbers (ρ=0.94).

Overall, for the different epidemic phases and all considered regions,
the short-term predictions compare well with the real case data and with
the case-based predictions (see also Supplementary Figs. 3–14). To quantify
their performance, we determined the average standardised prediction
error as the average discrepancy between predicted and actual case num-
bers in the corresponding time frame, normalised to case numbers and
equivalent population Eq. (7). The performance of our wastewater-based
pipeline is usually slightly lower, as it reconstruct the case numbers them-
selves before making the predictions, but remains similar with that of
case-based predictions: all regional estimates lie within one standard devi-
ation of the 1:1 (equal performance) line (Fig. 3b). The only exceptions are
estimates for Oshkosh, probably due to under-testing during late 2020
(refer to Supplementary Fig. 2)which induced discrepancies in the detected
cases fraction, and Kranj, whose low case numbers are subject to larger un-
certainties (Supplementary Fig. 5). In general, the largest discrepancies are
observed when case numbers plateau or decline after a rapid increase,
yielding a potential overshoot of the predictions (Fig. 3a and Supplemen-
tary Figs. 3–14). This effect is associated to large changes in social activities



Fig. 2. Reconstruction of case numbers and inference of epidemic indicators. a: Reconstruction example for Luxembourg. Top: Comparison of case numbers, official detected
data (black line), reconstructed by CoWWAn from wastewater data (red) including the 2 Standard Deviations≃95% confidence interval (shadowed region), and total pos-
itive cases inferred by CoWWAn (blue). Bottom: Reff, estimated by CoWWAn (red, with its associated 2 SD shadowed region) or officially reported by the Luxembourg Min-
istry of Health. b: Pearson's correlation coefficients ρ from linear regression between detected cases and measured wastewater data (blue), ρ between detected cases and
CoWWAn-reconstructed case numbers fromwastewater data (red, corresponding to correlation values from panels c), and ρ between CoWWAn-reconstructed case numbers
from wastewater data (after interpolating wastewater data) and detected cases (yellow). c: Reconstruction results for all considered regional areas, compared with detected
case numbers. The dashed line represents equal values.
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during epidemic waves and rapid implementations of stricter restrictions,
which are not explicitly included in the model but implicitly learned from
the epidemic curve by the EKF with some delay.

The standardised error grows quite linearly with increasingly long pre-
diction horizons (Fig. 3c). There, wastewater predictions are more stable
(their uncertainty grows slower for longer prediction horizons) than those
based on case numbers as they are usually less susceptible to daily fluctua-
tions (Supplementary Table 2). This aspect allows quantifying and compar-
ing the precision for different horizons.

In addition to using one type of data at a time, CoWWAn's EKF-based
approach enables integrating different types of data to further improve
the quality of predictions. Including both wastewater and case data
slightly but systematically improves the prediction accuracy compared
to case data alone (Fig. 3c and Supplementary Table 2), further suggest-
ing that wastewater data contains independent information about the
state of the epidemics, as previously put forward by Fernandez-Cassi
et al. (2021).

3.5. Long-term projections of epidemic scenarios

Due to heterogeneous and evolving adaptations of population behavior
and institutional measures, epidemic forecasts are typically only
7

meaningful for relatively short time horizons. In fact, it is known that
small uncertainties for short-term predictions are amplified over longer pe-
riods and the precision drops, similarly to what happens in weather fore-
casts (Petropoulos and Makridakis, 2020). Nevertheless, long-term
projections that assume no changes in infection dynamics can be useful
for counterfactual analysis about the potential effects of current social or
pharmaceutical measures and/or changed viral infectivity (Fig. 4a, b).
They can also be used to investigate plausible scenarios, by artificially mod-
ifying the model parameters.

As for other models applied to complex systems, our projection uncer-
tainties increasewith longer time horizons (Fig. 4b), reflecting the set of po-
tential changes of conditions. Nonetheless, projections based on case
numbers or on wastewater data are consistent with each other within
error bounds, therefore supporting the possibility of using wastewater
data for consistent what-if analysis. In addition, our mechanistic-based
model allows assessing the changes in desired precision. Models applied
in quickly changing conditions are known to be uncertain (Santosh,
2020). Similarly, our projections' precision varies depending on whether
they are conducted during a rapid increase of case numbers or during stable
trends, calling for caution in interpreting these results as plausible projec-
tions rather than forecasts. Other examples are reported in Supplementary
Fig. 15.



Fig. 3. Predictions of future epidemic trends using CoWWAn. a: Prediction examples for Luxembourg, comparing predictions over the 7-days ahead of each point (either estimated from case numbers or wastewater data) with the
true detected cases in the same time period. b: Comparison of wastewater-based and cases-based predictions. The performance is evaluated in terms of average standardised error, normalised to equivalent population. The dashed
line represents equal values. Error bars correspond to one standard deviation. c: Predictions performance for different time horizons (mean and 80th percentiles over the considered regions; outputs for single countries in Supple-
mentary Fig. 17) for three inputs: case numbers, wastewater data, or both data combined. For all panels, “inh.” stands for inhabitants.
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Fig. 4. Long term projections using CoWWAn. a: Long-term projected curves of daily cases compared with daily detected case numbers. b: Long-term projected curves of
cumulative cases compared with cumulative detected case numbers. Blue and red ribbons represent ±2σ error bounds (σ corresponds to a standard deviation); note that
the ribbons might overlap. Both panels a and b report examples for Luxembourg data, with projections starting at the date marked by the green triangle.
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3.6. Modelling assesses wastewater warning performance

Among the purposes of this article is to investigate the utility of waste-
water sampling to alert against newwaves of infections and to inform its in-
terpretation. It has been suggested by Cao and Francis (2021), D'Aoust et al.
(2021) and Kumar et al. (2021) that wastewater analysis could provide
early warnings for COVID-19 resurgence in a community. Using our ap-
proach, we investigate this idea beyond retrospective analysis. We recall
that, for the real-time detection of impending epidemic resurgence, distin-
guishing between fluctuations and robust increases is crucial to optimise
the true positive signals and minimise the false negatives. To evaluate the
alerting power of on-line (real time) systems, it is thus not sufficient to com-
pare two fully developed time series with a retrospective analysis.
CoWWAn addresses this challenge by the EKF-based predictions, which
capture robust trends in the epidemic dynamics. It thus allows to compare
early warnings of COVID-19 resurgence, obtained from case-based and
wastewater-based predictions. In Fig. 5 and Supplementary Fig. 16, we
plot the predictions about the pandemic trends, obtained from wastewater
data (red) and from detected case numbers (yellow), and compared with
the true observed evolution (blue). We can then compare if and when the
red and yellow curves correctly track the increasing trend of the blue
curve. We observe that, overall, the prediction curves accurately increase
when a new COVID-19 wave is observed in a region, but the timing
might slightly differ depending, e.g., on the testing frequency. This analysis
Fig. 5. Zoom into the epidemic resurgences visually recognised in the considered region
different examples (one per region; other examples in Supplementary Fig. 16). We com
detected case numbers.
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demonstrates the potential of wastewater data to detect incoming increas-
ing trends and quantitatively verifies the recent calls by Bibby et al.
(2021) for cautious interpretation: alerts based on wastewater analysis
might be just-on-time or even lagging slightly behind the true infection
waves. Nonetheless, they are often more advanced than reliable alerts
based on case numbers alone, e.g. for Kitchener or Raleigh, despite counter-
examples exist (e.g., Kranj). As a result, we suggest that wastewater-based
monitoring could be an effective method to detect new waves of infection,
but that the lead time should be carefully assessed case-by-case, according
to the sampling frequency and other characteristics of the wastewater-
analysis pipeline. In short, reliable warnings can be triggered, but it still re-
mains to properly verify how “early”.

4. Discussion

CoWWAn combines two powerful approaches to process wastewater
data in an automated and mechanistic-based manner: an epidemiological
SEIR model and an extended Kalman filter, to fit the model parameters ad-
equately and to provide predictions of epidemic trends. This allows for new
avenues for wastewater-based epidemic monitoring. In situations of re-
duced population testing, our approach allows to enhance the perfor-
mances and robustness of real-time surveillance in a cost-effective
manner. Our model can support the reconstruction of the infection curves
from wastewater data and allows projections of future trends, in particular
s. Short-term projections used to identify robust trends in epidemic resurgence, for
pare 7-days projections from case numbers and from wastewater data with the true
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close to epidemic resurgence. Since hospital admission is downstream of
the susceptible-exposed-infectious flow (Kemp et al., 2021), healthcare
management as well (D'Aoust et al., 2021; Saguti et al., 2021) can obtain
crucial information from an early detection of increasing case numbers sup-
ported by quantitative models that account for noise. We recall that our ap-
proach provides information on a community level but does not single out
the infected individuals, hence it does not enable contact tracing nor does it
reveal detailed information like age distribution of cases or infection
clusters. Nonetheless, as already proven in our applications for the
Luxembourg government, it proves useful to track the evolution of the pan-
demic, as a complement or even supplement to widespread testing. As a
consequence, our results can enhance the SWEEP (Surveillance of Waste-
water for Early Epidemic Prediction) framework recently proposed by
Tiwari et al. (2021) for implementation of wastewater-based epidemiology.

CoWWAn can be easily applied and extended to different areas, and it
overcomes some of the limitations of previous studies. In addition to
employing a mechanistic underlying model or the Kalman filter, it allows
improving Reff estimation. In fact, Huisman et al. (2021) estimated Reff

from wastewater samples in Zurich, deconvoluting smoothed wastewater
data using a kernel based on the shedding load distribution. For some rea-
son, these estimate drops quite early in October 2020 while the case num-
bers are still steeply increasing. Our estimates do not exhibit such a
shortcoming and is overall comparable over the remaining periods, see Sup-
plementary Fig. 14c. However, we acknowledge the limitations of our ap-
proach, to be further improved in future studies. To begin with, the
reconstruction of case numbers depends on themean-field SEIR approxima-
tion: although meaningful when concentrating on average epidemic trends
(Kollepara et al., 2021), it might yield uncertainties in case of heteroge-
neous behaviors like clusters. In addition, we observe that tailoring
region-specific model parameters is recommended to fine-tune the perfor-
mance and reduce the uncertainties over the estimates. The parameters
can usually be estimated with independent methods or educated prior in-
formation, in particular concerning seroprevalence, so we acknowledge
that the current set of proposed parameters might not be complete for all
countries. As observed in the sensitivity analysis, the projections are some-
what sensitive to the ratio of total and detected cases. This is a shortcoming
of every model-based projection. Long-term projections are more influ-
enced by the choice of this parameter, due to potential errors in the esti-
mated level of natural immunity in the population. Short-term projections
are less sensitive, since any error in the estimated size of the susceptible
population is compensated by the infectivity parameter estimate. In partic-
ular, we recommend using reliable estimates for the ratio of true versus de-
tected cases during themodel calibration. The best estimates originate from
seroprevalence studies that are able to distinguish between antibodies from
previous infection and vaccination, that is, studies that detect antibodies
against other parts of the virus than just the spike protein (Suhandynata
et al., 2021). Future discrepancies between wastewater-based estimates
and detected cases might be used as indications about changes in the
share of detected cases and could be used to trigger a warning against po-
tential undertesting. As for what concern predictions, we observe a close re-
lationship between data and prediction quality: escalating the sampling
precision and rates is essential to improve the model estimations. Finally,
although we have paved the way for the assessment of on-line warnings
of epidemic waves using model-based predictions, we suggest that future
studies further quantify the lead time and the precision/recall. Future anal-
ysis may also concentrate on optimising the desired performance and the
costs associated, or might focus on expanding the current methodology to
other epidemic contexts.

5. Conclusion

Sampling and analysing SARS-CoV-2fluxes inwastewater has been sug-
gested as an efficient, non-invasive and cost-effective complement or alter-
native to testing routines. Our study leverages the potential of wastewater
analysis to provide quantitative information for monitoring, alerting and
decision-making. By introducing an effective coupling of causal-based
10
models and wastewater sampling, our approach goes beyond statistical
methods. In fact, it allows immediate interpretation of its outputs and en-
ables counterfactual analysis, to estimate plausible epidemic scenarios.
Overall, the flexibility of our freely available approach, its ease of imple-
mentation and its performance make it an important tool for long-term
monitoring and support of epidemic mitigation.
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Appendix A. Derivation of the SEIR stochastic model

The SEIRmodel is based on the assumption that each susceptible person
has probability β(t)I(t)/Ndt to become infected on an infinitesimal time in-
terval [t, t+ dt), and that infection events are independent. The number of

http://gitlab.lcsb.uni.lu/SCG/cowwan
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new infections at [t, t+ dt) is then a randomvariable from the binomial dis-
tribution ℬ(n, p) with n = S(t) and p = β(t)I(t)/Ndt. Assuming high
enough number of cases and stationary rate parameters over a time interval
Δt=1 day (Gillespie, 2000), the binomial distribution can be well approxi-
mated by the normal distribution with mean β(t)S(t)I(t)/Ndt, and variance
β tð ÞI tð Þ=Ndt 1−β tð ÞI tð Þ=N dtð ÞS tð Þ ¼ β tð ÞS tð ÞI tð Þ=Ndt þO dt2

� �
. The same

reasoning can be repeated for all other transitions between compartments.
The stochastic SEIR model is then given in Eq. (1).

Appendix B. Developing the complete SEIR-WW-EKF model

To embed the SEIR dynamical system in the Extended Kalman filter, we
formulate a time-discretised state-space version of the dynamical system
Eq. (1) by explicit Euler method:

x t þ tð Þ ¼ x tð Þ þ t f x tð Þð Þ þ w tð Þ: (B.1)

To obtain the number of daily new infections from themodel on a given
day, an additional auxiliary state variable D(t) is defined, whose dynamics
are given by

D tð Þ ¼ 0, for t∈N,
d
dt
D tð Þ ¼ αE tð Þ,

8<:
that is, D(t) is the differential counterpart of yc(t) and is reset every day to
keep track of new infections on the current day.

Including the auxiliary variable, the state space is 6-dimensional with
variables x1…6(t) = [S,E, I,A,D,β](t). Due to conservation of N, R(t) is re-
dundant and is therefore omitted. Eq. (B.1) is complementedwith the reset-
ting of x5(t) to zero once per day. The function f(x) can be represented by a
reaction function r(x) which is multiplied by the stoichiometric matrix B:

f xð Þ ¼

−x1x3x7=N
x1x3x7=N−αx2

αx2−τx3
x1x3x7=N−γx4

αx2
0

26666664

37777775 ¼

−1 0 0 0
1 −1 0 0
0 1 −1 0
1 0 0 −1
0 1 0 0
0 0 0 0

26666664

37777775
x1x3x7=N

αx2
τx3
γx4

2664
3775≕Br xð Þ:

As argued in the previous section, the state noise w(t) can be well approxi-
mated as normally distributed with mean zero and covariance

Q xÞ ¼ κ2 tBdiag r xÞÞBΤ þ tQβ

���
arising from the stochasticmodel Eq. (1); note that eachwhite noise process
wj for j=1,...,4 in (1) corresponds to its respective reaction rj(x). The coeffi-
cient κ is used to account for modelling errors. In particular, the SEIRmodel
implicitly assumes a homogeneous and perfectly mixed population. This as-
sumption leads to a rather small uncertainty. The coefficient κ can also be
interpreted as a sensitivity tuning parameter. Lower κ leads to higher sensi-
tivity but noisy estimates. Higher κ decreases sensitivity but increases ro-
bustness against noise. The parameter β has no dynamics through f(x),
but it is updated by the Kalman filter. The matrix Qβ is otherwise zero, ex-
cept for the element (6,6) being qβ, which acts as a tuning parameter con-
trolling the magnitude of change of β(t) in one day.

The measurements from the model are either detected cases on a given
day and/or wastewater sampling. To this end, we define possible observa-
tion matrices:

Cc tð Þ ¼ 0000ct 0½ �, Cw ¼ 000ν00½ �, and Cb tð Þ ¼ Cc tð Þ
Cw

� �
, (B.2)

where the sub-indices refer to cases (c), wastewater (w), and both (b). We
recall that ct is the share of detected cases on a day t. It is a coefficient
that reflects the testing strategy, which often depends on the day (reduced
testing on weekends and on public holidays). The empirical measurements
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are assumed to be noisy, with an additive, normally distributed noise
with mean zero and covariance U(t) = diag (Uc(t),Uw) (or just U(t) = Uc

(t) orU(t) =Uw if only one of the measurements is available). The variance
of observed cases, Uc(t), is obtained by assuming that cases are detected in-
dependently with probability ct. This leads again to a Binomial distribution
for detected cases with mean ctD(t), where D(t) is the number of new infec-
tions on day t. This is unknown to us, and we use a smoothed estimate
D tÞ ¼ yc tÞ=ctðð (barred variables stand for 7-days moving averages). The
variance of the Binomial distribution is given by Uc(t) = D(t)ct(1 − ct).
For Raleigh, 232 is added to the variance Uc(t) to account for the (indepen-
dent) uncertainty due to the aforementioned rounding of the case numbers,
where 23 is the largest possible rounding error (N/20,000).

Algorithm 1 is used to calculate three different state estimates: bxc tÞð
using only case number data (C(t) = Cc(t)); bxw tÞð using only wastewater
data (C(t) = Cw on days when wastewater sampling is done,
otherwise Kalman update is skipped); bxb tÞð using both case and wastewater
data (C(t) = Cb(t) on days when wastewater sampling is done, C(t) = Cc(t)
otherwise). These were then used to estimate the data that were not em-
ployed for the state estimation, that is, we calculated byw tÞ≔Cw tÞbxc tÞððð andbyc tÞ≔Cc tÞbxw tÞððð (Ci are the Kalman filter observation matrices, Eq. (B.2)).

The Kalman filter is complemented with a simple outlier saturation for
the wastewater data. The model-predicted value for a wastewatermeasure-
ment is given by Cwex, with prediction error variance CwePCΤ

w þ Uw. If the
measurement differs from themodel-prediction bymore than four standard
deviations, the measurement is replaced by the saturated value

Cwex � 4 CwePCΤ
w þ Uw

� �1=2
.

Appendix C. Estimate of the model parameters

As discussed in the main text, we estimate the free parameters of our
model from available data, to calibrate them appropriately.

The initial sizes for the E and I compartments are directly automatically
estimated from the data by

E 0ð Þ ¼ η0
α

1þ ∑
5

t¼1

yc tð Þ
5

	 

and I 0ð Þ ¼ η0

τ
1þ ∑

5

t¼1

yc tð Þ
5

	 

, (C.3)

where α and τ are the transition rates E→ I and I→ R, respectively, whose
inverses are the average duration an infected person remains in E and I
compartments. ηt is the average ratio of total and detected cases at day t.
Considering 5 data points is a trade-off between approximating values on
the first day and sensitivity to noise. The model is little sensitive to this
choice, cf. Supplementary Fig. 18. For Luxembourg, the data starts from
the very beginning of the epidemic, when testing was not performed as ac-
tively as in the later stages, hence the values discussed in Section 2.5.

The daily ratios ct of detected and total cases are obtained as follows. Ini-
tially, a weekly rhythm for case numbers is identified by averaging first
over five weeks, and then by a moving average over three weeks:

ect ¼
35
5

∑4
j¼0yc mod t− 1, 7ð Þ þ 1þ 7jð Þ

∑35
s¼1yc sð Þ for t≤35,

21
3
yc t− 7ð Þ þ yc t− 14ð Þ þ yc t− 21ð Þ

∑t
s¼t−20yc sð Þ for t>35:

8>>>><>>>>:
Then, these values are normalised by the weekly moving average:

ct ¼ 7ect
ηt∑

t
s¼t−6ecs : (C.4)

Note that the procedure for the first five weeks is not causal, but some
data is anyway needed formodel calibration. The later values ct are causally
determined from data. To obtain final values on public non-weekend holi-
days, ct is reduced by a factor of 4 from the value given by Eq. (C.4) to ac-
count for reduced testing. In case the weekly rhythm is not regular,
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manual tuning could help improving performance (or estimating ct based
on number of performed tests, for example).

The variance of the wastewater measurements Uw is estimated from
data by

Uw ¼ K medianjyw tj
� �

−
1
5

∑
jþ2

i¼j−2
yw tið Þj

 !2

, (C.5)

where each ti is the time point whenwastewater sampling is done. The scal-
ing factor K is either 1/10 when wastewater data is used alone and K=1
when both case and wastewater data are used, as well as for the outlier de-
tection. In the plots of wastewater data reconstruction, K=1 is used for
plotting the uncertainty envelope.

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.154235.
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