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ABSTRACT
Machine learning technologies have found fertile ground in optics due to their promising features based on speed and parallelism. Feed-
forward neural networks are one of the most widely used machine learning algorithms due to their simplicity and universal approximation
capability. However, the typical training procedure, where all weights are optimized, can be time and energy consuming. An alternative
approach is the Extreme Learning Machine, a feed-forward neural network in which only the output weights are trained, while the internal
connections are random. Here we present an experimental implementation of a photonic extreme learning machine (PELM) in an integrated
silicon chip. The PELM is based on the processing of the image of the scattered light by an array of 18 gratings coupled to microresonators.
Light propagation in the microresonator array is a linear process while light detection by the video camera is a nonlinear process. Training
is done offline by analyzing the recorded scattered light image with a linear classifier. We provide a proof-of-concept demonstration of the
PELM by solving both binary and analog tasks, and show how the performance depends on the number of microresonators used in the
readout procedure.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156189

I. INTRODUCTION

In the last decade, the implementation of machine learning
methods in photonic systems has rejuvenated optical computing.1
Photonics represents a suitable platform for artificial intelligence
due to its operational speed, low power dissipation, and versa-
tility of optics, ranging from the simple complex nature of the
optical field2 to the possibility of using multiplexing techniques.3
Photonic neural networks (PNN) have been demonstrated to oper-
ate with state-of-the-art performance in challenging tasks such as
image classification4–6 and non-linear decision boundary.2 Among
PNNs, photonic integrated circuits (PIC) are particularly attractive
because they can meet the demand for scalability of neural networks
by mitigating problems related to control, power consumption,
and physical size.7–9 Feed-forward neural networks (FFNN) based
on cascades of Mach-Zehnder interferometers (MZIs) have been
demonstrated on-chip,10 showing excellent performance in vowel
recognition. However, the training process is time and power con-
suming as FFNNs generally require optimization of the response
through slow gradient descent algorithms.11,12 A promising alterna-
tive to these approaches is PNNs that do not require full control of
the network, such as Reservoir Computing (RC)13–15 and Extreme

Learning Machines (ELMs).16,17 ELMs are FFNNs composed of a
single hidden layer in which training occurs only at the readout.
The underlying operation is based on a nonlinear mapping of input
information to a higher dimensional space, on which a linear classi-
fier defines the readout layer in the training and testing phase. The
potential of ELM has been demonstrated in bulk systems using dif-
ferent information mapping strategies such as coherent light phase
modulation with a spatial light modulator,18 frequency multiplex-
ing by a phase modulator acting on a monochromatic source,19

speckle patterns resulting from multiple scattering20,21 and time-
multiplexed fiber loops.22 PIC implementation of ELM is largely
unexplored, while few PICs where only a subset of connections is
trained have been studied.23–27 This is probably due to the fact that
integrated implementations of ELM lead to a limited increase in the
spatial dimensions of the mapping with respect to a bulk approach.

In this work, we propose and experimentally validate an imple-
mentation of the ELM in a silicon integrated photonic circuit: a
photonic ELM (PELM). The PELM is based on an array of 18
microresonators arranged in a geometry that forces a single prop-
agation direction for the optical signal. Both the encoding of infor-
mation and its processing take place in the PIC, while the training
and testing are performed offline. The PELM is tested with two-
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level and multi-level tasks. Therefore, we show the performance of
the PELM in solving linear and nonlinear logical operations and in
two classification problems: the recognition of iris flowers and the
banknote authentication. We also demonstrate how network perfor-
mance depends on the number of physical nodes used in the readout
during the training and testing.

II. EXPERIMENTAL IMPLEMENTATION
A. Optical circuit

An ELM is a FFNN in which the input information is processed
and sent through a single hidden layer to at least one output node.16

The hidden layer forms the computational reservoir and does not
require training of its response. In contrast, training takes place in
the output layer. As shown in Fig. 1(a), a given dataset of N features,
X, is injected into the hidden layer. Here, the input information is
mapped to a higher dimensional space. This space is obtained by lin-
ear combinations of the input data with unknown random weights.
An infinitely differentiable nonlinear activation function projects
the data into an H matrix that represents the output of the hidden
layer. Then, the output of the ELM, Y, is formalized as the linear

combination of H with a vector of weights β, i.e., Y = Hβ. Training is
performed only on the output response by determining the weights
β that allow the reproducing a target, T. The vector of optimal out-
put weights is the least squares solution of β = HTT, where HT is
the generalized Moore-Penrose inverse of H. Note that ELM has the
universal approximation ability16 and, therefore, can reproduce any
output with enough nodes in the hidden layer.

The PIC in Fig. 1(b) implements the PELM. The red lines rep-
resent the 450 × 220 nm2 silicon waveguides embedded in silica
cladding, while the gray triangles represent the grating couplers. The
PIC was fabricated at the IMEC/Europractice facility within a multi-
project wafer run and it is placed within a ceramic electronic pack-
aging. The PELM has an input layer, where information is encoded
in the optical field amplitude, and a hidden layer formed by an
array of 18 microresonators coupled to output gratings. At the input,
the signal is coupled through a grating coupler and split into four
input waveguides by a balanced 1 × 4 multi-mode interferometer.
Each of the four signals passes through a balanced MZI, where one of
its two arms has a phase shifter (PS) actuated by a microheater. This
consists of a straight strip of titanium nitride (TiN) with a length of
about 60 μm and a width of about 6 μm, represented by the brown

FIG. 1. (a) Sketch of the architecture of an Extreme Learning Machine (ELM), where an input dataset X is sent to a reservoir that generates the H matrix of the hidden layer.
The output Y is the linear combination of H and the trainable vector of weights β. (b) Design of the integrated neural network to implement the photonic ELM, the PELM. It
consists of an input layer where the information encoding takes place, a hidden layer composed of an array of microresonators coupled to grating couplers, and a set of end
grating couplers to calibrate the response. (c) Experimental setup. The different symbols are defined in the text. (d) Image captured by the infrared camera. The red squares
highlight the light scattered by the grating couplers connected to the microresonators. (e) Normalized transmittance as a function of input wavelength. The light is coupled
to the input grating and measured on the first calibration grating highlighted by the black dashed lines. (f) Zoom on the spectral response around 1561 nm. The two black
vertical lines define the “in-resonance” and “out-of-resonance” operating wavelength ranges.
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lines in Fig. 1(b). The current applied to the microheater induces a
change in the refractive index, which in turn affects the interference
at the output of the MZI. In this way, the input data are encoded
into a four dimensional feature space. The four modulated input
optical signals are denoted in Fig. 1(b) by the Roman numerals I,
II, III, and IV. They excite a 3 × 3 array of coupled microresonator
pairs, which form the hidden layer. Neglecting the backscatter-
ing due to surface-wall roughness, the coupled microresonator pair
allows realizing the feed forward scheme since propagation forward
direction of the input optical signal is maintained across the array.
The microresonators have a vertically elongated racetrack geome-
try obtained by joining four Euler curves (minimum radius 15 μm
and angle 90○) to two pairs of straight sections of 4 μm length.
Euler curves were used to further reduce the backscattering phe-
nomena. The microresonators have a quality factor of about 104.
Each of them has a tap located in the straight section that collects
the 5‰ of the circulating intensity by scattering it off the chip
through a grating coupler. A camera record the scattered light inten-
sity image emerging from the microresonator array. In this way,
the array of microresonators coupled to the gratings linearly maps
the four input optical signals into 18 output scattered light images.
An image processing step allows us to obtain H, which is com-
posed of the values obtained by digitizing the intensity image of
the scattered light. The hidden layer of the PELM thus consists of
the linear optical propagation in the array of 18 microresonators
and of the nonlinear detection (light intensity is the square of the
optical field) of the scattered light by the 18 gratings. For moni-
toring and calibration purposes, each of the four input waveguides
ends at a grating coupler, which allows the collecting of the array
transmission optical signals. The output of the PELM is obtained
in the readout layer via digital hardware, which applies the vector
of weights β to the digitized intensities. The training is performed
by the ridge regression, which finds the vector β that minimizes the
regularized least square error ∥Hβ + β0I − T∥2 + λ2∥β∥2, where λ is
the regularization parameter defined by a five-fold cross-validation
(for details on the software implementation of ridge regression, see
Appendix A).

A key aspect of the ELM is the random nature of the weights
applied to the linear combination that maps the input space to a
higher dimensional output space. In our PIC, the mapping is done
by coupling the four input waveguides to the microresonator array.
Both the wavelength resonances (i.e., the diameters) of the microres-
onators, the couplings between microresonator and bus waveguide
(M-W), the couplings between microresonator and microresonator
(M-M), and the couplings between bus waveguide, microresonator
and microresonator (M-W-M) determine the intensities of the opti-
cal signals that propagate in the microresonator array. Expressed
in other terms, the weights of the linear combination of the input
information into the hidden layer. In the PIC design, the size of the
microresonators and the gaps are all nominally equal, specifically,
the values used in the design are shown in Table II of Appendix B.
Therefore, in our system, the randomness is only given by the
stochastic fabrication errors.

B. Experimental setup and H-matrix generation
The PELM has been tested using the experimental setup shown

in Fig. 1(c). The laser source is a fiber-coupled continuous-wave

tunable laser (CWTL: Yenista OPTICS TUNICS-T100) operating
in the infrared range (1470–1580 nm). Its emission passes through
a variable optical attenuator (VOA) and a fiber polarization con-
trol stage (FPC). The generated continuous-wave signal is coupled
to the PIC via a single mode stripped fiber. Another single mode
stripped fiber collects the output from the calibration grating cou-
plers. The collected signal is finally sent to an InGaAs photodetector
(PD: Thorlabs, PDA20CS2), whose response is monitored by an
oscilloscope (OSC: PicoScope 4000 series). Both the input and out-
put stripped fibers are placed on a three-axis linear piezoelectric
stage for proper alignment. A write board (WB: Measurement Com-
puting USB-3106) applies currents to the microheaters of the input
layer and controls the voltage that regulates the VOA. The tempera-
ture of the PIC is kept constant by a thermostat holder controlled by
a proportional-integral-derivative (PID: SIM960 Analog controller)
connected to a Peltier cell and a 10 kΩ thermistor. This allows the
working point of the microresonator array to be controlled, ensuring
excellent reproducibility of measurements by mitigating the impact
of the environment.

The scattered light from the 18 grating couplers coupled to the
microresonators is monitored by an infrared camera (IRC: Xenics
XEVA-CL-640-25) mounted on a continuous zoom objective (Nav-
itar). A three-axis linear stage ensures that the objective is placed
over the PIC and maintains its position during the PELM train-
ing and testing. The grayscale image captured by the camera has
a resolution of 512 × 640 pixels with 16 bit per pixel. An example
image is shown in Fig. 1(d). Here, the red squares mark the posi-
tions of the 18 grating couplers, and thus the encircled bright spots
represent the intensities of the optical signals propagating in the dif-
ferent microresonators. The readout and generation of H are done
by digitally processing the captured images. This procedure can be
performed by considering only the 18 physical nodes and or by
exploiting virtual nodes. In the first case, the value attributed to each
node is calculated by averaging the 1296 pixels contained in each red
square. In the second case, the number of nodes is virtually increased
by performing different operations on the image. For example, each
individual pixels can be considered as a node or additional functions
are applied to the 1296 pixels contained in the square, such as the
standard deviation, the median, or the geometric mean. Note that
the objective of the camera is set to image only the array of microres-
onators and, therefore, a single pixel corresponds to an area of about
1.5 × 0.5 μm2 on the PIC.

Encoding the signal in the PIC by varying the current of the
PSs with the write board can introduce thermal cross-talk. Such an
effect on the dynamics of microresonators has recently been stud-
ied in our work.28 It was shown that the variation of the microheater
induces a global heat flow through the substrate, which delays the
reaching of the equilibrium state of the system. In the case of a pack-
aged PIC (ceramic package), a microresonator is influenced by a
microheater distant more than 200 μm away with a relaxation time
of about 220 ms and reaches the steady state in about 1 s. Since in
the PELM the distance between the microresonator and the nearest
microheater is about 250 μm, the overall thermal effect is not negligi-
ble. On the other hand, the camera cannot acquire and store images
at a rate higher than 100 ms/frame. Therefore, it is necessary to
impose a guard time between the change of the input and the image
acquisition. To speed up image acquisition, two images are acquired
at 300 ms intervals for each new input (i.e., different current
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injection in the microheaters). If they differ, an additional 300 ms
pause is added. This process is repeated until the two acquired
images are similar. The definition of similarity is given by a threshold
of percentage difference in the pixels of the two images. This per-
centage value varies according to the problem addressed, depending
on factors such as the integration time of the camera and the
database to be encoded. As a result, its estimation requires an
experimental test measurement prior to the task execution.

III. RESULTS
A. Setting the working point

The performance of the network depends on the wavelength
of the optical input signal. The encoding of the input information,
determines the distribution of the signal in the array of microres-
onators. Figure 1(e) shows the normalized transmittance as a func-
tion of the incident wavelength for an incident laser power of 1 mW.
The optical signal is coupled to the input grating and the trans-
mittance is monitored in the first calibration grating, indicated by
the dashed black lines in Fig. 1. Scanning is performed at 5 nm/s
by means of the Picoscope, which allows synchronization of the
laser wavelength with the data acquired by the photodetector. The
transmittance shows a broad bell pattern, typical of grating cou-
plers (coupling losses of about 6 dB, equally divided between input
and output gratings). The spectrum is characterized by a series of
bands, each one consisting of a series of resonant dips. Figure 1(f)
shows a zoom of the response around 1561 nm resonance. The
presence of fabrication errors induces a variation of the geomet-
rical parameters of the microresonator array, which yields several
local minima in the resonance band.29 This demonstrates the needed
randomness of the microresonator array. In the following tasks, we
have used optical signal wavelengths about the wavelength interval
1561.06–1561.87 nm, which corresponds to a resonant band. We use
the term “in-resonance” for wavelengths included in this interval
and “out-of-resonance” for the others. In the following, the incident
laser power is set to 1 mW. This value ensures a linear response of
the microresonators array.

B. Binary input
The first tasks we addressed are the two-level logical opera-

tions AND, OR, and XOR, for which the truth tables are given
in Table I. AND and OR are linearly separable tasks and, there-
fore, do not require a nonlinear activation function to be solved. In
contrast, XOR is a nonlinear task. We do not use the logical oper-
ations as a network benchmark, but rather as a proof-of-concept
demonstration of the use of the PELM architecture.

The encoding is implemented by using only two of the four
MZIs of the input layer. The remaining pair is set to have destructive

TABLE I. Truth table for AND, OR, XOR operations.

Inputs AND OR XOR

(0,0) 0 0 0
(0,1) 0 1 1
(1,0) 0 1 1
(1,1) 1 1 0

interference and, thus, a null signal at the output. As a result, the task
is performed using only two excitation waveguides of the microres-
onator array, using the maximum of the signal amplitude as bit 1 and
30% of the maximum as bit 0. The network is tested by implement-
ing all six possible permutations of the input signals (I, II, III, and
IV) in the encoding phase. Specifically, each input signal pair repro-
duces four times the excitation combination formed by the four bit
pairs {(0, 0), (0, 1), (1, 0), (1, 1)}. For each excitation combination,
the bit pairs are randomly generated from the input layer. Only the H
matrices obtained from a single excitation combination (four pairs)
are used to train the PELM, while the remaining measurements are
used as tests, resulting in a training/test ratio of 25/75. The gener-
ation of the H matrix is done by using the 18 physical nodes. The
input set is randomly replicated several times, both to test the repro-
ducibility of the neural network and to account for small fluctuations
in node intensities due to noise in the training process.

Logical operations are undemanding tasks for the PELM whose
accuracy is 100% for many in-resonance and out-of-resonance
wavelengths. Consequently, the performance of the PELM is eval-
uated in terms of the distance between output values that should be
1 and those that should be 0. Whenever a threshold can be drawn
between these two outcomes, the network solves the task. We define
the smallest distance between these two results as the gap size,

Gs[λ] ∶= minT=1[Y[λ]] −maxT=0[Y[λ]]
max [{max [Y[λ]] −min [Y[λ]], 1}] . (1)

Gs[λ] gives the normalized value of the difference between the min-
imum of the responses that should be 1 and the maximum of the
responses that should be 0. As a result, Gs greater than 0 means that
the network solves the task. Conversely, Gs smaller or equal than 0
means that the network does not solve the task for at least one pair of
excitation combinations. The greater the value of Gs, the better the
performance of the PELM and the robustness of the accuracy against
noise. Note that in Eq. (1), the scaling factor is defined by the max-
imum of the set composed by the difference between the maximum
and minimum response and 1.

The top graphs in Fig. 2 show Gs[λ] for the AND, OR, and XOR
in the best input signal pair configuration. For AND, OR, and XOR,
the best input pairs are (II, IV), (II, III), and (III, IV), respectively.
In the plots, the vertical black lines highlight the resonance region of
the microresonator array shown in Fig. 1(f). The network is tested
with 76 values of incident wavelengths distributed in-resonance and
out-of-resonance. The horizontal red lines highlight the zero value
of Gs. In all three logical operations, the PELM fails to solve the task
for at least one pair of the excitation combinations at just one out-
of-resonance wavelength. Thus, for in-resonance wavelengths, the
logical operations are always solved by the PELM. For the AND and
OR, the best performance is reached in-resonance at 1561.68 and
1561.22 nm, respectively. While for the XOR the best performance
is near the upper limit of the resonant region, which is at 1561.9 nm.
The bottom graphs in Fig. 2 show the test result for the in-resonance
wavelength that has the maximum Gs value. Specifically, the plots
display the PELM output for all the 16 random bit pairs contained
in the four repetitions of the excitation combination. The red dots
are the outputs that should be 1, while the blue dots are those that
should be 0. The PELM reproduces the targets perfectly by showing
a clear distinction between bits 0 and 1.
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FIG. 2. Top, gap size (Gs) as a function of incident wavelengths for the AND, OR, and XOR operations. For each operation, the experimental data are obtained from the best
input signal configuration. In the plots, the black lines mark the in-resonance and out-of-resonance regions, while the red horizontal lines mark Gs = 0. The network solves
these binary tasks when Gs > 0. Bottom, outputs of the neural network in the test procedure for the in-resonance wavelength that has the best Gs value. The inputs are all
the 16-bit pairs of the four repetitions of the excitation combination. The red and blue dots are the bits that should be one and zero, respectively.

The performance of an ELM is strongly dependent on the num-
ber of nodes in the hidden layer. Previous results show that 18 nodes
allow the PELM to solve the logical operations both in-resonance
and out-of-resonance. However, the lower the number of physical
and/or virtual nodes, the higher the operating speed of the network,
albeit at the expense of its performance. Thus, depending on the
tasks to be solved, there is an optimal value of nodes that maximizes
performance while minimizing training time. The digital hardware
readout system allows changing the number of nodes used to gen-
erate H. We studied the dependence of the PELM’s performance on
the number of nodes for the XOR operation in the input pair config-
uration (III, IV) and considering only the in-resonance wavelength
(bottom right panel in Fig. 2).

Formally, we computed Gs for all n-combination of the
18 physical nodes, where n = 1, 2, 3, . . . , 18. An n-combination is
a subset of n different elements of the 18 physical nodes. Two n-
combinations are identical if and only if they consist of the same
elements. The number of n-combination is given by the binomial
coefficient. This value is 18 and 1 for n = 1 and n = 18, respectively.
While it reaches the maximum value of 48 620, for n = 9. Figure 3(a)
shows the values of Gs as a function of the physical nodes. For each
node number n, the red squares and green downward triangles show
the Gs obtained from the n-combination that gives its maximum
value and the one that gives its minimum value. In addition, the
black dots show the average value of Gs for each n, obtained by using
the results of all n-combinations. In the best combination, the PELM
solves the task with a single physical output node. In contrast, in
the worst combination, the PELM shows a positive value of Gs with

at least eight nodes and shows near maximum performance with
16 nodes. Looking at the mean value of Gs, the PELM solves the
XOR with a number of nodes equal to 3. The curve rises rapidly to
five physical nodes and then tends more slowly to a plateau char-
acterized by the maximum value of 1. Consequently, 18 nodes are
excessive for the XOR. In fact, in the best n-combination with n = 3,
the network solves the XOR with a Gs comparable to that obtained
with all 18 nodes.

Interestingly, there are configurations of input signals and in-
resonance wavelengths where the PELM solves the XOR with only
one microresonator, even without performing the ridge regression
in the readout. An example is shown in Fig. 3(b), for the input sig-
nal pair (II, IV) and an in-resonance wavelength of 1561.56 nm.
The four images correspond to the four pairs (0, 0), (1, 1), (01), and
(1, 0). Focusing on the grating coupler indicated by the yellow star,
one observes that the intensity circulating in the coupled microres-
onator resolves the XOR. In fact, the (0, 1) and (1, 0) pairs show
a clear light spot. In contrast, for the (0, 0) and (1, 1) pairs, the
microresonator is unloaded (destructive interference) and the light
emitted by the grating is zero. This behavior matches the logical
XOR operation (Table I).

C. Analog input
The analog input tasks we addressed are two well-known

toy datasets in machine learning: iris flower classification30 and
banknote classification.31 We do not intend to use them as a
benchmark against other neural network systems, but as a testbed
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FIG. 3. (a) Gs as a function of the number of the used output nodes n for the XOR operation. The red squares and the green downward triangles show the Gs for the
n-combination, which gives its maximum and its minimum value, respectively. The black dots denote the average of Gs obtained by considering for each n value all the
n-combination. (b) Images acquired by the infrared camera for the pairs of the excitation combination, namely (0, 0), (1, 1), (0, 1), and (1, 0). This result is obtained for
an in-resonance wavelength by using the input signal pair (II, IV). The yellow stars indicate the grating couplers, which mimic the outcomes of the XOR operation without
performing the ridge regression in the readout layer.

for our architecture on inputs encoded with four multi-level
features.

The iris flower database consists of 150 flowers described by
four input features characterized by real values. Physically, the four
features correspond to the length and width of the petals and sepals
of the flower. The goal is to classify a given flower into one of three
possible subspecies called: Setosa, Versicolor, and Verginica. These
three classes are equally distributed among the 150 flowers in the
database. The classification is not trivial, because even with all four
inputs, only the Setosa species can be separated linearly from the
others.

The iris flowers are sent to the hidden layer using all four MZIs
of the input layer. As a result, each feature is encoded on a given
input signal [indicated in Roman numerals in Fig. 1(b)], and its val-
ues are scaled between the maximum and 30% of the maximum
signal amplitude. Sepal length, sepal width, petal length, and petal
width have 35, 23, 43, and 22 different values, respectively, resulting
in as many levels of signal amplitude in our encoding. Each flower
in the database is encoded and sent to the hidden layer ten times
in a random order. This procedure is performed for 22 wavelengths
of the incident laser signal, distributed over 11 in-resonance and 11
out-of-resonance values.

For each wavelength, the performance of the network is stud-
ied. From the 1500 acquired images, the corresponding H matrices
are extrapolated, consisting only of the 18 physical nodes. They are
distributed into a training set and a test set with a percentage of
70% and 30%, respectively. This distribution is performed using
the Monte Carlo cross-validation32 to avoid problems such as selec-
tion bias or overfitting. Specifically, for each wavelength, the test
and training are performed 100 times by resampling the test and

training set differently. The different categories can be assigned in
the readout layer through two procedures: training a linear classifier
for each species (three basis) or training a single linear classifier for
all three species (single basis). In the first procedure, the final deci-
sion is made according to a winner takes all scheme.33 Consequently,
the classifier that provides the greatest value is the one that defines
the species of the flower under test. In the second procedure, the
single classifier provides a specific value for each species. As a result,
the PELM has a single output for each flower. This output directly
defines the species. Note that the readout processing was performed
on both the hidden layer output and the raw input data.

Figures 4(a) and 4(b) show the classification rate as a function
of the incident wavelength by training the network with three basis
and with one single basis, respectively. The black and blue dots show
the mean values over the 100 repetitions, with the corresponding
variance indicated by the error bars. The horizontal rectangles show
the mean and variance of the classification rate over 100 repetitions
performed on the raw data, i.e., the input. Thus, this value represents
our theoretical limit obtained by simply applying the linearization to
the input database.

Using the first method [three basis, see Fig. 4(a)], the PELM
improves the classification rate by more than 7% over the theoret-
ical limit for both in-resonance and out-of-resonance wavelengths.
Specifically, the theoretical limit is (83.6 ± 0.5)%, while the maxi-
mum classification rate is (96.8 ± 0.2)% obtained in-resonance at
1561.45 nm. This value is comparable to the result obtained by
Lupo et al.19 In this work, a bulk implementation of the ELM
based on wavelength multiplexing is reported, which achieves a
maximum classification rate of 97.7% (experiment) or 96.3% (sim-
ulation). Using the second method [one basis, see Fig. 4(b)], the
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FIG. 4. Classification rate as a function of input wavelength, computed by using three linear classifiers (a) and one linear classifier (b) in the readout layer. The gray and
the light blue rectangles show the theoretical limit obtained by applying the readout procedure to the raw database. The maximum classification rate is (96.5 ± 0.2)% and
(97.2 ± 0.2)% for (a) and (b), respectively, reached at 1561.45 nm. (c) Classification rate as a function of physical node number. The red squares and downward triangles
show the results of the n-combination that induces the best and worst classification rate. For each node number, the blue dots indicate the average classification rate overall
n-combination. The theoretical limit is highlighted by the horizontal gray line.

PELM improves the classification rate with respect to the theoret-
ical limit only for three in-resonance wavelengths. The theoretical
limit is (96.6 ± 0.3)% while the best PELM classification rate is
(97.2 ± 0.2)% at 1561.45 nm. Note that this in-resonance wave-
length is the same wavelength as the maximum classification rate
achieved with the three basis.

It is worth noting that the single classifier [see Fig. 4(b)]
provides a classification rate on the raw data comparable to the max-
imum obtained by the PELM in-resonance by using the three basis
with the winner takes all scheme [see Fig. 4(a)]. This significant
performance difference can be seen by comparing the two theoret-
ical limits. It depends strongly on the database to be tested. This
is shown in Appendix A, in which we study a database consisting
of three three-dimensional spheres associated with three different
colors. Although the spheres are linearly separable, for some con-
figurations the three basis allows the spheres to be classified while
the single does not, and for other configurations the reverse is true.
This is a limitation of the ridge regression algorithm that can be
avoided by using multinomial logistic regression. Even though this
result is well known in the field of machine learning,34 the classi-
fication tasks by multi-basis via ridge regression is often found in
the literature.18,19,26,35 This may be related to the study of network
performance improvement on raw data rather than the search for
the best absolute classification rate. In addition, linear ridge-based
classifiers are typically faster than a multinomial logistic regression,
especially in the case of a single basis. The classification rate as a

function of wavelength using the multinomial logistic regression as
linear classifier for the Iris flower is reported in Appendix C.

Note that with a linear classifier, the classification result also
depends strongly on the permutation of the target, i.e., on how the
values identifying the three species are distributed in the target vec-
tor T. In our discussion, we used one of the permutations that give
the maximum value of the theoretical limit. Setting 1, 2, and 3 for
Setosa, Versicolir, and Verginica, respectively, the best classification
rate is given by using T = (1, 2, 3) or T = (3, 2, 1).

Following the same procedure as described for the XOR opera-
tion (Subsection III B), we studied the performance of the PELM as
a function of the number of nodes. We calculated the classification
rate for all n-combinations of the 18 physical nodes. In this study,
the one basis method is applied by using 70% of the database for
the training procedure. Due to computational reasons, Monte Carlo
cross-validation for the data distribution between the test and train-
ing sets is not possible. In fact, a PC equipped with a 32-core CPU
(E5-2687W) requires three days to provide the results of a single
iteration. Thus, a Monte Carlo cross-validation with 100 repetitions
would require almost a year of computing time. Figure 4(c) shows
the classification rate as a function of the number of nodes. For each
value of n = 1, 2, 3, . . . , 18, the red squares and the downward green
triangles refer to the classification rate computed from the best and
the worst n-combination, respectively, while the blue circles to the
average classification rate. The horizontal gray line denotes the the-
oretical limit obtained by applying the linear classifier to the input.
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Thus, points with a value above this line show an improvement in
the classification rate due to the PELM. We see that the PELM aver-
age result exceeds the theoretical limit with nine physical nodes. In
addition, the best configuration shows excellent performance with
only two physical nodes, while at least 16 nodes are needed for the
worst n-combination.

The banknote authentication database consists of 1372 ban-
knotes described by four input features.31 Physically, the four fea-
tures are the values obtained by mathematical functions applied to
the banknote images. For each banknote, they report the value of the
entropy of the image, the variance, the skewness, and the kurtosis
of the wavelet-transformed image. The purpose is to classify a given
banknote as genuine or counterfeit.

The banknote task is implemented in the PELM similarly to
the method used for the iris flower task. As a result, the banknotes
are sent to the hidden layer by encoding each feature on a corre-
sponding input signal. The values of each feature are scaled between
the maximum and 30% of the maximum signal amplitude. How-
ever, the number of distinct values contained in each feature is
significantly larger than in the Iris flowers case. In fact, the vari-
ance/skewness/kurtosis of the wavelet-transformed image and the
entropy of the image have 1338/1256/1270 and 1156 distinct val-
ues, respectively. Consequently, the optical encoding of the input
data has more than thousand levels resulting in a quasi-continuous
amplitude distribution. The output is obtained with a single lin-
ear classifier using a percentage ratio between the training and test
set of 70/30 where each banknote is randomly used five times.
For each wavelength, the performance of the network is calculated
using 100 different resamples of the test and training sets obtained
by Monte Carlo cross-validation. In this task, the results obtained
both with the 18 physical nodes alone and with the 18 physical
nodes plus 126 virtual nodes are studied. The 126 virtual nodes
are obtained by applying seven additional functions (median, stan-
dard deviation, skewness, kurtosis, geometric and harmonic mean)
to the 1296 pixels contained in the image rectangle of each grating
coupler. Applying the linear classifier to the raw data, we obtain a
theoretical limit of the classification rate of (97.57 ± 0.07)%. Con-
sidering only the 18 physical nodes, the PELM does not significantly
improve the classification rate. In particular, a maximum value of
(97.92 ± 0.05)% is reached for a wavelength close to the blue limit
of the resonance region, i.e., 1560.9 nm. The use of virtual nodes
greatly improves the performance of the PELM for wavelengths
in-resonance and out-of-resonance. In particular, the classification
rate reaches a maximum value of (99.00 ± 0.04)% in resonance at
1561.3 nm. For comparison, Lupo et al.19 achieve a classification
rate of 99.4% and 99.7% with a photonic- and software-implemented
ELM, respectively.

IV. CONCLUSION
In this work, we experimentally demonstrated an Extreme

Learning Machine architecture that exploits light scattered by an
array of pair-coupled microresonators. The information is encoded
in the PIC by modulating the amplitude of the input signals through
Mach-Zehnder interferometers actuated by microheaters. The hid-
den layer of the network requires no training of its response.
The randomness of the connections among the different microres-
onators in the array is ensured by stochastic fabrication errors. The

readout layer is implemented digitally by using a linear classifier,
i.e., a regularized linear regression. In the training procedure, it
determines the optimal weights that allow replicating the target. We
experimentally demonstrated that the PELM solves the logical AND,
OR, and XOR operations, showing an increase in performance for
in-resonance input wavelength. For the XOR operation, we stud-
ied the performance as a function of the number of physical nodes,
considering all the different spatial configurations. In the best sce-
nario, a combination of the outputs of three microresonators is
sufficient to match the performance of the 18 microresonator array.
Furthermore, it was shown that in special cases the output of a sin-
gle microresonator of the array can solve the XOR without using the
linear classifier in the readout layer.

In addition, we experimentally demonstrated that the network
can handle multi-level tasks such as iris flower classification and ban-
knote authentication. In the case of flowers, considering only the
18 physical nodes vs the input information, the maximum classifi-
cation rate is (97.2 ± 0.2)% vs (96.6 ± 0.3)% with a single classifier
and (96.8 ± 0.2)% vs (83.6 ± 0.5)% with a classifier for each species
in the winner takes all the scheme. The study of the performance as
a function of the number of physical nodes shows that in the best
configuration, the outputs of three microresonators are sufficient
to achieve the classification rate of 18 microresonators. However,
the average of all spatial configurations shows an improvement in
performance over the raw data only with at least nine microres-
onators. In the case of banknotes, the maximum classification rate
with 18 physical nodes is (97.92 ± 0.05)% vs (97.57 ± 0.07)%. Oth-
erwise, considering both 18 physical nodes and 126 virtual nodes,
the maximum classification rate increases to (99.00 ± 0.04)% vs
(97.57 ± 0.07)%.

Our PELM suffers from two main limitations. The first is the
low operational speed due to both the image acquisition and the
input data encoding. In fact, the use of an infrared camera requires a
steady state in the microresonator array to avoid thermal cross-talk.
As a result, an average time of 500 ms is required between two differ-
ent inputs. The second is the software implementation of the ridge
regression readout. This needs the storage of the output images,
which rapidly gets very large. Furthermore, processing a large set
of images requires a long computational time, especially when both
physical and virtual nodes are used. Both limitations can be over-
come by considering the integration of the readout layer in the PIC.
For example, coupling fast photodetectors to the microresonators
would permit an electronic reading of the array status. In addition, a
linear classifier can be integrated in the PIC by connecting the out-
put of the microrings to a cascade of MZIs followed by PSs,36 thus
obtaining an all-chip PELM. Another possible improvement of the
PELM is a different encoding procedure. Since a resonant system is
particularly sensitive not only to the intensity of the optical signal but
also to its phase. An improvement in the performance of the PELM
can be achieved by considering a complex encoding2 where both the
phase and amplitude of the optical field are used.
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FIG. 5. Graphs (a1) and (b1) show two linear configurations of the database, which consists of three spheres made up of 925 triplets of real numbers representing their spatial
coordinates. The three spheres are classified by three colors: blue, yellow, and red. The accuracy as a function of the solver type for the two configurations (a1) and (a2) are
shown in plots (b1) and (b2), respectively. The three-dimensional plots (c1) and (c2) show the output result obtained by applying the solver that gives the worst accuracy in
(b1) and (b2) to a generic matrix of three-dimensional points.
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APPENDIX A: LINEAR CLASSIFIERS

In this section, we compare the results of a single classifier
with three classifiers in the winner takes all scheme. To visualize the
results, we use a simple database consisting of three spheres. They
consist of a set of 925 points in the 3D-plane and they are repre-
sented in Fig. 5 with three different colors defining their species:
blue, yellow and red. As a result, each point in the database is a
triple of real values that provide the spatial coordinates. We study
two different spatial configurations of the three linearly separable
spheres shown in Figs. 5(a1) and 5(a2), respectively. The dataset
is divided into training and test with a ratio of 72/28. Training
and testing are performed on the raw data using digital hardware.
The multiclass classification is calculated in terms of accuracy by
the single linear classifier, the three linear classifiers, a linear sup-
port vector machine (SVM), and a multinomial logistic regression
software. We used Matlab37 for all the implementations. Specif-
ically, the linear classifiers were obtained by exploiting the ridge
function with a regularization parameter λ defined by a five-fold
cross-validation with the fitrlinear function. In contrast, SVM-linear
and multinomial logistic regression were implemented using the
fitcecoc function by defining the learner with the corresponding tem-
plateLinear function. For a single classifier (single basis) we use the
target permutation which gives the best accuracy.

The accuracy as a function of the type of solver is shown in
Figs. 5(b1) and 5(b2) for the spatial configuration represented in
(a1) and (a2), respectively. Here, the red upward-triangles, blue dots,
green squares, and black diamonds are the results obtained with
the three linear classifiers (3 basis), single classifier (Single basis),
SVM-linear, and multinomial logistic regression (Log-Regr), respec-
tively. In the spatial configuration of three spheres in a row, shown
in Fig. 5(a1), the three linear classifiers in the winner takes all scheme
configuration fail to classify the three species by showing a value
of 70.2%. In contrast, the other three solvers solve the task with an
accuracy of 100%. Note that the single classifier works. In contrast,
in the configuration of Fig. 5(a2), the single linear classifier fails to
classify the three species perfectly, showing a value of 87.7%. While
the three linear classifiers solve the task perfectly as the SVM lin-
ear and multinomial logistic regression. In Fig. 5, the graphs (c1)
and (c2) show for a three-dimensional point matrix the classifica-
tion result obtained in the worst accuracy case for configuration (a1)
and (a2), respectively. In (c1) the three linear classifiers do not per-
fectly distinguish the yellow sphere by assigning red and blue points
to it. Differently, in (c2), the single classifier does not perfectly dis-
tinguish the red and blue spheres by assigning yellow dots to them.
Thus, the use of a ridge-based single classifier or multiple ridge-
based classifiers in the winner takes all scheme can lead to completely
different accuracy results and is highly dependent on the database
under test.

APPENDIX B: DESIGN PARAMETERS OF THE PELM
ARCHITECTURE

Table II shows the nominal parameters used to design
the microresonator array. It shows the values of the racetrack
microresonator, which is composed of four Euler curves and
two straight sections, as well as the values of the gaps. In par-
ticular, the gaps of the microresonator-bus waveguide (M-W),
microresonator-microresonator (M-M), microresonator-bus
waveguide-microresonator (M-W-M) and microresonator-tap
(M-T) connected to the grating coupler are listed. As mentioned in
the main text, the reported values were used for each of the three
microresonator columns in the CROW configuration [see Fig. 1(b)].
The coupling efficiency (i.e., the square of the coupling coefficient)
corresponding to the gap values are 0.10, 0.099, 0.10 and 0.005 for
M-W, M-M, M-W-M and M-T, respectively. The microresonators
thus designed have a field enhancement of about 9. Propagation
and insertion losses were estimated by measuring the transmission
of straight waveguides of different nominal lengths. The values
obtained for an input wavelength of 1550 nm are 2 dB/cm for
propagation losses and 6 dB for insertion losses (i.e., about 3 dB for
each grating coupler).

APPENDIX C: MULTINOMIAL LOGISTIC REGRESSION
ON THE IRIS FLOWER DATABASE

In this section, we discuss the results of the Iris flower classi-
fication computed using the multinomial logistic regression in the
readout layer. As in the case of the other linear classifiers, the distri-
bution of both the raw and output data between the training and test
sets is 70% and 30%, respectively.

Figures 6(a) and 6(b) show the classification rate as a function
of incident wavelength obtained by using 18 and 5 physical nodes as
output, respectively. Precisely, the blue and red triangles show the
mean values over the 100 repetitions with the corresponding vari-
ances indicated by the error bars for the single basis linear classifier
(ridge regression) and the multinomial logistic regression, respec-
tively. The blue and red horizontal rectangles show our theoretical
limits, i.e., the mean and variance of the classification rate performed
on the raw input data.

The single basis provides higher classification rates than the
multinomial logistic regression for both the 18 and the five physi-
cal nodes. In particular, with a percentage ratio between the training
and test set of 70/30, this occurs even at the theoretical limit of the
raw data: (96.6 ± 0.3)% vs (95.5 ± 0.4)%. In the case of 18 physi-
cal nodes, the readout of the output through multinomial logistic
regression does not provide a net performance improvement, show-
ing a maximum value close to the theoretical limit of (95.9 ± 0.3)%

TABLE II. PELM network design parameters.

Racetrack microresonator Coupling gaps

Minimum Euler radius Euler angle Straight sections M-W M-M M-W-M M-T

15 μm π
2 rad 4 μm 289 nm 260 nm 287 nm 412 nm
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FIG. 6. Classification rate as a function of input wavelength, computed using a single linear classifier (ridge regression) and multinomial logistic regression for 18 (a) and
5 (b) physical nodes, respectively. The blue and red horizontal rectangle highlight the theoretical limit obtained by applying the readout procedure to the raw input data. With
18 physical nodes, the multinomial logistic regression training suffers from overfitting and shows no significant improvement in output over input. By reducing the number of
physical nodes to 5, the logistic regression output improves network performance by showing an in-resonance maximum.

out-of-resonance at 1560.9 nm. This lack of improvement is due
to overfitting during training procedure. In fact, by reducing the
number of nodes to 5, the multinomial logistic regression shows
a significant improvement in the output response of the network.
Specifically, the data follow a trend similar to that of the single basis,
with a maximum value of (96.3 ± 0.2)% at 1561.5 nm. This value
does not represent the absolute maximum that can be achieved with
five physical nodes. In fact, the five rings used are chosen randomly
without studying the permutation on the 18 microresonators that
provides the best performance. Note that in the case of three linear
classifiers [Fig. 4(b)], the output obtained by ridge regression shows
a significant improvement in performance, even with 18 physical
nodes. In this case, the network does not suffer from overfitting dur-
ing training since parameters of the three classifiers are determined
by considering only one class against the other two.
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