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A B S T R A C T   

We illustrate the capacity of Artificial Intelligence (AI) and Machine Learning (ML) techniques to preserve 
consistent categorization abilities whenever the quality of the data decreases, displaying mistakes or mismatches 
across matrix entries, while standard statistical methods exhibit significant modifications in the value of the 
corresponding coefficients. We design algorithms of different complexity to generate a series of comparable 
profiles. These profiles are compared within environments that allow for an immediate identification of the 
generating algorithms and within increasingly complex settings involving almost identical profiles derived from 
different algorithms. AI and ML techniques outperform standard statistical methods when distinguishing the 
algorithms generating the profiles. Building on these results, we perform a retrospective analysis where AI and 
ML techniques are applied to two empirical scenarios defined by different data series of patients transplanted 
through the period 2006–2019. The first scenario contains the variables describing the evolution of patients 
inputted correctly. In the second, we modify the content of the vectors of characteristics defining the evolution of 
patients by exchanging the values of a subset of realizations from two categorical variables. AI and ML techniques 
are consistently accurate when categorizing patients correctly within both scenarios, a feature particularly 
relevant when the quality of the information sources composing the medical chain varies. This latter problem is 
exacerbated among hospitals located in developing countries, where the quality of the data gathered limits their 
identification and extrapolation capacities.   

1. Introduction 

Physicians display a tendency to distrust the results obtained from 
the implementation of artificial intelligence (AI) and machine learning 
(ML) techniques (Bae, S. et al., 2020; Wynants et al., 2020; Lancet. 
Artificial intelligence for COVID-19, 2021). Despite this fact, these 
techniques have been consistently applied to identify potential patterns 
within the current COVID-19 crisis (Arora et al., 2020; Massie et al., 

2020; Rasheed et al., 2020; Vaishya et al., 2020). Classification problems 
consist of a set of predictors, that is, features describing the different 
alternatives, defined via n-dimensional vectors and an outcome per 
alternative, namely, the class to which the alternative belongs. AI and 
ML techniques evaluate the features of each alternative together with its 
class and learn from them so that whenever an alternative is observed, 
the class to which it belongs can be predicted. The black-box quality of 
the processes performed by these techniques, as opposed to the more 
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intuitive statistical methods commonly applied, add to their interpre
tation difficulties when biasing physicians against their implementation. 

The main objective of the current paper is to illustrate how the 
identification capacities of these techniques are determined and can be 
enhanced by the way the features are ordered within the vectors 
defining the alternatives. That is, AI and ML techniques can categorize 
alternatives even if their characteristic features are presented in a way 
that prevents their immediate identification using standard statistical 
techniques. The main purpose of the analysis is highlighting the capacity 
of AI and ML techniques to preserve a consistent identification capacity 
whenever the quality of the data decreases, displaying mistakes or 
mismatches in several matrix entries, while standard statistical tech
niques would exhibit significant modifications in the value of the cor
responding coefficients. 

The data used to illustrate the categorization capacities of AI and ML 
techniques is obtained by simulating the sequential information 
retrieval processes defined by decision makers (DMs) in online search 
environments. We are all internet users and perform multiple searches 
on a daily basis. Thus, the logic on which the different algorithms 
generating these data are built, and the subsequent retrieval structures, 
should be sufficiently intuitive. A similar comment applies to the results 
obtained from the implementation of AI and ML techniques based on the 
training data produced by the different algorithms. 

The online search behavior of users generates raw data describing 
the queries made and the set of pages clicked. Research on this topic 
generally aims at extrapolating the utility functions that are consistent 
with the retrieval behavior observed (Basu, 2018; Victorelli et al., 2020; 
Sharma et al., 2021). In particular, a variety of research areas have 
focused on the preferences of DMs determining their information 
retrieval behavior (Schmitt et al., 2018; Zanganeh and Hariri, 2018; 
Utku Özmen and Yucel, 2019; Miranda and Miah, 2023). 

Nikzad–Khasmakhi et al. (2019) and Sharma et al. (2023) review the 
literature on expert recommendation systems. Bandit algorithms arise as 
one of the main techniques used to elicit the preferences of DMs from 
their linguistic reports and sequential choices (Gabrielli et al., 2024). 
When applying these models to real-life recommender applications, 
scholars focus on the constraints both pecuniary and cognitive faced by 
the actors eliciting the preferences of DMs (Zhao and Yang, 2024). 
Similarly, when eliciting information from large amounts of data, sam
pling and noise reduction techniques have been suggested (Jain and 
Jindal, 2023). 

Behavioral data are currently being used to extrapolate the main 
qualities defining the users so as to enhance the capacity of deep- 
learning models to predict the subsequent click through rates (Li 
et al., 2020; Qin et al., 2020). Recent developments concentrate also on 
the opposite relation, namely, the influence of AI on the behavior of DMs 
when retrieving information (Verma et al., 2021). All these models leave 
the complexity of the retrieval process conditioning the behavior of DMs 
aside, which is indeed the starting point of our formal analysis. 

That is, information retrieval process could also be formalized as a 
decision model where the behavior of DMs is determined by the simi
larity between their preferred characteristics and those of the alterna
tives described in the snippets (Di Caprio et al., 2022a, 2022b). Rational 
DMs have been traditionally considered as a benchmark when formal
izing information retrieval behavior (Di Caprio and Santos-Arteaga, 
2021a). However, different branches of the literature have highlighted 
the cognitive limits faced by DMs when evaluating alternatives and 
retrieving information (Joseph and Gaba, 2020). 

The algorithms generated to test the identification capacities of AI 
and ML techniques define sequential decision processes based on a 
predetermined retrieval strategy that differs across DMs according to 
their subjective preferences and information assimilation capacities. 
These algorithms are based on precise retrieval patterns that become 
increasingly harder to identify as we approach the maximum number of 
alternatives that DMs are willing to evaluate. That is, the stochastic 
structure following from the information retrieval behavior of DMs, 

which determines the set of retrieval vectors obtained, goes well beyond 
the simple generation of random numbers used to fill the entries of the 
vectors. 

The current paper assesses the ability of AI and ML techniques to 
identify the complexity of the information retrieval behavior of DMs. We 
also illustrate how this capacity can be enhanced by modifying the order 
of the features composing the retrieval vectors that describe the search 
processes. In this regard, we must note that the research analyzing the 
online information retrieval behavior of DMs does not generally account 
for the distribution of information across the entries composing the data 
vectors (Li et al., 2020). 

1.1. Contribution 

The current paper extends the benchmark model introduced by Di 
Caprio and Santos-Arteaga (2022) by modifying the incentives of DMs to 
retrieve information and increasing the set of comparisons performed 
among the retrieval vectors generated. In particular, we design algo
rithms of different complexity to generate a series of comparable 
retrieval profiles. Comparisons are performed within straightforward 
environments – allowing for easily distinguishable profiles –, and 
increasingly complex settings involving almost identical retrieval vec
tors derived from entirely different algorithms. In both papers, DMs are 
categorized according to their capacity to evaluate alternatives, which 
determines the set of retrieval paths defining the behavior observed. We 
concentrate on the ten results defining the first page of outcomes 
delivered by a search engine, which account for most of the retrieval 
activity of DMs (Dean, 2019). 

The main technical contributions of the analysis performed are 
summarized below.  

1. The algorithms are designed to generate online search profiles 
conditioned by the subjective preferences of DMs as well as their 
capacity to retrieve information.  

2. The algorithms account for all the potential evaluation decisions 
made by DMs and the subsequent information retrieval paths 
generated.  

3. The distribution of features within the retrieval vectors describing 
the behavior of DMs conditions the categorization accuracy of ML 
techniques. 

4. ML techniques outperform standard statistical methods when cate
gorizing profiles while facing misprints or errors in the inputs or 
independent variables. 

We apply a battery of AI and ML techniques to demonstrate their 
ability to distinguish the algorithms generating the profiles across a 
variety of retrieval environments. Building on these features, we 
perform a retrospective analysis where AI and ML techniques are applied 
to two empirical scenarios defined by modifying a data series of 643 
patients transplanted through the period 2006–2019. The results 
derived from the analysis of these scenarios constitute the main 
contribution of the manuscript from a medical implementation 
viewpoint. 

The first scenario contains the variables describing the evolution of 
patients inputted correctly. In the second scenario, the content of the 
vectors of characteristics defining the evolution of patients is modified 
by exchanging the values of a subset of realizations from two categorical 
variables. Modifications are applied to a total of 39 patients, 35 of which 
belong to one output category and 4 to the complementary one. Our 
main objective is to evaluate the capacity of AI and ML techniques to 
classify the patients correctly despite the modifications introduced. 

Artificial Neural Networks (ANN) as well as the different ML tech
niques implemented preserve their identification capacities within both 
scenarios. ANN categorize correctly 81.6% and 82.4% of the patients 
composing the first and second scenario, respectively. ML techniques 
display an average accuracy of 80%, with coarse trees (82.6%) and 
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linear discriminants (82.3%) exhibiting the largest percentages within 
the first and second scenario, respectively. 

The intuition behind these results follows from the fact that the ca
pacity of AI and ML techniques to identify patterns is determined by the 
behavior of the whole set of independent variables altogether. The 
whole set of features, even their relative positioning (Di Caprio and 
Santos Arteaga, 2022), allows the corresponding techniques to identify 
the inherent patterns and classify patients correctly. On the other hand, 
we also illustrate how the independence assumed on the explanatory 
variables composing a multivariable linear regression model implies 
that the coefficients are severely affected when shifting values across 
matrix columns. 

From a decision engineering perspective, the algorithms designed to 
generate the most complex – namely, complete – information retrieval 
profiles allow to incorporate modifications in the preferences of DMs 
and simulate the subsequent retrieval scenarios, providing a relevant 
benchmark for the research performed within the literature on infor
mation systems (Zhang et al., 2020; Hong et al., 2021). This quality is 
highlighted in Fig. 1, which summarizes the main differences between 
the approach followed by the literature on recommender systems and 
the current paper. The potential interactions between the algorithms 
defining the retrieval profiles of DMs and actual recommender systems 
constitute a potential research line that will be described in the 
conclusion section. 

We conclude by highlighting the complementary qualities of AI and 
ML techniques relative to standard statistical models. Implementing a 
statistical model requires defining a structured framework determined 
by the potential effects derived from a set of independent variables. We 
emphasize the fact that the results derived from these models can be 

complemented via AI and ML techniques, particularly in settings facing 
data quality problems. 

Fig. 2 presents a flowchart describing this complementarity while 
summarizing the evaluation and categorization processes analyzed. In
formation retrieval processes of different complexity are simulated, and 
the subsequent profiles paired and categorized using both ML tech
niques and standard statistical methods. A mirror sequence takes place 
on the medical side. Patient data have been retrieved to generate profiles 
whose quality has been purposely modified. Patients are then catego
rized according to their transplant performance by ML techniques and 
standard statistical methods and the results compared. 

The algorithms have been coded in MATLAB and their outputs used 
as training inputs within its neural net pattern recognition and clus
tering apps. The statistical analyses have been performed in SPSS. The 
code of the algorithms designed to generate the different information 
retrieval profiles is publicly available from Di Caprio and Santos-Arteaga 
(2021b). 

The paper proceeds as follows. Section 2 reviews the literature 
dealing with the application of AI and ML techniques to medical envi
ronments and healthcare supply chains. Section 3 introduces the 
retrieval algorithms and the sequential online evaluation frameworks on 
which they are based. Section 4 defines the medical environment 
analyzed. Section 5 compares the categorization results obtained from a 
battery of ML techniques and different standard statistical methods. 
Section 6 discusses the main consequences derived from the results 
obtained within both industrial and medical settings. Section 7 con
cludes and suggests potential extensions. 

Fig. 1. Information retrieval processes: recommender systems versus sequential search approaches.  
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2. Literature review 

As stated in the introduction, the application of AI and ML techniques 
to concrete medical problems remains a problematic issue (Kelly et al., 
2019; Matheny et al., 2019; Bajwa et al., 2021). This reticence persists 
despite the increasing applicability of AI techniques to medical envi
ronments (Waring et al., 2020; Jiang et al., 2021; Nwanosike et al., 
2022). Patients also tend to distrust the application of AI techniques into 
the medical domain (Richardson et al., 2021; Vallès-Peris et al., 2021). 
This is the case despite their wide use and recent developments, 
particularly when dealing with cancer-based research (Goyal et al., 
2020; Adeoye et al., 2021; Parimbelli et al., 2021). The subsequent 
debate has continued to gain momentum, highlighting the significant 
skepticism that remains among the users – and beneficiaries – of these 
techniques. 

The extended use of big data and the biased manipulation capacities 
exhibited by a handful of companies have raised concerns regarding the 
quality of the data analyzed. The debate has reached the public sphere in 
the form of a variety of very direct articles warning about the 

manipulation faced by AI and ML techniques through small data mod
ifications and their strong conditioning on the inherent biases that may 
exist, or be introduced, in the data (Metz and Smith, 2019; Aschwanden, 
2020; Kaushal et al., 2020; Szabo, 2020). These warnings have swiftly 
moved into the ethical domain (Vellido, 2019; Gerke et al., 2020; Ker
asidou et al., 2021; Lancet, 2021; Saheb et al., 2021), including data 
privacy considerations (Murdoch, 2021), and the epistemological one 
(Chin-Yee and Upshur, 2019). These shortcomings add to the actual 
formal challenges inherent to the application of AI and ML techniques to 
the analysis of different real-life settings, such as the frame problem (Yu 
and Kohane, 2019). 

The black box quality of these techniques is one the main reasons 
reinforcing this distrust (Kyrimi et al., 2021; Quinn et al., 2021), with 
traditional statistical tests being more intuitive and already established 
as standard operational techniques. That is, the intuition behind survival 
analysis is easier to understand for physicians than that of ANN or 
Support Vector Machines. This is due to the mathematical complexities 
of the latter techniques and the fact that the resulting categorization 
process is not straightforward – absent specific patient profiles and an 

Fig. 2. Evaluation and categorization processes: from information retrieval to medical profiles.  
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explicit description of the different factors determining model accuracy 
–, contrary to the more intuitive importance assigned to the explanatory 
variables in standard statistical regressions. 

Cabitza and Campagner (2021) highlight the fact that the wide
spread implementation of AI and ML techniques to medical environ
ments has taken place without generally acknowledging their potential 
drawbacks. These authors focus on features specific to medical datasets, 
particularly in terms of size and data types, that remain unaccounted for 
by computer scientists. More importantly, the application of ML tech
niques to a database should be motivated by a predetermined set of 
expected results following form a structured formal model. Otherwise, 
any categorization result derived from these techniques can be modified 
by randomly adding or eliminating variables while preserving a basic 
accuracy level. 

The current paper aims at bridging – part of – the existing gap by 
highlighting one of the main characteristics of AI and ML techniques that 
allows them to outperform standard statistical analyses. While 
acknowledging the existence of both biases, those generated strategi
cally and the selection bias inherent to the collection of data, AI and ML 
techniques preserve their categorization consistency even if the vectors 
of characteristics describing the evolution of patients fail to convey 
important information or display mistakes or mismatches in several 
entries. This feature constitutes an important advantage over standard 
statistical methods, especially when the data is organized incorrectly or 
sparsely. This latter problem is particularly relevant among hospitals 
located in developing countries, where the quality of the data retrieved 
is generally lower, limiting their identification and extrapolation 
capacities. 

The quality of data, especially in developing countries, remains a 
concern among physicians, given the widespread existence of missing 
values, misprints, and mismatches (World Health Organization Regional 
Office for the Western Pacific, 2003 ; Lemma et al., 2020). The literature 
on this topic is quite extensive, highlighting the importance and con
sistency of the problem (Arts et al., 2002; Pezoulas et al., 2019; Kou
mamba et al., 2021). Thus, we offer a counterpart to the analysis of Metz 
and Smith (2019), emphasizing the capacity of AI and ML techniques to 
compensate – to a certain extent – for the existence of data misprints. We 
must however note that this feature is bounded by the quality of the 
data, since a substantial increase in the number of misprints would also 
limit the capacity of these techniques to remain consistent. 

2.1. Supply chain environments 

The structural capacity of hospital has gained relevance during the 
COVID-19 outbreak, which tested the limits of their ability to manage a 
substantial increase in the inflow of patients (Kovács and Falagara 
Sigala, 2021; Leite et al., 2021). As a result, the application of AI and ML 
techniques to manage supply chain operations within healthcare envi
ronments has increased considerably (Kumar et al., 2023; Nayeri et al., 
2023a). Furthermore, the real-life decision-making processes that take 
place in hospitals – involving the safety of patients and their clinical 
evolution – have been steadily integrated within medical supply chains 
(Vanbrabant et al., 2023). 

Hospitals face continuous coordination requirements and must deal 
with potential data errors in emergency situations or when unifying 
information across different departments (Arora et al., 2020; Rasheed 
et al., 2020; Vaishya et al., 2020). Errors in patient data files are com
mon and constitute a problem consistently analyzed in the academic 
literature (Madden et al., 2018; Bratland et al., 2021; Millares Martin, 
2022). The errors are not limited to administrative misprints but 
generally include medical variables (Khajouei et al., 2018; Cohen et al., 
2019; Sungur et al., 2019). This problem is particularly relevant among 
hospitals with deficient information systems and logistic infrastructures. 

Shifting to electronic patient records has been suggested as one of the 
main solutions to tackle this problem though it remains subject to 
inputting errors and has not been implemented by hospitals worldwide, 

those in less developed countries being more vulnerable in this respect 
(Ageron et al., 2018; Priestman et al., 2018; Sipanoun et al., 2022; 
Wowak et al., 2022). Furthermore, the main techniques applied by 
physicians to analyze these data are based on standard statistical 
methods such as survival analysis and multivariate regression. 

Consequently, AI and ML techniques are being increasingly imple
mented in medical environments (Massie et al., 2020; Siga et al., 2020). 
The design of hybrid methods consisting of ML techniques and mathe
matical optimization models has been shown to help smooth the fric
tions that arise from this type of data quality constraints (Revuelta et al., 
2021). 

As can be intuitively understood, the capacity of AI and ML tech
niques to categorize patients and events correctly when dealing with 
evaluation frictions becomes extremely important within healthcare 
supply chain environments, where misclassification problems have been 
consistently reported (World Health Organization, 2003; Ndabarora 
et al., 2014; Hoxha et al., 2022). The existence of potential cumulative 
errors in the information gathered through the chain should therefore be 
incorporated into the analyses, highlighting the importance of properly 
formalizing sequential evaluation environments. 

These cumulative frictions in information retrieval settings are 
tackled here from a physician-patient perspective. In particular, the 
current paper focuses on the categorization capacities of AI and ML 
techniques when dealing with actual data from clinical reports 
describing the main pre-transplant characteristics of patients undergo
ing kidney transplantation and their post-transplant evolution. Physi
cians focus their analyses on medical problems related to the likelihood 
of a successful transplantation. They do not consider supply chains 
explicitly but try to increase the flow of waitlisted patients into surgery 
while improving the expected outcomes from the transplants (Montero 
et al., 2021). The capacity of doctors to categorize patients according to 
different potential survival or graft loss scenarios improves the flow of 
patients through the chain and enhances the efficient use of its 
resources. 

Supply chains in healthcare are conditioned by the potential re
quirements of the patients admitted into the hospital. From an infor
mation quality perspective, hospitals must be a reliable and consistent 
source of data. However, even with detailed data retrieved across a 
reasonable sample of patients, categorization problems regarding their 
potential evolution are common (Revuelta et al., 2021; Santos-Arteaga 
et al., 2021). Being able to categorize the evolution of patients would 
improve the management of resources throughout the chain, allowing to 
shift them within departments or across hospitals if needed. In this re
gard, the capacity of hospitals to collaborate is also generally con
strained by data quality problems (Higgins, 2020; O’Halloran et al., 
2020; Sauer et al., 2022). 

3. Sequential online evaluation frameworks 

We define now the different retrieval algorithms designed to 
generate the training data and the sequential online evaluation frame
works on which they are based. Consider a DM who, after performing a 
search online, must decide on which of the alternatives displayed by the 
engine to click. It has been empirically illustrated that DMs concentrate 
on the ten alternatives composing the first page of results (Dean, 2019) 
and proceed in the order provided by the engine (Lewandowski and 
Kammerer, 2020). That is, DMs trust the order in which the alternatives 
are ranked by the engine (Epstein and Robertson, 2015). They expect the 
initial alternatives to satisfy their preference requirements with a higher 
probability than those located in lower ranking positions. Thus, the 
probability of clicking on the link to an alternative decreases as DMs 
proceed through the ranking. 

DMs decide whether or not to click on each alternative after reading 
the snippets and comparing the characteristics observed, xi, i = 1,2,…,

10, with the threshold requirements defined by their subjective prefer
ences, ci, i = 1, 2,…, 10. That is, DMs read the description of the first 
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alternative and decide whether they are interested in the potential 
content or prefer to continue and read the snippet of the second alter
native. Clearly, if DMs are interested in the content, namely, if xi > ci, 
i = 1,2,…,10, they click on the corresponding link. This process con
tinues as DMs proceed through the ten alternatives, with the information 
assimilation capacities assumed on the DMs conditioning the results 

obtained. 
Fig. 3 describes a basic retrieval process composed by three inde

pendent decisions made after observing the characteristics of three al
ternatives. The DM evaluates each alternative independently and does 
not incorporate the previous results obtained into his retrieval process. 
This feature is illustrated in the entries of the vectors that follow from 
the evaluation of the alternatives. If the DM clicks on the link, the 
resulting entry of the vector corresponds to the alternative observed. On 
the other hand, if the DM does not click on the link, a zero is assigned to 
the vector entry. The independent evaluations defining the output vec
tors are reported in the order observed. Thus, the entries composing the 
resulting matrix are given by ordered vectors where each click is 
registered according to the position of the alternative within the 
ranking. This retrieval structure describes those DMs who perform a 
search consisting of a given number of independent evaluations. Note 
that the retrieval process does not generate a complete binary decision 
tree. 

Fig. 4 defines a complete retrieval framework based on the first three 
entries from a binary decision tree where a sophisticated DM acquires 
information while considering the previous realizations observed. In this 
case, each branch within the tree describes a unique path followed by 
the DM and determined by the number of evaluations performed and 
their results. In order to differentiate this retrieval process from the 
previous one, the evaluations defining the output vectors are reported in 
the initial positions, as illustrated in Fig. 4. That is, independently of the 
position where the alternative clicked is located, they are registered in 
order within the initial entries of the corresponding vector. 

Consider the case where DMs set out to find ten satisfying alterna
tives. Five queries from the first evaluation framework – applying a 
threshold of ½ for all alternatives and independent uniformly distributed 
stochastic evaluations defined within the interval [0,1] – are presented 
in the ‘basic’ group of columns within Table 1. Note how the satisfying 
alternatives clicked through the retrieval process are inputted in the 
lower section of the vector, named ‘satisfying alternatives’, according to 
their ranking positions. Zeroes have been used to denote the absence of a 
click. The ‘complete’ group of columns describes five search queries 
performed within the second, more complex, retrieval framework. Note 
how the alternatives clicked by the DMs are grouped in the initial po
sitions within the lower section of the retrieval vectors. In all cases, the 
upper section of the vectors, named ‘initial evaluation’, describes the 

Fig. 3. Basic retrieval process composed by three alternatives.  

Fig. 4. Initial section of the complete retrieval process accounting for three alternatives.  
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value of the stochastic realizations that define numerically the evalua
tions performed by DMs. 

The complexity of the algorithms formalizing the corresponding 
retrieval strategies differs substantially between both scenarios, as can 
be observed in Di Caprio et al. (2021, 2022a). In a nutshell, the basic 
framework consists of 10 binary decision nodes while the complete one 
is composed of 1023. However, a more relevant difference refers to the 
assimilation capacities of the DMs generating the data. For instance, in 
the first case, DMs cannot set out to find three satisfying alternatives 
within the first ten provided by a search engine. The basic retrieval 
structure does not incorporate this type of strategy. DMs can only 
evaluate the first three alternatives, or any three alternatives selected 
before starting the retrieval process. The second group of DMs may aim 
to find three satisfying alternatives out of a total of ten, since the 
retrieval process accounts for every potential evaluation that may be 

performed and the subsequent clicking behavior. 
Fig. 5 provides additional intuition by describing the retrieval 

behavior derived from 2000 queries per framework when DMs set out to 
find ten alternatives satisfying their subjective preferences. The figure 
pairs the value of the observations with the alternatives clicked per 
search query when a threshold of ½ is considered per alternative. As a 
result, the basic framework assigns a value of zero only to those obser
vations lower than ½. 

In contrast, the complete framework cannot assign a value lower 
than ½ to the alternative ranked first. Note that DMs click on the first 
alternative whenever the initial evaluation is higher than ½. On the 
other hand, if DMs do not click on the first alternative, the first entry of 
the lower section of the retrieval vector must be different from one. The 
same reasoning applies to the remaining alternatives, highlighting the 
differences between both frameworks and illustrating how the order in 

Table 1 
Search queries and clicking behavior across retrieval frameworks: The case with ten alternatives.   

BASIC COMPLETE 

DM1 DM2 DM3 DM4 DM5 DM1 DM2 DM3 DM4 DM5 

Initial evaluation 0.6396 0.8457 0.4148 0.8966 0.4517 0.2947 0.4167 0.2581 0.1533 0.4730 
0.4950 0.5015 0.0945 0.8422 0.1421 0.5141 0.9439 0.4470 0.0912 0.7584 
0.9957 0.7959 0.3336 0.1360 0.7646 0.2829 0.7759 0.6406 0.8900 0.2449 
0.8853 0.1604 0.0950 0.4473 0.7478 0.2272 0.8004 0.7662 0.9290 0.3246 
0.1712 0.6523 0.0610 0.3415 0.8326 0.9431 0.1682 0.9906 0.9385 0.3925 
0.0782 0.0693 0.8874 0.9963 0.7353 0.2317 0.9422 0.6045 0.5685 0.7303 
0.6337 0.6512 0.0071 0.9843 0.1990 0.3726 0.8289 0.4000 0.8437 0.5714 
0.2241 0.5137 0.6217 0.4216 0.7227 0.5881 0.3487 0.7092 0.6195 0.9252 
0.9203 0.3310 0.5074 0.8581 0.5637 0.8932 0.8552 0.1219 0.3372 0.0100 
0.5574 0.4442 0.6187 0.9368 0.3811 0.5996 0.8991 0.9842 0.8463 0.4604 

Satisfying alternatives 1 1 0 1 0 2 2 3 3 2 
0 2 0 2 0 5 3 4 4 6 
3 3 0 0 3 8 4 5 5 7 
4 0 0 0 4 9 6 6 6 8 
0 5 0 0 5 10 7 8 7 0 
0 0 6 6 6 0 9 10 8 0 
7 7 0 7 0 0 10 0 10 0 
0 8 8 0 8 0 0 0 0 0 
9 0 9 9 9 0 0 0 0 0 
10 0 10 10 0 0 0 0 0 0  

Fig. 5. Retrieval behavior derived from the basic and complete frameworks when accounting for ten alternatives.  
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which the data is inputted conditions the ability of the models to cate
gorize retrieval scenarios. Clearly, threshold values close to an accep
tance of 100% would generate almost identical retrieval processes, 
preventing AI and ML techniques from distinguishing between 
frameworks. 

The consequences from inputting the clicks according to the ranking 
position of the alternative within the complete retrieval framework can 
be foreseen using Fig. 5. Note that, if this were the case, both frame
works would be indistinguishable when considering ten alternatives. On 
the other hand, they should be easier to differentiate as the number of 
alternatives defining the retrieval process decreases. The limits faced by 
standard statistical methods would however prevail, as well as the 
intuition following from the corresponding results. 

3.1. Numerical results 

We illustrate the capacity of AI and ML techniques to differentiate 
between both retrieval frameworks. Tables 2–4 describe the accuracy of 
the set of techniques applied to categorize profiles from the basic and 
complete frameworks based on.  

• the lower section of the retrieval vectors, defining the ‘simple’ entries 
within the ‘features’ column, or the whole retrieval vector, defining 
the ‘enhanced’ entries within the ‘features’ column;  

• the inputting of the clicks within the lower section of the retrieval 
vectors, defining the ‘grouped’ and ‘ordered’ categories within the 
‘evaluation processes’ column – the former reports the clicks in the 
order observed while the latter groups them in the initial positions –; 

• a variety of threshold values ranging from weaker retrieval re
strictions, corresponding to a threshold of 0.2, to increasingly stricter 
restrictions of 0.5 and 0.8. 

All tables present the results obtained when DMs set out to observe 
two, six and ten satisfying alternatives. We must note that a slight 
improvement in the categorization accuracy of the different techniques 
may be attained by adding the upper section of the retrieval vectors as 
part of the training inputs, namely, by shifting from ‘simple’ to 
‘enhanced’ features. Nevertheless, the identification capacity of these 
techniques is mainly determined by the way the clicks are inputted in 
the lower section of the vector and the number of satisfying alternatives 
defining the retrieval process. We will therefore focus on the results 
obtained when comparing accuracies within the ‘simple’ feature cate
gory. The following analysis is based on the results obtained by the most 
accurate techniques within each scenario, whose entries have been 
shaded in the corresponding tables. 

Consider the evaluation framework with two alternatives. The 
identification capacity of ML techniques increases as the retrieval 
threshold imposed by DMs shifts from 0.2 to 0.8. The intuition behind 
this result is clear. Within the 0.2 threshold scenario, most of the al
ternatives evaluated correspond to the first two composing the ranking, 
leaving a small margin for the DM to proceed further. That is, the 
probability of proceeding to the third alternative and beyond is lower 
compared to the other two scenarios, where the capacity of ML tech
niques to differentiate between DMs increases for all evaluation pro
cesses. Note that, in all scenarios, we will have a maximum of two 
numerical values different from zero within the corresponding retrieval 
vectors. 

Table 2 
Accuracy scores obtained from different ML techniques: 0.2 threshold scenario. 
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With six alternatives, the highest accuracy is obtained in the 0.5 
scenario. Except for the simultaneously grouped and ordered evalua
tions within the 0.8 scenario, the performance is clearly superior to that 
of the framework with two alternatives. The capacity of ML techniques 
to distinguish between retrieval processes is substantial in all scenarios. 
When considering the 0.2 case, both basic and sophisticated DMs will 
tend to fill the first six entries of the retrieval vector, decreasing the 
capacity of ML techniques to distinguish between processes. The same 
problem is exacerbated when considering the 0.8 scenario, with so
phisticated DMs tending to proceed through the whole set of alternatives 
but evaluating relatively few of them among the last four. As a result, the 
0.5 scenario allows for the most accurate distinction between retrieval 
processes. 

The performance of ML techniques is similar across scenarios when 
considering ten alternatives. Retrieval processes cannot generally be 
distinguished since DMs will proceed through the ten alternatives in all 
scenarios. Indeed, identical evaluation processes result in a random 
categorization strategy leading to 50% accuracy. The main result 
derived from these simulations is the capacity of ML techniques to 
categorize DMs through the distribution of outcomes within the retrieval 
vectors. That is, the structure of the vector provides sufficient infor
mation to correctly identify the type of retrieval process. 

Fig. 6 summarizes the main results obtained and allows for a direct 
comparison of the threshold evaluation scenarios categorized according 
to the number of alternatives considered. The intuition described above 
is validated together with the enhanced capacity of ML techniques to 
categorize both types of DMs correctly when their characteristics are 
inputted following different patterns within the retrieval vector. 

All in all, the results obtained illustrate how ML techniques do not 

only consider the values defining the alternatives but also the structure 
of their distribution through the retrieval vectors when categorizing the 
corresponding processes. Thus, these techniques may allow for varia
tions –or misprints – in some vector entrances relative to a reference 
structure while preserving their capacity to categorize processes 
correctly. 

4. Medical implementation 

The current section defines the medical environment analyzed, 
which focuses on kidney transplant patients and the information 
retrieved by physicians describing their evolution through the process. A 
team of nephrologists from the Hospital Clinic of Barcelona, Spain, has 
selected the main variables determining the evolution of 643 kidney 
transplant patients from living donors through the 2006–2019 period. 
The mean age of the patients composing the study equals 48,1 (±13,6) 
years, displaying a survival rate of 93,5%, and a death-censored graft 
survival of 88.6%, with a mean follow up period of 71,6 (±44,7) months. 
The variables selected, which extend through the three stages 
composing the transplantation process, are described below. The set of 
inputs is given by the variables defined before and during the transplant 
while its outcomes constitute the output set. The process incorporates 
both quantitative and categorical variables. Note that the binary cate
gorical variables (0/1) assign the absence of an event to category zero 
while its occurrence is categorized as one. The ethics committee of the 
hospital has approved the corresponding study.  

• Input variables  
o Pre-transplant 

Table 3 
Accuracy scores obtained from different ML techniques: 0.5 threshold scenario. 
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a) Age at transplant (RexAge). Potential risks derived from the 
transplant are higher among older patients. 

b) Compatibility type (TypeComp). Describes the type of immu
nological incompatibilities existing before the transplant. The 
categorization of patients is based on their immunological risk: 

0 = compatible; 
1 = DS (desensitization protocol); 
2 = Exchange (cross match program applied to immunologi
cally incompatible patients); 
3 = Exchange + DS.  

c) Type of desensitization protocol (0, 1, 2, …,5) (TypeDS). 
Categorical variable describing the desensitization protocol 
applied after being triggered by a positive cross match value. 

d) Number of previous transplants (PreviousTx). The immuno
logical risk of patients increases with the number of transplants.  

e) ABOiPCMKPD (ABOi). Defines the type of transplant based on its 
compatibility and consists of the following categories 

0 = compatible; 
1 = ABOi: different blood type; 
2 = PCM: transplanted with immunological incompatibility; 
3 = KPD: cross transplant.  

f) CKD (0, 1, 2, …,7). Categorical variable describing the main 
causes leading to kidney failure.  

o Transplant  
a) Induction. Describes treatment with any of the following drugs 

during the transplant 
0 = no treatment; 
1 = basiliximab; 
2 = thymo/ATGt; 

5 = alefacept.  
b) CNI (0/1) and mTORi (0/1). Drugs administered both during the 

transplant and for life.  
• Output variables  

o Post-transplant  
a) Death-censored Graft Loss (0/1). Graft loss, excluding losses 

caused by the death of the patient.  
b) Death (0/1). 

A composite binary variable is defined consisting of Death- 
censored Graft Loss plus Death, categorized in the following 
classes 

Class 1: patients either dying or losing the graft; 
Class 2: patients neither dying nor losing the graft.  

• Modifications implemented to the observations retrieved 
Standard scenario: considers the variables as correctly inputted by 
the physicians.  

TypeDS TypeComp 

0 2   

were reversed as follows.  
TypeDS TypeComp 

2 0   

Four out of these 39 patients belong to the first output class, while 
the other 35 belong to the second. The order of the features was 
preserved for any other values of TypeDS and TypeComp. 

Table 4 
Accuracy scores obtained from different ML techniques: 0.8 threshold scenario. 

F.J. Santos Arteaga et al.                                                                                                                                                                                                                     



Engineering Applications of Artificial Intelligence 133 (2024) 108610

11

Fig. 6. Comparison across threshold evaluation scenarios per number of satisfying alternatives.  
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Table 5 describes the entries composing the ANN confusion matrices 
presented in Tables 6 and 7. These latter tables summarize the identi
fication capacities of the ANN within the standard and reversed sce
narios, respectively. Note that the ANN displays the same accuracy 
across scenarios, as well as the same difficulties when categorizing 
correctly the patients belonging to the first class. Revuelta et al. (2021) 
highlighted this problem and proposed a hybrid Data Envelopment 
Analysis-ANN model to enhance the identification capacity of the neural 
network. 

The same intuition follows from the analysis provided in Table 8, 
where a battery of ML techniques has been applied to both scenarios. 
Tables 9 and 10 present the confusion matrices corresponding to the 
most accurate ML techniques within the scenarios studied in Table 8. We 
observe similar clustering capacities exhibited by these techniques 

across scenarios and the same type of difficulties when identifying pa
tients who belong to the first class. 

We conclude by noting that several variables considered important 
by the physicians and available for a subset of patients have not been 
included in the analysis due to the considerable decrease in the sample 
size that they would impose. Moreover, the main results described 
remain unaffected by their inclusion. Thus, we have omitted the 
following variables from the pre-transplant stage: number of days in 
dialysis, diabetic, hypertense, and smoker patients, and reduction of 
immunological risk via RTX. The transplant stage does not consider the 
age of the donor, while the number of rejection and tumor development 
episodes have not been included in the post-transplant stage. 

5. Confronting ML techniques and statistical analyses 

We illustrate now how the identification capacities of standard sta
tistical techniques such as a t-test may fail to differentiate between 
retrieval frameworks. To do so, we analyze the relationship between the 
sections of the retrieval vectors describing the alternatives clicked by the 
DMs. That is, we merge these sections into column vectors summarizing 
the alternatives clicked per framework and compute the differences in 
means through a paired-sample t-test statistic of the subsequent series. 

More precisely, the vectors describing the retrieval frameworks 
consist of 20,000 rows, resulting from the 10 potential clicks derived 
from each search query and the 2000 queries simulated per framework. 
The null hypothesis assumes that the pairwise difference between two 
frameworks follows a normal distribution with zero mean and unknown 
variance. The statistic rejects the null hypothesis with a 5% significance 
whenever h = 1 within Table 11, which summarizes the main results 
obtained. 

This table highlights the difficulties faced by the t-test statistics to tell 
apart both retrieval processes when considering ten alternatives. The 
statistic correctly identifies the vectors as being generated by different 

Table 5 
Description of the entries composing the ANN confusion matrix.   

Target Class  

1 2 

Output 
Class 

1 True positive False positive Precision 
False Discovery Rate 

2 False negative True negative Negative Predictive Value 
False Omission Rate  

Sensitivity Specificity Percent of correctly 
classified cases 

False Negative 
Rate 

False Positive 
Rate 

Percent of misclassified 
cases  

Table 6 
ANN confusion matrix of the standard scenario.   

Target Class  

1 2 

Output Class 1 10 13 43.5% 
1.6% 2.0% 56.5% 

2 105 515 83.1% 
16.3% 80.1% 16.9%  
8.7% 97.5% 81.6% 
91.3% 2.5% 18.4%  

Table 7 
ANN confusion matrix of the reversed scenario.   

Target Class  

1 2 

Output Class 1 2 0 100.0% 
0.3% 0.0% 0.0% 

2 113 528 82.4% 
17.6% 82.1% 17.6%  
1.7% 100.0% 82.4% 
98.3% 0.0% 17.6%  

Table 8 
Accuracy scores obtained from different ML techniques across evaluation scenarios: Medical implementation. 

Table 9 
Description of the entries composing the ML confusion matrix.   

Predicted Class 

1 2 

True Class 1 True positive False negative 
2 False positive True negative  

Table 10 
Confusion matrices of the most accurante ML techniques across evaluation 
scenarios.  

Standard Reversed 

Coarse Tree Linear Discriminant 
7 108 7 108 
4 524 6 522  
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retrieval frameworks when accounting for two and six alternatives. The 
variability exhibited within the entries of the vectors suffices to differ
entiate both frameworks. This is not the case when ten alternatives are 
considered. That is, the statistic identifies the differences between 
frameworks when dealing with dissimilar retrieval settings but faces 
considerable problems as the similarity of the processes increases. 

On the other hand, ML techniques differentiate between both 
frameworks also when considering ten alternatives. Intuitively, these 
techniques account for the whole set of vector entries when categorizing 
the frameworks, while standard statistical models rely on the way in
dividual realizations are inputted when defining the independent 
variables. 

5.1. Medical implementation 

In order to illustrate the identification results within a medical 
environment, we run two different types of regression analyses in SPSS. 
We do not focus on the general performance of the respective models, 
whose R square values are quite low, but on the modifications induced 
when reversing the independent input variables. That is, the main pur
pose of the analysis is highlighting the capacity of ML techniques to 
preserve a consistent categorization capacity, while standard statistical 

models display more significant modifications. 
Consider the classification Tables 12 and 13, describing the perfor

mance of logistic regression within the standard and reversed scenarios, 
respectively. Note how the accuracy of this technique remains un
changed between scenarios. This feature was illustrated in Table 8, 
when applying logistic regression to the medical variables as one of the 
supervised ML techniques. MATLAB and SPSS deliver almost identical 
accuracies, though the latter allows for a more statistically detailed 
approach to demonstrate the functioning of this technique. The intuition 
behind this result follows from the analysis performed in Section 3, 
where the capacity of AI and ML techniques to identify patterns is 
determined by the behavior of the whole set of independent variables 
altogether. That is, the complete set of features, even their relative 
positioning, allow the corresponding techniques to identify the inherent 
patterns and classify the alternatives correctly. 

This intuition is corroborated when considering the values shaded 
within the equation variables presented in Tables 14 and 15, particularly 
those composing the reversed scenario. As expected, the values dis
played by the explanatory variables are slightly modified, though the 
general influence of TypeDS and TypeComp remains unchanged in both 
settings. That is, both these variables lack any significance on the cor
responding output, with the differences in categories between them 

Table 11 
Statistical identification of the relationship between retrieval frameworks. 

Table 12 
Logistic regression: Standard scenario: Summary.  

Model Summary 

Step − 2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 552.491a 0.077 0.126  

Classification Tableb  

Observed Predicted 

Output Percentage Correct 

0 1 

Step 1 Output 0 521 7 98.7 
1 109 6 5.2 

Overall Percentage   82.0  

a Estimation terminated at iteration number 20 because maximum iterations 
has been reached. Final solution cannot be found. 

b The cut value is .500. 

Table 13 
Logistic regression: Reversed scenario: Summary.  

Model Summary 

Step − 2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 552.491a 0.077 0.126  

Classification Tableb  

Observed Predicted 

Output Percentage Correct 

0 1 

Step 1 Output 0 521 7 98.7 
1 109 6 5.2 

Overall Percentage   82.0  

a Estimation terminated at iteration number 20 because maximum iterations 
has been reached. Final solution cannot be found. 

b The cut value is .500. 
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arising from the shift in the values across matrix columns. Logistic 
regression incorporates the corresponding modifications per category 
into the analysis, though their general significance as well as that of the 
other variables remains unchanged. 

The effects are substantially stronger when considering multivari
able linear regression models, a statistical method commonly applied by 
researchers across medical disciplines (Bevan et al., 2022; Poku et al., 
2022; Varady et al., 2023). In this case, the independence assumed on 
the explanatory variables implies that the coefficients would be severely 
affected when shifting values across columns. We can observe this 
feature when comparing the rows shaded within Tables 16 and 17, 
describing both the main variables directly affected and ABOi. Leaving 
data collinearity aside, we must highlight the larger Beta coefficient 
displayed by TypeDS and the negative significance exhibited by ABOi 
within the reversed scenario. These biases are both evident and relevant, 
particularly when noting that ABOi is not significant in any of the pre
vious scenarios analyzed. 

6. Discussion 

We discuss in detail the main consequences derived from the results 
obtained within both medical and industrial settings. As is generally the 
case with every new technology, there is a set of potential pros and cons 
arising from its implementation, which are exacerbated when interact
ing within the medical domain (Aung et al., 2021). One of the main 
problems that must be tackled is the fact that even the medical com
munity remains highly suspicious of the implementation of AI and ML 
techniques. Despite the reticence of physicians, these techniques remain 
a consistent reference tool in medical supply chain and evaluation 

environments. For instance, ML techniques are being currently applied 
to estimate the importance of different factors on the evolution of kidney 
transplant patients (Massie et al., 2020; Siga et al., 2020). However, 
there seems to remain a sense of distrust regarding the quality of these 
techniques and their manipulability, which makes them much less 
popular than standard statistical methods such as survival analysis or 
multivariable regression models. 

Healthcare supply chains display a high degree of heterogeneity 
since they must deal with the stochastic inflow of patients and their 
potential medical conditions and evolution together with logistic and 
supplier restrictions common to industrial supply chains. Both types of 
frameworks must be simultaneously considered and analyzed. The data 
retrieved is also quite heterogeneous, ranging from clinical records of 
patients to standard supplier operations, which are largely conditioned 
by the state of the patients, their expected evolution, and the subsequent 
effect on the length of the waiting lists. These variables impose specific 
requirements regarding medical supplies at several points throughout 
the chain. Thus, when evaluating the different elements composing 
healthcare supply chains, the sources of information vary and are sub
ject to errors, which would condition the outcomes derived from stan
dard statistical methods. 

The current paper has illustrated through a series of numerical 
simulations – based on the online information retrieval behavior of DMs 
– how AI and ML techniques can consistently differentiate qualities of 
sequential evaluation processes that remain unidentified by standard 
statistical methods. These results highlight the capacity of ML tech
niques to consider the whole structure of the retrieval vector – beyond 
specific values – when categorizing the search queries made by DMs. 
Note that we have extrapolated the intuition derived from a structured 

Table 14 
Logistic regression: Standard scenario: Variable analysis. 
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Table 15 
Logistic regression: Reversed scenario: Variable analysis. 

Table 16 
Multivariable regression: Standard scenario. 
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framework where the distribution of zeros and numerical values allow 
ML techniques to categorize retrieval processes correctly. 

In this regard, modifying the value of a subset of vector entries does 
not affect the categorization accuracy of ML techniques. The resulting 
intuition has been validated using actual data retrieved from a cohort of 
patients undergoing kidney transplantation. That is, AI and ML tech
niques display a more consistent behavior than standard statistical 
methods in the presence of data misprints and errors. The results derived 
from these analyses condition the flow of patients through the medical 
chain – including those waitlisted –, and the subsequent requirements 
imposed on its operational components. 

The analysis of the interactions taking place among the different 
components of the chain can be undertaken from a statistical viewpoint 
using a variety of techniques (Chin et al., 2020; Benzidia et al., 2021). 
Among these, structural equations constitute one of the main statistical 
methods applied to analyze the behavior of supply chains (Mardani 
et al., 2020; Belhadi et al., 2021). These approaches complement those 
based on standard optimization models, which have made extensive use 
of AI and ML techniques in healthcare-related environments (Abualigah 
et al., 2023; Nayeri et al., 2023b). The complementary interactions 
across research areas suggested also in the current paper should be 
particularly relevant in analytical settings with low-quality data or when 
integrating the databases of different hospitals or information from a 
variety of sources within the chain. 

7. Conclusion 

AI and ML techniques consider each observation as a set of predictor 
values ordered within a vector together with the class to which the 
observation belongs. We have illustrated the capacity of ANN and ML 
techniques to overcome the identification problems that result from the 
incorrect inputting of a subset of features. This quality constitutes an 
important advantage over standard statistical methods, particularly 
when the data is organized incorrectly or sparsely. 

The structural framework conditioning the values derived from the 
simulations performed builds on a series of predetermined retrieval 
patterns coupled with a set of initial random realizations. The stochastic 
structure defining the retrieval vectors goes well beyond the simple 

generation of random numbers used to fill the entries of the vectors. This 
feature allows us to generate and evaluate a variety of retrieval profiles 
determined by the subjective preferences and sophistication of DMs. The 
analysis of the retrieval patterns generated when modifying the char
acteristics of DMs would link the current setting to the scenarios 
considered by the literature on recommender systems. 

While industrial supply chain applications of the current framework 
may be defined, the human factor responsible for the inputting of data in 
hospitals together with the circulation of patient records across different 
sections constitute an environment prone to the emergence of misprints. 
That is, the interactions taking place with different components of the 
medical chain imply dealing with sources of information of varying 
quality, which would condition the subsequent results obtained. This 
latter problem is particularly relevant in developing countries, where 
the quality of the data gathered is generally lower, limiting the capacity 
of hospitals to exploit the results derived from its analysis. 

The current results should not be interpreted as a superiority display 
of ML techniques relative to standard statistical analyses. Indeed, the 
former techniques make extensive use of standard statistical methods to 
improve their classification processes. The results should however invite 
physicians and scholars to implement and compare both types of tech
niques, especially in situations where data quality could be compro
mised. This said, it should be clear that a substantial decrease in data 
quality would also lead to misidentification problems within ML envi
ronments, limiting their accuracy and potential implementation. 
Nevertheless, when considering relatively small frictions, AI and ML 
techniques can be used as a validation tool to complement the main 
results displayed by standard statistical models, particularly in catego
rization settings aimed at performing basic extrapolations. 
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Gabrielli, M., Antonelli, M., Trovò, F., 2024. Adapting bandit algorithms for settings with 
sequentially available arms. Eng. Appl. Artif. Intell. 131, 107815 https://doi.org/ 
10.1016/j.engappai.2023.107815. 

Gerke, S., Minssen, T., Cohen, G., 2020. Ethical and legal challenges of artificial 
intelligence-driven healthcare. Artificial Intelligence in Healthcare 295–336. 
https://doi.org/10.1016/B978-0-12-818438-7.00012-5. 

Goyal, M., Knackstedt, T., Yan, S., Hassanpour, S., 2020. Artificial intelligence-based 
image classification methods for diagnosis of skin cancer: challenges and 
opportunities. Comput. Biol. Med. 127, 104065 https://doi.org/10.1016/j. 
compbiomed.2020.104065. 

Higgins, T.L., 2020. Not all databases are created equal. Crit. Care Med. 48 (12), 
1891–1893. https://doi.org/10.1097/CCM.0000000000004636. 

Hong, W., Xiong, Z., You, J., Wu, X., Xia, M.C.P.I.N., 2021. Comprehensive present- 
interest network for CTR prediction. Expert Syst. Appl. 168, 114469 https://doi.org/ 
10.1016/j.eswa.2020.114469. 

Hoxha, K., Hung, Y.W., Irwin, B.R., Grepin, K.A., 2022. Understanding the challenges 
associated with the use of data from routine health information systems in low-and 
middle-income countries: a systematic review. Health Inf. Manag. J. 51 (3), 
135–148. https://doi.org/10.1177/1833358320928729. 

Jain, K., Jindal, R., 2023. Sampling and noise filtering methods for recommender 
systems: a literature review. Eng. Appl. Artif. Intell. 122, 106129 https://doi.org/ 
10.1016/j.engappai.2023.106129. 

Jiang, L., Wu, Z., Xu, X., et al., 2021. Opportunities and challenges of artificial 
intelligence in the medical field: current application, emerging problems, and 
problem-solving strategies. J. Int. Med. Res. https://doi.org/10.1177/ 
03000605211000157. 

Joseph, J., Gaba, V., 2020. Organizational structure, information processing, and 
decision-making: a retrospective and road map for research. Acad. Manag. Ann. 14 
(1), 267–302. https://doi.org/10.5465/annals.2017.0103. 

Kaushal, A., Altman, R., Langlotz, C., 2020. Health care AI systems are biased. Scientific 
American November 17. https://www.scientificamerican.com/article/health-care- 
ai-systems-are-biased/. 

Kelly, C.J., Karthikesalingam, A., Suleyman, M., et al., 2019. Key challenges for 
delivering clinical impact with artificial intelligence. BMC Med. 17, 195. https://doi. 
org/10.1186/s12916-019-1426-2. 

Kerasidou, C., Kerasidou, A., Buscher, M., et al., 2021. Before and beyond trust: reliance 
in medical AI. J. Med. Ethics. https://doi.org/10.1136/medethics-2020-107095. 

Khajouei, R., Abbasi, R., Mirzaee, M., 2018. Errors and causes of communication failures 
from hospital information systems to electronic health record: a record-review study. 
Int. J. Med. Inf. 119, 47–53. https://doi.org/10.1016/j.ijmedinf.2018.09.004. 

Koumamba, A.P., Bisvigou, U.J., Ngoungou, E.B., et al., 2021. Health information 
systems in developing countries: case of African countries. BMC Med. Inf. Decis. 
Making 21, 232. https://doi.org/10.1186/s12911-021-01597-5. 
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