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Abstract
Modern SAT solvers are designed to handle problems expressed in Conjunctive Normal Form (CNF)
so that non-CNF problems must be CNF-ized upfront, typically by using variants of either Tseitin or
Plaisted and Greenbaum transformations. When passing from solving to enumeration, however, the
capability of producing partial satisfying assignments that are as small as possible becomes crucial,
which raises the question of whether such CNF encodings are also effective for enumeration.

In this paper, we investigate both theoretically and empirically the effectiveness of CNF conver-
sions for disjoint SAT enumeration. On the negative side, we show that: (i) Tseitin transformation
prevents the solver from producing short partial assignments, thus seriously affecting the effectiveness
of enumeration; (ii) Plaisted and Greenbaum transformation overcomes this problem only in part.
On the positive side, we show that combining Plaisted and Greenbaum transformation with NNF
preprocessing upfront – which is typically not used in solving – can fully overcome the problem and
can drastically reduce both the number of partial assignments and the execution time.
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1 Introduction

State-of-the-art SAT and SMT solvers deal very efficiently with formulas expressed in
Conjunctive Normal Form (CNF). In real-world scenarios, however, it is common for problems
to be expressed as non-CNF formulas. Hence, these problems must be converted into CNF
before being processed by the solver. This conversion is generally done by using variants
of the Tseitin [21] or the Plaisted and Greenbaum [17] transformations, which generate a
linear-size equisatisfiable CNF formula by labelling sub-formulas with fresh Boolean atoms.
These transformations can be employed also for SAT and SMT enumeration (also referred to
in the literature as AllSAT and AllSMT), by projecting the models on the original atoms
only.

When passing from SAT to AllSAT, however, the capability of enumerating partial
satisfying assignments that are as small as possible is crucial, because each prevents from
enumerating a number of total assignments that is exponential w.r.t. the number of unassigned
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15:2 On CNF Conversion for Disjoint SAT Enumeration

atoms. This raises the question of whether CNF encodings conceived for solving are also
effective for enumeration. To the best of our knowledge, however, no research has yet been
published to analyse how the different CNF encodings may affect the effectiveness of the
solvers for AllSAT and AllSMT.

In this paper, we investigate, both theoretically and empirically, the effectiveness of CNF
conversion for enumeration. We focus on AllSAT, restricting to disjoint enumeration. We
expect analogous results for AllSMT. The contribution of this paper is twofold. First, on the
negative side, we show that the commonly employed CNF transformations for SAT are not
suitable for AllSAT. In particular, we notice that the Tseitin encoding introduces top-level
label definitions for sub-formulas with double implications, which need to be satisfied as well
and thus prevent the solver from producing short partial assignments. We also notice that
the Plaisted and Greenbaum transformation solves this problem only in part by labelling
sub-formulas only with single implications if they occur with single polarity, but it has
similar issues to the Tseitin transformation when sub-formulas occur with both polarities.
Second, on the positive side, we show that converting the formula into Negation Normal Form
(NNF) before applying the Plaisted and Greenbaum transformation can fix the problem and
drastically improve the effectiveness of the enumeration process by up to orders of magnitude.

This analysis is confirmed by an experimental evaluation of non-CNF problems originating
from both synthetic and real-world-inspired applications. The results confirm the theoretical
analysis, showing that the combination of NNF with the Plaisted and Greenbaum CNF
allows for a significant reduction in both the number of partial assignments and the execution
time.

Related Work

The impact of using different CNF encodings on the performance for SAT and SMT solving
has been widely studied in the literature [3, 10, 2, 11].

Beyond the basic task of SAT and SMT solving, several applications in probabilistic
reasoning require quantifying the number of solutions of a SAT or SMT formula. Whereas
for some applications it is sufficient to count the number of satisfying assignments, others
require to enumerate all of them. In particular, SAT and SMT disjoint enumeration play
a foundational role in probabilistic reasoning frameworks such as #SMT [5] and Weighted
Model Integration [14, 15, 19]. Specifically, in the case of #SMT(LRA) we need to sum up
the volumes corresponding to each of the models, whereas in WMI we need to integrate some
function w over the polytopes defined by each of the models. Hence, in these cases, it is
essential to enumerate disjoint partial models that are as small and as few as possible.

The problem of model minimization for Tseitin-encoded problems was addressed by [9].
They first propose to simplify the formula by considering its original structure and the current
model; then they use iterative calls to a SAT solver to obtain a minimal model by imposing
increasingly tighter cardinality constraints. This approach can be used to find a single short
model, but it can be very expensive and thus it is unsuitable for model enumeration.

Content

The paper is organized as follows. In §2 we introduce the theoretical background necessary to
understand the rest of the paper. In §3 we analyse the problem of the classical CNF-izations
when used for AllSAT. In §4 we propose one possible solution, whose effectiveness is evaluated
on both synthetic and real-world inspired benchmarks in §5. We conclude the paper in §6,
drawing some final remarks and indicating possible future work.
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2 Background

This section introduces the notation and the theoretical background necessary to understand
what is presented in this paper. We recall the standard syntax, semantics, and results
of propositional logic, and the fundamental ideas behind SAT enumeration and projected
enumeration implemented by modern AllSAT solvers.

2.1 Propositional Logic
In this section, we summarize some basic definitions and results of propositional logic.

Notation and Terminology

In the paper, we adopt the following conventions. We refer to propositional atoms with
capital letters, such as A and B. Propositional formulas are referred to with Greek letters
such as φ,ψ. Total truth assignments are denoted by η, while partial truth assignments are
denoted by µ. The symbols A def= {A1, . . . , AN} and B def= {B1, . . . , BK} denote disjoint sets
of propositional atoms. We denote Boolean constants by B def= {⊤,⊥}.

A propositional formula φ can be defined recursively as follows. The Boolean constants
⊤ and ⊥ are formulas; a Boolean atom A and its negation ¬A are formulas, also referred to
as literals; a connection of two formulas φ and ψ by one of the connectors ∧,∨,→,↔ is a
formula. A sub-formula occurs with positive [resp. negative] polarity (also positively [resp.
negatively]) if it occurs under an even [resp. odd] number of nested negations. Specifically,
φ occurs positively in φ; if ¬φ1 occurs positively [resp. negatively] in φ, then φ1 occurs
negatively [resp. positively] in φ; if φ1 ∧ φ2 or φ1 ∨ φ2 occur positively [resp. negatively]
in φ, then φ1 and φ2 occur positively [resp. negatively] in φ; if φ1 → φ2 occurs positively
[resp. negatively] in φ, then φ1 occurs negatively [resp. positively] and φ2 occurs positively
[resp. negatively] in φ; if φ1 ↔ φ2 occurs in φ, then φ1 and φ2 occur both positively and
negatively in φ.

Negation Normal Form

A Boolean formula is in Negation Normal Form (NNF) iff it is given only by the recursive
applications of ∧ and ∨ to literals. A formula can be converted into NNF by recursively
rewriting implications (α→ β) as (¬α∨ β) and equivalences (α↔ β) as (¬α∨ β)∧ (α∨¬β),
and then by recursively “pushing down” the negations: ¬(α ∨ β) as (¬α ∧ ¬β), ¬(α ∧ β)
as (¬α ∨ ¬β) and ¬¬α as α. If the NNF formula is represented as a DAG, then its size is
linear w.r.t. the original one. (Although this fact is well-known, we provide a formal proof
in the extended version of this paper [13].) Intuitively, we only need at most 2 nodes for
each sub-formula φi of φ, representing NNF(φi) and NNF(¬φi) for positive and negative
occurrences of φi respectively. These nodes are shared among up to exponentially-many
branches generated by expanding the nested iffs.

CNF Transformations

A Boolean formula is in Conjunctive Normal Form (CNF) iff it is a conjunction (∧) of clauses,
where a clause is a disjunction (∨) of literals. Numerous CNF transformation procedures,
commonly referred to as CNF-izations, have been proposed in the literature. In the next
paragraph, we summarize the three most frequently employed techniques.

SAT 2023



15:4 On CNF Conversion for Disjoint SAT Enumeration

The Classic CNF-ization (CNFDM) converts any propositional formula into a logically
equivalent formula in CNF by applying DeMorgan’s rules. First, it converts the formula into
NNF. Second, it recursively rewrites sub-formulas α∨ (β∧γ) as (α∨β)∧ (α∨γ) to distribute
∨ over ∧, until the formula is in CNF. The principal limitation of this transformation lies in
the possible exponential growth of the resulting formula compared to the original (e.g. when
the formula is in DNF), making it unsuitable for modern SAT solvers [1].

The Tseitin CNF-ization (CNFTs) [21] avoids this exponential blow-up by labelling each
sub-formula φi with a fresh Boolean atom Bi, which is used as a placeholder for the
sub-formula. Specifically, it consists in applying recursively bottom-up the rewriting rule
φ =⇒ φ[φi|Bi] ∧ CNFDM(Bi ↔ φi) until the resulting formula is in CNF, where φ[φi|Bi] is
the formula obtained by substituting in φ every occurrence of φi with Bi.

The Plaisted and Greenbaum CNF-ization (CNFPG) [17] is a variant of the CNFTs that
exploits the polarity of sub-formulas to reduce the number of clauses of the final formula.
Specifically, if a sub-formula φi appears only with positive [resp. negative] polarity, then it
can be labelled with a single implication as CNFDM(Bi → φi) [resp. CNFDM(Bi ← φi)].

With both CNFTs and CNFPG, due to the introduction of the label variables, the final
formula does not preserve the equivalence with the original formula but only the equisatis-
fiability. Moreover, they also have a stronger property. If φ(A) is a non-CNF formula and
ψ(A ∪B) is either the CNFTs or the CNFPG encoding of φ, where B are the fresh Boolean
atoms introduced by the transformation, then φ(A) ≡ ∃B.ψ(A ∪B).

Total and partial truth assignments

Given a set of Boolean atoms A, a total truth assignment is a total map η : A 7−→ B. A
partial truth assignment is a partial map µ : A 7−→ B. Notice that a partial truth assignment
represents 2K total truth assignments, where K is the number of unassigned variables by µ.
With a little abuse of notation, we sometimes represent a truth assignment either as a set, s.t.
µ

def= {A | µ(A) = ⊤}∪{¬A | µ(A) = ⊥}, or as a cube, s.t. µ def=
∧

µ(A)=⊤ A∧
∧

µ(A)=⊥ ¬A. If
µ1 ⊆ µ2 [resp. µ1 ⊂ µ2] we say that µ1 is a sub-assignment [resp. strict sub-assignment] of µ2
and that µ2 is a super-assignment [resp. strict super-assignment] of µ1. We denote with φ|µ
the residual of φ under µ, i.e. the formula obtained by substituting in φ each Ai ∈ A with
µ(Ai), and by recursively applying the standard propagation rules of truth values through
Boolean operators.

Given a set of Boolean atoms A and a formula φ(A), we say that a [partial or total] truth
assignment µ : A 7−→ B satisfies φ, denoted as µ |= φ, iff φ|µ = ⊤1. If µ |= φ, then we say
that µ is a model of φ. A partial truth assignment µ is minimal for φ iff µ |= φ and every
strict sub-assignment µ′ ⊂ µ is such that µ′ ̸|= φ.
Most of the modern SAT and SMT solvers do not deal directly with non-CNF formulas,
rather they convert them into CNF by using either CNFTs or CNFPG. As seen in the previous
paragraph, since these transformations introduce fresh atoms into the resulting formulas,
a model of φ(A) can be found as a truth assignment satisfying ∃B.ψ(A ∪B). Given two
disjoint sets of Boolean atoms A,B and a CNF formula ψ(A ∪B), we say that a [partial or
total] truth assignment µA : A 7−→ B satisfies ∃B.ψ iff there exists a total truth assignment
ηB : B 7−→ B such that µA ∪ ηB : A ∪B 7−→ B satisfies ψ.

1 The definition of satisfiability by partial assignment may present some ambiguities for non-CNF and
existentially-quantified formulas [18, 16]. Here we adopt the above definition because it is the easiest
to implement, and it is the one typically used by state-of-the-art SAT solvers. We refer to [18, 16] for
details.
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Algorithm 1 Minimize-Assignment(ψi, ηi,A) // ψi
def= ψ ∧

∧i−1
j=1 ¬µ

A
j , ηi = ηA

i ∪ ηB
i .

1: µA
i ← ηA

i

2: for ℓ ∈ µA
i do

3: if ψi|[µA
i

\{ℓ} ∪ ηB
i

] = ⊤ then
4: µA

i ← µA
i \ {ℓ}

5: return µA
i

2.2 AllSAT and Projected AllSAT
AllSAT is the task of enumerating all the models of a propositional formula. In this paper, we
focus on the enumeration of disjoint models, that is, pairwise mutually-inconsistent models.
Given a Boolean formula φ, we denote with TTA(φ) def= {η1, . . . , ηj . . . ηM} the set of all total
truth assignments satisfying φ. We denote with TA(φ) def= {µ1, . . . , µi . . . , µN} a set of partial
truth assignments satisfying φ s.t.:
(a) every η ∈ TTA(φ) is a super-assignment of some µ ∈ TA(φ);
(b) every pair µi, µj ∈ TA(φ) assigns opposite truth value to at least one atom.
Notice that, whereas TTA(φ) is unique, multiple TA(φ)s are admissible for the same formula
φ, including TTA(φ). AllSAT is the task of enumerating either TTA(φ) or a set TA(φ).
Typically, AllSAT solvers aim at enumerating a set TA(φ) as small as possible, since every
partial model prevents from enumerating a number of total models that is exponential w.r.t.
the number of unassigned atoms, so that to save computational space and time.

The enumeration of a TA(φ) for a non-CNF formula φ is typically implemented by first
converting it into CNF, and then enumerating its models by means of Projected AllSAT.
Specifically, let φ(A) be a non-CNF formula and let ψ(A ∪ B) be the result of applying
either CNFTs or CNFPG to φ, where B is the set of Boolean atoms introduced by either
transformations. TA(φ) is enumerated via Projected AllSAT as TA(∃B.ψ), i.e. as a set of
(partial) truth assignments over A that can be extended to total models of ψ over A ∪B.
We refer to the general schema described in [12], which we briefly recap here.
Let ψ(A ∪B) be a CNF formula over two disjoint sets of Boolean variables A,B, where A
is a set of relevant atoms s.t. we want to enumerate a TA(∃B.ψ). The solver enumerates
one-by-one partial truth assignments µ1, . . . , µi, . . . µN , where each µi

def= µA
i ∪ ηB

i is s.t.:
(i) (satisfiability) µi |= ψ;
(ii) (disjointness) for each j < i, µA

i , µ
A
j assign opposite truth values to some atom in A;

(iii) (minimality) µA
i is minimal, meaning that no literal can be dropped from it without

losing properties (i) and (ii).
A basic disjoint AllSAT procedure (implemented e.g. in MathSAT [6]) works as follows.
At each step i, it finds a total truth assignment ηi

def= ηA
i ∪ ηB

i s.t. ηi |= ψi, where ψi
def=

ψ ∧
∧i−1

j=1 ¬µA
j , and then invokes a minimization procedure on ηA

i to compute a partial truth
assignment µA

i satisfying properties (i), (ii) and (iii). Then, the solver adds the clause ¬µA
i

to ensure property (ii) and it continues the search. This process is iterated until ψN+1 is
found to be unsatisfiable for some N , and the set {µA

i }N
i=1 is returned.

The minimization procedure consists in iteratively dropping literals one-by-one from ηA
i ,

checking if it still satisfies the formula. The outline of this minimization procedure is shown
in Algorithm 1. Each minimization step is O(#clauses ·#vars).

Notice that, since we are in the context of projected AllSAT, the minimization algorithm
only minimizes the relevant variables in A, and the truth value of existentially quantified
variables in B is still used to check the satisfiability of the formula by the current partial
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15:6 On CNF Conversion for Disjoint SAT Enumeration

assignment. Moreover, to enforce the pairwise disjointness between the assignments, ψi

in Algorithm 1 refers to the original formula conjoined with all current blocking clauses∧i−1
j=1 ¬µA

j , whereas conflict clauses are excluded by the minimization, being redundant.
We stress the fact that the work described in this paper is agnostic w.r.t. the disjoint

AllSAT procedure used, provided its output assignments match conditions (i)-(iii) above.

3 The impact of CNF transformations for AllSAT

In this section we analyze the impact of different CNF-izations on the AllSAT task. In
particular, we focus on CNFTs [21] and CNFPG [17]. We point out how CNF-izing AllSAT
problems using these transformations can introduce unexpected drawbacks in the enumeration
process. In fact, we show that the resulting encodings can prevent the solver from effectively
minimizing the models, and thus from enumerating a small set of short partial models.

3.1 The impact of Tseitin CNF transformation
We show that preprocessing the input formula using the CNFTs transformation [21] can be
problematic for enumeration. We first illustrate this issue with an example.

▶ Example 1. Consider the propositional formula

φ
def=

B1︷ ︸︸ ︷
(A1 ∧A2)∨

B5︷ ︸︸ ︷
((

B2︷ ︸︸ ︷
(A3 ∨A4)∧

B3︷ ︸︸ ︷
(A5 ∨A6))︸ ︷︷ ︸

B4

↔ A7) (1)

over the set of atoms A def= {A1, A2, A3, A4, A5, A6, A7}. We first notice that the minimal
partial truth assignment:

µA def= {¬A3,¬A4,¬A7} (2)

suffices to satisfy φ, even though it does not assign a truth value to the sub-formulas (A1∧A2)
and (A5 ∨A6) since the atoms A1, A2, A5, A6 are not assigned.

Nevertheless, φ is not in CNF, and thus it must be CNF-ized by the solver before starting
the enumeration process. If CNFTs is used, then the following CNF formula is obtained:

CNFTs(φ) def=
(¬B1 ∨ A1) ∧ (¬B1 ∨ A2) ∧ ( B1 ∨ ¬A1 ∨ ¬A2)∧ //(B1 ↔ (A1 ∧A2)) (3a)
( B2 ∨ ¬A3) ∧ ( B2 ∨ ¬A4) ∧ (¬B2 ∨ A3 ∨ A4)∧ //(B2 ↔ (A3 ∨A4)) (3b)
( B3 ∨ ¬A5) ∧ ( B3 ∨ ¬A6) ∧ (¬B3 ∨ A5 ∨ A6)∧ //(B3 ↔ (A5 ∨A6)) (3c)
(¬B4 ∨ B2) ∧ (¬B4 ∨ B3) ∧ ( B4 ∨ ¬B2 ∨ ¬B3)∧ //(B4 ↔ (B2 ∧B3)) (3d)
(¬B5 ∨ B4 ∨ ¬A7) ∧ (¬B5 ∨ ¬B4 ∨ A7) ∧ //(B5 ↔ (B4 ↔ A7)) (3e)
( B5 ∨ B4 ∨ A7) ∧ ( B5 ∨ ¬B4 ∨ ¬A7) ∧
( B1 ∨ B5) ∧ (3f)

The fresh atoms B def= {B1, B2, B3, B4, B5} label sub-formulas as in (1). The solver proceeds
to compute TA(∃B.CNFTs(φ)) by enumerating the models of CNFTs(φ) projected over A.
Suppose, e.g., that the solver picks non-deterministic choices, deciding the atoms in the
order {B1, A1, A2, B2, A3, A4, B3, A5, A6, B4, B5, A7} and branching with negative value first.
Then, the first (sorted) total truth assignment found is:
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η
def= {¬B1,¬B2,¬B3,¬B4, B5︸ ︷︷ ︸

ηB

,¬A1,¬A2,¬A3,¬A4,¬A5,¬A6,¬A7︸ ︷︷ ︸
ηA

} (4)

which contains µA (2). The minimization procedure looks for a minimal subset µA′ of ηA s.t.
µA′ ∪ ηB |= CNFTs(φ). One possible output of this procedure is the minimal assignment:

µA′ def= {¬A1,¬A3,¬A4,¬A5,¬A6,¬A7}. (5)

We notice that the partial truth assignment µA (2) satisfies φ and it is s.t. µA ⊂ µA′,
but it does not satisfy ∃B.CNFTs(φ). In fact, three clauses of CNFTs(φ) in (3a) and (3c)
are not satisfied by µA ∪ ηB, since CNFTs(φ)|µA∪ηB = (¬A1 ∨ ¬A2) ∧ (¬A5) ∧ (¬A6). We
remark that this is not a coincidence, since there is no ηB′ such that µA ∪ ηB′ |= CNFTs(φ),
because (3a) and (3c) cannot be satisfied without assigning any atom in {A1, A2} and
{A5, A6} respectively.

Finding µA′ (5) instead of µA (2) clearly causes an efficiency problem, since finding
longer partial models implies that the total number of enumerated models could be up to
exponentially larger. For instance, instead of the single partial assignment µA (2), the solver
may return the following list of 9 partial assignments satisfying ∃B.CNFTs(φ):

B1︷ ︸︸ ︷ B3︷ ︸︸ ︷
{¬A1, ¬A3, ¬A4, ¬A5, ¬A6, ¬A7 } //{¬B1,¬B3}
{¬A1, ¬A3, ¬A4, A5, ¬A7 } //{¬B1, B3}
{¬A1, ¬A3, ¬A4, ¬A5, A6, ¬A7 } //{¬B1, B3}
{ A1, ¬A2, ¬A3, ¬A4, ¬A5, ¬A6, ¬A7 } //{¬B1,¬B3}
{ A1, ¬A2, ¬A3, ¬A4, A5, ¬A7 } //{¬B1, B3}
{ A1, ¬A2, ¬A3, ¬A4, ¬A5, A6, ¬A7 } //{¬B1, B3}
{ A1, A2, ¬A3, ¬A4, ¬A5, ¬A6, ¬A7 } //{ B1,¬B3}
{ A1, A2, ¬A3, ¬A4, A5, ¬A7 } //{ B1, B3}
{ A1, A2, ¬A3, ¬A4, ¬A5, A6, ¬A7 } //{ B1, B3}

(6)

where µA′ (5) is the first in the list. ⌟

The example above shows an intrinsic problem of CNFTs when used for enumeration: if a
minimal partial assignment µA suffices to satisfy φ, this does not imply that µA suffices to
satisfy ∃B.CNFTs(φ), i.e., that some ηB exists such that µA ∪ ηBsatisfies CNFTs(φ) [18].

In fact, consider a generic non-CNF formula φ(A) and a minimal partial truth assignment
µA that satisfies φ, and let φi be some sub-formula of φ which is not assigned a truth value
by µA – for instance, because φi occurs into some positive subformula φi∨φj and µA satisfies
φj . (In Example 1, µA def= {¬A3,¬A4,¬A7}, φi

def= (A1 ∧A2) or φi
def= (A5 ∨A6) respectively.)

Then CNFTs conjoins to the main formula the definition (Bi ↔ φi), so that every satisfying
partial truth assignment µA′ is forced to assign a truth value to φi and thus to some of its
atoms, which may not occur in µA, so that µA′ ⊃ µA. (In the example, the clauses in (3a)
and (3c) force µA′ to assign a truth value also to (A1 ∧A2) and (A5 ∨A6) respectively.)

Thus, by using CNFTs, instead of enumerating one minimal partial model µA for φ, the
solver may be forced to enumerate many partial models µA′ that are minimal for ∃B.CNFTs(φ)
but not for φ, so that their number can be up to exponentially larger in the number of
unassigned atoms in µA. In fact, each such model µA′ conjoins to µA one of the (up to
2|A|−|µA|) partial assignments which are needed to evaluate to either ⊤ or ⊥ all unassigned
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φi’s. (E.g., in (6), the solver enumerates nine µA′s by conjoining µA (2) with an exhaustive
enumeration of partial assignments to A1, A2, A5, A6 that evaluate (A1 ∧A2) and (A5 ∨A6)
to either ⊤ or ⊥.) This may drastically affect the effectiveness of the enumeration.

3.2 The impact of Plaisted and Greenbaum CNF transformation
We point out how the CNFPG [17] can be used to solve these issues, but only in part. We
first illustrate it with an example.

▶ Example 2. Consider the formula φ (1) and the minimal satisfying assignment µA (2) as
in Example 1. Suppose that φ is converted into CNF using CNFPG. Then, the following CNF
formula is obtained:

CNFPG(φ) def=
(¬B1 ∨ A1) ∧ (¬B1 ∨ A2) ∧ //(B1 → (A1 ∧A2)) (7a)
( B2 ∨ ¬A3) ∧ ( B2 ∨ ¬A4) ∧ (¬B2 ∨ A3 ∨ A4)∧ //(B2 ↔ (A3 ∨A4)) (7b)
( B3 ∨ ¬A5) ∧ ( B3 ∨ ¬A6) ∧ (¬B3 ∨ A5 ∨ A6)∧ //(B3 ↔ (A5 ∨A6)) (7c)
(¬B4 ∨ B2) ∧ (¬B4 ∨ B3) ∧ ( B4 ∨ ¬B2 ∨ ¬B3)∧ //(B4 ↔ (B2 ∧B3)) (7d)
(¬B5 ∨ B4 ∨ ¬A7) ∧ (¬B5 ∨ ¬B4 ∨ A7) ∧ //(B5 → (B4 ↔ A7)) (7e)
( B1 ∨ B5) ∧ (7f)

We highlight that (7a) and (7e) are shorter than (3a) and (3e) respectively, since the
corresponding sub-formulas occur only with positive polarity. Suppose, as in Example 1,
that the solver finds the total truth assignment η def= ηB ∪ ηA in (4). In this case, one possible
output of the minimization procedure is the minimal partial truth assignment:

µA′′ def= {¬A3,¬A4,¬A5,¬A6,¬A7}. (8)

This assignment is a strict sub-assignment of µA′ in (5), since the atom A1 is not assigned.
This is possible because the sub-formula (A1∧A2) is labelled by B1 using a single implication,
and the clauses representing (B1 → (A1 ∧ A2)) are satisfied by ηB(B1) = ⊥ even without
assigning A1 and A2. Nevertheless, the assignment µA in (2) that satisfies φ still does not
satisfy ∃B.CNFPG(φ).

Indeed, sub-formulas occurring with double polarity are labelled using double implications
as for CNFTs, raising the same problems as the latter. For instance, the sub-formula (A5∨A6)
occurs with double polarity, since it is under the scope of an “↔”. Hence, the clauses in (7c)
must be satisfied by assigning a truth value also to A5 or A6, and so the partial truth
assignment µA in (2) does not suffice to satisfy ∃B.CNFPG(φ). ⌟

The example above shows that CNFPG has some advantage over CNFTs when enumerating
partial assignments, but it overcomes its effectiveness issues only in part, because a minimal
assignment µA satisfying φ may not suffice to satisfy ∃B.CNFPG(φ), as with CNFTs.

Consider, as in §3.1, a generic non-CNF formula φ(A) and a partial truth assignment µA

that satisfies φ without assigning a truth value to some sub-formula φi. Suppose that φi

occurs only positively in φ – for the negative case the reasoning is dual. (In Example 2, µA def=
{¬A3,¬A4,¬A7}, φi

def= (A1 ∧ A2).) Since CNFPG introduces only the clauses representing
(Bi → φi) – and not those representing (Bi ← φi) – the solver is no longer forced to assign
a truth value to φi, because it suffices to assign ηB(Bi) = ⊥. (In the example, (A1 ∧ A2)
is labelled with B1 in (7a).) In this case, φi plays the role of a “don’t care” term, and this
property allows for the enumeration of shorter partial assignments.
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Nevertheless, a sub-formula can be “don’t care” only if it occurs with single polarity. In
fact, if φi occurs with double polarity – as it is the case, e.g., of sub-formulas under the
scope of an “↔” – then φi is labelled with a double implication (Bi ↔ φi), yielding the same
drawbacks as with CNFTs. (In the example, (A5 ∨A6) occurs with double polarity, and µA′

is forced to assign a truth value also to A5 or A6 to satisfy the clauses in (7c).)

Notice that, to maximize the benefits of CNFPG, the sub-formulas that should be treated
as “don’t care” must have their label assigned to false. In practice, this can be achieved in
part by instructing the solver to split on negative values in decision branches2. Even though
the solver is not guaranteed to always assign to false the labels of “don’t care” sub-formulas,
we empirically verified that this heuristic provides a good approximation of this behaviour.

4 Enhancing enumeration via NNF preprocessing

In this section, we propose a possible solution to address the shortcomings of CNFTs and CNFPG
CNF-izations in model enumeration, described in §3. We show that a simple preprocessing
can avoid this situation. We transform first the input formula into an NNF DAG. In fact,
NNF guarantees that each sub-formula occurs only positively, as every sub-formula φi

occurring with double polarity is converted into two syntactically-different sub-formulas
φ+

i
def= NNF(φi) and φ−i

def= NNF(¬φi) – each occurring only positively – which are then labelled
– with single implications – with two distinct atoms B+

i and B−
i respectively. To improve

the efficiency of the enumeration procedure without affecting its outcome, we also add the
clauses (¬B+

i ∨ ¬B−
i ) when both B+

i and B−
i are introduced, which prevent the solver from

assigning both B+
i and B−

i to true, and thus from exploring inconsistent search branches.

We remark that even with this preprocessing we produce a linear-size CNF encoding,
since the NNF(φ) DAG has linear size w.r.t. φ (see §2.1), and CNFPG introduces one label
definition for each DAG node, each consisting of 1 or 2 clauses. We illustrate the benefit of
this additional preprocessing with the following example.

▶ Example 3. Consider the formula φ of Example 1. By converting it into NNF, we obtain:

φ′ def=
B1︷ ︸︸ ︷

(A1 ∧A2)∨ (

B5︷ ︸︸ ︷
((

B−2︷ ︸︸ ︷
(¬A3 ∧ ¬A4)∨

B−3︷ ︸︸ ︷
(¬A5 ∧ ¬A6))︸ ︷︷ ︸

B−4

∨A7)∧

B6︷ ︸︸ ︷
((

B+
2︷ ︸︸ ︷

(A3 ∨A4)∧

B+
3︷ ︸︸ ︷

(A5 ∨A6))︸ ︷︷ ︸
B+

4

∨¬A7))

︸ ︷︷ ︸
B7

(9)

2 To exploit this heuristic also for sub-formulas occurring only negatively, the latter can be labelled with
a negative label ¬Bi as (¬Bi ← φi).
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Suppose, then, that the formula is converted into CNF using CNFPG. Then, the following
CNF formula is obtained:

CNFPG(NNF(φ)) def=(¬B1 ∨ A1) ∧ (¬B1 ∨ A2)∧ //(B1 → ( A1 ∧ A2)) (10a)
(¬B−

2 ∨ ¬A3) ∧ (¬B−
2 ∨ ¬A4)∧ //(B−

2 → (¬A3 ∧ ¬A4)) (10b)
(¬B−

3 ∨ ¬A5) ∧ (¬B−
3 ∨ ¬A6)∧ //(B−

3 → (¬A5 ∧ ¬A6)) (10c)
(¬B−

4 ∨ B−
2 ∨ B−

3) ∧ //(B−
4 → ( B−

2 ∨ B−
3)) (10d)

(¬B5 ∨ B−
4 ∨ A7) ∧ //(B5 → ( B−

4 ∨ A7)) (10e)
(¬B+

2 ∨ A3 ∨ A4) ∧ //(B+
2 → ( A3 ∨ A4)) (10f)

(¬B+
3 ∨ A5 ∨ A6) ∧ //(B+

3 → ( A5 ∨ A6)) (10g)
(¬B+

4 ∨ B+
2) ∧ (¬B+

4 ∨ B+
3)∧ //(B+

4 → ( B+
2 ∧ B+

3)) (10h)
(¬B6 ∨ B+

4 ∨ ¬A7) ∧ //(B6 → ( B+
4 ∨ ¬A7)) (10i)

(¬B7 ∨ B5) ∧ (¬B7 ∨ B6)∧ //(B7 → ( B5 ∧ B6)) (10j)
( B1 ∨ B7) ∧ (10k)
(¬B+

2 ∨ ¬B−
2) ∧ (10l)

(¬B+
3 ∨ ¬B−

3) ∧ (10m)
(¬B+

4 ∨ ¬B−
4) (10n)

Suppose, e.g., that the solver picks non-deterministic choices, deciding the atoms in the
order {B1, A1, A2, B

−
3 , A5, A6, B

−
2 , A3, A4, B

−
4 , B5, A7, B

+
2 , B

+
3 , B

+
4 , B6, B7}, branching with a

negative value first. Then, the first total truth assignment found is:

η
def= {¬B1, B

−
2 ,¬B−

3 , B
−
4 , B5,¬B+

2 ,¬B+
3 ,¬B+

4 , B6, B7︸ ︷︷ ︸
ηB

,¬A1,¬A2,¬A3,¬A4,¬A5,¬A6,¬A7︸ ︷︷ ︸
ηA

}.

(11)

In this case, the minimization procedure returns µA def= {¬A3,¬A4,¬A7} as in (5),
achieving full minimization. With this additional preprocessing, in fact, the solver is no
longer forced to assign a truth value to A5 or A6. This is possible because, even though
(A5 ∨A6) occurs with double polarity in φ, in NNF(φ) its positive and negative occurrences
are converted into (A5 ∨ A6) and (¬A5 ∧ ¬A6) respectively. Since they appear as two
syntactically-different sub-formulas, CNFPG labels them – with single implications – using
two different atoms B+

3 and B−
3 respectively. This allows the solver to find a model η that

assigns both B−
3 and B+

3 to false. Hence, the clauses in (10c) and (10g) are satisfied even
without assigning A5 and A6, and thus these atoms can be dropped by the minimization
procedure. ⌟

The key idea behind this additional preprocessing is that each sub-formula of NNF(φ)
occurs only positively, so that CNFPG labels them with single implications, and the solver is no
longer forced to assign them a truth value. Consider a sub-formula φi that occurs with double
polarity in φ. In NNF(φ) the two subformulas φ+

i
def= NNF(φi) and φ−i

def= NNF(¬φi) occur only
positively. Then, instead of adding (Bi ↔ φi), we add (B+

i → φ+
i )∧(B−

i → φ−i ), and the solver
can find a truth assignment η that assigns both B−

i and B+
i to false. (In Example 3, instead

of (B3 ↔ (A5 ∨A6)) we add (B+
3 → (A5 ∨A6)) and (B−

3 → (¬A5 ∧¬A6)).) Thus, the clauses
deriving from φi can be satisfied even without assigning a truth value to φi, whose atoms
can be dropped by the minimization procedure – provided that they are not forced to be
assigned by some other sub-formula of φ. (In the example, by setting ηB(B+

3) = ηB(B−
3) = ⊥,

the clauses in (10c) and (10g) are satisfied even without assigning A5 and A6.)
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We have the following general fact: every partial model µA for φ is also a model for
∃B.CNFPG(NNF(φ)), that is, if µA |= φ, then there exists ηB s.t. µA∪ηB |= CNFPG(NNF(φ)).
(The vice versa holds trivially.) A complete formal proof of this fact is presented in an
extended version of this paper [13]. Intuitively, it is easy to see that the suitable ηB is defined
so that, for each sub-formula φi of φ, if φi is made true, false or is unassigned by µA, then
⟨ηB(B+

i ), ηB(B−
i )⟩ is ⟨⊤,⊥⟩, ⟨⊥,⊤⟩, or ⟨⊥,⊥⟩ respectively.

We stress the fact that this does not guarantee that the enumeration procedure always
finds this ηB, but only that such ηB exists. Ad-hoc enumeration heuristics should be
investigated.

▶ Remark 4. We notice that the pre-conversion into NNF is typically never used in plain
SAT solving, because it causes the unnecessary duplication of labels B+

i and B−
i , with extra

overhead and no benefit for the solver.

5 Experimental evaluation

In this section, we experimentally evaluate the impact of different CNF-izations on the
AllSAT task. In order to compare them on a fair ground, we have implemented a base version
of each from scratch in PySMT [7], avoiding specific optimizations done by the solvers. We
used MathSAT [6] as a SAT enumerator, because it implements the enumeration strategy
by [12] described in §2.2. We set the options -dpll.branching_initial_phase=0 to split on the
false branch first and -dpll.branching_cache_phase=2 to enable phase caching.

Experiments run on an Intel Xeon Gold 6238R @ 2.20GHz 28 Core machine with 128
GB of RAM and running Ubuntu Linux 20.04. For each instance, we set a timeout of 1200s.

5.1 Datasets description
We consider three sets of benchmarks of non-CNF formulas coming from different sources,
both synthetic and real-world. In the first set of benchmarks, we generate random Boolean
formulas by nesting Boolean operators up to a fixed depth. The second dataset consists
of Boolean formulas encoding properties of ISCAS’85 circuits [4, 8, 20]. As a third set of
problems, we consider formulas encoding Booleanized Weighted Model Integration (WMI)
problems [14, 15, 19].

The synthetic benchmarks
The synthetic benchmarks are generated by nesting Boolean operators ∧,∨,↔ until some
fixed depth d. Internal and leaf nodes are negated with 50% probability. Operators in
internal nodes are chosen randomly, giving less probability to the ↔ operator. In particular,
↔ is chosen with a probability of 10%, whereas the other two are chosen with an equal
probability of 45%. We generated 100 synthetic instances over a set of 20 Boolean atoms
and depth d = 8.

The circuits benchmarks
The ISCAS’85 benchmarks are a set of 10 combinatorial circuits used in test generation,
timing analysis, and technology mapping [4]. They have well-defined, high-level structures
and functions based on multiplexers, ALUs, decoders, and other common building blocks [8].
We generated random instances as described in [20]. In particular, for each circuit, we
constrained 60%, 70%, 80%, 90% and 100% of the outputs to either 0 or 1, for a total of 250
instances.
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The WMI benchmarks
WMI problems are generated using the procedure described in [19]. Specifically, the paper
addresses the problem of enumerating all the different paths of the weight function by
encoding it into a skeleton formula. Each instance consists of a skeleton formula of a
randomly-generated weight function, where the conditions are only over Boolean atoms.
Since the conditions are non-atomic, the resulting formula is not in CNF, and thus we
preprocess it with the different CNF-izations before enumerating its models. We generate 10
instances for each depth value 3, 5, 7, 9, each instance involving 10 Boolean atoms and no
real variable, for a total of 40 problems.

We remark on two aspects of these benchmarks. First, we have chosen to have Boolean-
only weight conditions in order to better analyse the capacity of Boolean reasoning of the
solver with the different transformations, without additional factors brought by the SMT
component. Nevertheless, we expect to have similar outcomes also for formulas involving both
Boolean and SMT(LRA) atoms. Notice that these can still be meaningful WMI instances, as
the LRA component may be constrained by the rest of the formula. Second, these formulas
contain existentially quantified SMT(EUF) atoms, so that we enumerate ∃y.φ(A,y) by
projecting the models of φ over the relevant atoms A [19].

5.2 Results
Figures 1, 2, and 3 show the results of the experiments on the synthetic, ISCAS’85 and WMI
benchmarks, respectively. For each group of benchmarks, we report a set of scatter plots to
compare CNFTs, CNFPG and NNF + CNFPG in terms of number models, in the first row, and
execution time, in the second row. Notice the logarithmic scale of the axes!

In §5.3 we also report the CDF of the execution time for plain SAT solving on the
same group of benchmarks. We see from the results that, unlike with enumeration, the
pre-conversion into NNF has no benefit for plain solving, as we observed in Remark 4.

The synthetic benchmarks
The results on the synthetic benchmarks are shown in Figure 1. All the problems were
solved for all the encodings within the timeout. The plots show that CNFPG performs better
than CNFTs, since it enumerates fewer models (first row) in less time (second row) on every
instance. Furthermore, the combination of NNF and CNFPG yields by far the best results,
drastically reducing the number of models and the execution time by orders of magnitude
w.r.t. both CNFTs and CNFPG.

The circuits benchmarks
Figure 2 shows the performance of the different CNF-izations in the circuits benchmarks.
The timeouts are represented by the points on the dashed lines. First, we notice that CNFTs
and CNFPG have very similar behaviour, both in terms of execution time and number of
models. The reason is that in circuits, it is typical to have a lot of sharing of sub-formulas.
Since we constrain the outputs to be 0 or 1 at random [20], most of the sub-formulas occur
with double polarity, so that the two encodings are very similar, if not identical. Second, we
notice that by converting the formula into NNF before applying CNFPG the enumeration is
much more effective, as a much smaller number of models is enumerated, with only a few
outliers. The fact that for some instances NNF + CNFPG takes a little more time can be
caused by the fact that it can produce a formula that is up to twice as large and contains up
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Figure 1 Set of scatter plots comparing the different CNF-izations on the synthetic benchmarks.
The first and second rows compare them in terms of number of models and execution time, respectively.
All the axes are on a logarithmic scale. In these problems, there were no timeouts.
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Figure 2 Set of scatter plots comparing the different CNF-izations on the circuits benchmarks. The
first and second rows compare them in terms of number of models and execution time, respectively.
All the axes are on a logarithmic scale. In these problems, the CNFTs, CNFPG and NNF + CNFPG

reported 49, 44 and 27 timeouts, respectively, represented by the points on the dashed lines.
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Figure 3 Set of scatter plots comparing the different CNF-izations on the WMI benchmarks. The
first and second rows compare them in terms of number of models and execution time, respectively.
All the axes are on a logarithmic scale. In these problems, there were no timeouts.

to twice as many label atoms as the other two encodings, increasing the time to find the
assignments. Notice also that, even enumerating a smaller number of models at a price of a
small time-overhead can be beneficial in many applications, for instance in WMI [14, 15, 19].

The WMI benchmarks

The plots in Figure 3 compare the different CNF-izations in the WMI benchmarks in terms
of number of models and time. All the problems were solved for all the encodings within
the timeout. In these benchmarks, most of the sub-formulas occur with double polarity, so
that CNFTs and CNFPG encodings are almost identical, and they obtain very similar results
in both metrics. The advantage is significant, instead, if the formula is converted into NNF
upfront, since by using NNF + CNFPG the solver enumerates a smaller number of models. In
this application, it is crucial to enumerate as few models as possible, since for each model an
integral must be computed, which is a very expensive operation [14, 15, 19].

5.3 Comparing the CNF encodings for SAT solving

In order to confirm the statement in Remark 4, in the CDFs in Figure 4 we compare the
different CNF encodings for plain SAT solving on the same benchmarks. Even though these
problems are very small for plain solving and SAT solvers deal with them very efficiently, we
can see that converting the formula into NNF before applying CNFPG brings no advantage,
and solving is uniformly slower than with CNFPG or CNFTs. This shows that our novel
technique works specifically for enumeration but not for solving, as expected.



G. Masina, G. Spallitta, and R. Sebastiani 15:15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time(s)

0

20

40

60

80

100

N
u
m
b
er

of
p
ro
b
le
m
s
so
lv
ed

CNFPG(NNF(φ))

CNFPG(φ)

CNFTs(φ)

Total number of problems

1(a) Synthetic benchmarks.
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1(b) Circuit benchmarks.
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Figure 4 CDF of the time taken for plain SAT solving using the different CNF transformations.
The y-axis reports the instances for which the enumeration finished within the cumulative time on
the x-axis.

6 Conclusions and future work

We have presented a theoretical and empirical analysis of the impact of different CNF-ization
approaches on SAT enumeration. We have shown how the most popular transformations
conceived for SAT solving, namely the Tseitin and the Plaisted and Greenbaum CNF-
izations, prevent the solver from producing short partial assignments, thus seriously affecting
the effectiveness of the enumeration. To overcome this limitation, we have proposed to
preprocess the formula by converting it into NNF before applying the Plaisted and Greenbaum
transformation. We have shown, both theoretically and empirically, that the latter approach
can fully overcome the problem and can drastically reduce both the number of partial
assignments and the execution time.

As future research directions, we plan to further investigate the impact of CNF conversion
also on disjoint SMT enumeration. We expect that in this domain the impact can be even
more relevant, since in SMT multiple instances of the same theory atoms are typically rarer
than for atoms in the Boolean case. Also, disjoint SMT enumeration has a fundamental
role in Weighted Model Integration [14, 15, 19], an important framework for probabilistic
inference in hybrid domains. Hence, we believe that our contribution can have a great impact
on this application, where non-CNF formulas occur frequently. Finally, we think that work
should be done to understand the impact on enumeration with repetitions, i.e. where models
may not be disjoint, for instance in Predicate Abstraction [12].
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