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A Procedure for Highly Reproducible
Measurements of ADC Spectral Parameters

E.Nunzi, P.Carbone, D.Petri

Abstract

The evaluation of spectral parameters characterizing analog–to–digital converters (ADC) is addressed

by applying a single or dual tone generator to the device input and by properly processing its output data

stream. The coherent sampling condition, highly recommended by the IEEE standards 1057 and 1241 which

list the most effective ADC testing procedures, is usually difficult to achieve, and sometimes even unfeasible.

In fact, it requires a fine synchronization between the input and the sampling signals frequencies and it can

not be achieved when spurious tones are present in the ADC output spectrum. Data windowing is usually

employed to reduce the associated spectral leakage phenomenon. However, IEEE standards do not provide

clear criteria for choosing the window to be used for testing a givenb–bit converter. Therefore, a reduced

measurement reproducibility can result. The European draft standard Dynad suggests the employment of one

out of seven windows in accordance to the ADC resolution. However, each proposed sequence covers only

a limited converter resolution range. In this paper an ADC testing procedure is described, suitable to yield

highly repeatable and reproducible measurements also when non–coherent sampling applies. To this aim, the

use of a class of windows is proposed, that uniquely applies to ADCs with arbitrarily high resolution. Finally,

experimental results that validate its effectiveness are presented.
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I. INTRODUCTION

Methodologies usually employed for the parameter estimation of analog–to–digital converters (ADCs)

are based on the analysis of the ADC numerical output when a single or dual tone is used as input signal [1],
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[2]. The observed ADC output data can be often modeled as a set of single–tone components embedded

in white zero–mean Gaussian noise. Therefore, the problem of evaluating the ADC frequency–domain

performance reduces to the estimation of multiple sine parameters and of the broad–band noise–level.

Such an estimation problem, widely investigated and detailed in the scientific literature, can be ad-

dressed by employing both parametric or non–parametric procedures [3]–[6]. Although parametric proce-

dures present an high frequency selectivity and statistical efficiency, the determination of the model order

is often a difficult issue and iterative procedures must be used. Conversely, non–parametric testing proce-

dures are characterized by low computational effort and robustness towards signal model inaccuracies. On

the other hand, they present lower frequency selectivity and statistical efficiency [4], [5]. However, such

performances reduction can be compensated for by increasing the observation interval length or the num-

ber of analyzed samples. Thus, non–parametric procedures can be widely applied for waveform digitizer

testing.

Whatever the adopted testing methodology, the IEEE standards 1057 and 1241 [1], [2] recommend the

use of coherent sampling in order to guarantee maximum estimation accuracy. However, such a condition

can not be guaranteed with respect to spurious tones eventually present in the output spectrum. In such a

situation, spectral granularity and leakage may affect the accuracy with which input signal parameters are

estimated. Output–data windowing has been classically employed to reduce the effect of such phenomena

[3]. Unfortunately, published results do not provide general criteria for the choice of the most appropriate

window to be employed. Some suggestions are given in the draft standard Dynad [7], where it is recom-

mended the selection of one out of well–known windows [3], in accordance to the resolution of the tested

ADC. However, criteria to be followed for choosing the window that optimizes measurement accuracy are

not explicitly given.

Previous works on this subject have shown that the employment of the zero–order Discrete Prolate
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Spheroidal Sequences (DPSS) maximizes the measurement accuracy when non–coherent sampling applies

[4], [9]. Windows belonging to this class of sequences are completely defined by their mainlobe width.

Moreover, general criteria for selecting the window parameter that provides a given estimation accuracy for

ADCs with any resolution have been given. This feature allows the optimization of the window selection

process, thus improving testing automation. However, samples of the DPSS windows can be calculated

only on the basis of numerical algorithms. As a consequence, different implementations applied to the

same set of data can result in different estimates of ADC figures of merit, thus reducing measurement

reproducibility.

In this paper, the use of a class of windows that can easily be calculated by using standard computa-

tional tools and that well approximates the DPSS sequences is proposed. In particular, such windowing

sequences are employed in a DFT-based estimator of the main spectral figures of merit of a genericb–bit

ADC. The algorithm is then detailed by itemizing steps to follow both when coherent or non–coherent

sampling is used. Finally, the procedure is applied to a 16–bit acquisition board and the theoretical and

experimental standard deviations are compared in order to validate both the proposed estimation process

and the effectiveness of the employed window sequences.

II. DFT–BASED METHOD

Spectral figures of merit usually employed for characterizing ADCs in the frequency domain are the

spurious–free dynamic range (SFDR), the signal–to–noise–and–distortion–ratio (SINAD), the signal–

to–random–noise–ratio (SRNR) and the total harmonic distortion (THD). They require the power esti-

mation of the wide–band noiseσ2
R and ofH +S + 1 narrow–band components,σ2

Xi
, i = 1, ..., H +S +1,

which are composed by the fundamental tone,H harmonics andS spurious.

When non–coherent sampling applies, the DFT–based method evaluates the power of the narrow– and

wide–band components from the windowed ADC output spectrum obtained by using a Fast Fourier Trans-
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form (FFT) algorithm. To this aim, as described in detail in [9], [10] and [11], the output spectrum is

divided in sets of frequency bins, each associated with one kind of spectral component, indicated withBXi

for the narrow-band components and withBR for the wide-band noise.

Expressions for the power estimators of the wide–band noise,σ̂2
R, and of thei–th narrow–band compo-

nent,σ̂2
Xi

, are:

σ̂2
R

�
=

1

NRN2

1

NNPG

∑
k∈BR

|Y [k]|2 , (1)

σ̂2
Xi

�
=

2

N2

1

NNPG

∑
k∈BXi

|Y [k]|2 − 2
NXi

N
σ̂2
R. (2)

In (1) and (2),N is the number of acquired samples,Y [·] is the DFT of the windowed acquired data

samples,NXi
is the number of samples inBXi

andNR is the number of samples inBR. Moreover,

NNPG
�
= 1
N

∑N−1
n=0 w

2[n] is the window Normalized Noise Power Gain.

By defining σ̂2
X1

, σ̂2
H

�
=

∑H+1
i=2 σ̂2

Xi
and σ̂2

S
�
=

∑S+1
i=H+2 σ̂

2
Xi

as the estimators of the power of the fun-

damental, of the harmonics and of the spurious components, respectively, the estimators of the spectral

figures of merit are [10]:

̂SRNR
�
=

NR
NR + ENBW0

σ̂2
X1

σ̂2
R

, (3)

̂SINAD
�
=

σ̂2
X1

σ̂2
R + σ̂2

H + σ̂2
S

, (4)

̂SFDR
�
=

σ̂2
X1

maxi>1 σ̂2
Xi

, (5)

̂THD �
=

σ̂2
H

σ̂2
X1

, (6)

whereENBW0
�
= N

∑N−1
n=0 w

4[n]/(
∑N−1
n=0 w

2[n])2 represents the equivalent–noise bandwidth of the

squared window,w2[·].

The accuracy of each estimator can be separately optimized by suitably choosing the test parameters

and, in particular, by carefully selecting the window. The zero–order DPSS sequences can be employed to
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obtain maximum estimation accuracy [10]. However, the procedure for calculating their samples requires

the application of iterating numerical algorithms, thus potentially reducing measurement reproducibility.

The class of windows considered in this paper is defined in the frequency domain on the basis of the

Dirichelet kernel as follows [12]:

W [k,Λ]
�
=

sin
[
N
2

cos−1 (γ cos (2πk) + (γ − 1))
]

sin
[

1
2
cos−1 (γ cos(2πk) + (γ − 1))

] , k = 0, ..., N − 1 (7)

whereW [·,Λ] represents the DFT ofw[·], γ �
= (1 + cos (2π/N))/ (1 + cos(2Λπ/N)), andΛ is the win-

dow mainlobe width expressed in bins.

Such class of windows may easily be calculated from the knowledge of the record lengthN and of the

needed mainlobe widthΛ by using standard computational tools. Moreover, it has been demonstrated that

they well approximates the zero–order DPSS sequences [12] with the same mainlobe widthΛ. It follows

that the window samples obtained by applying an inverse FFT (IFFT) algorithm to (7) assure optimal

estimators accuracy, measurement reproducibility and testing automation.

In the next section, the related DFT–based testing procedure is step-by-step described. It allows the

characterization of ADCs with any given resolution, by optimizing the available test–bench resources. In

particular, indications for choosing the minimum number of samples which guarantees an upper bound,

ε, on the relative type A uncertainty of the estimates of the spectral figures of merit, are explicitly given.

Such bound has been derived by noticing that the normalized variance of the estimates of interest is equal

to or lower than the normalized variance of (1), which is given byvar{σ̂2
R} � ENBW0/NR [9], [10]. As

a consequence, the number of samples associated to the wide–band noise has to satisfy the condition:

NR ≥ ENBW0

ε2
. (8)

Moreover, indications for selecting the mainlobe window which guarantees optimum estimation accuracy
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is explicitly given.

III. T HE PROPOSED PROCEDURE FORADC TESTING

Fig. 1 shows the steps to follow for estimating spectral parameters of a genericb-bit ADC with a given

relative type A uncertaintyε. Grey boxes refer to calculations to be performed only when non–coherency

applies. Whenever sampling is realized coherently, acquired data can be windowed by using a rectangular

window and assumingNXi
= 1.

Thealgorithm input parameters are related to both the characteristics of the measurement bench set–up

and the device under test. The procedure requires knowledge of the maximum estimates accuracy,ε, the

available memory–depth of the employed testing bench,Nmax, the operating full scale range (FS) of the

device under test, its sampling ratefs and an a priori estimate of the expectedSRNR at the ADC output,

γ1. If γ1 is not available, theSRNR of an idealb–bit quantizer can be employed.

Thedata acquisition parameters are then selected as follows: the number of acquired samplesNT , must

satisfy the conditionNT > π2b [1]. If NT > Nmax results, the testing algorithm can be repeatly applied

to R data records, each of lengthN , such thatRN ≥ NT . Thus, the value ofR can be calculated as

R = 	NT /N
, where the operator	x
 roundsx to the closest upper integer. The parameters of interest

can then be derived by averaging theR resulting estimates. It should be noticed that the employed number

of samples is often set to a power of two in order to reduce the FFT computational time.

If non–coherent sampling applies, an optimumwindow parameter, Λopt, can then be calculated as [10]:

Λopt = 0.607 + 0.189 log10NR + 0.378 log10 γ1, (9)

where usuallyNR can approximately be set equal toN/3. It is then possible to calculate the number of

samplesNXi
associated to the estimate of each narrow–band component. The optimum value, obtained as

a compromise between maximum estimator accuracy, maximum frequency selectivity and low computa-
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Figure 1. Flow chart of the DFT–based testing algorithm. Grey boxes indicate calculations to be performed only when non–
coherent sampling applies.N is set to a power of two in order to apply classical FFT algorithms to the windowed data.
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tional effort, is [4]:

NXi
= 2[Λopt] + 1, (10)

where the operator[x] roundsx to the nearest integer.

In order to estimate accurately the narrow–band spectral components, it should be verified that the

distance between the two closest components is greater than2	Λopt
 + 1 bins. The condition to verify is

then [10]:

N >
2	Λopt
 + 1

mini
=j |fXi
− fXj

|fs, i, j = 1, ..., H + S + 1 (11)

wherefXi
represents the frequency of thei–th narrow–band component expressed in Hz.

The window coefficientsw[·] can then be calculated by substituting (9) in (7) and by applying the IFFT

algorithm to the resulting expression.

Moreover, it should be verified that the total number of frequency bins associated to theH + S + 1

narrow–band components and to the wide–band noise do not exceed the number of available frequency

bins, i.e. that

NR ≥ N − [2(H + S) + 1]NXi
(12)

It should be also verified if the required estimator accuracy is guaranteed, that is if (8) occurs.

If (8), (11) or (12) are not satisfied,N must be increased. Whenever the number of samples needed to

perform the test is greater than the available memory–depth, i.e.N > Nmax, the test can not be carried

out because of limits on hardware resources.

The input sinewave parameters are then set. In particular, the amplitudeA has to be chosen in order

not to overload the ADC; moreover, a proper frequencyfin has to be selected. In particular, whenever

coherency must be attained,fin = fsL/N , whereL is the integer number of acquired sinewave cycles

which has to be chosen prime with respect toN .
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TABLE I

ALGORITHM PARAMETERS EMPLOYED FOR OBTAINING EXPERIMENTAL RESULTS OFFIG. 2

Algorithm input b FS fs ε2

parameters 16 10 V 20 ksample/s 2 · 10−4

Input sinewave A fin γ1 ideal
parameters 9.85 V variable 97.96 dB

Data acquisition N=Nmax NT NR R
parameters 214 218 14448 100

Window Λopt NNPG ENBW0 NXi

parameters 5.02 0.23 3.14 11

Once the DFT–based algorithm parameters have been set, it is possible to proceed with the estimation of

the desired ADC spectral parameters based on ther-th data record. In particular, the powers of the wide–

and narrow–band components,σ̂2
Rr

andσ̂2
Xir

, are evaluated by using (1) and (2), respectively. Finally, (3)–

(6) can be applied to estimate the corresponding figures of merit. The overall ADC spectral performances

can then be evaluated by taking the arithmetic average overR records, as indicated in Fig. 1 by the operator

< xr >
�
= 1/R

∑R
r=1 xr.

IV. EXPERIMENTAL RESULTS

The algorithm described in section III has been applied to data acquired from the 16–bit data acquisition

board AT-MIO-16XE-50, developed by National Instruments, for evaluating theSRNR at various input

frequency values. Such a board has a sampling rate of 20 ksample/s and a full-scale range equal to±10

V. The signal generator used as input stimulus is the Stanford Research System DS360 generator, which

exhibits anSFDR larger than 96 dBc. The amplitude of the input sinewave has been set equal to 9.85 V,

the value at which the maximum ̂SRNR has been experimentally obtained by employing a 1 kHz input

sinewave. The correspondingγ1 value is 97.96 dB. The energy-based algorithm has been applied for input

frequencies equal to 0.5, 1, 2, 3 and 4 kHz, and theSRNR has been estimated.

The algorithm parameters employed for the specific case are reported in Tab. I and the variousSRNR

estimates have been graphed in Fig. 2. In particular, the bolded line represents the average based onR =
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Figure 2. Bolded line represent thêSRNR of the AT–MIO–16–XE–50 data acquisition board estimated with the DFT–based
algorithm by employing parameters shown in Tab. I and the proposed window (7). Solid and dash–dotted lines represent the
average plus and minus the theoretical and experimental standard deviations, respectively.

100 data records, and dash-dotted lines represent theSRNR plus and minus the experimental standard

deviation.

In order to validate the proposed procedure, the value of the theoretical standard deviation of̂SRNR

have been calculated by means of [11]:

std
{ ̂SRNR

}
=

√
ENBW0

NR
γ1. (13)

The experimentalSRNR plus and minus such a theoretical standard deviation has been also plotted in

Fig. 2 with solid lines. The good agreement between the experimental and the theoretical lines confirms

the effectiveness of the testing procedure and of the proposed class of windows.

It should be noticed that estimates accuracy achieved by using the class of windows proposed in this

paper has the same order magnitude of that attainable by employing windows suggested by the classical

scientific literature [3]. The advantage in using this new class of windows is that (7) can be employed for

testing ADCs with any given resolution by setting only theΛ parameter.

V. CONCLUSIONS

The problem of optimizing the accuracy of the ADCs spectral figures of merit when non–coherent

sampling applies, is not thoroughly investigated by the published scientific literature [1]–[3], [7]. In

particular, the lack of a criterion for choosing the window which guarantees, for a givenb–bit ADC,
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the maximum estimator accuracy, reduces measurements reproducibility.

In order to overcome this limitation, in this paper a DFT–based ADC testing algorithm has been detailed

from a procedural point of view. Accordingly, it has been proposed the use of a class of windows that are

completely characterized by setting only the mainlobe width value and that can be employed for testing any

given resolution ADC. In order to improve measurement accuracy, a criterion for selecting the optimum

window mainlobe width has been provided. Whenever coherent sampling can be attained, the proposed

method can still be applied to un–windowed data.

The procedure has been used to measure the performance of a 16–bit data–acquisition board and exper-

imental results, which validate both the testing method and the employed windows, have been presented.
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