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Abstract: We consider the structure of divergence-free vector measures on the plane. We show that such
measures can be decomposed intomeasures induced by closed simple curves.More generally, we show that if
the divergence of a planar vector-valuedmeasure is a signedmeasure, then the vector-valuedmeasure can be
decomposed into measures induced by simple curves (not necessarily closed). As an application we general-
ize certain rigidity properties of divergence-free vector fields to vector-valuedmeasures. Namely,we show that
if a locally finite vector-valuedmeasure has zero divergence, vanishes in the lower half-space and the normal
component of the unit tangent vector of the measure is bounded from below (in the upper half-plane), then
the measure is identically zero.
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1 Introduction
In this paper we study the structure of vector-valued Borel measures μ solving the equation

div μ = ρ (1.1)

in the sense of distribution onℝd, where d ≥ 1 and ρ is a given (ℝ-valued) Borel measure onℝd. Many equa-
tions of the mathematical physics can be written in the form of (1.1), for instance the continuity equation.
A simple (but important) example of a measure satisfying (1.1) is a measure μγ induced by a Lipschitz curve
γ : [0, 1]→ ℝd, which is defined (via Riesz–Markov–Kakutani Theorem) by

⟨μγ , Φ⟩ ≡ ∫ℝd Φ ⋅ dμγ :=
1

∫
0

Φ(γ(t)) ⋅ γ(t) dt for all Φ ∈ C0(ℝd;ℝd).

Here C0(ℝd;ℝd) is the closure of the set of compactly supported continuous functions Cc(ℝd;ℝd)with respect
to the uniform norm. It is easy to see that μγ solves (1.1) with ρ := δγ(0) − δγ(1), where δx with x ∈ ℝd denotes
the Dirac measure concentrated at x.

Clearly every finite linear combination of measures of the form μγ still solves (1.1). More generally, let
Γ := Lip([0, 1];ℝd) denote the space of all Lipschitz functions f : [0, 1]→ ℝd, endowed with the sup-norm.
Let M (X;ℝd) denote the set of ℝd-valued Borel measures on a topological space X (for d = 1 we will simply
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write M (X) :=M (X;ℝ) and M+(X) for the set of non-negative Borel measures). Let |μ| denote the total vari-
ation of μ ∈M (ℝd;ℝd) and recall that ‖μ‖ := |μ|(ℝd) is a norm on M (ℝd;ℝd). Suppose that η ∈M+(Γ) is
such that ∫Γ ‖μγ‖ dη(γ) <∞. Then using Fubini’s Theorem one can show that the measure

μ := ∫
Γ

μγ dη(γ),

which is defined by
⟨μ, Φ⟩ := ∫

Γ

⟨μγ , Φ⟩ dη(γ) for all Φ ∈ C0(ℝd;ℝd),

solves (1.1) with
ρ := ∫

Γ

(δγ(0) − δγ(1)) dη(γ)
(which is defined similarly). Therefore a natural question iswhether the converse implicationholds true, i.e. if
any solution μ ∈M (ℝd;ℝd)of (1.1) (with some ρ ∈M (ℝd)) canbewritten as∫Γ μγ dη(γ) for some η ∈M+(Γ).

Decompositions of this kind were used in [20] in order to derive the so-called superposition principle for
the measure-valued solutions of the continuity equation (which was proved in [2, Theorem 12] for Euclidean
spaces). In turn, such a superposition principle was used in [5] in order to obtain certain uniqueness results
for solutions of the continuity equation. The main result of the present paper can be stated as follows:

Main Theorem. Let d = 2. Suppose that ρ ∈M (ℝd) and μ ∈M (ℝd;ℝd) solve equation (1.1). Then there exists
η ∈M+(Γ) such that

μ = ∫
Γ

μγ dη(γ), (1.2a)

|μ| = ∫
Γ

|μγ| dη(γ), (1.2b)

|div μ| = ∫
Γ

|div μγ| dη(γ) (1.2c)

and for η-a.e. γ ∈ Γ there exists γ̃ ∈ Γ which is injective on [0, 1) such that μγ = μγ̃.

For d > 2 in general such a decomposition is not possible due to examples provided in the celebrated paper
[19] (in particular, one can consider μ associated with an irrational winding of a torus). However in [19] it
was proved that for any d > 2 the measure μ can be decomposed into the so-called elementary solenoids in
such a way that (1.2) hold. Recently this decomposition result was generalized for metric spaces in [15, 16].
Note that for d > 2 the set of elementary solenoids is strictly larger than the set of measures induced by
Lipschitz curves. However, by the Main Theorem, all elementary solenoids are induced by Lipschitz curves
in the case d = 2.

Following [15], σ ∈M (ℝd;ℝd)will be called a cycle of μ if div σ = 0 and ‖μ‖ = ‖μ − σ‖ + ‖σ‖. Moreover,
μ will be called acyclic is σ = 0 is the only cycle of μ. It is known [15, 19] that any measure μ ∈M (ℝd;ℝd)
can be decomposed into cyclic and acyclic parts (see e.g. [15, Proposition 3.8]):

Theorem 1.1. For any μ ∈M (ℝd;ℝd) there exists a cycle σ of μ such that μ − σ is acyclic.

A curve γ ∈ Γ will be called simple if γ is injective on [0, 1). The acyclic part of μ solving (1.1) can be decom-
posed into measures induced by simple Lipschitz curves (see e.g. [15, Theorem 5.1]):

Theorem 1.2. If μ is acyclic, then there exists η ∈M+(Γ) such that (1.2a)–(1.2c) hold and for η-a.e. γ ∈ Γ there
exists simple γ̃ ∈ Γ such that μγ = μγ̃.

In view of Theorems 1.1 and 1.2 it is sufficient to prove the Main Theorem for ρ = 0. We provide two differ-
ent proofs of this result. Both proofs are based on a weak version of Poincaré Lemma: every divergence-free
measure μ in ℝ2 can be represented as μ = ∇⊥f , where ∇⊥ = (−∂2, ∂1) and f : ℝ2 → ℝ is a locally integrable
“potential” function with finite total variation.
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The first proof (inspired by a remark in [19]) exploits functional analytic tools and relies on Choquet’s
Theorem (see e.g. [17]), in view of which it suffices to characterize the extreme points of the unit ball in the
spaceof divergence-freemeasures.Using theweakversionof PoincaréLemmamentionedabove,we construct
a certain space of functions with finite total variation, denoted by FV(ℝ2), which is isometrically isomorphic
(via the mapping ∇⊥) to the space of divergence-free measures. Then it remains to characterize the extreme
points of the unit ball in FV(ℝ2). In order to do this we apply the Coarea Formula and a fine analysis of sets
of finite perimeter using the techniques from [1]. Eventually we show that the extreme points of the unit ball
in FV(ℝ2) are (normalized) characteristic functions of simple sets (see Definition 2.9 and Definition 2.13).
Using the results from [1] and [6], we show that the divergence-free measures associated to extreme points
are induced by closed simple Lipschitz curves.

In the secondproof of theMain Theoremwe construct the appropriatemeasure η directly. Firstwe decom-
pose the “potential” f of μ into a countable family of monotone functions fk ∈ FV(ℝ2) using a modification
of the result from [7] (which we prove in the Appendix). Then we construct the desired measure ηk for each
component fk directly using the Coarea Formula and ultimately construct η as the sum of ηk. An advantage
of this approach is that it provides amore detailed description of themeasure η in view of monotonicity of fk.

1.1 Applications to rigidity properties of vector-measures

As an application of our decomposition of vector-measures into measures induced by curves, we establish
a certain rigidity property for vector-valued measures (extending one of the results from [13]). Let Mloc(ℝd)
denote the space of locally finite Borel measures onℝd. Rigidity properties were introduced in the paper [13]
to study fine properties of the trace (in the Anzellotti’s sense [4]) of bounded, divergence-free vector fields
on a class of rectifiable sets. Here we consider the following generalization of [13, Definition 1.1]: recall
that, given μ ∈Mloc(ℝd;ℝd), by polar decomposition (see e.g. [3, Corollary 1.29]) there exists a unique
τ ∈ L1loc(|μ|;ℝ

d) with |τ(x)| = 1 for |μ|-a.e. x ∈ ℝd such that μ = τ|μ|.

Definition 1.3. Let F ⊂Mloc(ℝd;ℝd). We say that the linear rigidity property holds for F if for any c > 0 and
for any ν ∈ F such that
(i) ν({x = (x1, . . . , xd) ∈ ℝd : xd ≤ 0}) = 0,
(ii) div ν = 0 in the distributional sense,
(iii) τd(x) ≥ c|τ(x)| for |ν|-a.e. x ∈ ℝd,
one has that ν = 0.

For F consisting of locally finite vector measures which are absolutely continuous with respect to Lebesgue
measure (and have uniformly bounded density) the linear rigidity property was established in [13, Theo-
rem 1.2]. Using the decomposition of vector measure into measures induced by curves, we can prove the
following result, which holds true in every dimension:

Theorem 1.4. For any d ∈ ℕ, the linear rigidity property holds for F =Mloc(ℝd;ℝd).

2 Preliminaries and notation
In this section, we collect some useful and preliminary results and we set some notations that will be used
throughout the paper.

2.1 General notation

The d-dimensional Euclidean space will be denoted by ℝd, with d ≥ 1. Usually, Ω ⊂ ℝd stands for a generic
open set. The indicator (also characteristic) function of a set A is denoted by 𝟙A and the complement by Ac.
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The Lebesgue measure onℝd will be L d while the k-dimensional Hausdorff measure, for k ≤ d, will be H k.
If (X, ‖ ⋅ ‖) is a normed space, we will denote by BX1 the closed unit ball with center 0 and radius 1, i.e.

BX1 := {x ∈ X : ‖x‖ ≤ 1}.

If U ⊂ X, the notation Ū will denote the closure of U.
If μ is a measure, the restriction of μ to some measurable subset A is μ⌞A. The space of p-integrable func-

tions (resp. locally p-integrable functions) on Ω will be denoted in the usual way by Lp(Ω) (resp. Lploc(Ω)), for
1 ≤ p ≤ +∞, and the symbol ‖ ⋅ ‖p will stand for the usual norm in the former space.

If X is a topological space, thenM (X;ℝd)will denote the set ofℝd-valued Borelmeasures on X. For d = 1
let M (X) :=M (X;ℝ) and let M+(X) denote the set of [0, +∞]-valued Borel measures. For any μ ∈M (X;ℝd)
let |μ| ∈M+(X) denote the associated total variation measure. Recall that

‖μ‖M := |μ|(X)

is a norm on M (X;ℝd) with respect to which this space is complete (see e.g. [8]).
If X is a locally compact and separablemetric space, thenM (X;ℝd) can be identified (by Riesz–Markov–

Kakutani Theorem) with the dual of C0(ℝd;ℝd), where C0(ℝd;ℝd) is the closure of the set of compactly
supported continuous functions Cc(ℝd;ℝd)with respect to the uniform norm. By default in this case we will
endow M (X;ℝd) with the weak-∗ topology. Note that the total variation norm on M (X;ℝd) coincides with
the norm induced by duality with C0(X;ℝd) (see e.g. [3, Theorem 1.54]).

Recall also the definition of push-forward of ameasure μ on some space X through aBorelmap f : X → Y:
we denote by f#μ the measure on Y defined by (f#μ)(A) := μ(f−1(A)) for any Borel set A ⊂ Y. It is well known
that the measure f#μ satisfies the following equality for every bounded Borel function ϕ : Y → ℝ:

∫
X

ϕ(f(x)) dμ(x) = ∫
Y

ϕ(y) d(f#μ)(y).

The divergence of a vector-valued measure μ ∈M (ℝd;ℝd) is understood in the sense of distributions, i.e.

⟨div μ, ϕ⟩ := − ∫ℝd ∇ϕ(x) dμ(x) for all ϕ ∈ C∞c (ℝd).
2.2 BV functions, perimeters, tangents

Let Ω ⊂ ℝd be an open set.

Definition 2.1 (BV functions, [3, Definition 3.1]). We say that a function u ∈ L1(Ω)hasbounded variation inΩ
if the distributional derivative of u is representable by a finite Radon measure in Ω, i.e.

∫
Ω

u ∂ϕ
∂xi

dx = −∫
Ω

ϕd(Diu) for every ϕ ∈ C∞c (Ω) and for every i = 1, . . . , d
for some ℝd-valued vector measure (D1u, . . . , Ddu) in Ω. The space of functions of bounded variation in Ω
is denoted by BV(Ω).

The space BV(Ω) is a normed space under the norm

‖u‖BV := ‖u‖1 + ‖Du‖M .

Definition 2.2 (Variation, [3, Definition 3.4]). Let u ∈ L1loc(Ω). The variation V(u, Ω) of u in Ω is defined by

V(u, Ω) := sup{∫
Ω

u(x)divϕ(x) dx : ϕ ∈ C∞c (Ω;ℝd), ‖ϕ‖∞ ≤ 1}.
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The variation enjoys several properties (see e.g. [3, Remark 3.5]): the map u → V(u, Ω) is l.s.c. in the
L1loc(Ω)-topology. On the other hand, for fixed u ∈ L1loc(Ω), it is possible to define V(u, A) for any open
set A ⊂ Ω and then, via the Carathéodory construction, extend V(u, ⋅ ) to a Borel measure that will still
be denoted by V(u, ⋅ ). Such measure has finite total variation in Ω if and only if u ∈ BV(Ω) and in this case
V(u, Ω) = |Du|(Ω) (see [3, Proposition 3.6]). For simplicity, we will simply write V(u) to denote the variation
in the full space V(u,ℝd).

We recall that, as for Sobolev spaces, BV functions enjoy some higher integrability properties: these are
usually expressed via embedding theorems. For our purposes, the following general result will be needed.

Theorem 2.3 (BV embeddings, [3, Theorem 3.47]). Let d ≥ 1. Then for any function u ∈ L1loc(ℝ
d) satisfying

V(u) <∞ there exists a unique constant m ∈ ℝ such that

‖u − m‖L1∗ (ℝd) ≤ γV(u)
for some universal constant γ = γ(d), where

1∗ := {{
{

d
d−1 , d > 1
∞, d = 1.

(2.1)

If u ∈ L1(ℝd), then m = 0, u ∈ BV(ℝd) and hence one has ‖u‖L1∗ (ℝd) ≤ γV(u). In particular, the embedding
BV(ℝd) → L1∗ (ℝd) is continuous.
Definition 2.4 (Sets of finite perimeter, [3, Definition 3.35]). A Lebesgue measurable set E ⊂ ℝd is said to be
of finite perimeter in Ω ⊂ ℝd if the variation of 𝟙E in Ω is finite and the perimeter of E in Ω is

P(E, Ω) := V(𝟙E , Ω).

We recall also theCoarea Formula for functions of bounded variation (see [3, Theorem3.40]): for any function
u ∈ L1(Ω) it holds

V(u, Ω) := ∫ℝ P({x ∈ Ω : u(x) > t}) dt,

where the equality is understood in the sense that the right-hand side is finite if and only if the left-hand side
is finite and in this case their values coincide and u ∈ BV(Ω).

We also recall the isoperimetric inequality, see [3, Theorem 3.46]: for any set E ⊂ ℝd, d > 1, of finite
perimeter either E or ℝd \ E has finite Lebesgue measure and there exists a universal constant c = c(d) such
that

min{L d(E),L d(ℝd \ E)} ≤ c(d)P(E)
d
d−1 . (2.2)

We now recall the definition of approximate tangent space to a rectifiable set. Let k ∈ ℕwith k ≥ 1. If μ is
a Radon measure onℝd and E ⊂ ℝd is a Borel set, we define, for x ∈ ℝd and r > 0,

μx,r(E) := (Φx,r)#μ(E), where Φx,r(y) :=
y − x
r

.

If M is a locally H k-rectifiable set, then we define the approximate tangent space to M at x, denoted by
Tan(M, x), to be the set of limit points of the measures r−kμx,r as r ↓ 0 in the weak-∗ topology. It is possi-
ble to prove (see, e.g. [14, Theorem 10.2]) that for H k-a.e. x ∈ M there exists a unique k-plane πx such that
Tan(M, x) = {H k⌞πx }. We further emphasize that the approximate tangent space to a smooth set is related to
the ordinary tangent space, in the sense of differential geometry. More precisely, we have the following:

Proposition 2.5 ([3, Proposition 2.88]). Let ϕ : ℝk → ℝd be a one-to-one Lipschitz function and let D ⊂ ℝk be
an L k-measurable set. Then E = Φ(D) satisfies

Tan(E, x) = {H k⌞dϕϕ−1(x)(ℝk)} for H k-a.e. x ∈ E,

where dϕ is the usual differential of ϕ.
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2.3 Fine properties of sets of finite perimeter

Given a Lebesgue measurable set E ⊆ ℝd, we define the upper/lower densities at x by

D(E, x) := lim sup
r→0 L d(E ∩ Br(x))

L d(Br(x))
, D(E, x) := lim inf

r→0 L d(E ∩ Br(x))
L d(Br(x))

,

and D(E, x) denotes the common value of D(E, x) and D(E, x)whenever they are equal. In particular, we will
denote by Et, for t ∈ [0, 1], the set of points of density t

Et := {x ∈ ℝd : D(E, x) = t}.

The essential exterior of E is E0 and the essential interior of E is E1. Ultimately, the essential boundary of E
is

∂eE := ℝd \ (E0 ∪ E1).

Following [3, Definition 3.54], we define the reduced boundary of a set E ⊂ ℝd to be the set of points
x ∈ supp |D𝟙E| such that the limit

νE(x) := lim
r↓0 D𝟙E(Br(x))
|D𝟙E|(Br(x))

exists inℝd and satisfies |νE(x)| = 1. We denote byFE the reduced boundary and the function νE : FE → 𝕊d−1
is called generalized inner normal to E.

The celebrated De Giorgi’s Theorem can thus be stated as follows:

Theorem 2.6 (De Giorgi, [3, Theorem 3.59]). Let E be a Lebesgue measurable subset of ℝd of finite perimeter
in ℝd. Then FE is countably (d − 1)-rectifiable and |D𝟙E| = H d−1⌞FE. In addition, the approximate tangent
space to E at x coincide with the orthogonal hyperplane to νE(x) for H d−1-a.e. x ∈ FE, i.e.

Tan(FE, x) = ν⊥E (x).
The link between the reduced boundary, the essential boundary and the set of points of density 1

2 is a remark-
able theorem, due to Federer (see [3, Theorem 3.61]):

Theorem 2.7 (Federer). If E ⊂ ℝd has finite perimeter, then

FE ⊂ E
1
2 ⊂ ∂eE

and H d−1(∂eE \ E 1
2 ) = 0.

In particular, if E ⊂ ℝd has finite perimeter, then H d−1(E 1
2 ) = H d−1(FE) <∞. However it is known (see e.g.

[12, Theorem 6 (2)]) that the condition H d−1(E 1
2 ) <∞ is not sufficient for E ⊂ ℝd to have finite perimeter.

Remark 2.8. Taking into account De Giorgi’s Theorem 2.6, we can write the Coarea Formula for a function
u ∈ BV(ℝd) in the following way (see e.g. [3, Formula (3.63)]:

|Du|(B) = ∫ℝ H d−1(∂e{u ≥ t} ∩ B) dt for every Borel set B ⊆ ℝd . (2.3)

2.4 Indecomposable and simple sets

From [1] we recall the following definitions.

Definition 2.9 (Decomposable and indecomposable sets). A measurable set E ⊆ ℝd of finite perimeter is
called decomposable if there exist two measurable sets A, B ⊆ ℝd with strictly positive measure such that
E = A ∪ B, A ∩ B = 0 and P(E) = P(A) + P(B). A set E which is not decomposable is called indecomposable.

The following theorem shows that any set with finite perimeter can be decomposed into at most countably
many indecomposable sets [1, Theorem 1].
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Theorem 2.10 (Decomposition Theorem). Let E be a set with finite perimeter inℝd. Then there exists a unique
(up to permutations) at most countable family of pairwise disjoint indecomposable sets {Ei}i∈I such that
L d(Ei) > 0, E = ⋃i∈I Ei and P(E) = ∑i P(Ei). Moreover, for any indecomposable F ⊆ E with L d(F) > 0 there
exists a unique j ∈ I such that L d(F \ Ej) = 0.

Definition 2.11. The sets Ei defined above are called the M-connected components of E. The set {Ei}i∈I is
denoted by CCM(E), without loss of generality I ⊆ {0, 1, 2, . . .} and 0 ∈ I.

By Theorem 2.10 the M-connected components of E are maximal in the following sense: any indecompos-
able F ⊆ E with L d(F) > 0 is contained in exactly one of the M-connected components of E, up to Lebesgue
negligible subsets.We refer the reader to [1] for a comparison between indecomposability and the topological
notion of connectedness.

The statement of Decomposition Theorem can be slightly strengthened with the following simple result
from [1, Proposition 3] (see also [1, equation (10), Remark 1]):

Proposition 2.12. Let E ⊆ ℝd be a set with finite perimeter. Let CCM(E) = {Ei}i∈I , where I is at most countable.
Then P(⋃i∈I1∪I2 Ei) = P(⋃i∈I1 Ei) + P(⋃i∈I2 Ei)for any disjoint sets I1, I2 ⊆ I.
Definition 2.13 (Holes, saturation, simple sets). Let E be an indecomposable set. Any M-connected compo-
nent ofℝd \ E with finite measure is called a hole of E. The saturation sat(E) of E is defined as union of E and
all its holes. The set E is called saturated if sat(E) = E. Any indecomposable saturated subset of ℝd is called
simple.

Observe that simple sets are necessarily of finite perimeter; for d > 1, the only simple set E with L d(E) =∞
is E = ℝd.

2.5 Further facts on indecomposable and simple sets

We finally collect in this paragraph some useful, different characterization of indecomposable and of simple
sets. We begin by considering indecomposable sets and we present a lemma which will be useful later.

Lemma 2.14. Let F ⊆ E ⊂ ℝd be two sets of finite perimeter. Then

∂eF ⊆ ∂eE mod H d−1 ⇐⇒ H d−1(∂eF ∩ E1) = 0. (2.4)

Furthermore, if E is indecomposable and one (hence both) of (2.4) holds true, thenL d(F) = 0 orL d(E \ F) = 0.

Proof. Let us show first the equivalence. First notice that from F ⊂ E, together with the monotonicity of the
Lebesgue measure, we deduce E0 ⊂ F0. Hence, the following equalities hold modulo H d−1:

∂eF = (∂eF ∩ E1) ∪ (∂eF ∩ E0) ∪ (∂eF ∩ ∂eE) = (∂eF ∩ E1) ∪ (∂eF ∩ ∂eE). (2.5)

From (2.5) we easily get the equivalence: on the one hand, if ∂eF ⊆ ∂eE, then we must have

(∂eF ∩ E1) ∪ (∂eF ∩ ∂eE) = ∂eF ⊂ ∂eE mod H d−1
and therefore the only possibility is that H d−1(∂eF ∩ E1) = 0. Viceversa, if H d−1(∂eF ∩ E1) = 0, from (2.5)
we get

∂eF = (∂eF ∩ E1) ∪ (∂eF ∩ ∂eE) = (∂eF ∩ ∂eE) ⊂ ∂eE mod H d−1,
which is what we wanted. Let us now turn to prove that there are no non-trivial subsets F ⊂ E satisfying
conditions (2.4) if E is indecomposable. Let F ⊆ E be a set of finite perimeter with ∂eF ⊆ ∂eE mod H d−1.
Then it is easy to check that

∂e(E \ F) ⊂ ∂eE \ ∂eF mod H d−1. (2.6)

Let us show (2.6): on the one hand, it is clear that ∂e(E \ F) ⊂ ∂eE. On the other hand, we show that

H d−1(∂e(E \ F) ∩ ∂eF) = 0.
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Indeed, H d−1-a.e. x ∈ ∂e(E \ F) satisfies D(E \ F, x) = 1

2 by De Giorgi–Federer’s Theorem 2.7. Similarly,
H d−1-a.e. x ∈ ∂eF satisfies D(F, x) = 1

2 : thus, for H d−1-a.e. x ∈ (∂e(E \ F) ∩ ∂eF) we have
D(E, x) = D(F, x) + D(E \ F, x) = 12 +

1
2 = 1,

which contradicts the fact that ∂e(E \ F) ∩ ∂eF ⊆ ∂eE. Having shown (2.6), we get, taking Hausdorffmeasure
of both sides,

H d−1(∂e(E \ F)) ≤ H d−1(∂eE \ ∂eF) = H d−1(∂eE) −H d−1(∂eF)
or equivalently

P(E \ F) + P(F) ≤ P(E).

The other inequality is trivial by subadditivity of the perimeter, hence

P(E \ F) + P(F) = P(E),

which implies the desired conclusion, being E indecomposable.

Proposition 2.15 (Dolzmann–Müller). A set E ⊂ ℝd of finite perimeter is indecomposable if and only if for any
u ∈ BVloc(ℝd) with V(u) <∞ the following implication holds true:

|Du|(E1) = 0 ⇐⇒ ∃c ∈ ℝ : : u(x) = c for a.e. x ∈ E.

Proof. Let E be indecomposable and u ∈ BVloc(ℝd) a function with |Du|(E1) = 0. Set v := u𝟙E ∈ BVloc(ℝd)
and observe that, by Coarea Formula (2.3), we have

|Dv|(E1) = ∫ℝ H d−1(∂e({u ≥ t} ∩ E) ∩ E1) dt ≤ ∫ℝ H d−1((∂e{u ≥ t} ∪ ∂eE) ∩ E1) dt,
where we have used the elementary inclusion ∂e({u ≥ t} ∩ E) ⊂ ∂e{u ≥ t} ∪ ∂eE. Taking into account that
∂eE ∩ E1 = 0, we can continue the above chain of inequalities as follows:

|Dv|(E1) ≤ ∫ℝ H d−1(∂e{u ≥ t} ∪ ∂eE) ∩ E1) dt = ∫ℝ H d−1(∂e{u ≥ t} ∩ E1) dt = |Du|(E1) = 0
by the Coarea Formula applied on u. Thus we have H d−1(∂e({u ≥ t} ∩ E) ∩ E1) = 0 for a.e. t ∈ ℝ. Now we
apply Lemma 2.14 to F := {u ≥ t} ∩ E ⊂ E: since E is indecomposable, we deduce

L d({u ≥ t} ∩ E) = 0 or L d({u < t} ∩ E) = 0

for a.e. t ∈ ℝ, which is easily seen to be equivalent to u being constant in E.

Concerning simple sets, we want to prove that simplicity for a set E with |E| <∞ is equivalent to indecom-
posability both of E and of Ec. We need the following preliminary:

Lemma 2.16. Let E ⊂ ℝd, d > 1, be a set of finite perimeter and assume L d(E) = +∞. Let CCM(E) = {Ei}i∈I be
the family of its indecomposable components. Then there exists a unique j ∈ I such that L d(Ej) = +∞.

Proof. The statement is a consequence of the convergence of the series ∑i∈I P(Ei) and of the isoperimetric
inequality. Indeed, by contradiction, let us assume that for every i ∈ I it holds L d(Ei) <∞. In particular, for
every i ∈ I it has to be L d(ℝd \ Ei) = +∞ and hence, by the isoperimetric inequality we would get

L d(E) = L d(⋃
i∈I Ei) ≤∑i∈I L d(Ei) ≤ Cd∑

i∈I P(Ei) ≤ CdP(E) <∞,
which is absurd. Hence there must exist at least one element j ∈ I such that L d(Ej) = +∞. Let us now prove
the uniqueness of j: assume that there exists j1, j2 ∈ I such that L d(Ej1 ) = L d(Ej2 ) = +∞. Since

P(Ej1 ) + P(Ej2 ) ≤∑
i∈I P(Ei) = P(E) < +∞,
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we have that P(Ej1 ) <∞ and P(Ej2 ) <∞. Furthermore, by the definition of indecomposable components the
sets Ej1 and Ej2 are (essentially) disjoint, i.e. Ej1 ∩ Ej2 = 0 mod L d. In particular, we deduce that

Ej2 ⊂ Ecj1 ⇒ +∞ = L d(Ej2 ) ≤ L d(Ecj1 )

so L d(Ej1 ) = L d(Ecj1 ) = +∞, which is a contradiction with the fact that P(Ej1 ) <∞ (and the isoperimetric
inequality). Thus j ∈ I has to be unique and the proposition is proved.

We are now ready to present the following characterization of simple sets:

Proposition 2.17. Let E ⊂ ℝd, d > 1, be a set with finite positivemeasure,L d(E) ∈ (0, +∞). The set E is simple
if and only if E and Ec are indecomposable.

Proof. Assume that E is simple. Then it is clearly indecomposable; thus it is sufficient to show that Ec is inde-
composable. Since L d(E) ∈ (0, +∞), we have |Ec| = +∞. Letting CCM(Ec) := {Ui}i∈I be the indecomposable
components of Ec, by Lemma 2.16 there exists one and only one j ∈ I such that L d(Uj) = +∞. So if ♯I > 1,
the other components {Ui}i ̸=j of Ec must have finite measure, i.e. they are holes of E. This contradicts the
simplicity of the set E: hence ♯I = 1 and Ec is thus indecomposable.

To prove the converse, let us now assume that L d(E) ∈ (0, +∞) and both E and Ec are indecomposable
and we want to prove that E has no holes. By definition a hole of E is a indecomposable component of Ec of
finite measure. Being indecomposable, Ec has a unique indecomposable component, which coincides with
itself. ButL d(Ec) =∞ since E has finitemeasure, and this implies that E has no holes, hence it is simple.

Remark 2.18. The necessary condition in Proposition 2.17 holds even if L d(E) = +∞ if d > 1: indeed, as
already observed, if E is simple andL d(E) = +∞, then E = ℝd, hence the claim is trivial, being the empty set
indecomposable.

2.6 Jordan curves inℝ2
In this subsection we collect some results about Jordan curves in the planeℝ2.

Definition 2.19. A set C ⊆ ℝ2 is called a Jordan curve if C = γ([a, b]) for some a, b ∈ ℝ (with a < b) and some
continuous map γ : [a, b]→ ℝ2, one-to-one on [a, b) and such that γ(a) = γ(b).

Remark 2.20. If H 1(C) <∞, then γ can be chosen in such a way that it is Lipschitz (see [1, Lemma 3]), and
in this case Γ is called a rectifiable Jordan curve.

Without any loss of generality, when dealing with Jordan curves, we will always suppose [a, b] = [0, 1]. The
following result, borrowed from [1], will play a crucial role in the paper.

Theorem 2.21 ([1, Theorem 7]). Let E ⊆ ℝ2 be a simple set with L 2(E) ∈ (0, +∞). Then E is essentially
bounded and ∂eE is equivalent, up to an H 1-negligible set, to a rectifiable Jordan curve. Conversely, int(C)
is a simple set for any rectifiable Jordan curve C.

Here int(C) denotes the bounded connected component of ℝ2 \ C, given by the celebrated Jordan Theorem
(see e.g. [10, Proposition 2B.1]).

2.7 Extreme points and Choquet theory

In this subsection we recall the main facts about extreme points of compact, convex sets in normed spaces.
Standard references are [17, 18].

Let X be a topological vector space and let K ⊂ X. A point x ∈ K is an extreme point of K if

y, z ∈ K : t ∈ [0, 1], x = (1 − t)y + tz ⇒ x = y = z.

The set of extreme points of K will be denoted by ext K.
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Remark 2.22 (The set of extreme points is a Borel set). Recall that ext K is a Borel subset of K if the topology
of X is induced by some metric ρ. Indeed, the set K \ ext K can be written as⋃n Cn, where

Cn := {
y + z
2 : y, z ∈ K, ρ(y, z) ≥ 1

n}
for every n ∈ ℕ with n ≥ 1.

Given that each set Cn is a closed subset of X, we conclude that ext K is Borel.

In the case K is a convex, compact set the (closed convex hull of the) set of extreme points of K coincides with
the set K itself, as the following theorem states:

Theorem 2.23 (Krein–Milman). If K ⊂ X is non-empty, compact, convex set, then K = co(ext(K)).

We recall that, in a vector space X, the convex hull co(A) of a set A ⊂ X is the intersection of all convex sets
containing A.

Definition 2.24 (Vector-valued integration). Let μ be a measure on a non-empty set Q. Let f : Q → X be an
X-valued function such that (Λf)(q) := Λ(f(q)) is μ-integrable for every Λ : X → ℝ linear and continuous.
If there exists y ∈ X such that

Λy = ∫
Q

Λf dμ

for every Λ : X → ℝ linear and continuous, thenwe say that y is the integral of f with respect to μ andwewrite

∫
Q

f dμ := y.

Theorem 2.25 (Representation of the convex hull). Let Q ⊂ X be a compact set and let H := co(Q). Assume
that H = co(Q) is compact as well. Then

y ∈ H ⇐⇒ ∃μ ∈P(Q) : y = ∫
Q

x dμ(x).

One of the fundamental results in functional analysis and convex analysis is the following theorem, which
can be obtained combining Theorem 2.23 with Theorem 2.25:

Theorem 2.26 (Choquet [17]). Let X be a metrizable topological vector space and let 0 ̸= K ⊂ X be convex and
compact. Then for any point x ∈ K there exists a Borel probability measure μ on X (possibly depending on x),
which is concentrated on ext K and satisfies

x = ∫
ext K

y dμ(y),

where the integral is understood in the sense of Definition 2.24, i.e. explicitly

Λ(x) = ∫
ext K

Λ(y) dμ(y) for every Λ : X → ℝ linear and continuous.

Remark 2.27 (Extreme points and isomorphisms). Let (Y, ‖ ⋅ ‖Y ) be a normed space. Suppose that ϕ : X → Y
is a linear isomorphism between X and Y. Then for any set A ⊂ X it holds

extϕ(A) = ϕ(ext A).

Indeed, consider z ∈ extϕ(A). Being ϕ one-to-one and onto, there exists a unique a ∈ A such that z = ϕ(a).
We want to prove that a ∈ ext A: let

f, g ∈ A : λf + (1 − λ)g = a.

Since ϕ is linear, we have
λϕ(f) + (1 − λ)ϕ(g) = ϕ(a) = z,

but z was an extreme point, hence ϕ(f) = ϕ(g) = z, which implies f = g = a, i.e. a is also extreme. An analo-
gous proof shows that if b ∈ ext A, then ϕ(b) is also extreme of ϕ(A).
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3 Extreme points of the unit ball of BV functions inℝd
Let us consider the Banach space X := (BV(ℝd), ‖ ⋅ ‖BV) and let us characterize extreme points of BX1 , the
closed unit ball.

Proposition 3.1 (Extreme points of unit ball in BV(ℝd)). A function f ∈ X is an extreme point of BX1 if and only
if there exists an indecomposable set E ⊂ ℝd of positive, finite perimeter and positive, finite measure and a
constant σ ∈ {±1} such that

f(x) = σ 𝟙E(x)
‖𝟙E‖BV

, L d-a.e. x ∈ ℝd .

We will need the following auxiliary lemma.

Lemma 3.2. Let f ∈ BVloc(ℝd) and let, for any λ ∈ ℝ,

f+λ := max{f − λ, 0} and f−λ := f − f+λ = min{λ, f}.

Then for every open set Ω ⋐ ℝd it holds

|Df|(Ω) = |D(f+λ )|(Ω) + |D(f−λ )|(Ω). (3.1)

Proof. To beginwe consider the case λ = 0 andwenotice that, in this case, the decomposition of f into f+λ + f−λ
coincides with the standard decomposition into positive/negative part:

f+0 = f+ and f−0 := −f−.
If f ∈ W1,1

loc (ℝ
d), then, fixed Ω ⋐ ℝd, it is enough to apply the Chain Rule Theorem [9, Section 4.2.2, Theo-

rem 4 (iii)]. For the general case, consider a sequence (fn)n ⊂ W1,1(Ω) ∩ C∞(Ω)with fn → f strongly in L1(Ω)
and |Dfn|(Ω)→ |Df|(Ω) (such a sequence can be obtained using Anzellotti–Giaquinta’s Theorem, see e.g.
[9, Section 5.2.2]). Then for every n ∈ ℕ it holds

|Dfn|(Ω) = |D(f+n )|(Ω) + |D(f−n )|(Ω),
hence

|Df|(Ω) = lim
n
|Dfn|(Ω) = lim inf

n
|Dfn|(Ω)

= lim inf
n
(|D(f+n )|(Ω) + |D(f−n )|(Ω))

≥ lim inf
n
|D(f+n )|(Ω) + lim inf

n
|D(f−n )|(Ω)

≥ |D(f+)|(Ω) + |D(f−)|(Ω),
where the last inequality is a consequence of the l.s.c. of the total variation, since f+n → f+ and f−n → f−
in L1(Ω). The statement is thus proved for λ = 0; to obtain the general case, we can apply the above claim
to the function g := f − λ ∈ BVloc(ℝd), noticing that

g+ = f+λ , g− = λ − f−λ
and

Dg = Df, Dg+ = Df+λ , Dg− = −Df−λ ,
whence (3.1).

We now show the following lemma, which ensures that extreme points lie in the set of normalized indicators
of sets of finite perimeter. Recall that for any set of finite perimeter E ⊂ ℝd, either E or Ec has finite Lebesgue
measure by the isoperimetric inequality (2.2).

Lemma 3.3. Let f ∈ X be an extreme point of the closed unit ball BX1 . Then there exist a set E ⊆ ℝd with positive,
finite perimeter and positive, finite measure L d(E) <∞ and a constant σ ∈ {±1} such that f = σ 1‖𝟙E‖BV𝟙E.



890 | P. Bonicatto and N. A. Gusev, On the structure of divergence-free measures onℝ2
Proof. We divide the proof into three steps.

Step 1. Any extreme function has constant sign. Let f ∈ X be extreme of BX1 . Then, by standard facts, we have
necessarily ‖f‖BV = 1. Let us decompose f into positive and negative part as f = f+ − f−. By the very definition
of Lebesgue integral for signed functions we have that

‖f‖1 = ‖f+‖1 + ‖f−‖1,
while, by Lemma 3.2 with λ = 0, we have that

‖Df‖M = ‖Df+‖M + ‖Df−‖M .

Adding up the two equalities, we find out that

‖f‖BV = ‖f+‖BV + ‖f−‖BV
and this can be used to decompose f into a convex linear combination of two signed functions with unit
BV norm

f = ‖f+‖BV ⋅ f+
‖f+‖BV + ‖f−‖BV ⋅ −f−‖f−‖BV .

Hence any extremal point is necessarily a function with constant sign and, without any loss of generality,
we consider f ≥ 0.

Step2. Any extreme function attains atmost one non-zero value. Wenowwould like to prove that f(x) ∈ {0, α}
for some α > 0 for L d- a.e. x ∈ ℝd. Suppose by contradiction that it is not true: hence, there exist two
points x1, x2 such that f(x1) ̸= 0, f(x2) ̸= 0 and also f(x1) ̸= f(x2). Without any loss of generality, suppose
f(x1) < f(x2). We can also assume that x1, x2 are Lebesgue points of f (this property being satisfied almost
everywhere by standard facts). Consider an arbitrary λ ∈ (f(x1), f(x2)) and define the non-negative functions

f+λ := max{f − λ, 0} and f−λ := f − f+λ = min{λ, f}.

By Lemma 3.2 we deduce
‖Df‖M = ‖D(f+λ )‖M + ‖D(f−λ )‖M ,

while from the pointwise equality f+λ + f−λ = f , together with non-negativity, we get
‖f‖1 = ‖f+λ ‖1 + ‖f−λ ‖1,

and thus
‖f‖BV = ‖f+λ ‖BV + ‖f−λ ‖BV.

In particular, we can decompose

f = ‖f+λ ‖BV ⋅ f+λ
‖f+λ ‖BV⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟∈ BX1
+‖f−λ ‖BV ⋅ f−λ

‖f−λ ‖BV⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟∈ BX1
. (3.2)

Notice that the choice of λ ∈ (f(x1), f(x2)) together with the fact that f(x1) ̸= 0 ̸= f(x2) grant that the decom-
position (3.2) is non-trivial and well-posed, in the sense that:
(1) the functions f±λ are linearly independent: if af+λ + bf−λ = 0 for a, b ∈ ℝ, then evaluating at x1 we deduce

bf(x1) = 0 ⇒ b = 0

and evaluation at x2 yields
a(f(x2) − λ) = 0 ⇒ a = 0,

(2) we have ‖f±λ ‖BV > 0: indeed, if it were e.g. ‖f−λ ‖BV = 0, then f = f+λ a.e. which means

f(x) ≥ λ for L d-a.e. x ∈ ℝd . (3.3)

On the other hand, x1 is a Lebesgue point of f with Lebesgue value f(x1) < λ, so by definition

λ > f(x1) = limr→0 −∫
Br(x1) f(y) dy ≥ limr→0 −∫Br(x1) λ dy = λ

(where “≥” follows from (3.3)), which is a contradiction.
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Thus (3.2) is a non-trivial, convex decomposition of f which contradicts extremality: the contradiction stems
from the assumption that there exists two points x1, x2 such that f(x1) ̸= 0, f(x2) ̸= 0 and f(x1) ̸= f(x2). So we
must have f(x) ∈ {0, α} for a.e. x for some α > 0.

Step 3. Any extreme function is an indicator function. From Step 2 we immediately deduce

f(x) = α𝟙E , where E := {x ∈ ℝd : f(x) = α}.

The set E hasfinite perimeter because f ∈ BV(ℝd) and, being ‖f‖BV = 1,wededuce that necessarily α = ‖𝟙E‖−1BV.
This concludes the proof.

We can now prove the main result of this section.

Proof of Proposition 3.1. We split the proof into two steps.

Sufficiency. Let E ⊂ ℝd be a set of positive, finite perimeter and assume it is indecomposable. Let c = 1
P(E) and

let us prove that f := c𝟙E is an extreme point of BX1 . Assume that for some functions g, h ∈ BX1 and λ ∈ [0, 1]
we can write

f = λg + (1 − λ)h

and let us prove that necessarily g = c𝟙E and h = c𝟙E. Since ‖f‖BV = 1, we have that

1 ≤ λ‖g‖BV + (1 − λ)‖h‖BV

and we claim that actually equality holds. If it were

1 < λ‖g‖BV + (1 − λ)‖h‖BV,

then we would get, being f, g ∈ BX1 ,

1 < λ‖g‖BV + (1 − λ)‖h‖BV ≤ λ + (1 − λ) = 1,

a contradiction. In a complete similar way, one can prove that ‖g‖BV = 1 = ‖h‖BV. All in all, we can represent

𝟙E = ϕ + ψ (3.4)

with
‖𝟙E‖BV = ‖ϕ‖BV + ‖ψ‖BV (3.5)

being ϕ = c−1λg and ψ = c−1(1 − λ)h. Notice that ϕ, ψ have the same sign a.e., otherwise we would have

∫ℝd |ϕ(x) + ψ(x)| dx < ∫ℝd |ϕ(x)| + |ψ(x)| dx,
which would yield

‖ϕ + ψ‖BV = ‖ϕ + ψ‖1 + ‖D(ϕ + ψ)‖M < ‖ϕ‖1 + ‖ψ‖1 + ‖Dϕ‖M + ‖Dψ‖M = ‖ϕ‖BV + ‖ψ‖BV,

contradicting (3.5). Since 𝟙E = ϕ + ψ, we have ϕ, ψ ≥ 0 a.e. and therefore

ϕ = ψ = 0 a.e. on Ec . (3.6)

Notice furthermore that it holds

|D𝟙E| = |Dϕ| + |Dψ| as measures inℝd . (3.7)

Indeed, by (3.4) and the triangle inequality we get |D𝟙E| ≤ |Dϕ + Dψ| ≤ |Dϕ| + |Dψ|; the converse inequality
then follows exploiting (3.5). In particular, computing (3.7) on the Borel set E1 it follows

|Dϕ|(E1) + |Dψ|(E1) = |D𝟙E|(E1) = 0,
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where the last equality follows from De Giorgi’s Theorem. Hence

|Dϕ|(E1) = 0 = |Dψ|(E1).

By Proposition 2.15 and by the indecomposability of E, there exist constants c1, c2 ∈ ℝ such that

ϕ(x) = c1, ψ(x) = c2 a.e. in E. (3.8)

In particular, combining (3.8) together with (3.6), we obtain

ϕ(x) = c1𝟙E(x), ψ(x) = c2𝟙E(x) a.e. inℝd

and this in turn implies that
g = α𝟙E(x)

for some α ∈ ℝ. Being ‖g‖BV = 1, we obtain that the constant has to be

α = 1
P(E)

.

One can argue similarly with h and the conclusion is now achieved: we have proved that the only convex
combination of elements in BX1 representing f is the trivial one, i.e. f is an extreme point of BX1 .

Necessity. By Lemma3.3, we can already infer that there exist a set E ⊆ ℝd with finite perimeter and σ ∈ {±1}
such that f = σ 1‖𝟙E‖BV𝟙E a.e. with respect to the Lebesgue measure. Now we prove that E is indecomposable.
Suppose by contradiction that E is a decomposable set, i.e. E = A ∪ B with A ∩ B = 0 and P(E) = P(A) + P(B).
Since by additivity of the Lebesgue measure it holds L d(E) = L d(A) +L d(B), we have

‖𝟙E‖BV = ‖𝟙A‖BV + ‖𝟙B‖BV.

Hence
1
‖𝟙E‖BV
𝟙E =
‖𝟙A‖BV
‖𝟙E‖BV

𝟙A
‖𝟙A‖BV⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟∈ BX1 +

‖𝟙B‖BV
‖𝟙E‖BV

𝟙B
‖𝟙B‖BV⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟∈ BX1

is a representation of f as a non-trivial convex combination of elements of BX1 , contradicting extremality.
Therefore if 𝟙EP(E) is an extreme point then E has to be indecomposable.

4 Extreme points of the unit ball of FV functions inℝd
Definition 4.1. We define the space FV(ℝd) as the function space

FV(ℝd) := {f ∈ L1∗ (ℝd) : V(f) < +∞}.
We recallV(f) = V(f,ℝd) is the variation of a locally integrable function, seeDefinition 2.2,while1∗ is defined
in (2.1).

Remark 4.2. It is easy to see that BV(ℝd) ⊂ FV(ℝd) ⊂ BVloc(ℝd) and both inclusion are strict. Indeed, any
constant function is certainly locally integrable with zero total variation, but it is not in Lp(ℝd) for any p.
On the other hand, the function f : ℝd → ℝ defined by

f(x) = g(|x|), where g(s) := min{1, 1
sd
},

is in FV(ℝd) but not in BV(ℝd). Let us verify this claim:

∫ℝd f(x) dx = Cd
+∞
∫
0

g(s)sd−1 ds = +∞,
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while taking into account that 1∗ := d
d−1 we have

∫ℝd |f(x)|1∗ dx = Cd
+∞
∫
0

g(s)
d
d−1 sd−1 ds = C̃d(1 + +∞∫

1

s
1−2d
d−1 ds) < +∞.

Notice that the variation of f is finite

V(f) = Cd
+∞
∫
1

1
sd+1 sd−1 ds = Cd +∞∫

1

1
s2
< +∞.

We now prove that the map ‖ ⋅ ‖FV : FV(ℝd) ∋ f → ‖f‖FV = V(f) gives to FV(ℝd) the structure of a normed
space.

Proposition 4.3. The space Y := (FV(ℝd), ‖ ⋅ ‖FV) is a normed space.

Proof. Positivity and 1-homogeneity are clear from the definition of ‖ ⋅ ‖FV and the triangle inequality as well.
We have to prove only definiteness: for, let f ∈ FV(ℝd) with

‖f‖FV = V(f) = 0.

Applying Theorem 2.3, we deduce that there exist m ∈ ℝ and a constant γ > 0 such that

‖f − m‖1∗ ≤ γV(f),
whence ‖f − m‖1∗ = 0 and f = m almost everywhere. Being f ∈ L1∗ (ℝd), the only possibility is that m = 0,
hence the proposition is proved.

We now aim at characterizing extreme points of BY1 , the closed unit ball in Y. Observe that, if f is the charac-
teristic function of a measurable set A, variation and perimeter coincide, i.e.

V(𝟙A) = P(A,ℝd) = P(A).

Proposition 4.4 (Extreme points of unit ball in FV(ℝd)). A function f ∈ Y is an extreme point of BY1 if and only
if there exist a simple set E ⊂ ℝd of positive, finite perimeter and a constant σ ∈ {±1} such that

f(x) = σ𝟙E(x)
P(E)

, L d-a.e. x ∈ ℝd .

Proof. The proof is divided into two steps.

Sufficiency. Let E ⊂ ℝd be a simple set. Let c = 1
P(E) and let us prove that f := c𝟙E is an extreme point of BY1 .

Assume that for some functions g, h ∈ BY1 and λ ∈ [0, 1] we can write

f = λg + (1 − λ)h

and let us prove that necessarily g = c𝟙E and h = c𝟙E. Since ‖f‖FV = 1, we have that

1 ≤ λ‖g‖FV + (1 − λ)‖h‖FV

and we claim that actually equality holds. If it were

1 < λ‖g‖FV + (1 − λ)‖h‖FV,

then we would get, being f, g ∈ BY1 ,

1 < λ‖g‖FV + (1 − λ)‖h‖FV ≤ λ + (1 − λ) = 1,

a contradiction. In a complete similar way, one can prove that ‖g‖FV = 1 = ‖h‖FV. All in all, we can represent

𝟙E = ϕ + ψ (4.1)

with
‖𝟙E‖FV = ‖ϕ‖FV + ‖ψ‖FV (4.2)

being ϕ = c−1λg and ψ = c−1(1 − λ)h. Notice actually that it holds
|D𝟙E| = |Dϕ| + |Dψ| as measures inℝd . (4.3)
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Indeed, by (4.1) and the triangle inequality we get |D𝟙E| ≤ |Dϕ + Dψ| ≤ |Dϕ| + |Dψ|; the converse inequality
then follows exploiting (4.2). In particular, computing (4.3) on the Borel set E1, it follows

|Dϕ|(E1) + |Dψ|(E1) = |D𝟙E|(E1) = 0,

where the last equality follows from De Giorgi’s Theorem. Hence

|Dϕ|(E1) = 0 = |Dψ|(E1).

By Proposition 2.15 and by the indecomposability of E, there exist constants c1, c2 ∈ ℝ such that

ϕ(x) = c1, ψ(x) = c2 a.e. in E. (4.4)

In particular, c1 + c2 = 1. In an analogous way, we also get |Dϕ|(E0) = 0 = |Dψ|(E0): being E0 = (ℝd \ E)1, by
the indecomposability of Ec (recall Proposition 2.17), we conclude again by Proposition 2.15 that there exist
constants c3, c4 ∈ ℝ such that

ϕ(x) = c3, ψ(x) = c4 a.e. in Ec .

By the Isoperimetric Inequality (2.2), either E or Ec has finitemeasure and, up to rename everything, consider
the case in which E has finite measure. Then Ec must have infinite Lebesgue measure and the functions ϕ, ψ
are constant functions which are in L1∗ (ℝd): thus it must be c3 = c4 = 0, i.e.

ϕ(x) = 0 = ψ(x) a.e. in Ec .

Combined with (4.4), this gives that

ϕ(x) = c1𝟙E(x), ψ(x) = (1 − c1)𝟙E(x) a.e. inℝd .

In particular, we deduce that
g = α𝟙E(x)

and being ‖g‖FV = 1, we obtain that the constant has to be

α = 1
P(E)

.

One can argue similarly with h and the conclusion is now achieved: we have proved that the only convex
combination of elements in BY1 representing f is the trivial one, i.e. f is an extreme point of BY1 .

Necessity. The argument used in the proof of Lemma 3.3 can be repeated verbatim here, yielding an analo-
gous conclusion: an extreme point f of BY1 has necessarily the form

f(x) = σ𝟙E(x)
P(E)

, L d-a.e. x ∈ ℝd ,

for some set of positive finite perimeter E ⊂ ℝd. It remains thus to show that E has to be simple. Let us show
first that E is indecomposable. To this end, assume that it can be written as E = A ∪ B with A ∩ B = 0 and
P(E) = P(A) + P(B). Hence

1
P(E)
𝟙E =

P(A)
P(E)

1
P(A)
𝟙A +

P(B)
P(E)

1
P(B)
𝟙B

is a convex linear combination of indicators of sets (normalized by perimeter). Therefore if 1
P(E)𝟙E is an

extreme point of the unit ball in Y, then E has to be indecomposable.
In view of Proposition 2.17, it remains to show that Ec has to be indecomposable, too. For let us suppose

that C, D are such that Ec = C ∪ D with C ∩ D = 0 and P(Ec) = P(C) + P(D). Arguing as above, we get that

E = Cc ∩ Dc = C \ D ⇒ 𝟙E = 𝟙C − 𝟙D ,
with C = Cc. Consequently, since P(E) = P(Ec) = P(C) + P(D), it holds

1
P(E)
𝟙E =

P(C)
P(E)

1
P(C)
𝟙C + P(D)P(E)

−1
P(D)
𝟙D

is a convex linear combination of indicators of sets (normalized by perimeter). Therefore if 1
P(E)𝟙E is an

extremal point of the unit ball in Y, then E, Ec have to be indecomposable, hence E is simple and this con-
cludes the proof.
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5 Hamiltonian potential of divergence-free vector measures inℝ2
5.1 Divergence-free measures and FV

We now define the space of vector-valued divergence-free measures.

Definition 5.1. We will denote by J(ℝd) the following set of vector-valued measures:

J(ℝd) := {μ ∈M (ℝd;ℝd) : div μ = 0},

where the divergence operator is understood in the sense of distributions.

The space J is a real vector space under the usual operations of additions of measures and multiplication by
real numbers and it can be equipped with a norm given by the total variation:

‖μ‖J := |μ|(ℝ2).

Remark 5.2. As already observed in the Introduction, an important (somehow paradigmatic) example of
a measure belonging to J is the one associated to a Lipschitz closed curve: if γ : [0, 1]→ ℝ2 is a Lipschitz
map, injective on [0, 1) and with γ(0) = γ(1), we can define the measure μγ ∈M(ℝ2;ℝ2) to be

⟨Φ, μγ⟩ := ∫ℝ2 Φ(z) dH 1⌞γ([0,1])(z) for all Φ ∈ C0(ℝ2)2,

which, by the Area Formula, can also be written as

⟨Φ, μγ⟩ =
1

∫
0

Φ(γ(t)) ⋅ γ(t) dt.
Notice that this definition is well-posed, in the sense that it does not depend on the parametrization γ of the
curve. It is easy to see that div μγ = 0 in the sense of distributions, as a consequenceof the fact that γ(0) = γ(1),
so μγ ∈ J(ℝ2).

The following proposition establishes a functional analytic connection between J(ℝ2) and FV(ℝ2).

Proposition 5.3. The map

∇⊥ : FV(ℝ2)→ J(ℝ2), f → μ := ∇⊥f = (−∂y f, ∂x f)
is an isometric isomorphism.

Proof. We divide the proof into four steps.

Well-posedness and linearity. Themap∇⊥ is well-posed, because div∇⊥f = 0 for any f ∈ FV(ℝ2): indeed, for
any test function ϕ ∈ C∞c (ℝ2),

⟨div∇⊥f, ϕ⟩ = ∫ℝ2 ∇ϕ(z) ⋅ d(∇⊥f)(z)
= ∫ℝ2 (∂xϕ(z), ∂yϕ(z)) ⋅ d((−∂y f, ∂x f))(z)
= ∫ℝ2 ∂y∂xϕ(z)f(z) dz − ∫ℝ2 ∂x∂yϕ(z)f(z) dz = 0.

Linearity of ∇⊥ is trivial.
Injectivity. The kernel of ∇⊥ is given by the functions f for which

∇⊥f = 0,
which means f is constant inℝ2, in particular f = 0 in FV(ℝ2): injectivity follows.
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Surjectivity. Pick μ ∈ J(ℝ2) and let {ρε}ε>0 be a standard family of mollifiers inℝ2. Set

Φε(x) := μ ∗ ρε(x) = ∫ℝ2 ρε(x − y)dμ(y)
and observe that by standard factsΦε ∈ C∞c (ℝ2;ℝ2)with divΦε = 0. By the Poincaré Lemma, for every ε > 0,
there exists fε ∈ C∞c (ℝ2) such that ∇⊥fε = Φε. Notice that for any ε > 0,

V(fε) = ‖Φε‖1 ≤ ‖μ‖J,

hence (fε)ε>0 ⊂ FV(ℝ2). By Theorem 2.3 there exist {mε}ε>0 ⊂ ℝ and a universal constant γ > 0 such that
‖fε − mε‖L1∗ (ℝ2) ≤ γV(fε) ≤ γ‖μ‖J.

In particular, if we now fix any open Ω ⋐ ℝ2, we have using Hölder inequality

‖fε − mε‖L1(Ω) ≤ L d(Ω)
1
d ‖fε − mε‖L1∗ (Ω) ≤ γL d(Ω)

1
d ‖μ‖J.

On the other hand,
V(fε − mε , Ω) ≤ V(fε − mε) = V(fε) ≤ ‖μ‖J

and hence we are in a position to apply the Compactness Theorem [3, Theorem 3.23]: there exists a function
f ∈ L1loc(ℝ

2) such that, up to a subsequence, (fε − mε)→ f strongly in L1loc(ℝ
2) as ε → 0. In particular, f is

also in FV(ℝ2) by the l.s.c. of the total variation

V(f) ≤ lim inf
ε↓0 V(fε) ≤ c‖μ‖J.

It remains now to check that ∇⊥f = μ: for any smooth, compactly supported test function Ψ ∈ C∞c (ℝ2,ℝ2) it
holds

∫ℝ2 f(x)divΨ(x) dx = limε→0 ∫ℝ2 fε(x)divΨ(x) dx
= lim
ε→0 ∫ℝ2 Ψ(x) ⋅ Φ⊥ε (x) dx
= ∫ℝ2 Ψ(x) dμ⊥(x),

where in the last passage we have used that Φε ⇀ μ as ε → 0 (see e.g. [3, Theorem 2.2]).

∇⊥ is an isometry. It remains thus to show that ∇⊥ is an isometry: taken f ∈ FV(ℝ2), by definition

‖f‖FV = V(f,ℝ2) = sup{∫ℝ2 f(x)divΦ(x) dx : Φ ∈ C∞c (ℝ2), ‖Φ‖∞ ≤ 1}
= sup{⟨Φ, ∇f⟩ : Φ ∈ C∞c (ℝ2), ‖Φ‖∞ ≤ 1}
= sup{⟨Φ, ∇⊥f⟩ : Φ ∈ C∞c (ℝ2), ‖Φ‖∞ ≤ 1}
= sup{∫ℝ2 divΦ(x) d(∇⊥f)(x) : Φ ∈ C∞c (ℝ2), ‖Φ‖∞ ≤ 1}
= ‖∇⊥f‖J.

6 Simple sets and closed curves
Aim of this section is to give a detailed description of the extreme points of the unit ball of J. Since ∇⊥ is an
isometry we have

BJ1 = ∇
⊥(BY1 )
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and hence, by Remark 2.27, we have

ext(BJ1) = ext(∇
⊥(BY1 ))

= ∇⊥(ext(BY1 ))
= {σ∇

⊥𝟙E
P(E)

: E ⊂ ℝ2 simple set, P(E) > 0 and σ ∈ {±1}}. (6.1)

Let us introduce the following notation:

Γ := {γ : [0, 1]→ ℝ2 : Lipschitz on [0, 1], injective on [0, 1) and γ(0) = γ(1)}.

For any γ ∈ Γ, we define its length to be

ℓ(γ) :=
1

∫
0

|γ(t)| dt ∈ (0, +∞).
Notice, in particular, that any γ ∈ Γ induces a rectifiable Jordan curve C := γ([0, 1]), and viceversa every rec-
tifiable Jordan curve can be parametrized by some γ ∈ Γ. Being a subset of (Lip[0, 1])2, the space Γ can be
thought as a normed space, being the norm the (restriction of the) uniform one ‖ ⋅ ‖∞.

We now want to prove the following proposition.

Proposition 6.1. The following equality holds true:

ext(BJ1) = {
1
ℓ(γ)

μγ : γ ∈ Γ}.

Proof. Let μ ∈ ext(BJ1). From (6.1) we have that

μ = σ 1
P(E)
∇⊥𝟙E

for some simple set E ⊂ ℝ2 with P(E) > 0 and σ ∈ ±1. From Theorem 2.21, the essential boundary ∂eE, is
equivalent, up to anH 1-negligible set, to a rectifiable Jordan curve. Using Theorem2.7,we can conclude that
also FE can be parametrized by some Jordan curve, which can be taken to be Lipschitz (see [1, Lemma 3]).
All in all, we have that there exists γ ∈ Γ such that

γ([0, 1]) = FE,

up to a H 1-null set.
On the one hand, by De Giorgi’s Theorem 2.6, for H 1-a.e. x ∈ FE we have

Tan(FE, x) = span(ν⊥E (x)), (6.2)

where νE(x) is the generalized inner normal to E and span(ν⊥E (x)) denotes the orthogonal line to νE(x).
On the other hand, since FE = γ([0, 1]), we have using Proposition 2.5,

Tan(γ([0, 1]), x) = span(γ(γ−1(x))). (6.3)

Since the approximate tangent space is a one-dimensional vector space and since νE(x) is unit vector for
H 1-almost every x ∈ FE, equalities (6.2) and (6.3) force that for H 1-a.e. x ∈ FE,

ν⊥E (x) = σ(x) γ(γ−1(x))|γ(γ−1(x))| for σ(x) ∈ {±1}.

Thismeans that the vector ν⊥E (x) is tangent to the curve γ at the point γ(γ−1(x)) forH 1-a.e. x ∈ γ([0, 1]). Since
div(ν⊥EH 1⌞γ([0,1])) = 0, we can apply [6, Theorem 4.9], obtaining that

∃σ̄ ∈ {±1} : ν⊥E (γ(t)) = σ̄ ⋅ γ(t)|γ(t)| for L 1-a.e. t ∈ [0, 1].
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Reversing the parametrization of γ, if necessary, one can achieve that σ̄ = 1. Then for any test function
Φ ∈ C∞c (ℝ2;ℝ2), using the Area Formula, we obtain

⟨μ, Φ⟩ = ⟨ 1
P(E)
∇⊥𝟙E , Φ⟩

= ⟨
1
P(E)

ν⊥EH 1⌞FE , Φ⟩

=
1
P(E) ∫ℝ2 Φ(x) ⋅ ν⊥E (x) dH 1⌞FE(x)

=
1
P(E) ∫ℝ2 Φ(x) ⋅ γ

(γ−1(x))
|γ(γ−1(x))| dH 1⌞γ([0,1])(x)

=
1
P(E)

1

∫
0

Φ(γ(t)) ⋅ γ
(t)
|γ(t)| |γ(t)| dt

=
1
ℓ(γ)

1

∫
0

Φ(γ(t)) ⋅ γ(t) dt
= ⟨

1
ℓ(γ)

μγ , Φ⟩, (6.4)

where we have also used the fact that

P(E) = V(𝟙E) = ‖νEH 1⌞FE‖M = H 1(γ([0, 1])) = ℓ(γ)

(which also follows from the Area Formula).
Thus we have shown that any extreme point μ of BJ1 has necessarily the form

1ℓ(γ)μγ. The converse impli-
cation, namely that normalized measures μγ are extreme, follows immediately from the second part of Theo-
rem 2.21: any γ ∈ Γ induces a rectifiable Jordan curve C := γ([0, 1]), hence int(Γ) =: E is a simple set by
Theorem 2.21. Extremality follows from (6.1), noticing that

1
ℓ(γ)

μγ =
1
P(E)
∇⊥𝟙E

as above, and the proof is thus complete.

7 Measures as superposition of curves I: A proof using Choquet
theory

In this section we prove the Main Theorem with ρ = 0.

Theorem 7.1. Let μ ∈ J(ℝ2), where J(ℝ2) is as in Definition 5.1. Then there exists a σ-finite, non-negative
measure η ∈M+(Γ) such that (1.2a) and (1.2b) hold.
Consider the maps p : Γ → J(ℝd) and F : p(Γ)→ J(ℝd) defined by

p(γ) := μγ , F(ν) :=
{
{
{

ν‖ν‖ , ν ̸= 0,
0, ν = 0.

(7.1)

For any m ∈ ℕ let
Γm := {γ ∈ Γ : |γ(0)| + ‖γ‖∞ ≤ m}.

In view of the Arzelà–Ascoli Theorem, Γm is a compact subset of Γ (with respect to the topology of the uniform
convergence).

The lemma below works in any dimension d (not only d = 2).
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Lemma 7.2. The maps p and F defined in (7.1) have the following properties:
(1) For any m ∈ ℕ the map p : Γm → J(ℝd) defined in (7.1) is continuous (with respect to uniform topology

on Γm and weak-∗ topology on J(ℝd)).
(2) The map F : J(ℝd)→ J(ℝd) is Borel.
(3) The sets p(Γ) and F(p(Γ)) are Borel.
(4) The F : p(Γ)→ F(p(Γ)) has Borel inverse F−1.
Proof. It is sufficient to verify sequential continuity of p. Let (γk)k∈ℕ ⊂ Γm be a sequence with γn → γ for
a certain γ ∈ Γm. Let us show that μγn

∗
⇀ μγ first in the sense of distributions: let Φ ∈ C∞c (ℝd;ℝd). Then

|⟨μγn , Φ⟩ − ⟨μγ , Φ⟩| =


1

∫
0

Φ(γn(t)) ⋅ γn(t) dt − 1

∫
0

Φ(γ(t)) ⋅ γ(t) dt
=


1

∫
0

(Φ(γn(t)) − Φ(γ(t))) ⋅ γn(t) dt − 1

∫
0

Φ(γ(t)) ⋅ (γ(t) − γn(t)) dt
≤ m

1

∫
0

|Φ(γn(t)) − Φ(γ(t))| dt +


1

∫
0

d
dt

Φ(γ(t)) ⋅ (γ(t) − γn(t)) dt


≤ m
1

∫
0

|Φ(γn(t)) − Φ(γ(t))| dt + ‖∇Φ‖∞ 1

∫
0

|γ(t) − γn(t)| dt → 0

as n → +∞. Moreover, supn∈ℕ ‖μγn‖ ≤ m. Hence the functionals μγn ∈ C0(ℝd;ℝd)∗ are uniformly bounded
and converge to μ pointwise on the set C∞c (ℝd;ℝd) which is dense in C0(ℝd;ℝd). Therefore μγn

∗
⇀ μ

as n →∞.
Since for any m ∈ ℕ the set p(Γm) is compact (being an image of a compact under a continuous map),

the set p(Γ) = ⋃m∈ℕ p(Γ) is Borel.
For any Φ ∈ C0(ℝd;ℝd) the map ν → ⟨ν,Φ⟩‖ν‖ is Borel. Indeed, the numerator is a continuous function of ν

and the denominator is lower semicontinuous (hence Borel). Therefore F is a Borel map from M (ℝd;ℝd)
toM (ℝd;ℝd) (with respect toweak-∗ topologies). Since for everym ∈ ℕ the set p(Γm) is contained in a closed
ball of M (ℝd;ℝd) (note that this ball is Polish with respect to weak-∗ topology) and F is injective on p(Γm),
it follows that F(p(Γm)) is Borel (see e.g. [8, Theorem 6.8.6]). Therefore F(p(Γ)) = ⋃∞m=1 F(p(Γm)) is Borel. Sim-
ilarly, the image of any Borel subset of p(Γ) under F is Borel, and by injectivity of F on p(Γ) this means that
F : p(Γ)→ F(p(Γ)) has Borel inverse.

Lemma 7.3. Suppose that μ ∈ J(ℝd) and there exists a finite measure ξ ∈M+(J(ℝd)) concentrated on F(p(Γ))
such that

μ = ∫
J(ℝd) ν dξ(ν), |μ| = ∫J(ℝd) |ν| dξ(ν). (7.2)

Then there exists σ-finite η ∈M+(Γ) such that (1.2a) and (1.2b) hold for μ and η.

Proof. By Lemma 7.2 themap F : p(Γ)→ F(p(Γ)) has Borel inverse F−1, hence we can change variables using
the map F−1:

∫
F(p(Γ)) y dξ(y) = ∫F(p(Γ)) F(F−1(y)) dξ(y) = ∫p(Γ) F(ν) d(F−1# ξ)(ν) = ∫p(Γ) ν d ̂ξ (ν),

where ̂ξ denotes the measure on M (ℝd;ℝd) defined by

̂ξ (A) := ∫
A\{0} 1
‖ν‖ d(F

−1
# ξ)(ν),

A ⊂M (ℝd;ℝd) being an arbitrary Borel subset (clearly ̂ξ is concentrated on p(Γ)).
Since p(Γ) = ⋃m∈ℕ p(Γm), we can write ̂ξ as a sum of its restrictions ̂ξm on the sets p(Γm+1) \ p(Γm),

where m ∈ ℕ.
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By Lemma 7.2 the map p : Γm →M (ℝd;ℝd) is continuous and the set Γm is compact, hence there exists

a Borel set Bm ⊂ Γm such that the restriction of p to Bm is injective and p(Bm) = p(Γm) (see e.g. [8, Theo-
rem 6.9.7]). Therefore the inverse map qm : p(Γm)→ Γm is Borel. Now we change variables using qm:

∫
p(Γ) ν d ̂ξm(ν) = ∫p(Γm) p(qm(ν)) d ̂ξm(ν) = ∫Γm p(γ) d((qm)# ̂ξm)(γ) = ∫

Γ

μγ d(ηm)(γ),

where ηm := (qm)# ̂ξm. Denoting η := ∑∞m=1 ηm, we ultimately obtain

μ = ∫
Γ

μγ dη(γ).

Equality holds for total variations as well: indeed, by the triangle inequality,

|μ| ≤ ∫
Γ

|μγ| dη(γ) as measures onℝd .

If the inequality above were strict, then by evaluating it on the wholeℝd we would get a contradiction:

‖μ‖ = |μ|(ℝd) < ∫
Γ

|μγ|(ℝd) dη(γ) = ∫
J(ℝd) |ν|(ℝd) dξ(ν) = ‖μ‖.

Since ‖μ‖ = ∫ ‖μγ‖ dη(γ) and for any k ∈ ℕ the set {γ ∈ Γ : ‖μγ‖ > k−1} is Borel, it is clear that η is σ-finite.
We are now ready to prove the Main Theorem.

Proof of Theorem 7.1. By Proposition 6.1 we have

ext(BJ1) = {
1
ℓ(γ)

μγ : γ ∈ Γ} ⊂ F(p(Γ)).

By Remark 2.22 the set ext(BJ1) is Borel.
Let 0 ̸= μ ∈ J(ℝ2) and consider the normalized measure

μ
‖μ‖ ∈ B

J
1 .

By Choquet’s Theorem 2.26 there exists a Borel probability measure π ∈P(ext BJ1) such that

μ
‖μ‖ = ∫

ext BJ
1

y dπ(y),

the integral being understood in the sense of Definition 2.24. By the triangle inequality we deduce from the
equality above that

|μ| ≤ ‖μ‖ ∫
ext BJ

1

|y| dπ(y).

Note that the latter inequality is in fact an equality, since otherwise by evaluating it on ℝ2 we would get
a contradiction:

‖μ‖ < ‖μ‖ ∫
ext BJ

1

‖y‖ dπ(y) = ‖μ‖.

In order pass to integration over Γ instead of ext(BJ1) ⊂M (ℝ2;ℝ2), it remains to change variables by applying
Lemma 7.3 with ξ := ‖μ‖π. This concludes the proof.

Note that the elements of Γ are not necessarily simple. However, since the measure π is concentrated on a set
of measures induced by simple curves, it is easy to see from the proof of Theorem 7.1 that for η-a.e. γ ∈ Γ
there exists a simple γ̃ ∈ Γ such that μγ = μγ̃.
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8 Measures as superposition of curves II: A proof using
decomposition of FV functions

In this section, we present an alternative proof of Theorem 7.1. This proof does not rely on Choquet theory,
but it is based on the following decomposition result for FV functions.

Theorem 8.1. Let f ∈ FV(ℝd). There exists an at most countable family {fi}i∈I ⊂ FV(ℝd) of monotone functions
such that the series

∑
i∈I fi

converges as an element of FV(ℝd) and

f =∑
i∈I fi with ‖f‖FV =∑

i∈I ‖fi‖FV. (8.1)

For the definition of monotone function and for a proof of Theorem 8.1 as well we refer the reader to
Appendix A.

Proof of Theorem 7.1 using Theorem 8.1. Let μ ∈ J(ℝ2) and letH ∈ FV(ℝ2) be the function such that μ = ∇⊥H,
whose existence and uniqueness are granted by Proposition 5.3.

Case 1. Suppose first that H is monotone. Let Et := {H > t}. Since the function H lies in FV(ℝ2), we have
H ∈ L1∗ (ℝ2): using Chebyshev’s inequality, this integrability property implies that for a.e. t ∈ ℝ it holds
L 2(Et) <∞. Combined with the Coarea Formula, this observation yields the existence of a set N ⊂ ℝ such
thatL 1(N) = 0 and Et has finite measure and finite perimeter for every t ∈ ℝ \ N. Consider now the function
g : ℝ→ J(ℝ2) defined by

g(t) :=
{
{
{

∇⊥𝟙Et
P(Et) if L 2(Et) > 0 and t ∉ N with P(Et) > 0,
0 otherwise,

and the measure ρ ∈M+(ℝ)
ρ(dt) := P(Et)L 1(dt).

By the Coarea Formula, we have
∇⊥H = ∫ℝ g(t) dρ(t) (8.2)

and Fubini’s Theorem further ensures that f is a measurable measure-valued map (see [3, Definition 2.25]).
In particular, from (8.2) we deduce for any Ψ ∈ Cc(ℝ2)2,

⟨∇⊥H, Ψ⟩ = ∫ℝ ⟨g(t), Ψ⟩ dρ(t) = ∫f(ℝ)⟨y, Ψ⟩ dη(y), (8.3)

where we have set
ξ := g#ρ.

From (8.3) and from the arbitrariness of test function Ψ, we deduce the sought formula

∇⊥H = ∫
J(ℝ2) y dη(y).

Observe that, for every t ∈ ℝ \ N such that L 2(Et) > 0 the computations in (6.4) yield the equality

g(t) =
μγt
P(Et)

,

where γt is the parametrization of ∂⋆Et givenbyTheorem2.21. Thus, by the very definition of g, themeasure ξ
is concentrated on F(p(Γ)) (see (7.1)). Moreover,

‖ξ‖ = ‖g#ρ‖ = ‖ρ‖ = ∫ℝ P(Et)L 1(dt) = ‖∇⊥H‖. (8.4)
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Case 2. If H is not monotone, apply Theorem 8.1 to the function H and let {Hi}i∈I be at most countable
family of monotone functions satisfying (8.1) (without loss of generality we may assume that I = ℕ). Let ξi
be a measure representing ∇⊥Hi (obtained as in Case 1, since Hi is monotone). Then it is easy to see that

ξ :=
∞
∑
i=1 ξi

defines a measure on J(ℝ2), as the series converges strongly: indeed, by (8.4) and (8.1) we get∞
∑
i=1 ‖ξi‖ = ∞∑i=1 ‖∇⊥Hi‖ = ‖∇⊥H‖ <∞.

Since the series above converge, we can pass to the limit as n →∞ in the equalities
n
∑
i=1∇⊥Hi = ∫

J(ℝ) y d(
n
∑
i=1 ξi)(y), n

∑
i=1 |∇⊥Hi| = ∫

J(ℝ) |y| d(
n
∑
i=1 ξi)(y).

We thus see that μ and ξ defined above satisfy (7.2). It remains to change variables using Lemma 7.3.

9 Linear rigidity for vector-valued measures
In this section we give a proof of Theorem 1.4, which is inspired by (and generalizes) one of the results
from [13] (see Theorem 1.2 therein).

Lemma 9.1. Let μ ∈M (ℝd;ℝd) and consider its polar decomposition μ = τ|μ|. Suppose that there exists
η ∈M+(Γ) such that (1.2a) and (1.2b) hold. Then for η-a.e. γ ∈ Γ,

γ(t) = τ(γ(t))|γ(t)|
for a.e. t ∈ [0, 1].

Proof. Since |μ| is a finite measure and Cc(ℝd) is dense in L1(|μ|), we can use τ as a test function in the
distributional formulation of (1.2a), obtaining

∫ℝd τ ⋅ dμ = ∫Γ τ ⋅ μγ dη(γ) = ∫
Γ

1

∫
0

τ(γ(t)) ⋅ γ(t) dt dη(γ).
On the other hand,

∫ℝd τ ⋅ dμ = |μ|(ℝd) = ∫Γ |μγ| dη(γ) = ∫Γ
1

∫
0

|γ(t)| dt dη(γ).
Therefore

∫
Γ

1

∫
0

(τ(γ(t)) ⋅ γ(t) − |γ(t)|) dt dη(γ) = 0. (9.1)

The integrand is non-positive, since

τ(γ(t)) ⋅ γ(t) ≤ |τ(γ(t))| ⋅ |γ(t)| = |γ(t)|,
hence by (9.1) for η-a.e. γ,

τ(γ(t)) ⋅ γ(t) = |γ(t)|
for a.e. t ∈ [0, 1].

Recall the following definition: σ ∈M (ℝd;ℝd) is called a subcurrent of μ ∈M (ℝd;ℝd) if

‖μ‖ = ‖μ − σ‖ + ‖σ‖.
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Proposition 9.2. Let μ ∈M (ℝd;ℝd). Then σ ∈M (ℝd;ℝd) is a subcurrent of μ if and only if

σ = gμ,

where g ∈ L1(|μ|) satisfies 0 ≤ g(x) ≤ 1 for |μ|-a.e. x ∈ ℝd.

Proof. We split the proof into two parts.

Sufficiency. If g ∈ L1(|μ|) satisfies 0 ≤ g(x) ≤ 1 and σ = gμ, then

|μ − σ| + |σ| = (1 − g)|μ| + g|μ| = |μ|,

and it remains to evaluate the equality above onℝd.

Necessity. By the Radon–Nikodym Theorem there exist mutually singular σa , σs ∈M (ℝd;ℝd) such that
σa ≪ |μ|, σs ⊥ |μ| and σ = σa + σs. Then by the definition of subcurrent

‖μ‖ = ‖μ − σ‖ + ‖σ‖ = ‖μ − σa‖ + ‖σa‖ + 2‖σs‖ ≥ ‖μ‖ + 2‖σs‖

by the triangle inequality, hence ‖σs‖ = 0. Therefore σ = θ|μ| and μ = τ|μ| for some θ, τ ∈ L1(|μ|;ℝd) (by
polar decomposition). Writing again the definition of subcurrent we obtain

∫(|τ| − |τ − θ| − |θ|) d|μ| = 0,

which implies (in view of the triangle inequality) that

|τ(x)| − |τ(x) − θ(x)| − |θ(x)| = 0 (9.2)

for |μ|-a.e. x ∈ ℝd. In particular, for |μ|-a.e. x ∈ ℝd if τ(x) = 0, then θ(x) = 0. Since the twovectors a = θ(x) and
b = τ(x) − θ(x) with a ̸= 0 satisfy |a + b| − |a| − |b| = 0 if and only if b = |b| a|a| , we conclude that there exists
g = g(x) ∈ ℝ such that θ(x) = g(x)τ(x). Substituting this into equation (9.2), we conclude that 0 ≤ g(x) ≤ 1
for |μ|-a.e. x ∈ ℝd.

Corollary 9.3. Suppose that ν ∈Mloc(ℝd;ℝd) has polar decomposition ν = τ|ν|. If τ1(x) > 0 for |ν|-a.e. x ∈ ℝd,
then ν is acyclic.

Proof. For any μ ∈M (ℝd;ℝd) satisfying (1.1) with some ρ ∈M (ℝd) the distributional formulation of (1.1)
holds for any test function φ ∈ C∞(ℝd) such that ‖φ∞‖ + ‖∇φ‖∞ <∞. In order to prove this, it is sufficient to
consider ω ∈ C∞c (ℝd) such that ω(x) = 1 if |x| ≤ 1 and ω(x) = 0 if |x| ≥ 2 and pass to the limit in

− ∫ℝd ∇(φ(x)ω(R−1x)) ⋅ dμ(x) = ∫ℝd φ(x)ω(R−1x) dρ(x)
as R →∞ using the Dominated Convergence Theorem.

In particular, if σ is a cycle of ν, then by Proposition 9.2 there exists g ∈ L1(|ν|) such that 0 ≤ g(x) ≤ 1
for |ν|-a.e. x ∈ ℝd and σ = gν. Writing the distributional formulation of div(σ) = 0 with the test function
φ(x) = atan(x1), we get

− ∫ℝd g(x)τ1(x)1 + x21
d|ν|(x) = 0,

hence g(x) = 0 for |ν|-a.e. x ∈ ℝd. Therefore σ = 0 is the only cycle of ν.

Proof of Theorem 1.4. Suppose that ν ∈Mloc(ℝd;ℝd) satisfies (i)–(iii) from Definition 1.3.
Let ω ∈ C∞c (ℝd) be a nonnegative function such that ω(x) = 1 if |x| ≤ 1 and ω(x) = 0 if |x| ≥ 2. Let h > 0

and r > 0 and let R > 0 be such that r2 + h2 < R2 and r + c−1h < R, where c > 0 is the constant from Defini-
tion 1.3.

Let μ = f ⋅ ν, where f(x) = ω( xR ). Clearly div μ belongs to M (ℝd) and is concentrated on

A := {x ∈ ℝd : xd ≥ 0, R ≤ |x| ≤ 2R}.

Moreover, μ is acyclic by Corollary 9.3.
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−R −r − hc −r Rr + hc+r

h + rc
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γ(0)

Figure 1: The region depicted in yellow is the set T defined in (9.3) (in the case d = 2). In the proof of Theorem 1.4, we show that
η(ΓT ) = 0, i.e. the set of curves γ such that μγ(T) > 0 is η-negligible. From this we deduce that μ(T) = 0.

For any x ∈ ℝd let xo := (x1, . . . , xd−1). Let
T := {y ∈ ℝd : 0 < yd < h, |yo| < r + c−1(h − yd)} (9.3)

(see Figure 1). Let η ∈M+(Γ) be given by Theorem 1.2 applied to μ (in particular, (1.2a)–(1.2c) hold). Let

ΓT := {γ ∈ Γ : |μγ|(T) > 0}.

Note that μ = τf|ν| = τ|μ| is the polar decomposition of μ. Hence by Lemma 9.1 for η-a.e. γ ∈ ΓT for
a.e. z ∈ [0, 1] we have

γ(z) = τ(γ(z))|γ(z)|.
Writing this equation for γd and γo separately and using condition (iii) from Definition 1.3, we get

|γo(z)| = |τo(γ(z))| ⋅ |γ(z)| ≤ |τ(γ(z))| ⋅ |γ(z)| ≤ 1c τd(γ(z)) ⋅ |γ(z)| = 1c γd(z). (9.4)

For η-a.e. γ ∈ ΓT there exists t ∈ (0, 1) such that γ(t) ∈ T. Then by inequality (9.4) we obtain

|γo(0)| ≤ |γo(t)| +


t

∫
0

γo(z) dz ≤ |γo(t)| + 1c (γd(t) − γd(0)),
hence γ(0) ∈ T. Clearly γd ≥ 0 a.e., so γd(0) ≤ γd(t) ≤ h, since γ(t) ∈ T.

Note that for η-a.e. γ ∈ ΓT we have γ(1) ̸= γ(0). Indeed, otherwise the measure

σ := ∫{γ∈Γ : γ(0)=γ(1)} μγ dη(γ)
would be a nonzero cycle of μ, which is not possible since μ is acyclic. Therefore for η-a.e. γ ∈ ΓT ,

|div μγ|(T) = δγ(0)(T) + δγ(1)(T) ≥ 1
since γ(0) ∈ T. But |div μ| is concentrated on A and A ∩ T = 0, hence

η(ΓT) = ∫
ΓT

1 dη(γ) ≤ ∫
ΓT

|div μγ|(T) dη(γ) = |div μ|(T) = 0

and therefore
|μ|(T) = ∫

ΓT

|μγ|(T) dη(γ) = 0.

By the arbitrariness of h and r we conclude that μ = 0.
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A Decomposition Theorem for FV functions
We begin with the following definition.

Definition A.1. A function f ∈ FV(ℝd) is said to bemonotone if the sets {f > t} and {f ≤ t} are indecomposable
for a.e. t ∈ ℝ.

Notice that, by Remark 2.18, a function f such that the superlevel sets {f > t} are simple for a.e. t ∈ ℝ is
necessarily monotone.

The goal of this appendix is to give a self-contained proof of the following theorem (see also [7]).

Theorem A.2. For any f ∈ FV(ℝd) there exists an at most countable family {fi}i∈I ⊂ FV(ℝd) of monotone func-
tions such that

f =∑
i∈I fi and |Df| =∑

i∈I |Dfi|. (A.1)

In particular,
‖f‖FV =∑

i∈I ‖fi‖FV.
Remark A.3. Observe that from the embeddings of FV (see Theorem2.3) the first series in (A.1) converges also
in L1∗(ℝd) but, in general, we cannot improve this to convergence in L1(ℝd). Secondly, we remark that the
decomposition provided in Theorem A.2 is not unique: we refer the reader to the counterexample presented
in the paper [7].

The proof of Theorem A.2 will be presented at the end of the appendix and it requires some preliminary
lemmas.

Lemma A.4. Let φ, ψ ∈ FV(ℝd) and assume 0 ≤ ψ ≤ φ.
(1) If for a.e. t ∈ ℝ it holds

P({φ > t}) = P({φ > t} \ {ψ > t}) + P({ψ > t}), (A.2)

then
‖φ‖FV = ‖φ − ψ‖FV + ‖ψ‖FV.

(2) If for a.e. t ∈ ℝ it holds
P({ψ > t}) = P({φ > t} \ {ψ > t}) + P({φ > t}), (A.3)

then
‖ψ‖FV = ‖φ‖FV + ‖φ − ψ‖FV.

Proof. We present the proof of the two claims.
(1) Concerning the first point, it suffices to show

‖Dφ‖M ≥ ‖D(φ − ψ)‖M + ‖Dψ‖M ,

because the other inequality is trivial by the triangle inequality. Using the layer cake representation and
Fubini’s Theorem we get

‖D(φ − ψ)‖M = sup‖ω‖∞≤1 ∫ℝd (φ(x) − ψ(x)) ⋅ divω(x) dx = sup‖ω‖∞≤1 ∫ℝd
∞
∫
0

(𝟙{φ>t}(x) − 𝟙{ψ>t}(x)) ⋅ divω(x) dt dx
= sup‖ω‖∞≤1 ∫ℝd

∞
∫
0

𝟙{φ>t}\{ψ>t}(x) ⋅ divω(x) dt dx = sup‖ω‖∞≤1
∞
∫
0

∫ℝd 𝟙{φ>t}\{ψ>t}(x) ⋅ divω(x) dx dt
≤ sup‖ω‖∞≤1

∞
∫
0

⟨D𝟙{φ>t}\{ψ>t}, ω⟩ dt ≤ ∞∫
0

P({φ > t} \ {ψ > t}) dt =
∞
∫
0

P({φ > t}) − P({ψ > t}) dt,

where the last equality follows from (A.2). Applying again the Coarea Formula, we obtain the conclusion.
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(2) The proof of the second claim is similar to the proof of the first one. Notice that |Dw| = |D(−w)| as

measures for any w ∈ FV(ℝd) hence

‖Dψ‖M ≤ ‖Dφ‖M + ‖D(φ − ψ)‖M ,

which is equivalent to
‖D(φ − ψ)‖M ≥ ‖Dψ‖M − ‖Dφ‖M .

It thus remains to show
‖D(φ − ψ)‖M ≤ ‖Dψ‖M − ‖Dφ‖M .

By layer cake representation and Fubini, as in Point (1), we have

‖D(φ − ψ)‖M = sup‖ω‖∞≤1 ∫ℝd (φ(x) − ψ(x)) ⋅ divω(x) dx = sup‖ω‖∞≤1 ∫ℝd
∞
∫
0

(𝟙{φ>t}(x) − 𝟙{ψ>t}(x)) ⋅ divω(x) dt dx
= sup‖ω‖∞≤1 ∫ℝd

∞
∫
0

𝟙{φ>t}\{ψ>t}(x) ⋅ divω(x) dt dx = sup‖ω‖∞≤1
∞
∫
0

∫ℝd 𝟙{φ>t}\{ψ>t}(x) ⋅ divω(x) dx dt
≤ sup‖ω‖∞≤1

∞
∫
0

⟨D𝟙{φ>t}\{ψ>t}, ω⟩ dt ≤ ∞∫
0

P({φ > t} \ {ψ > t}) dt =
∞
∫
0

P({ψ > t}) − P({φ > t}) dt,

where the last equality follows from (A.3). Again the application of the Coarea Formula yields the desired
conclusion.

Lemma A.5 (From superlevel sets to function). Let I ⊂ [0, +∞) be an interval and let (At)t∈I be a family of sets
such that t, s ∈ I with s < t implies At ⊂ As. Then there exists a measurable function w : ℝd → [0, +∞) such
that {w > t} = At (up to Lebesgue negligible subsets) for a.e. t ∈ I.

Proof. Due to monotonicity of the family (At)t∈I , the function h(t) := |At| is non-increasing on I. Therefore
there exists a Lebesgue negligible set N ⊂ I such that h is continuous at every t ∈ I \ N. Let Q ⊆ I \ N be
a countable set, which is dense in I. For any x ∈ ℝd we define

w(x) := sup
t∈Q (t ⋅ 𝟙At (x)).

Clearly w is Lebesgue measurable. By definition of w for any s ∈ I \ N,

{w > s} = ⋃
t∈Q∩(s,+∞)∩I At .

Since for any s < t it holds |At \ As| = 0 and Q is countable, it follows that

( ⋃
t∈Q∩(s,+∞)∩I At) \ As = 0.

On the other hand, let ε := |As \⋃t∈Q∩(s,+∞)∩I At|. For any t ∈ Q ∩ (s, +∞) ∩ I we have At ⊂ As, hence
⋃

t∈Q∩(s,+∞)∩I At ⊂ As .
In particular, we can estimate

|As| =

As \ ⋃

t∈Q∩(s,+∞)∩I At +  ⋃t∈Q∩(s,+∞)∩I At ≥ ε + |At|.
Since Q is dense in (s, +∞) ∩ I and h is continuous at s, the only possible case is ε = 0. We have thus proved
that |{g > s} ∆ As| = 0 for a.e. s ∈ I and this concludes the proof.

The following lemma is a building block of the proof of Theorem A.2. It allows to “extract” from a non-
negative FV function (whose superlevel sets in general are not indecomposable) a non-trivial function with
indecomposable superlevel sets.
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Figure 2: Situation described in the proof of Lemma A.6. The black curve represents the graph of a generic function f ∈ FV(ℝd).
The red segments make up the level set Ea. The red, thick segment is the component R and the blue and green ones are
respectively Rt and Rs. The area depicted in yellow is the subgraph of the function g, whose superlevel sets are indecomposable.

Lemma A.6 (Extraction Lemma I). Let f ∈ FV(ℝd) and assume f is not identically zero and non-negative. Then
there exists g ∈ FV(ℝd) with 0 ≤ g ≤ f and g ̸≡ 0 such that:
(i) for a.e. t ≥ 0 the set {g > t} is indecomposable,
(ii) it holds ‖f‖FV = ‖f − g‖FV + ‖g‖FV.

Proof. For any t ≥ 0 let Et := {f > t}. Since f ∈ FV(ℝd), there exists a Lebesguenegligible setN ⊆ (0, +∞) such
that for any t ∈ (0, +∞) \ N the set Et has finite perimeter. Let Ekt denote the k-th M-connected component
of Et, t ∈ (0, +∞) \ N.

Fix some a > 0 such that |Ea| > 0. Let R be some M-connected component of Ea. For any t ∈ (0, a) \ N
we have Et ⊇ Ea ⊇ R, and R is indecomposable, hence by Theorem 2.10 there exists a unique j = j(t) such
that

|R \ Ej(t)t | = 0.
Let Rt := E

j(t)
t , t ∈ (0, a) \ N. Note that for any s, t ∈ (0, a) \ N with s < t it holds that

|Rt \ Rs| = 0.

Indeed, Es ⊇ Et ⊇ Rt and Rt is indecomposable, hence again by Theorem 2.10 there exists a unique k such
that |Rt \ Eks | = 0. But |R \ Rt| = 0, hence

Eks \ R = (Eks ∩ Rt ∩ Rc) ∪ (Eks ∩ Rct ∩ R
c) ⊆ (Rt \ R) ∪ (Eks \ Rt)

is Lebesgue negligible. Therefore k = j(s) by the uniqueness of j(s). Applying now Lemma A.5, we can con-
struct a function g : ℝd → [0, a] such that {g > s} = Rs (up to Lebesgue negligible subsets) for a.e. s ∈ (0, a).
(See Figure 2.)

Observe that ‖f‖FV = ‖ ̄f ‖FV + ‖ ̂f ‖FV, where ̄f (x) = min(a, f(x)) and ̂f := f − ̄f . For a.e. t ∈ (0, a) we have

{ ̄f > t} = {f > t} = Ej(t)t ∪ ⋃
k ̸=j(t) Ekt ,

hence by the construction of g and Proposition 2.12,

P({ ̄f > t}) = P({g > t}) + P({f > t} \ {g > t}).

Hence by Lemma A.4 we have
‖ ̄f ‖FV = ‖g‖FV + ‖ ̄f − g‖FV.
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Then by the triangle inequality

‖f‖FV = ‖ ̄f ‖FV + ‖ ̂f ‖FV = ‖g‖FV + ‖ ̄f − g‖FV + ‖ ̂f ‖FV ≥ ‖g‖FV + ‖ ̄f − g + ̂f ‖FV

and ‖f‖FV = ‖g + ̄f − g + ̂f ‖FV ≤ ‖g‖FV + ‖ ̄f − g + ̂f ‖FV, hence property (ii) follows.

Lemma A.7 (Extraction Lemma II). Let f ∈ FV(ℝd) and assume f is not identically zero and non-negative. Then
there exists h ∈ FV(ℝd) with h ̸≡ 0 such that:
(i) for a.e. t ≥ 0 the set {h > t} is simple,
(ii) it holds ‖f‖FV = ‖f − h‖FV + ‖h‖FV.

Proof. First of all, we apply Lemma A.6 and we obtain a function g ∈ FV(ℝd) such that Gt := {g > t} is inde-
composable for a.e. t ≥ 0 and

‖f‖FV = ‖f − g‖FV + ‖g‖FV. (A.4)

Let us now work on the function g. By the construction of g, for a.e. t ≥ 0 the set Gt is indecomposable.
Fix some a > 0 such that |Ga| > 0 and Ga is not simple (otherwise there is nothing to prove): let us denote
by {F it}i∈It the non-empty family of holes of Gt (i.e. CCM(ℝd \ Gt) = {F it}i∈It ).

Observe that, if H is an hole of Ga, for any t ∈ (a, +∞) \ N, we have Gt ⊆ Ga, and hence Gct ⊇ Gca ⊇ H: this
means that H is an hole of Gt for any t ∈ (a, +∞) \ N: by the uniqueness claim in Theorem 2.10 there exists
a unique j = j(t) such that |H \ F j(t)t | = 0.

For any t ∈ (0, a) define St := sat(Gt). Observe that the sequence (St)t∈(0,a) is monotone [1, Proposi-
tion 6 (iii)] and thus, applying Lemma A.5, we obtain a function h : ℝd → ℝ such that {h > r} = Sr (up to
Lebesgue negligible subsets) for a.e. r ∈ (0, a). By construction the function h is non-negative and {h > r}
is simple for a.e. r ∈ (0, a), because the saturation of an indecomposable set is simple. It thus remains
to show property (ii) of the statement. For, notice preliminarily, that h − g ≥ 0 by the construction of h;
by [1, Proposition 9], it holds for any t ∈ (a, +∞) \ N,

P(Gt) = P(sat(Gt)) + P(⋃
i∈It F it),

which can be also written as

P({g > t}) = P({h > t}) + P({h > t} \ {g > t}).

We are now in a position to apply Lemma A.4 (ii), choosing φ := h and ψ := g (which is possible since h ≥ g):
we obtain

‖g‖FV = ‖h‖FV + ‖g − h‖FV. (A.5)

It is now easy to check that property (ii) follows combining (A.4) with (A.5) – and the triangle inequality:

‖f‖FV ≤ ‖f − h‖FV + ‖h‖FV
≤ ‖f − g‖FV + ‖g − h‖FV + ‖h‖FV

(A.4)
= ‖f‖FV − ‖g‖FV + ‖g − h‖FV + ‖h‖FV

(A.5)
= ‖f‖FV − ‖g‖FV + ‖g‖FV − ‖h‖FV + ‖h‖FV = ‖f‖FV,

and this completes the proof.

Lemma A.8 (Extraction Lemma III). Let f ∈ FV(ℝd) and assume f is not identically zero. Then there exists
m ∈ FV(ℝd) with m ̸≡ 0 such that:
(i) m is monotone and signm = constant a.e.,
(ii) it holds ‖f‖FV = ‖f − m‖FV + ‖m‖FV.

Proof. Let us decompose f = f+ − f−. Suppose ‖f+‖FV > 0. Since f+ ≥ 0, we can apply Lemma A.6 to f+, thus
obtaining a function u ≥ 0 such that {u > t} is indecomposable for a.e. t > 0 and it holds

‖f+‖FV = ‖f+ − u‖FV + ‖u‖FV. (A.6)
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Applying now Lemma A.7 to u ≥ 0, we obtain a function m ∈ FV(ℝd) such that for a.e. t ≥ 0 the set {m > t} is
simple and it holds

‖u‖FV = ‖u − m‖FV + ‖m‖FV. (A.7)

By the triangle inequality,

‖f‖FV ≤ ‖f − m‖FV + ‖m‖FV
≤ ‖f+ − m‖FV + ‖f−‖FV + ‖m‖FV
≤ ‖f+ − u‖FV + ‖u − m‖FV + ‖f−‖FV + ‖m‖FV

(A.7)
= ‖f+ − u‖FV + ‖u‖FV + ‖f−‖FV

(A.6)
= ‖f+‖FV + ‖f−‖FV = ‖f‖FV,

hence property (ii) holds true. Since the function m is monotone, this concludes the proof in the case
‖f+‖FV > 0. It remains to consider the case in which f+ ≡ 0. If f− ≡ 0, there is nothing to prove; if ‖f−‖FV > 0,
then we repeat the same argument above for the function f̃ := −f ∈ FV(ℝd). We end up with a monotone
function m̃ of constant sign such that

‖f̃ ‖FV = ‖f̃ − m̃‖FV + ‖m̃‖FV,

which is clearly equivalent to property (ii) (renaming −m̃ as m).

Now we prove Theorem A.2 using Lemma A.8 and transfinite induction:

Proof of Theorem A.2. Let X := {g ∈ FV(ℝd) : g is monotone and ‖g‖FV > 0}. For any h ∈ FV(ℝd) let

Y(h) := {g ∈ X : ‖h‖FV = ‖h − g‖FV + ‖g‖FV}.

Note that by LemmaA.8 Y(h) = 0 if and only if h ≡ 0. Ultimately, let s : P(FV(ℝd))→ FV(ℝd) denote a choice
function (given by the Axiom of Choice).

Let us define, for any ordinal α < ω1 (where ω1 is the first uncountable ordinal) and any transfinite
sequence {gξ }ξ<α ⊂ X ∪ {∞},

E({gξ }ξ<α) := {{{{{{
{

∞, if∞ ∈ {gξ }ξ<α or if∑ξ<α ‖gξ ‖FV =∞,
s(Y(f −∑ξ<α gξ )), if∑ξ<α ‖gξ ‖FV <∞ and Y(f −∑ξ<α gξ ) ̸= 0,
0, if∑ξ<α ‖gξ ‖FV <∞ and Y(f −∑ξ<α gξ ) = 0.

By transfinite recursion (see e.g. [11, p. 21]) there exists a transfinite sequence {gα}α<ω1 such that

gα = E({gξ }ξ<α)
for any α < ω1.

Note that for any α < ω1 the following properties hold:

∞ ∉ {gξ }ξ<α , (A.8a)
∑
ξ<α ‖gξ ‖FV ≤ ‖f‖FV, (A.8b)

‖f‖FV =

f − ∑

ξ<α gξ FV + ∑ξ<α ‖gξ ‖FV. (A.8c)

Observe that (A.8b) follows from (A.8c), but without (A.8b) the term ∑ξ<α gξ in (A.8a) is not well-defined.
Indeed, these properties trivially hold for α = 0. Let β < ω1 and suppose that these properties hold for any
α < β. In order to show that (A.8a)–(A.8c) hold with α = β, we consider two cases.

First, if β is not a limit ordinal, then β = γ + 1 for some ordinal γ, so by the definition of {gξ }ξ<ω1 we have

gγ+1 = s(Y(f − ∑
ξ<γ gξ)).
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Hence

‖f‖FV =

f − ∑

ξ<γ gξ FV + ∑ξ<γ ‖gξ ‖FV = f − ∑ξ<γ gξ − gγFV + ‖gγ‖FV + ∑ξ<γ ‖gξ ‖FV
and it follows that (A.8a)–(A.8c) hold with α = γ + 1.

Second, if β is a limit ordinal, then β = ⋃α<β α. Consequently,
{gξ }ξ<β = ⋃

α<β{gξ }ξ<α ,
hence condition (A.8a) holds with α = β. Furthermore, since β is at most countable, we can enumerate it as
β = {αn}n∈ℕ. Let An := α1 ∪ ⋅ ⋅ ⋅ ∪ αn (note that for any n ∈ ℕ there exists m ∈ {1, . . . , n} such that An = αm).
Since β = ⋃α<β α = ⋃n∈ℕ An, we have

∑
ξ<β ‖gξ ‖FV = ∑ξ<β (supn∈ℕ 𝟙An (ξ))‖gξ ‖FV = supn∈ℕ ∑ξ∈An ‖gξ ‖FV ≤ supα<β ‖gξ ‖FV ≤ ‖f‖FV,

hence (A.8b) holds with α = β. Consequently,

∑
ξ<β gξ = lim

n→∞ ∑
ξ∈An gξ

and
∑
ξ<β ‖gξ ‖FV = lim

n→∞ ∑
ξ∈An ‖gξ ‖FV.

Writing (A.8c) with α = An and passing to the limit as n →∞, we conclude that (A.8c) holds with α = β. We
have thus shown that (A.8a)–(A.8c) hold with α = β. Hence by transfinite induction (A.8a)–(A.8c) hold for
any α < ω1.

By (A.8b) for any ε > 0 the set {α < ω1 : ‖gα‖FV > ε} is finite and thus the set A := {α < ω1 : ‖gα‖FV > 0} is
at most countable. Setting γ := sup A, we have gγ+1 = 0. As already noted above, by Lemma A.8 this means
that

f = ∑
ξ<γ gξ

and
‖f‖FV = ∑

ξ<γ ‖gξ ‖FV
by (A.8c).

By the triangle inequality,
|Df| ≤ ∑

ξ<γ |Dgξ |.
If this inequality were strict, we would have

‖f‖FV = |Df|(ℝd) < ∑
ξ<γ |Dgξ |(ℝd) = ∑ξ<γ ‖gξ ‖FV = ‖f‖FV,

which is a contradiction.
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