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1 Introduction 11

The study of higher-dimensional varieties (higher than curves and surfaces) was 12

started by B. Riemann in a remarkable lecture in 1854. Since then, the new 13

concepts of Mannigafaltigkeit (variety or manifold) and of Masserverhältnisse 14

(metric relation) developed in various directions giving rise to different research 15

areas in contemporary mathematics. All these theories are based on a very abstract 16

way of thinking, similar to what happened in all arts in the same period, and they 17

require a very strong mathematical capability and a great rigor.AQ1 18

The case of Algebraic Geometry was taken over soon by the Italian school 19

at the end of 1800, for instance, by L. Cremona, G. Veronese, and C. Segre. 20

They considered higher-dimensional projective space and properties of its linear 21

subspaces and of its subvarieties. They studied the linear systems of divisors on 22

these varieties, in particular the canonical system which contains information about 23

the curvature. They understood that a classification of projective varieties should 24

depend on the canonical divisor. 25
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G. Fano, a student of C. Segre, started a systematic study of projective varieties 26

of dimension 3 in the early 1900. His pioneering work was remarkably original and 27

deep, although at the time the necessary mathematical tools, especially in the field 28

of Algebra, were not well developed. It is generally accepted that his proofs are 29

not enough rigorous for the modern standard; on the other hand, they contain many 30

intuitions on the geometry of projective threefolds, which turned out to be correct 31

and fundamental. 32

Starting from Fano’s results, a large number of mathematicians, often members 33

of opposing schools, have constructed clever theories in the last 50 years, which are 34

among the most spectacular achievements of contemporary mathematics. A starting 35

point for the contemporary study of Fano’s legacy is the work of V. Iskovskikh and 36

his former student V. Shokurov. The theory of minimal models developed by the 37

Fields medalist S. Mori gave an enormous impulse; on the one hand, it changed the 38

approach to classification of projective varieties and on the other hand gave to the 39

objects studied by Fano a central place in the classification. In the last 15 years, 40

many crucial conjectures were proved, among them the feasibility of the minimal 41

model program in any dimension, under some assumptions, in the celebrated paper 42

by C. Birkar et al. [10]. 43

2 Fano Varieties and Fano-Mori Contractions 44

We consider normal projective varieties X defined over C; if n is the dimension 45

of X, we sometime call X and n-fold. We denote by KX the canonical sheaf ; we 46

assume to have good singularities such that KX , or a multiple of it, is a line bundle 47

(a Cartier divisor). 48

Let X ⊂ P
N be a projective threefold such that for general hyperplanes 49

H1andH2, the curve � := X ∩ H1 ∩ H2 is canonically embedded into H1 ∩ H2 50

(i.e., K� embeds �). Fano called them Varietá algebriche a tre dimensioni a curve 51

sezioni canoniche [20–23]. 52

It is not difficult to prove that a smooth threefold X (one can allow mild 53

singularities) whose general curve section � is canonically embedded has the 54

anticanonical bundle, −KX, very ample. Actually the anticanonical linear system, 55

| − KX|, embeds X as a threefold of degree 2g − 2 into a projective space of 56

dimension g + 1, X := X3
2g−2 ⊂ Pg+1, where g = g(�) is the genus of �. 57

An obvious example is given by the quartic threefold in P4, X4 ⊂ P4. 58

Fano noticed that for such varieties, the following invariants are zero: 59

• h0(X,mKX) = 0 for all m ≥ 1; 60

Pm(X) := h0(X,mKX) are called m-th plurigenera, and if they are all zero, we 61

say that X has Kodaira dimension minus infinity, k(X) = −∞. 62

• hi(OX) = 0 for all positive i; 63

in particular, the irregularity q(X) = h1(X,OX) is zero. 64
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Varieties satisfying these two conditions were called by him Varietá algebriche 65

a tre dimensioni aventi tutti i generi nulli. 66

Fano had the insight that this class of varieties contains varieties which are non- 67

rational, in spite of the fact that they have all plurigenera and irregularity equal to 68

zero; they would provide a counterexample to a Castelnuovo-type rationality criteria 69

for threefolds. None of Fano’s attempts to prove non-rationality has been considered 70

acceptable. 71

The first proof of the non-rationality of (all) X4 ⊂ P4 is the celebrated Iskovskih 72

and Manin’s [32]. B. Segre constructed some unirational X4 ⊂ P4 [55]; therefore, 73

these unirational but not rational X4 ⊂ P4 represent counterexamples to Lüroth 74

problem in dimension 3, as well as to a Castelnuovo-type rationality criteria.AQ2 75

In the same period, Clemens and Griffiths proved the non-rationality of the cubic 76

threefold in P4 [18]. Both papers gave rise to subsequent deep results and theories 77

aimed to determine the rationality or not of Fano varieties. 78

Nowadays, we define a Fano manifold as follows. 79

Definition 1 A smooth projective variety X is called a Fano manifold if −KX is 80

ample. 81

If Pic(X) = Z, then X is called a Fano manifold of the first species or a prime
Fano manifold. In this case, if L is the positive generator of Pic(X), we have KX =
−rL; the integer r is called the index of X. ��

The following is a more general “relative” definition. 82

Let f : X → Y be a proper surjective map between normal varieties with 83

connected fibers; we call such an f a contraction. If Y is affine, we say that f is a 84

local contraction. The contraction can be birational with exceptional locus a divisor; 85

in this case, it is called a divisorial contraction; it can be birational with exceptional 86

locus of codimension ≥ 2; it is called a small contraction; if dimX > dimY , f is 87

called of fiber type. 88

Definition 2 Let f : X → Y be a contraction and assume that X is smooth or with 89

very mild singularities; f is called a Fano-Mori contraction (F-M for short) if −KX 90

is f -ample. 91

If Pic(X/Y ) = Z, then X is called an elementary Fano-Mori contraction. In this 92

case, if L is the positive generator of Pic(X/Y ), we have KX ∼f −rL; the rational 93

number r is called the nef value of f . 94

A Fano manifold can be considered as a Fano-Mori contraction with dimY = 95

0. A general fiber of a Fano-Mori contraction is a Fano manifold. To be a Fano 96

variety is not a birational property. Fano varieties and Fano-Mori contractions have 97

been playing a crucial role for 50 years in the birational and biregular study and 98

classification of projective varieties.AQ3 99

The definitions of Fano manifolds and of F-M contraction could be extended 100

to the singular case. The definitions and the studies of the appropriate setting of 101

singularities gave rise in the last 40 years to a fundamental theory intimately related 102

to the properties of the canonical (and anticanonical) bundle. These singularities 103

are ordered in a hierarchy which goes from the so-called terminal and canonical 104
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singularities up to log terminal and log canonical; we omit any further details, apart 105

from the fact that on these singular varieties, one can define the canonical sheaf 106

KX as well as concepts of positivity and ampleness. A detailed introduction can be 107

found in the book of J. Kollár with S. Kovacs [38]. 108

This is a beautiful example of a typical fact of mathematical theories in which 109

a definition contains special properties, which are not explicitly mentioned at the 110

beginning and remain obscure for a while. Subsequent researches bring out them, 111

displaying the intrinsic power of the original definition. It is pretty clear, however, 112

that Fano himself was conscious that his definition should include also the case with 113

singularities. 114

3 Classifications of Fano Varieties and Fano-Mori 115

Contractions 116

The minimal model program (MMP) aims to classify projective varieties. Started 117

by S. Mori (Fields medalist in 1990 for “the proof of Hartshorne’s conjecture and 118

his work on the classification of three-dimensional algebraic varieties”), it was 119

developed by many mathematicians including C. Hacon and J. McKernan (Break- 120

through Prize in Mathematics 2018 for “transformational contributions to birational 121

algebraic geometry, especially to the minimal model program in all dimensions”) 122

and C. Birkar (Fields medalist in 2018 for “the proof of the boundedness of Fano 123

varieties and for contributions to the minimal model program”).AQ4 124

According to MMP, a projective variety, smooth or with at most Kawamata log 125

terminal singularities, is birational equivalent either to a projective variety with 126

positive (nef) canonical bundle or to a F-M contraction, f : X → Y , of fiber typer 127

(dimX > dimY ). 128

What is even more suggestive is the fact that the birational equivalence can be 129

obtained via a finite number of either divisorial F-M contractions or flips of small 130

F-M contractions. The existence of the MMP was proved in dimension 3 by S. Mori 131

[46], while for higher dimension, it has been proved in many cases by C. Birkar et 132

al. [10]. 133

Because of the MMP, F-M contractions became the building blocks, or the atoms, 134

of the classification of projective varieties; as a consequence, it is worth classifying 135

them. 136

Fano started a biregular classification of Fano manifolds of dimension 3 [19–23]. 137

His work contains serious gaps and many unsatisfactory technical tools. 138

V.A. Iskovskih, in a series of papers, [30] and [31], has taken up the classification, 139

and using modern tools, he has been able to justify and amplify the work of Fano, 140

obtaining a complete classification of prime Fano threefolds. If g := 1
2K3

X + 1 (this 141

is equal to the genus of the curve section), he proved that 3 ≤ g ≤ 12 and g �= 11. 142

For every such g, he gave a satisfactory description of the associated Fano variety. 143
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He used Fano’s method of double projection from a line; in particular, he needs the 144

existence of a line, a delicate result proved only later by his student Shokurov [57]. 145

Among his results, a nice one is the construction of the Fano manifold X22 ⊂ P13; 146

Fano in [23] discussed the existence of X22, but this was omitted by Roth in [54]. 147

He proved that in this case, the double projection from a line, π2Z : X... > W ⊂ P6, 148

goes into W , a Fano threefold of index 2, degree 5, Pic(W) = Z, and at most one 149

singular point. The inverse is given by the linear system 3H − 2C, where H is the 150

hyperplane and C is a normal rational curve of degree 5. X22 is rational. 151

Some years later, S. Mukai gave a new method to classify Fano-Iskovskikh 152

threefolds based on vector bundle constructions [50]. He provided a third description 153

of X22 ⊂ P13 (see also [52]). 154

In the same period, S. Mori and S. Mukai [49] gave a classification of all Fano 155

threefold with Picard number greater or equal than 2, and this would have concluded 156

the classification of Fano threefold. However, in 2002, at the Fano Conference in 157

Torino, they announced that they have omitted one of them, namely, the blow-up of 158

P
1 × P1 × P1 along a curve of tridegree (1, 1, 3) (erratum in [49]). It seems now 159

clear that there are 88 types of non-prime Fano threefolds up to deformation. Their 160

classification is based on Iskovskihk’s and on the Mori theory of extremal rays, via 161

the so-called two-ray game. 162

A classification of Fano manifolds of higher dimension is an Herculean task 163

which, however, could be done in a finite time. Nadel and Kollár et al., [53] and [41], 164

proved that Fano manifolds of a given dimension form a bounded family, meaning 165

that they are classified by the points of finitely many algebraic varieties. The same 166

results have been proved recently by C. Birkar in the singular case [9]. 167

Fano manifolds of index r ≥ n = dimX are simply the projective spaces and 168

the quadrics, and this was proved by Kobayashi and Ochiai [35]. Fano manifolds 169

of index (n − 1) are called del Pezzo manifolds; they were intensively studied by 170

T. Fujita, who proved the existence of a smooth divisor in the linear system H 171

generating Pic(X) [26]. Mukai classified all Fano manifolds of index = (n − 2) 172

under the assumption that H has an effective smooth member [50]. M. Mella proved 173

later that this assumption is always satisfied for Fano manifolds of index = (n − 2), 174

[42]. 175

There are several projects aiming to classify singular Fano varieties in dimen- 176

sions 3, 4, and 5. A very important one is carried out at Imperial College London 177

under the guidance of A. Corti, and it is named the periodic table of mathematical 178

shapes. It is estimated that 500 million shapes can be defined algebraically in 4 179

dimensions and a few thousand more in the fifth. 180

The following is a nice conjecture of Mukai [51], very useful for the classifica- 181

tion. 182

Conjecture 1 Let X be a Fano manifold and ρX the Picard number of X, i.e., ρX = 183

dimN1(X). Then 184

ρX(rX − 1) ≤ n.
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More generally if iX = min{m ∈ N | − KX · C = m,C ⊂ X rational curve } is 185

the pseudoindex of X (note that iX = mrX), then 186

ρX(iX − 1) ≤ n with = iff X  (PiX−1)ρX .
187

The conjecture holds for toric varieties [11] and in other special cases, for 188

instance, for n ≤ 5 [6]. 189

In a fundamental paper, S. Mori [45], after developing his theory of extremal 190

rays, classified all birational F-M contractions on a smooth threefold. This beautiful 191

classification can be seen as the equivalent in dimension 3 of the Castelnuovo 192

contraction criterion on smooth algebraic surfaces. 193

Later Kawamata described small local F-M contractions on a smooth fourfold 194

[34]. 195

Subsequently, Wisniewski and myself classified all the birational F-M contrac- 196

tions on a smooth fourfold [3]. All these classifications are based on a careful 197

analysis of the deformations of rational curves contained in the fibers of the F-M 198

contractions. The most difficult part is to construct explicit examples for all possible 199

cases; some of them are quite peculiar and bizarre. 200

One can find several results on the classification of F-M contraction of fiber type 201

on smooth threefolds and fourfolds. From the “classical” ones on conic bundles up 202

to more recents which compared different birational models of F-M contractions 203

via the so-called Sarkisov program. According to this program, every birational 204

morphism between two fiber-type F-M contractions with the same target Y can be 205

factorized via a finite number of few basic transformations.AQ5 206

In the 1980s, immediately after the introduction of the Mori theory, it appears 207

with full evidence that the study of F-M contractions should be carried out in the sin- 208

gular setup. P. Francia constructed in 1981 [24] a brilliant example of commutative 209

diagram of F-M contractions on threefolds which convinced everybody that a MMP 210

can be performed only passing through singular cases. In particular, he showed that 211

even on threefold with mild singularities, one can find small F-M contractions which 212

need to be “flipped.” 213

A careful classification of small F-M contractions on threefolds with terminal 214

singularities, together with their flips, was given in a very deep paper by S. Mori 215

[47] and then by S. Mori and J. Kollár [39]. 216

Many authors, including Mori himself, are trying to obtain a complete classifica- 217

tion of F-M contractions on threefolds with at most terminal singularities. 218

Based on the work of S. Mori, Y. Kawamata, Kawakita, and others on threefolds, 219

I recently gave a characterization of birational divisorial contractions on n-fold with 220

terminal singularities with nef value greater than n − 3: they are weighted blow-up 221

of hyperquotient singularities [1]. 222
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4 Rational Curves on Fano Varieties: Rationally Connected 223

The name Fano variety is also used for some fundamental type of subvariety of the 224

Grassmannian G(k, n) associated with a variety X ⊂ PN (see, for instance, [28]). 225

This is the variety of k-planes contained in X, that is, 226

Fk(X) := {� : � ⊂ X} ⊂ G(k, n).

Fano studied F1(X) for some Fano manifolds X, for instance, for the cubic 227

hypersurfaces X3 ⊂ P4; in this case, F1(X3) ⊂ G(1, 4) is a surface of general type, 228

called the Fano surface of X3. It plays a crucial role in the proof of the irrationality 229

of X3 via the method of the intermediate Jacobian. 230

The idea of studying families of curves and not linear systems of divisors on 231

a higher dimension variety (they coincide on surfaces), more precisely on Fano 232

manifolds, was carried on in a spectacular way by S. Mori and developed by many 233

other authors. 234

In [45], S. Mori proved the following results: 235

Theorem 3 Let X be a Fano manifold. Then X contains a rational curve f : P1 → 236

D ⊂ X. In fact, through every point of X, there is a rational curve D such that 237

0 < −(D .KX) ≤ dimX + 1.
238

The proof is very nice, may be one of the nicest in the last years in algebraic 239

geometry, and it can be quickly described, omitting some (difficult and deep) details. 240

Proof Take any curve C passing through the chosen point and consider its defor- 241

mation space. By deformation theory and Riemann-Roch theorem, it has dimension 242

greater or equal than 243

h0(C, T X) − h1(C, T X) − dimX = −C .KX − g(C).dimX.
244

Although by assumption −C .KX is positive, the quantitative −C .KX − 245

g(C).dimX could not be positive, that is, the curve C may not deform. The idea 246

of Mori at this point is to pass to a field of positive characteristic p and consider 247

all the geometric objects over this new field, calling them Xp and Cp. There you 248

have a new endomorphism, namely, the Frobenius endomorphism. One can change 249

the curve C with another, which is the image of Cp via a number m of Frobenius 250

endomorphism. Note that the genus of the curve remains g(C). On the other hand, 251

the above estimate changes by multiplying −Cp
.KXp with pm; in this way, one can 252

make the quantity −pm.Cp
.KXp − g(Cp).dimXp positive. 253

Mori showed then that if a curve through a point on an algebraic variety moves, 254

passing anyways from the point, it will “bend and break.” More precisely, it will 255

be algebraically equivalent to a reducible curve which has at least one rational 256
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component through the point. With a further step of “bend and break,” he proves 257

also that one can find a rational curve Dp with −(Dp
.KXp) ≤ dimX + 1. 258

Having found in any characteristic a rational curve through the point, with 259

bounded degree with respect to −KXp , one applies a general principle, based on 260

number theory: if you have a rational curve (of bounded degree) through the point 261

for almost all p > 0, then you have it also for p = 0. 262

An immediate consequence of the theorem is that a Fano variety is uniruled, i.e., 263

it is covered by rational curve. 264

Campana [13] and Kollár et al. [41] proved later that a Fano manifold is actually 265

rationally chain connected, i.e., any two points can be connected by a chain of 266

rational curves. 267

To be uniruled and rationally connected are birational properties. 268

It is straightforward to prove that if X is uniruled, then Pm(X) = for all m > 0, 269

i.e., k(X) = −∞. The converse is a long-lasting conjecture, stated by Mori in [47]:AQ6 270

Conjecture 2 Let X be a projective variety with canonical singularities; if k(X) =
−∞, then X is uniruled. ��

The conjecture is false for more general singularities, for instance, for Q- 271

Gorenstein rational, as some examples of J. Kollár show [37]: they are rational 272

varieties with ample canonical divisor. 273

As for rationally connected, we have the following conjecture of D. Mumford: 274

Conjecture 3 Let X be a smooth projective variety; if H 0(X, (�1
X)⊗m) = 0 for all

m > 0, then X is rationally connected. ��AQ7
Let me recall a curious remark of J. Harris during a school in Trento: “Mori’s 275

conjecture is well founded in birational geometry. Mumford’s seems to be some 276

strange guess, how did he come up with that?” 277

I think that J. Kollár was the first to notice that Mori’s implies Mumford’s; see 278

[36], Chapter 4, Prop 5.7. His proof is based on the existence of the MRC fibration 279

(see Theorem 9) and the fibration theorem, proved later by Graber-Harris-Mazur- 280

Starr [27]. 281

In [47], S. Mori introduced the definition of pseudo-effective divisor, i.e., a 282

divisor contained in the closure of the cone of effective divisors in the vector space 283

of divisors modulo numerical equivalence: Eff (X) ⊂ N1(X). 284

He noticed that if KX is not pseudo-effective, then k(X) = −∞ and also that if 285

X is uniruled, then KX is not pseudo-effective. The non-pseudo-effectivity of KX is 286

therefore a condition in between uniruledness and negative Kodaira dimension. 287

The following result has been proved in [12] and in [10] using the bend and 288

breaking theory of Mori. 289

Theorem 4 Let X be a projective variety with canonical singularities; KX is not
pseudo-effective if and only if X is uniruled. ��

In a recent paper, together with C. Fontanari [2], we discuss other definitions 290

in between uniruledness and negative Kodaira dimension which go under the title 291

“Termination of Adjuction.” They have different levels of generality, and up to 292
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certain point, we prove the equivalence of these definitions with uniruledness. 293

A more general definition, which has a classical flavor, was introduced by G. 294

Castelnuovo and F. Enriques in the surface case. 295

Definition 5 (Termination of Adjunction in the Classical Sense) Let X be a 296

normal projective variety and let H be an effective Cartier divisor on X. Adjunction 297

terminates in the classical sense for H if there exists an integer m0 ≥ 1 such that 298

H 0(X,mKX + H) = 0

for every integer m ≥ m0. ��
It is easy to prove that uniruledness implies adjunction terminates for H and that 299

this last condition implies that k(X) = −∞. 300

We conjecture that if X has at most canonical singularities, then adjunction 301

terminates for H is equivalent to uniruledness. This is true in dimension 2 by 302

a theorem of Castelnuovo-Enriques. They proved it for superficie adeguatamente 303

preparate; today, we would say for surfaces which are final objects of a MMP. 304

The following criteria for uniruledness were proved by Miyaoka [43]; the proof 305

is based on a very general “bend and break technique.”AQ8 306

Definition 6 TX is generically seminegative if for every torsion-free subsheaf E ⊂
TX, we have c1(E).C ≤ 0, where C is a curve obtained as intersection of high
multiple of (n − 1) ample divisors. ��
Theorem 7 A normal complex projective variety X is uniruled if and only if TX is
not generically seminegative. ��

This criterion is a starting point to prove many nice result, including the following 307

one of J. Wisniewski and myself [4], which is the generalization of the celebrated 308

Frenkel-Hartshorne conjecture proved by S. Mori [44]. 309

Theorem 8 Let X be a projective manifold with an ample locally free subsheaf of 310

E ⊂ T X. 311

Then X = Pn and E = O(1)⊕r or E = TPn . ��
A nice conjecture in this setup has been formulated by F. Campana and T. 312

Peternell [14]. 313

Conjecture 4 A Fano manifold with nef tangent bundle is a rational homogeneous
variety. ��

Let’s conclude this section with briefly mentioning two technical instruments 314

developed in the last 30 years to study uniruled varieties. They are crucial in the 315

proof of many deep theorems, including Theorem 8. 316

On a uniruled variety X, we can find a dominating family of rational curves (more 317

precisely an irreducible component V ⊂ Hom(P1,X) such that LocusV = X) 318

having minimal degree with respect to some fixed ample line bundle. These families 319

are extensively studied in the book of J. Kollár [36], and they are called generically 320
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unsplit families. This is a beautiful and useful extension of the concept of family of 321

lines used by G. Fano in the study of his varieties. 322

For each x ∈ X, denote by Vx the family of curves from V passing through x. 323

Let Cx be the subvariety of the projectivized tangent space at x consisting of tangent 324

directions to curves of Vx , that is, Cx is the closure of the image of the tangent map 325

�x : Vx → P(TxX). It has been considered first by S. Mori in [44] and then by 326

many others. Hwang and Mok studied this variety in a series of papers (see, for 327

instance, [29]) and called it variety of minimal rational tangents (in short, VMRT) 328

of V .AQ9 329

The tangent map and the VMRT determine the structure of many Fano manifolds, 330

for instance, of the projective space and of the rational homogeneous varieties. 331

Given a family of rational curves, V ⊂ Hom(P1,X), one can define a 332

relation of rational connectedness with respect to V , rcV relation for short, in 333

the following way: x1, x2 ∈ X are in the rcV relation if there exists a chain of 334

rational curves parameterized by V which joins x1 and x2. The rcV relation is an 335

equivalence relation, and its equivalence classes can be parameterized generically 336

by an algebraic set. More precisely, we have the following result due to Campana 337

[13] and to Kollár et al. [41]. 338

Theorem 9 There exist an open subset X0 ⊂ X and a proper surjective morphism
with connected fibers φ0 : X0 → Z0 onto a normal variety, such that the fibers of
φ0 are equivalence classes of the rcV relation. ��

We shall call the morphism φ0 an rcV fibration. If Z0 is just a point, then we will 339

call X a rationally connected manifold with the respect to the family V . 340

More generally one can consider on a uniruled variety a rationally connectedness 341

relation with respect to all rational curves Hom(P1,X), denoted rc relation. 342

Theorem 9 holds also in this case, and we obtain the so-called maximal rationally 343

connected fibration (for short MRC), which we have quoted above. 344

The rcV and the MRC fibrations are very much connected to F-M contractions, 345

and they are crucial tools for the study of uniruled varieties. 346

5 Elephants and Base Point Freeness 347

Let X be a Fano manifold, or more generally, let f : X → Y be a local F-M 348

contraction. M. Reid created the neologism general elephant to indicate a general 349

element of the anticanonical system, i.e., of the linear system | − KX|. 350

The classification of Fano manifolds or of F-M contractions very often use and 351

inductive procedure on the dimension of X, sometime called “Apollonius method”, 352

which (very) roughly speaking consists in the following: 353

1. Take a general elephant D ∈ | − KX|, which is a variety of smaller dimension; 354

by adjunction formula, it is in the special class of varieties with trivial canonical 355

bundle. 356
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2. Lift up sections of (−KX)|D (or of other appropriate positive bundles) to sections 357

of −KX. This can be done via the long exact sequence associated with 358

0 → OX → −KX → (−KX)|D → 0.

This is possible thanks to the Kodaira vanishing theorem, which on a Fano 359

manifolds gives h1(OX) = 0. 360

3. Use the sections obtained in this way to study the variety X. 361AQ10
More generally, one can consider a line bundle L such that either −KX = rL, 362

where r is the index of X, or −KX ∼f rL, where r is the nef value of the F-M 363

contraction f : X → Y . 364

Take D ∈ |L| and do an inductive procedure on D. By adjunction formula 365

−KD = (r − 1)LD , respectively, −KD ∼f (r − 1)LD , and by Kodaira vanishing 366

theorem sections of LD lifts to section of L. If r = 1, this is exactly what is done 367

above.AQ11 368

The procedure has classical roots and can be traced back to the Italian school of 369

projective geometry or, as the name used above, even to classical Greek geometry. 370

Of course, it is not as smooth as in the above rough picture, and one runs soon 371

in many delicate problems which were handled and solved by many distinguished 372

mathematicians in the last 50 years. Besides S. Mori and others mentioned above, 373

we must recall V. Shokurov, Y. Kawamata, and J. Kollár. 374

The first crucial problem is the existence of a general elephant, a question 375

unexpectedly avoided by some authors. Moreover, it is needed that the singularities 376

of the elephant are not worse than those of X; if X is smooth, we like that also the 377

elephant is smooth. 378

For the second step, it is necessary to ensure the existence of enough sections 379

of (−KX)|D , more generally of LD . This is a very delicate problem, and it goes 380

under the name non-vanishing theorem. In order to get non-vanishing sections in the 381

linear systems |LD|, sometime ione changes slightly the line bundle L, introducing 382

the so-called boundary or fractional divisors. If this is the choice, then the Kodaira 383

vanishing theorem is not sufficient, and more powerful and suitable vanishing 384

theorems are needed.AQ12 385

The contemporary theory of MMP and of the study of F-M contractions develops 386

as a “game” between vanishing and non-vanishing. Two “teams” were competing 387

and/or cooperating on this. On one side, there is the group of algebraic geometers, 388

which uses boundary and fractional divisors and the so-called Kawamata-Viehweg 389

vanishing theorem. They refer to Shokurov as the main master of the game, and his 390

technique has been called “spaghetti-type proofs,” an attribute to the Italian origins. 391

On the other side, there is the group of analytic geometers or complex analysts, 392

which used the so-called Nadel ideals and Nadel vanishing theorem; besides Nadel, 393

the two other main active figures are Y.T. Siu and J.P. Demailly.AQ13 394

Maybe the most important result proved with these methods is the existence of 395

the MMP, in dimension 3 by S. Mori [48] and later in all dimension, under some 396

assumptions, by Birkar et al.[10]. 397
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Regarding the existence and the regularity of the elephants among the many 398

crucial technical steps in the last 50 years, I like to recall the following ones: 399

• The existence of a smooth general elephant on a smooth Fano threefold (more 400

generally of an elephant with du Val singularities on a Fano threefold with Goren- 401

stein canonical singularities), by V.V. Shokurov [56]. This assures completeness 402

to the proof of the classification of smooth Fano threefolds started by Fano and 403

concluded by Iskovskih. 404

• The existence of a general elephant with du Val singularities on a small F-M 405

contraction on threefold with terminal singularities, by S. Mori [48] and by S. 406

Mori and J. Kollár [39]. This is a fundamental step to prove the existence of the 407

flip for every small contraction on a threefold with terminal singularities and, in 408

turn, the existence of the MMP in dimension 3. 409

• The existence of a general elephant with du Val singularities on a divisorial F-M 410

contraction on threefold with terminal singularities, by M. Kawakita in a series 411

of paper from 2001 to 2005; see, for instance, [33]. 412

• The existence of a smooth element in the linear system |L| on a Fano manifold 413

of index r ≥ (n − 2), where −KX = rL. This is “classical” for r ≥ n; see, for 414

instance, [35]. It has been proved for r = (n − 1) by T. Fujita in 1984 (see [26]) 415

and for r = (n − 2) by M. Mella in 1999 (see [42]). 416

• The existence of an element in |−mKX| for a positive integer m depending only 417

on d for any d-dimensional Q-Fano variety X, by C. Birkar in 2019 [8]. This 418

result is the starting step to prove the boundness of the number of families of 419

Q-Fano variety in any fixed dimension d (BAB conjecture) [9]. 420

• On a local F-M contraction f : X → Y such that −KX ∼f rL, the line bundle 421

L is base point-free at every point of a fiber F with dimF < (r + 1); if f 422

is birational, then the same is true also for fibers F such that dim ≤ (r + 1). 423

This in turn, by Bertini’s theorem, will give the existence of elements in |L| with 424

singularities not worse than those of X. This was proved for varieties X with klt 425

singularities by Wisniewski and myself in 1993 and extended to log canonical 426

singularities by O. Fujino in 2021 [25]. 427

6 Kähler-Einstein Metrics 428

On a Riemannian manifold (X, g), one can consider the Einstein field equations, 429

a set of partial differential equations on the metric tensor g which describe how 430

the manifold X should curve due to the existence of mass or energy. In a vacuum, 431

where there is no mass or energy, the Einstein field equations simplify. In this case, 432

the Ricci curvature of g, Ricg , is a symmetric (2, 0) tensor, as is the metric g itself, 433

and the equations reduce to 434

Ricg = λg
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for a smooth function λ. A Riemannian manifold (X, g) solving the above equation 435

is called an Einstein manifold. It can be proven that λ, if it exists, is a constant 436

function. 437

If the Riemannian manifold has a complex structure J compatible with the metric 438

structure (i.e., g preserves J and J is preserved by the parallel transport of the Levi- 439

Civita connection), the triple (X, g, J ) is called a Kähler manifold. 440

A Kähler-Einstein manifold combines the above properties of being Kähler and 441

admitting an Einstein metric. A famous problem is to prove the existence of a 442

Kähler-Einstein (K-E for short) metric on a compact Kähler manifold. It has been 443

split up into three cases, depending on the sign of the first Chern class of the Kähler 444

manifold. 445

If the first Chern class is negative, T. Aubin and S.T. Yau proved that there is 446

always a K-E metric. If the first Chern class is zero, then S.T. Yau proved the Calabi 447

conjecture, that there is always a K-E metric, which leads to the name Calabi-Yau 448

manifolds. For this, he was awarded with the Fields medal. 449

The third case, which is the positive or Fano case, is the hardest. In this case, the 450

manifold not always has a K-E metric; Y. Matsushima (1957) and A. Futaki (1983) 451

gave necessary conditions for the existence of such metric. For instance, the blow- 452

ups of P2 in one or two points do not have a K-E metric. G. Tian in [58] proposed 453

a stability condition for a complex manifold M , called K-stability, connected with 454

the existence of a K-E metric; in the same paper, he proved that there are Fano 455

threefolds of type X22 which do not admit a K-E metric. 456

In 2012, Chen, Donaldson, and Sun proved that on a Fano manifold, the existence 457

of a K-E metric is equivalent to K-stability. Their proof appeared in a series of 458

articles in the Journal of the American Mathematical Society in 2014 [15, 16, 16]. 459

Recently, many authors studied the existence of a K-E metric on the 105 460

irreducible families of smooth Fano threefolds, which have been classified by Fano, 461

Iskovskikh, Mori, and Mukai. A very nice summary is contained in the forthcoming 462

book by Carolina Araujo, Ana-Maria Castravet, Ivan Cheltsov, Kento Fujita, Anne- 463

Sophie Kaloghiros, Jesus Martinez Garcia, Constantin Shramov, Hendrik Süß, and 464

Nivedita Viswanathan; see [7]. For each family, they determine whether its general 465

member admits a K-E metric or not; in many cases, this has been done also for the 466

special members. 467
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