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Abstract
Complex projective algebraic varieties withC∗-actions can be thought of as geometric coun-
terparts of birational transformations. In this paper we describe geometrically the birational
transformations associated to rational homogeneous varieties endowed with aC∗-action with
no proper isotropy subgroups.
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1 Introduction

The transition from classic projective to modern birational geometry in the 1980s left alge-
braic geometry with the task of understanding brand new birational transformations such
as flips and flops. An interesting idea, that sprung out of the work of Reid [14], Thaddeus
[17, 18] and Włodarczyk [19], is that these transformations may be understood by means of
actions of tori: given a birational map ψ between complex projective varieties, there exists
an algebraic variety X (not proper, in general) admitting a C∗-action such that ψ is the map
induced among two GIT-quotients of X by C∗.

On the other hand, if one starts with a projective variety X admitting a nontrivialC∗-action,
then one may consider the geometric quotients of the action and the induced birational map
among them.Among these quotients, two distinguished ones are particularly relevant: starting
with the general point x ∈ X , we call sink and source of the action the (unique) fixed-point
components Y−, Y+ that contain, respectively, limt→0 t−1 · x and limt→0 t · x . Considering
the Białynicki-Birula cells,

X±(Y±) :=
{

x ∈ X : lim
t→0

t±1 · x ∈ Y±
}

,

the quotients G± := (
X±(Y±)\Y±

)
/C∗ are geometric quotients of X and, in the case in

which X is smooth (see [1, 7]), G± are weighted projective bundles over Y±. The nonempty
intersection X−(Y−) ∩ X+(Y+) defines a birational map ψa : X−(Y−) ��� X+(Y+) that
descends via the quotient by C∗ to a birational map

ψ : G− ��� G+,

that we call the birational map induced by the C∗-action. This map encodes many geometric
properties of X ; for instance, it is equivariant with respect to the action of the centralizer of
C

∗ in the group of automorphisms of X . When the group of automorphisms of X is large
(for instance if X is rational homogeneous), the list of possible associated birational maps is
expected to be small.

Note that when X is smooth and theC∗-action has no finite stabilizers (in our language we
say that the action is equalized), G± are smooth varieties. One can describe ψ as a sequence
of Atiyah flips, blowups and blowdowns (cf. [12]).

The goal of this paper is to study equalized C
∗-actions on some rational homogeneous

varieties (RH variety, for short) of Picard number one G/P (G semisimple algebraic group,
P maximal parabolic subgroup) and to describe their associated birational maps. A key
property of these transformations is that they are equivariantwith respect to a certain reductive
subgroup G0 ⊂ G.

Example 1.1 The simplest example is the projectivization of the inversion map of matrices

ψ : P(Mn×n) ��� P(Mn×n), [A] �−→ [A−1],
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which is PGL(n)-equivariant. It was already noted by Thaddeus in [18, Section 4] that this
birational map is induced by a certain C

∗-action on X , the Grassmannian of n-dimensional
subspaces of a 2n-dimensional complex vector space. The restriction of this action to a certain
C

∗-invariant subvariety (P1)n ⊂ X has the standard Cremona transformation

ψ : Pn−1 ��� P
n−1, (x1 : . . . : xn) �−→

(
x−1
1 : . . . : x−1

n

)
,

as the associated birational map. This map, which can be thought of as the projectivization
of the inversion of diagonal n × n matrices, is equivariant with respect to the action of an
algebraic torus (C∗)n−1.

Thaddeus’ observation—and its analogous formulation in the case of the inversion of
symmetric matrices, cf. [9, Lemma 3.6]—can be extended to other C∗-actions on ratio-
nal homogeneous varieties. Roughly speaking, we expect the associated birational maps to
behave like “inversion maps” for certain algebraic structures on X±(Y±).

This idea is particularly clear in the case in which the action is equalized and the extremal
fixed-point components Y± are isolated points, i.e. in the case that the induced birational map
is a Cremona transformation:

ψ : G− = P(TX ,Y−) ��� P(TX ,Y+) = G+.

In this situation we will prove the following:

Theorem 1.2 Consider an equalized C
∗-action on an RH variety X of Picard number one

with isolated sink and source, let ψ : P(TX ,Y−) ��� P(TX ,Y+) be the Cremona transformation
induced by the action. Then there exists a unique structure of Jordan algebra on TX ,Y− and
a linear isomorphism α : TX ,Y+ → TX ,Y− , such that j := P(α) ◦ ψ is the projectivization of
the corresponding inversion map in TX ,Y− .

The precise way inwhichψ can be constructed upon themap j will be described in Sect. 4.
Our result can be considered a reformulation of [15, 2.21] into the language of C∗-actions.
Note that in the same text the author shows how the inverse map completely determines the
structure of Jordan algebra and that any simple Jordan algebra appears this way. A key point
in the proof of Theorem 1.2 will be the fact that the C∗-actions considered in the statement
are completely determined by a grading on the Lie algebra g of G; the hypotheses of Theorem
1.2 can be rephrased by saying that the grading is short (see Sect. 2.4.1) and balanced (see
Sect. 4 for the precise definition).

Given a short and balanced grading on a simple Lie algebra g, onemay consider the actions
induced on the other RH G-varieties of Picard number one (not only those on which the sink
and the source are isolated) and study the induced birational maps. As in Theorem 1.2, up
to composition with a biregular map, we obtain a birational involution of the corresponding
geometric quotient G−, which in this case is the projectivization of a homogeneous vector
bundle over an RH variety. When G is of classical type, we study explicit descriptions of the
birational map ψ , obtaining the following (we refer to Sect. 2.3 for the notations):

Theorem 1.3 Let G be a simple algebraic group whose Lie algebra g is of classical type
and admits a short and balanced grading. Let X be an RH G-variety of Picard number
one endowed with the C

∗-action determined by the grading (as in Sect.2.4.1). Assume that
the extremal fixed point components of the action are not isolated points. Then the induced
birational transformation ψ : G− ��� G+ is a small Q-factorial modification, uniquely
determined by the geometric quotients G± of X (up to automorphisms of G±). Their complete
list is the following:
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• X = A2n−1(k) is the Grassmannian of k-dimensional linear subspaces in a 2n-
dimensional vector space V , k ≤ n, endowed with a C

∗-action producing a weight
decomposition V = V− ⊕ V+ with dim V± = n. The extremal fixed point compo-
nents Y± are Grassmannians An−1(k) of k-dimensional linear subspaces of V±, and
G± � P

(S∨± ⊗ V∓
)
, where S± denote the corresponding universal bundles (of rank k)

on Y±.
• X = Cn(k) (resp. X � Dn(k) with k ≤ n − 2 or X � Dn(n), n even) is the symplectic

(resp. orthogonal) Grassmannian of isotropic subspaces in a 2n-dimensional vector
space V , endowed with a C

∗-action producing a weight decomposition V = V− ⊕ V+
with dim V± = n, V± isotropic. Then Y± are Grassmannians An−1(k) of k-dimensional
linear subspaces of V± and G± � P

(NY−|X
)
, where the normal bundles NY±|X are

non-trivial extensions of

0 → (S± ⊗ Q±)∨ −→ NY±|X −→ C± → 0,

and, beingS±,Q± the corresponding universal bundles (of rank k and n−k, respectively)
on Y±,

C± :=
{

S2S∨± if X � Cn(k),

∧2S∨± if X � Dn(k).

• X = Dn(n − 1) is the orthogonal Grassmannian of isotropic subspaces in a 2n-
dimensional vector space V (n even), endowed with a C

∗-action producing a weight
decomposition V = V− ⊕ V+ with dim V± = n, V± isotropic. Then Y± � An−1(n − 1)
are projective spaces parametrizing hyperplanes in V±, and G± � P

( ∧2 TY±(−2)
)
.

• X = Bn(k) (resp. X = Dn(k)) is the orthogonal Grassmannian of isotropic subspaces
of a (2n + 1)-dimensional (resp. 2n-dimensional) vector space V , endowed with a C

∗-
action producing a weight decomposition V = V− ⊕ V0 ⊕ V+ (corresponding to weights
−1, 0, 1, respectively), dim(V±) = 1. Then Y± � Bn−1(k −1) (resp. Y± � Dn−1(k −1)
if k ≤ n − 2, (Y−, Y+) � (Dn−1(n − 2),Dn−1(n − 1)) if k = n − 1, and (Y−, Y+) �
(Dn−1(n − 1),Dn−1(n − 2)) if k = n) are orthogonal Grassmannians of isotropic
subspaces in V0, and G± � P

(Q±
)
, where Q± are the corresponding universal bundles

on Y±.

Besides the cases of simple Lie algebras of classical type, only the exceptional Lie algebra
e7 admits a short and balanced grading, that we will later denote by σ7. The birational maps
ψ : G− ��� G+ induced by the corresponding C

∗-action on the RH varieties E7(k) can
still be described in terms of certain universal bundles. We refer to Sect. 5.2 for the precise
definitions of the vector bundles involved.

Theorem 1.4 Consider the short and balanced grading σ7 on the Lie algebra e7. Then the
corresponding C

∗-action H7 on the RH variety with Picard number one E7(k) is such that
Y− � E6(k), Y+ � E6(s(k)) (where s(k) is symmetric node for the non-trivial automorphism
of the Dynkin diagram E6 and s(7) = 0) and

ψ : P (Qk) ��� P

(
Q′

s(k)

)
,

where Qk,Q′
s(k) are the quotient bundles over Y± arising, respectively, from the short exact

sequences

0 → Sk −→ V (ω6) ⊗ OY− −→ Qk → 0,

0 → S ′
s(k) −→ V (ω1) ⊗ OY+ −→ Q′

s(k) → 0.

The contents of Theorems 1.3 and 1.4 are summarized in Table 1 below.
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Outline

The structure of the paper is the following.We start with a section on background material on
C

∗-actions on RH varieties (Sect. 2). Then in Sect. 3 we study the fixed-point components of
an equalized C∗-action on an RH variety of classical type via projective geometry. In Sect. 4
we study Cremona transformations induced byC∗-actions on RH varieties, proving Theorem
1.2. Finally, Sect. 5 is devoted to the proof of Theorems 1.3 and 1.4.

2 Preliminaries

Throughout this paper, unless otherwise stated, all the varieties will be projective, smooth
and defined over the field of complex numbers. Given a vector bundle E over such a variety,
we denote by P(E) its homothetical projectivization, that is

P(E) := Proj

⎛
⎝⊕

m≥0

SmE∨
⎞
⎠ .

2.1 Notation and basic facts onC∗-actions

Let X be a smooth projective variety endowed with a nontrivial C∗-action. We will follow
the notations and conventions in [11].

• We will denote by XC
∗
the set of fixed-points of the action, and Y the set of irreducible

components of XC
∗
.

• Given a point x ∈ X , we denote by x± := limt→0 t±1 · x ∈ XC
∗
the sink x− and the

source x+ of the orbit C∗ · x .
• The only components Y−, Y+ ∈ Y such that, for a general x ∈ X , limt→0 t±1 · x ∈ Y±

are called sink and source of the action, respectively.
• Given Y ∈ Y – which is a smooth subvariety of X – the normal bundle of Y in X will be

denoted NY |X . It decomposes as a direct sum of two subbundles

NY |X = N−(Y ) ⊕ N+(Y ),

onwhichC∗ acts with negative and positive weights, respectively; their ranks are denoted
by ν±(Y ). The two summandsN±(Y ) are C∗-equivariantly isomorphic to subsets of X ,
the so-called Białynicki-Birula cells X±(Y ) ⊂ X , defined as

X±(Y ) :=
{

x ∈ X : lim
t→0

t±1 · x ∈ Y

}
.

Note that X±(Y±) are open subsets in X .
• The action is equalized if the weights of the action of C∗ on NY |X are equal to ±1 for

every Y ∈ Y; equivalently, the action has no nontrivial isotropy subgroups.
• We get a birational map ψa : N−(Y−) ��� N+(Y+) defined as the composition

N−(Y−) � X−(Y−) ←↩ X−(Y−) ∩ X+(Y+) ↪→ X+(Y+) � N+(Y+).

If the C
∗-action is equalized, the map descends via the quotient by homotheties to a

birational map
ψ : P (NY−|X

)
��� P

(NY+|X
)
. (1)
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Note that this map sends a general point of P
(NY−|X

)
corresponding to the tangent

direction at x− ∈ Y− of the closure of an orbit C∗ · x (x ∈ X general) to its tangent
direction at x+ ∈ Y+. The mapsψa and (in the equalized case)ψ are called the birational
maps associated with the C

∗-action on X .
• Given an ample line bundle L on X , a linearization of theC∗-action on L exists. ThenC∗

acts on the fibers of L|Y by multiplication with a character, which we denote by μL(Y ).
Up to multiplication with a character, we may assume that μL(Y−) = 0; then it follows
that μL(Y ) > 0 for every Y ∈ Y \ {Y−} and that the maximum value δ of μL is achieved
at the source Y+. We set:

Yr :=
⊔

μL (Y )=r

Y .

Denoting V := H0(X , L)∨, the C∗-action induces a weight decomposition

V =
⊕
r∈Z

Vr .

If L is very ample, we may write Yr = P(Vr ) ∩ X for every r .
• Note that μr L = rμL . We will be interested in the case in which the Picard number of X

is one and we will assort the fixed-point components of the C∗-action by their weights
with respect to the ample generator of the Picard group of the variety.

• Given the closure C of an orbit C∗ · x satisfying that x− ∈ Y , x+ ∈ Y ′, it follows that

C · L = (μL (Y ′) − μL(Y ))t,

where t is the weight of C∗ on TC,x+ ; if the action is equalized, then t = 1 for every x .

Remark 2.1 In the case in which the C∗-action is equalized and the Picard number of X is
equal to one, which will be our main interest, the map ψ may be decomposed as a sequence
of Atiyah flips and, in certain situations, a blowup and a blowdown (cf. [12]).

2.2 Preliminaries on adjoint groups of simple Lie algebras

The main characters in this paper will be the equalized C
∗-actions on rational homoge-

neous varieties (RH varieties, for short) of Picard number one. Here, we will introduce some
notations we will use regarding these varieties and the corresponding C∗-actions.

Throughout this paper, G will denote the adjoint group of a simple Lie algebra g. We
consider a Cartan subgroup H ⊂ G, a Borel subgroup H ⊂ B ⊂ G and their corresponding
Lie algebras h ⊂ b ⊂ g. We denote by � the root system of G with respect to H , by
� = {α1, . . . , αn} ⊂ �+ ⊂ � a set of positive simple roots of g (determined by the choice
of B), by ω1, . . . , ωn the corresponding fundamental weights, by W = NG(H)/H the Weyl
group of G, and by s1, . . . , sn ∈ W the reflections associated to these positive simple roots.
Wewill denote byD the Dynkin diagram of g, whose nodes are numbered by D = {1, . . . , n}
(we follow the numbering convention of [3, Planche I-IX]), in one-to-one correspondence
with the set of positive simple roots �. We will denote by w0 ∈ NG(H) ⊂ G an element
in the class of the longest element of the Weyl group W = NG(H)/H (with respect to the
choice of � ∈ �).

Each G-homogeneous variety of Picard number one is completely determined by the
choice of a node k inD, since this determines uniquely a fundamental weightωk of the simple
Lie algebra g associated with D. The closed G-orbit in the projectivization P (V (ωk)) of the
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irreducible representation V (ωk) associated with ωk is an RH G-variety of Picard number
one, that we denote byD(k). Alternatively, given the node k of the Dynkin diagramD and the
subgroup Wk ⊂ W generated by the reflections si , i �= k, the subgroup P := BWk B ⊂ G is
a parabolic subgroup containing B, and

G/P � D(k).

We stress out that, the subgroup P is completely determined by its Lie algebra p ⊂ g, whose
Cartan decomposition is:

p =
⊕

β∈�+
gβ ⊕ h

︸ ︷︷ ︸
b

⊕
⊕

β∈�+:
σk (β)=0

g−β . (2)

Here σk : M(H) → Z denotes the height map determined by sending α j to 1 if j = k, and
to 0 otherwise, where M(H) is the group of characters of H , cf. [16].

Notation 2.2 Consider the Dynkin diagram D, whose nodes are numbered by elements of
D = {1, . . . , n}. We define the RH varieties D(0) and D(n + 1) to be isolated points.

2.3 Preliminaries on RH varieties of classical type

2.3.1 Projective description

For the reader’s convenience, we include here the standard projective descriptions of the RH
varieties of Picard number one of classical type. Moreover, we introduce some notations
about them that will be useful later on.

• For every k ∈ {1, . . . , n} the variety An(k) is the Grassmannian of k-dimensional sub-
spaces of the (n + 1)-dimensional vector space V , which is the standard representation
of the Lie algebra of type An .

• For k ∈ {1, . . . , n} the variety Bn(k) is the orthogonal Grassmannian parametrizing k-
dimensional vector subspaces of a (2n +1)-dimensional vector space V that are isotropic
with respect to a fixed bilinear symmetric form of maximal rank. In particular, Bn(1) is
a (2n − 1)-dimensional smooth quadric.

• For k ∈ {1, . . . , n}, Cn(k) is the symplectic Grassmannian, which parametrizes k-
dimensional vector subspaces of a 2n-dimensional vector space V that are isotropic
with respect to a fixed bilinear skew-symmetric form of maximal rank. In particular,
Cn(1) � P(V ).

• For the description of the varieties Dn(k), called orthogonal Grassmannians as well, we
consider a 2n-dimensional vector space V equipped with a bilinear symmetric form of
maximal rank. Then, for k ≤ n − 2, Dn(k) parametrizes k-dimensional vector subspaces
of V that are isotropic with respect to such a symmetric form. In particular Dn(1) is a
(2n−2)-dimensional smooth quadric. The varietiesDn(n−1),Dn(n) parametrize the two
families of n-dimensional isotropic subspaces of V . Any (n − 1)-dimensional isotropic
subspace of V is the intersection of precisely two isotropic subspaces of dimension n, one
in each family Dn(n − 1),Dn(n). The orthogonal Grassmannian of (n − 1)-dimensional
isotropic subspaces of V , denoted by Dn(n − 1, n) has Picard number two (and so it will
not be considered in this paper), with two contractions:
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Dn(n − 1, n)

P
n−1

P
n−1

Dn(n − 1) Dn(n).

2.3.2 Universal bundles

Grassmannians (standard, orthogonal and symplectic) come equipped with some universal
bundles that we will now describe.

• The Grassmannian An(k) supports two universal vector bundles S,Q of rank k and
n + 1 − k, respectively. The former is the subbundle of the trivial bundle, whose fiber
over an element [W ] ∈ An(k) is the corresponding subspace W ⊂ V . ThenQ is defined
as the cokernel of the inclusion S ↪→ V ⊗ OAn(k), so that we have the short exact
sequence:

0 → S −→ V ⊗ OAn(k) −→ Q → 0.

It is then well known that we have a decomposition of the tangent bundle of An(k) as

TAn(k) � S∨ ⊗ Q.

• In the case of isotropic Grassmannians (i.e. orthogonal or symplectic), we may consider
the pullback of the two universal bundles on standard Grassmannians via the natural
inclusions Bn(k) ⊂ A2n+1(k), Cn(k),Dn(k) ⊂ A2n(k) (for k ≤ n − 2 in the Dn-case),
Dn(n − 1),Dn(n) ⊂ A2n(n). In order to consider all these cases together, we start
with a finite-dimensional vector space V endowed with a nondegenerate symmetric or
skew-symmetric isomorphism q : V → V ∨. For every k < dim V /2, consider the
variety X ⊂ Adim V −1(k) parametrizing isotropic k-dimensional subspaces of V and the
restrictions of the universal bundle – that we still denote by S and Q – on this isotropic
Grassmannian. The fact that the subspaces parametrized by X are q-isotropic implies
that the composition

S −→ V ⊗ OX
q−→ V ∨ ⊗ OX −→ S∨

is zero, and so we have an injection S → Q∨, whose cokernel we denote by K. The
isomorphism q induces a (symmetric or skew-symmetric, respectively) isomorphism
K � K∨ and so, summing up, we have a commutative diagram with short exact rows
and columns:

S Q∨ K � K∨

S V ⊗ O q� V ∨ ⊗ O Q

0 S∨ S∨

(3)

Furthermore, it is known for example by [8, Proposition 5.1 and 5.4] that the tangent
bundle of X fits into a short exact sequence:

0 → S∨ ⊗ K −→ TX −→ C → 0 (4)
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where

C =
{∧2 S∨ if D = B(dim V −1)/2,Ddim V /2,

S2S∨ if D = Cdim V /2.

Note that in the case where X parametrize maximal isotropic subspaces, i.e. X =
Cn(n),Dn(n − 1),Dn(n), the bundle K is equal to zero, so with the above notation
we will have TX � C (cf. [8, Section 3.1]).

2.4 EqualizedC∗-actions on RH varieties

Let us now describe briefly equalizedC∗-actions on rational homogeneous varieties of Picard
number one as above. We will use the notation introduced in Sect. 2.1.

2.4.1 Short gradings

Following [5, 10], equalized C
∗-actions on RH varieties are given by the choice of a short

grading on g:

g = g− ⊕ g0 ⊕ g+.

Up to the adjoint action of an element of W , we may assume that b ⊂ g0 ⊕ g+, and the
grading will then be completely determined by the choice of an index i ∈ D = {1, . . . , n}
such that the corresponding height map σi : M(H) → Z satisfies that σi (�) = {−1, 0, 1}.
We will denote

p± := g0 ⊕ g±,

which are parabolic subalgebras of g, corresponding to opposite parabolic subgroups P± ⊂
G, cf. [2, Section 4.8].

Remark 2.3 We have B ⊂ P+ = BWi B, so that, with the marked Dynkin diagram notation,
G/P+ � D(i) and P± have a common Levi part G0 with Lie algebra g0.

The reductive subalgebra g0 ⊂ g decomposes as g⊥ ⊕ hi , where hi is a 1-dimensional
vector subspace of the Cartan subalgebra h, and g⊥ is semisimple. The subalgebras g⊥, g0,⊂
g and hi ⊂ h correspond to subgroups G⊥ ⊂ G0 ⊂ G and Hi ⊂ H . The Dynkin diagram
D⊥ associated with G⊥ can be obtained by deleting the node i from the Dynkin diagram D.

Moreover, Hi can be described as the image of the induced injective map σ ∗
i : C∗ → H .

In the sequel we will directly identify Hi with C
∗ via σ ∗

i .

Then the following statement follows from [5]:

Proposition 2.4 With the above notation, the Hi -action on each rational homogeneous G-
variety X = G/P is equalized, if and only if the grading induced by σi on g is short.

Remark 2.5 The inclusion ı : G⊥ ↪→ G, together with the choice of the Cartan subgroup
H⊥ := G⊥ ∩ H , define a group homomorphism ı∗ : M(H) → M(H⊥) sending {α j : j �= i}
to the set of positive simple roots of G⊥ corresponding to the choice of the Borel subgroup
B⊥ := G⊥ ∩ B and sending the fundamental weight ωi to zero. We denote by α j ∈ M(H⊥)

the image of α j ∈ � via ı∗ for every j �= i .
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Table 2 Short gradings of simple
Lie algebras

g An Bn Cn Dn E6 E7

σi σi for i = 1, . . . , n σ1 σn σ1, σn−1, σn σ1, σ6 σ7

The following table describes the list of possible height maps that induce a short grading
on g:

For the RH varieties of classical type, equalized actions have explicit descriptions, that
we will present in detail in Sect. 3.

2.4.2 Fixed-point components

We will now describe the fixed-point component of an equalized Hi -action as in Sect. 2.4.1
on an RH variety G/P � D(k) as in Sect. 2.2, with i, k ∈ D. For every w ∈ W , we will
denote

P⊥
w := G⊥ ∩ conjw(P)

which is a parabolic subgroup of G⊥. In particular, P⊥ := P⊥
e , where e ∈ W is the neutral

element. Such a parabolic subgroup is completely determined by its Lie algebra:

p⊥
w =

⎛
⎜⎜⎝

⊕
β∈�+:

σi (w(β))=0

gw(β)

⎞
⎟⎟⎠ ⊕

(
Adw(h) ∩ h⊥)

⊕

⎛
⎜⎜⎜⎜⎜⎝

⊕
β∈�+:
σk (β)=0

σi (w(β))=0

g−w(β)

⎞
⎟⎟⎟⎟⎟⎠

⊂ g⊥. (5)

Following [10, Corollary 3.10], the fixed-point components of the Hi -action are G⊥-
homogeneous varieties. Since each fixed-point component Y ⊂ G/P must contain a fixed-
point for the H -action (which are the points of the formwP forw ∈ W , see [4, Section 3.4]),
Y can then be written as:

Y = G⊥/P⊥
w .

As a rational homogeneous G⊥-variety, Y � D⊥(J ), for some J ⊂ D\{i}.
The Picard group of G/P � D(k) is generated by the homogeneous line bundle L

determined by the fundamental weightωk . Then, following [10, Corollary 3.8], theC∗-action
admits a linearization on L such that the L-weight of the fixed-point component passing by
wP is

μL(G⊥/P⊥
w ) = σi (ωk − w(ωk)).

The minimum and maximum value of μL are achieved at w = e and w = w0. So we may
conclude that the sink and the source of the Hi -action are, respectively:

Y− := G⊥/P⊥, Y+ := G⊥/P⊥
w0

. (6)

Remark 2.6 In particular, with the marked Dynkin diagram notation, if i �= k,

Y− � D⊥(k), Y+ � D⊥(w0(k)),

where w0(k) denotes the node of the Dynkin diagramD⊥ ⊂ D corresponding to the positive
simple root −w0(αk) ∈ �.
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2.4.3 The normal bundle of the extremal fixed-point components

We end up this section by describing the normal bundles of the sink and source Y± of
the Hi -action into the rational homogeneous variety X = G/P � D(k), which, by the
Białynicki-Birula theorem, are isomorphic to two C

∗-invariant open sets of X .

Lemma 2.7 With the above notation, the normal bundles of the sink and the source Y± ⊂ X
of the Hi -action on X are the homogeneous G⊥-bundles

NY−|X � G⊥ ×P⊥
N−, NY+|X � G⊥ ×P⊥

w0 N+.

where N−, N+ are, respectively, the P⊥, P⊥
w0

-submodules of g defined by:

N− :=
⊕

β∈�+
σi (β)>0
σk (β)>0

g−β ⊂ g−, N+ :=
⊕

β∈�+
σi (β)>0

σk (w0(β))<0

gβ ⊂ g+. (7)

Moreover the H⊥-weight of every subspace gβ is equal to ı∗β.

Proof We will do the proof in the case of Y−, being Y+ analogous. Note that the action of
G0 on Y− lifts to NY−|X , so we may write

NY−|X = G0 ×P0 N−.

where N− = NY−|X ,eP and P0 := G0 ∩ P . In order to compute N− as a P0-module, we start
from the Cartan decomposition of g and note that:

g =
⎛
⎝ ⊕

β∈�+
gβ

⎞
⎠ ⊕ h ⊕

⎛
⎝ ⊕

β∈�+
g−β

⎞
⎠ ,

p =
⎛
⎝ ⊕

β∈�+
gβ

⎞
⎠ ⊕ h ⊕

⎛
⎜⎜⎝

⊕
β∈�+:
σk (β)=0

g−β

⎞
⎟⎟⎠ ,

g0 =

⎛
⎜⎜⎝

⊕
β∈�+:
σi (β)=0

gβ

⎞
⎟⎟⎠ ⊕ h ⊕

⎛
⎜⎜⎝

⊕
β∈�+:
σi (β)=0

g−β

⎞
⎟⎟⎠ ,

g0 ∩ p =

⎛
⎜⎜⎝

⊕
β∈�+:
σi (β)=0

gβ

⎞
⎟⎟⎠ ⊕ h ⊕

⎛
⎜⎜⎜⎜⎜⎝

⊕
β∈�+:
σk (β)=0
σi (β)=0

g−β

⎞
⎟⎟⎟⎟⎟⎠

.

Thenwe can conclude that N− is isomorphic as a P0-module to the quotient (g/p)/(g0/g0∩p),
hence to ⊕

β∈�+:
σi (β)>0
σk (β)>0

g−β .
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To reduce the action on N− from P0 to P⊥ and compute the H⊥-weights, we apply the group
homomorphism ı∗ : M(H) → M(H⊥), see Remark 2.5. ��

3 Equalized actions on Grassmannians

For every case of Table 2 of classical type, we describe in this section the fixed-point com-
ponent of the C∗-action Hi induced by the height map σi on each RH G-variety X of Picard
number one. We denote by L the generator of the Picard group. We proceed as in [5, Section
4] (see also [11, Example 7.12]): we first describe the Hi -action on the standard representa-
tion V and on its closed G-orbit in P(V ), then we study the induced Hi -action on the other
G-homogeneous varieties, see Sect. 2.3.1 for the notation.

3.1 An-varieties

We consider the Hi -action on An(k), the Grassmannian of k-dimensional subspaces of the
(n + 1)-dimensional vector space V , corresponding to the standard representation V (ω1).
For simplicity we will assume that k ≤ n−k +1. The Hi -action on An(1) � P(V ) is induced
by the linear action on V given by

t · (x0, . . . , xn) = (t x0, . . . , t xi−1, xi , . . . , xn),

on a certain set of coordinates. In particular, we get a decomposition V = V− ⊕ V+, where

V− = {xi = . . . = xn = 0} , V+ = {x0 = . . . = xi−1 = 0} .

Then the Hi -action on An(k) is obtained as the induced action on the Grassmannians of
k-subspaces of V . In every case, the only fixed-point component of weight s, for every s, is:

Ai−1(k − s) × An−i (s),

respectively, which is the product of two Grassmannians of vector subspaces of V− and V+.
By Notation 2.2, we recall that the factor Ai−1(k −s) (resp. An−i (s)) is a point if s = k, k − i
(resp. s = 0, n − i + 1). Hence we have three possible cases according to the values of i , k
and n:

s Y− Ys Y+

i ≤ k [k − i, k] An−i (k − i) Ai−1(k − s) × An−i (s) An−i (k)

i ∈[k, n − k + 1] [0, k] Ai−1(k) Ai−1(k − s)×An−i (s) An−i (k)

i ≥ n − k + 1 [0, n − i + 1] Ai−1(k) Ai−1(k − s) × An−i (s) Ai−1(i − n + k − 1)

Note that Y− is given by the point [V−] if and only if i = k. On the other hand Y+ is the
point [V+] if and only if i = n − k + 1. In the rest of the cases, the extremal fixed-point
components of the action are positive dimensional Grassmannians.

Remark 3.1 Composing the Hi -action with the map t �→ t−1 and with the permutation
(x0, . . . , xn) �→ (xn, . . . , x0), we obtain the Hn−i -action. In other words, we may assume
without loss of generality that i ≤ n − i + 1, and in particular we may discard the third case
in the above table.
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3.2 Bn-varieties

We consider the H1-action on Bn(k), the orthogonal Grassmannian of k-dimensional sub-
spaces of the (2n+1)-dimensional standard representation V , isotropicwith respect to a given
nondegenerate symmetric form. We may choose coordinates (x0, . . . , x2n) (with respect to
a certain basis {e0, . . . , e2n}) on V so that this form is represented by a symmetric (block)
matrix: ⎛

⎝ 0 In 0
In 0 0
0 0 1

⎞
⎠

where In denote the identity n × n matrix. In particular, Bn(1) ⊂ P(V ) is the quadric
hypersurface Q2n−1 given by the equation

x0xn + . . . + xn−1x2n−1 + x22n = 0.

In this case, the H1-action on every Bn(k) is induced by the linear action on V :

t · (x0, . . . , x2n) = (t x0, x1, . . . , xn−1, t−1xn, xn+1, . . . , x2n−1, x2n), (8)

giving a decomposition V = V− ⊕ V0 ⊕ V+, where we have

V− = {x1 = . . . = x2n = 0} ,

V0 = {x0 = xn = 0} ,

V+ = {x0 = . . . = xn−1 = xn+1 = . . . = x2n = 0} .

The vector subspace V0 ⊂ V inherits a nondegenerate symmetric bilinear form, whose
associated Lie algebra (which is of type Bn−1) is precisely g⊥. We have two cases:

[μL (Y−), μL (Y+)] Y− Y(μL (Y+)+μL (Y−))/2 Y+

k < n [0, 2] Bn−1(k − 1) Bn−1(k) Bn−1(k − 1)
k = n [0, 1] Bn−1(n − 1) ∅ Bn−1(n − 1)

The sink and the source of the action parametrize isotropic subspaces of V containing,
respectively, V− and V+; every such subspace intersects V0 in a (k −1)-dimensional isotropic
subspace of V0. When k < n we also have an inner fixed-point component, parametrizing
k-dimensional isotropic subspaces of V0.

We note here that the value of μL (Y+) changes because the ample generator L of
Pic(Bn(k)) is the Plücker line bundle for k < n, and its square root for k = n.

3.3 Cn-varieties

We consider the Hn-action on Cn(k), the symplectic Grassmannian of k-dimensional sub-
spaces of the 2n-dimensional standard representation V , isotropic with respect to a given
nondegenerate skew-symmetric form; we may assume this form to be given, in a certain set
of coordinates, by the matrix (

0 In

−In 0

)
.
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The Hn-action on every Cn(k) is induced from the linear action on V given by:

t · (x0, . . . , x2n−1) = (t x0, . . . , t xn−1, xn, . . . , x2n−1). (9)

In other words, it is the restriction to Cn(k) of the Hn-action on the Grassmannian A2n−1(k).
The fixed-point components of Cn(k) can be computed by intersecting the fixed-point com-
ponents of A2n−1(k) with this variety. Note also that the skew-symmetric form induces an
isomorphism q : V− → V ∨+ , that extends to isomorphisms between Grassmannians of sub-
spaces of V− and subspaces of V+ of complementary dimension. With this information at
hand one may compute fixed-point components of the Hn-action on Cn(k):

[μL (Y−), μL (Y+)] Y− Ys Y+

k < n [0, k] An−1(k) An−1(k − s, n − s) An−1(n − k)

k = n [0, n] pt An−1(n − s) pt

We note that, in the case k = n, every inner fixed-point component Ys � An−1(n − s) is
the image of the map

An−1(n − s) −→ An−1(n − s) × An−1(s) ⊂ A2n−1(n), W �−→ (W , ker q(W )) ,

which in particular tells us that the restriction to Ys � An−1(n − s) of the Plücker embedding
of Cn(n) is not the minimal embedding but its second symmetric power.

3.4 Dn-varieties

We consider now equalized actions on the orthogonal Grassmannian of k-dimensional sub-
spaces of the 2n-dimensional standard representation V , isotropic with respect to a given
nondegenerate symmetric form. We choose coordinates (x0, . . . , x2n−1) in V (with respect
to a basis {e0, . . . , e2n−1}) so that this form is given by the matrix:(

0 In

In 0

)
.

We have three equalized C∗-actions, coming from the action on V that take the form:

H1 : t · (x0, . . . , x2n−1) = (t x0, x1, . . . , xn−1, t−1xn, xn+1, . . . , x2n−1),

Hn−1 : t · (x0, . . . , x2n−1) = (t x0, . . . , t xn−2, xn−1, xn, . . . , x2n−2, t x2n−1),

Hn : t · (x0, . . . , x2n−1) = (t x0, . . . , t xn−2, t xn−1, xn, . . . , x2n−2, x2n−1).

Remark 3.2 Up to reordering the coordinates xn−1, x2n−1 we have only two types of equalized
C

∗-actions, H1 and Hn .

3.4.1 H1-action

The case of the H1-action on the varieties Dn(k) is analogous to the case Bn , Sect. 3.2, and
the fixed-point components are Grassmannians of isotropic subspaces in V0, with respect to
the restriction of the symmetric form in V . We get here four cases:

Note that, as in the Bn-case, the value of μL(Y+) changes because the ample generator L
of Pic(Dn(k)) is the Plücker line bundle for k < n − 1, and its square root for k = n − 1 or
k = n.
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[μL (Y−), μL (Y+)] Y− Y(μL (Y+)+μL (Y−))/2 Y+

k < n − 2 [0, 2] Dn−1(k − 1) Dn−1(k) Dn−1(k − 1)
k = n − 2 [0, 2] Dn−1(n − 3) Dn−1(n − 2, n − 1) Dn−1(n − 3)
k = n − 1 [0, 1] Dn−1(n − 2) ∅ Dn−1(n − 1)
k = n [0, 1] Dn−1(n − 1) ∅ Dn−1(n − 2)

3.4.2 Hn-action

The case is analogous to the Hn-action on the varieties of type Cn . In fact, the linear action
on V is the same as (9). We will denote again

V− = {xn = . . . = x2n−1 = 0} , V+ = {x0 = . . . = xn−1 = 0} .

They are isotropic subspaces of maximal dimension and, up to renumbering the nodes of Dn

we may assume that V− ∈ Dn(n). We will then distinguish two cases:

(A) n is even and V+ ∈ Dn(n).
(B) n is odd and V+ ∈ Dn(n − 1).

Hence for the Hn-action on Dn(k) we have five cases:

[μL (Y−), μL (Y+)] Y− Ys Y+

k < n − 1 [0, k] An−1(k) An−1(k − s, n − s) An−1(n − k)

k = n − 1 (A) [1, n/2] An−1(n − 1) An−1(n − 1 − 2s) An−1(1)
k = n (A) [0, n/2] pt An−1(2s) pt
k = n − 1 (B) [0, (n − 1)/2] An−1(n − 1) An−1(n − 1 − 2s) pt
k = n (B) [0, (n − 1)/2] pt An−1(2s) An−1(1)

4 C
∗-actions and inversion in Jordan algebras: balanced gradings

This section is devoted to study equalized C
∗-actions on rational homogeneous varieties

whose associated birational map is a Cremona transformation of a projective space, and we
will prove that they can be understood in the language of Jordan algebras.

Consider a 1-dimensional torus Hi ⊂ H ⊂ G, determined by a height map σi producing
a short grading (see Sect. 2.4.1):

g = g− ⊕ g0 ⊕ g+.

Again, let w0 ∈ NG(H) ⊂ G be an element in the class of the longest element of the Weyl
group W of G (see Sect. 2.2).

Definition 4.1 The short grading of g determined by σi : M(H) → Z is said to be balanced
if t−1 = conjw0

(t) for every t ∈ Hi . In this case we will say that the action of Hi on every
RH variety G/P is balanced.

Note that this property does not depend on the choice of the particular representative
w0 ∈ NG(H). In particular, denoting by Lg the left multiplication by g for every g ∈ G, we
have the following trivial statement:
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Table 3 Balanced short gradings
of simple Lie algebras

g A2n−1 Bn Cn Dn D2n E7

σi σn σ1 σn σ1 σ2n , σ2n−1 σ7

Lemma 4.2 With the notations as above, if the short grading ofg determined by σi : M(H) →
Z is balanced, then for every parabolic subgroup P ⊂ G and for every t ∈ Hi the following
diagram is commutative:

G/P

Lw0

Lt−1
G/P

Lw0

G/P
Lt

G/P

Then we may prove the following:

Lemma 4.3 The complete list of balanced short gradings on simple Lie algebras is given in
the following table:

Proof We will use that, being G the adjoint group of g, the adjoint representation of G is
faithful. Then the balanced condition is equivalent to saying that

Adw0 ◦Adt ◦Ad
w−1
0

= Adt−1 for every t ∈ Hi ,

as endomorphisms of g. Since they trivially coincide on the Cartan subalgebra h, the two
maps above are equal if they coincide on gβ for every β ∈ �. Then the balanced condition
is equivalent to saying that Hi is contained in the following subgroup of H :

H ′ :=
{

t ∈ H | tw0(β) = t−β, for every β ∈ �
}

. (10)

Here we are denoting by w0 the automorphism of M(H) induced by w0, that is the class
of w0 in the Weyl group W . It is a well-known fact (see for example [3]) that w0 coincides
with − id in the cases in which the Dynkin diagramD of g has no non-trivial automorphisms
and in the case D2n . We conclude that in these cases H ′ = H , and so every short grading is
balanced.

We are then left with the cases An , D2n−1 and E6, in which w0 is equal to the composition
of − id with the homomorphism induced by the permutation of the positive simple roots �

given by the only nontrivial automorphism s of D. Then a straightforward computation in
each case shows that the complete list of balanced short gradings is the one given in Table 3.

��
In particular, consider the parabolic subgroups P± ⊂ G defined by Hi and the corre-

sponding short grading, we obtain the following consequence:

Corollary 4.4 With the notation above, consider the Hi -action on a rational homogeneous
G-variety G/P. Then the following conditions are equivalent:

(i) the Hi -action on G/P is equalized and has isolated extremal fixed-points;
(ii) P = P+ and the grading of g defined by Hi is short and balanced.
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Proof We have already noted that the Hi -action is equalized on every G/P if and only if it is
given by a short grading of g (Proposition 2.4). On the other hand, consider the Hi -action on
G/P . From Sect. 2.4.2 we know that the sink of the action is isolated if and only if G⊥ ⊂ P ,
which holds if and only if P = P+. If, moreover, the action is balanced, then by definition,
the point w0P+ (which is always contained in the source of the Hi -action on G/P+) will
be an isolated fixed-point, as well. Finally, assume that the Hi -action on G/P+ is equalized
and has w0P+ as an isolated source. From the description of the equalized actions of Sect. 3
for the classical cases, [5, Proposition 5.2] for the E6-varieties and [11, Theorem 8.9] for the
E7-variety, we get that our conditions are satisfied precisely in the cases listed in Table 3, i.e.
in the cases in which the grading is balanced. ��

Wewill now study the birational map associated with theC∗-action induced by a balanced
short grading as above, linking it with an inversion map through the map Lw0 .

The unipotent radicals of P± – that we denote by G± ⊂ P± – have g± as Lie algebras.
Being G the adjoint group of a semisimple Lie algebra, G± ⊂ G consists only of nilpotent
elements and then it is known that the exponential maps exp : g± → G± are isomorphisms
of varieties (see [6, Proposition 1.2]).

Lemma 4.5 The composition of exp : g− → G− ⊂ G with the projection onto G/P+ is an
open immersion, that we denote by ex : g− ↪→ G/P+. Its image, which we still denote by
g−, is an open neighborhood of eP+ ∈ G/P+.

Proof First of all, g− and G/P+ have the same dimension. At this point, denoted by π :
G → G/P+ the quotient map, let U ⊂ G be an open set. By definition, π(U ) is open in
G/P+ if and only if π−1(π(U )) is open in G:

π(U ) = {u P : u ∈ U }, π−1(π(U )) = {up : u ∈ U , p ∈ P+} = U · P+.

By [2, p. 86], G− · P+ is open in G, hence π(G−) is open in G/P+. It remains to prove that
π(G−) � G−, but this follows from the fact that, since G− is the unipotent radical of the
opposite parabolic group of P+ (see [2, p. 88]), we have G− ∩ P+ = {e}. We have obtained
that g− � G− � π(G−) ⊂ G/P+ as an open subset. ��

Furthermore, denoting by Lt : G/P+ → G/P+ the left multiplication with t , for every
t ∈ Hi , we have a commutative diagram:

g−

ex

t−1

g−

ex

G/P+
Lt

G/P+

where the upper horizontal map is the multiplication with t−1. In other words, g− can be
identified with aC∗-invariant open subset of G/P+, and the action ofC∗ on g− is the inverse
of the homothetical action.

On the other hand, we have another open immersion:

ex′ : g+ −→ G/P+, x �−→ exp(x)w0P+,
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whose image is a C∗-invariant open neighborhood (denoted by g+) of w0P+ ∈ G/P+, that
fits into the following commutative diagram:

g−

ex

Adw0
g+

ex′

G/P+
Lw0

G/P+.

Intersecting g− and g+ inside G/P+, and restricting Adw0 to Ad−1
w0

(g− ∩ g+) we get a
birational map that we denote

j : g− ��� g−.

By construction, we have a commutative diagram:

g−
Adw0g−

j

ψa g+.

(11)

We note that, by Lemma 4.2 and the fact that the inclusions g± ⊂ G/P+ are C∗-invariant, j
satisfies:

j (t x) = t−1x, for all t ∈ Hi , x ∈ g−. (12)

so that the inversion map can be thought of as a birational automorphism counterpart of the
birational map ψa induced by the Hi -action (see Sect. 2.1).

The following statement is a consequence of [15, 2.21].

Proposition 4.6 With the above notation, if the short grading on g determined by σi :
M(H) → Z is balanced, then there exists a unique structure of Jordan algebra on g−
having j as an inverse map.

Proof Following [15], the statement follows from the fact that the map j defines a J-structure
on g−, that determines completely a structure of Jordan algebra on g− whose inverse map
is j . Furthermore, [15, 2.21] tells us that in our case one needs to check three conditions
(A,B,C). Condition (A) follows from the fact that our grading is equalized, and (B) is precisely
Equation (12). The last condition, (C), translated into our notation says that G0 acts with an
open orbit on g−, and this follows by direct application of [16, Theorem 2.1]. ��

This concludes the proof of Theorem 1.2.

5 Proof of Theorems 1.3 and 1.4

We have already seen in Sect. 4 that, when a C∗-action on an RH variety G/P is determined
by a balanced short grading (and its sink and source are isolated), the induced birational map
(which is a Cremona transformation) is determined, up to composition with a projectivity,
by the inverse map of a unique Jordan algebra structure on the tangent space of G/P .

Suppose now that the sink and source are not isolated, then the birational mapψ : G− ���
G+ induced by the action has as domain and codomain (which are, by the balancedness
hypothesis, isomorphic) the projectivizations of two homogeneous vector bundles on two
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RH varieties of Picard number one. In particular, G± have Picard number two. Moreover,
it has been proved in [12, Section 4 and Corollary 4.12 (iii) in particular] that G± are Mori
Dream Spaces, isomorphic in codimension one. More precisely, following [12], we may
state:

Proposition 5.1 Let G be a simple algebraic group, whose Lie algebra g admits a short and
balanced grading. Let X = G/P be an RH variety of Picard number one, endowed with the
C

∗-action associated to the grading. Assume moreover that the sink and the source are not
isolated fixed-points. Then:

• The quotients G± are Mori dream spaces, corresponding to two different nef chambers
of Mov(G−) = Mov(G+).

• There are as many nef chambers of Mov(G−) as δ := μL(Y+) − μL(Y−), where L
denotes the ample generator of Pic(X). Each nef chamber corresponds to a geometric
quotient of X by the action of C∗, more precisely

Gk := Proj

⎛
⎝ ⊕

m∈2Z≥0

H0 (
X , Lm)

((2k−1)m/2)

⎞
⎠ , k = 1, . . . , δ.

• We have G1 = G− and Gδ = G+. Each of the nef cones of G± contains an extremal ray
of Mov(G−).

• The map ψ : G− ��� G+ can be factorized as the sequence of the birational maps:

G1 = G− ��� G2 ��� · · · ��� Gδ = G+,

which are Atiyah flips corresponding to wall crossings in Mov(G−).

In particular, this immediately implies the following:

Corollary 5.2 In the situation of Proposition 5.1, the birational map ψ : G− ��� G+ is a
small Q-factorial modification, uniquely determined by G±.

Wewill finish the Section with the proofs of Theorem 1.3 and Theorem 1.4, which is done
by determining the normal bundles of Y± in X in each case.

5.1 Proof of Theorem 1.3

By Corollary 5.2, the map ψ is in each case determined by the varieties G±, which we will
describe in each case. We will proceed case-by-case according to Table 3. Besides, we have
included here some remarks, in which we provide further geometric features of ψ .

5.1.1 Hn-action on Grassmannians

We consider the equalized and balanced Hn-action on the Grassmannian A2n−1(k). We refer
to Sect. 3.1 for the notations and results therein contained. In particular, given a the 2n-
dimensional vector space V , the Hn-action provides a decomposition V = V− ⊕ V+ such
that dim V± = n. The extremal fixed-point components of the action on A2n−1(k) are:

Y± =
{

[W ] ∈ P

(
k∧

V±

)
: W ⊂ V±

}
� An−1(k); (13)
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they parametrize k-dimensional vector subspaces contained in V±, respectively. We denote
by S±,Q± the universal bundles over Y± of rank k and n − k, respectively.

If k = n, ψ is a Cremona transformation (see Sect. 4), which can be explicitly described
(see [18, Section 4], [10, Section 4]) as the projectivization of the inversion of linear maps.
More generally:

Proposition 5.3 With the notation as above, consider the equalized and balanced Hn-action
on the Grassmannian A2n−1(k). Then Y± � An−1(k) and

NY±|A2n−1(k) � S∨± ⊗ V∓.

Proof In order to compute the normal bundlesNY±|A2n−1(k), we restrict the universal bundles
S,Q of A2n−1(k) on the fixed-point components Y±, obtaining:

S|Y± � S±,

Q|Y± � Q± ⊕ (
V∓ ⊗ OY±

)
,

where S±,Q± are the universal bundles of Y±. Consider the short exact sequences

0 → TY± −→ TA2n−1(k)|Y± −→ NY±|A2n−1(k) → 0;
together with the equalities

TY± � S∨± ⊗ Q±,

TA2n−1(k)|Y± � (S∨± ⊗ Q±
) ⊕ (S∨± ⊗ (

V∓ ⊗ OY±
)) ;

then we get

NY±|A2n−1(k) � S∨± ⊗ V∓.

��
Remark 5.4 Following [18, Section 4], for every u ≤ k we define Secu(S±, V∓) to be the
variety of secant (u − 1)-dimensional linear spaces to the relative Segre embedding

P
(S∨±

) × P (V∓) ⊂ P
(S∨± ⊗ V∓

)
.

Thaddeus describes such a variety as the space of linear maps f : W± → V∓ (where
W± ⊂ V± is a linear subspace of dimension k) of rank up to u ≤ k.

Our map ψ is then defined on the open set

P
(S∨± ⊗ V∓

) \ Seck−1(S±, V∓),

which corresponds to the linear maps f : W± → V∓ of maximal rank.
Assume that f : W− → V+ is an injective linear map from a k-dimensional linear

subspace W− ⊂ V− and denote W+ := f (W−). Consider the inverse f −1 : W+ → W− and
compose it with the inclusion W− ↪→ V−, to a map f̄ : W+ → V−. Thenψ can be described
as follows:

ψ : P (S∨− ⊗ V+
)

��� P
(S∨+ ⊗ V−

)
, [ f ] �−→ [ f̄ ].

Note that, if k = 1, then S∨± = OY±(1). So P(OY±(1) ⊗ V∓) = P(V−) × P(V+), and the
map ψ is the identity.
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5.1.2 Hn-action on isotropic Grassmannians

Wemerge the cases of the equalized andbalanced Hn-actions on the symplecticGrassmannian
X � Cn(k) or the even orthogonal Grassmannian X � Dn(k), with n even if k = n − 1, n.
As shown in Sects. 3.3 and 3.4.2, which we refer for the notations and the results therein, the
fixed-point components of the action are RH varieties of type An−1.

With the exception of the case X � Dn(n − 1), n even, the sink and the source of the
Hn-action on X , as in (13), are Grassmannians parametrizing k-dimensional linear subspaces
of V±, respectively:

Y± =
{

[W ] ∈ P

(
k∧

V±

)
: W ⊂ V±

}
� An−1(k).

As in Sect. 5.1.1, Y± support two universal bundles, of rank k and n − k respectively, that we
denote by S±,Q±. Moreover, the isomorphism

V+ � V ∨−
(see Sect. 2.3.2) allows us to identify Y± with the Grassmannians of (n − k)-dimensional
vector subspaces of V∓. Then, restricting Diagram (3) to Y−, for instance, we get:

S− (V− ⊗ OY−) ⊕ Q∨− K|Y−

S− (V− ⊕ V ∨− ) ⊗ OY− (V ∨− ⊗ OY−) ⊕ Q−

0 S∨− S∨−

(14)

so that
K|Y− � Q− ⊕ Q∨−. (15)

In the case X � Dn(n − 1), n even, the sink and the source of the action are projective
spacesAn−1(n−1), parametrizing (n−1)-dimensional subspaces of V− and V+, respectively.
The restriction of Diagram (3) to Y− provides:

S|Y− S|Y− 0

�Y−(1) ⊕ OY−(−1) (V− ⊕ V ∨− ) ⊗ OY− OY−(1) ⊕ TY−(−1)

0 S∨|Y− S∨|Y− .

(16)

We will study now the normal bundles of Y± in X (which completely determine the
induced birational map ψ : P (NY−|X

)
��� P

(NY+|X
)
by Corollary 5.2). The case k = n

(that is, the case in which ψ is a Cremona transformation) has been explicitly studied in [10,
Sections 4.3 and 4.4] (see also [18, Appendix 10 and 11]) which show that:
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• If X � Cn(n) is a Lagrangian Grassmannian, then the birational map (1) is the inversion
of symmetric tensors:

ψ : P (
S2V+

)
��� P

(
S2V−

) � P
(
S2V ∨+

)
.

• If X � Dn(n), n even, is a spinor variety, then the birational map (1) is the inversion of
skew-symmetric tensors:

ψ : P
(

2∧
V+

)
��� P

(
2∧

V−

)
� P

(
2∧

V ∨+

)
.

To describe the normal bundles of Y± in X in the remaining cases, we will consider
separately the case in which X parametrizes non-maximal isotropic subspaces of V and the
case X � Dn(n − 1), n even. We start by proving the following.

Proposition 5.5 With the notation as above, consider the equalized and balanced Hn-action
on X � Cn(k) with k < n or X � Dn(k) with k < n − 1. Then Y± � An−1(k) and the
normal bundles NY±|X are non-trivial extensions

0 → (S± ⊗ Q±)∨ −→ NY±|X −→ C± → 0,

where

C± =
{

S2S∨± if X � Cn(k),∧2 S∨± if X � Dn(k).

Proof Combining the fact that TY± � S∨± ⊗ Q± with (4), we obtain:

S∨± ⊗ Q±
�

TY±

S∨± ⊗ K|Y± TX |Y± C±

S∨± ⊗ K|Y±/Q± NY±|X C±.

(17)

We conclude by noting that K|Y±/Q± = Q∨±, which follows from the fact that
Hom(Q,Q∨) = 0. ��

Finally we consider the case of the Hn-action on X � Dn(n − 1).

Proposition 5.6 With the notations as above, consider the equalized and balanced Hn-action
on Dn(n − 1), n even. Then Y± � An−1(n − 1) are projective spaces, and

NY±|Dn(n−1) �
2∧

TY±(−2).

Proof We will do the proof in the case of Y−, being the case of Y+ analogous. By (4) we
have that TDn(n−1) � ∧2 S∨. Using Diagram (16) we then get:

TDn(n−1)|Y− �
2∧

S∨|Y− �
2∧ (OY−(1) ⊕ TY−(−1)

) � TY− ⊕
2∧

TY−(−2).

123



21 Page 24 of 29 Geometriae Dedicata (2024) 218 :21

Then we have a short exact sequence:

0 → TY− −→ TY− ⊕
2∧

TY−(−2) −→ NY−|Dn(n−1) → 0. (18)

We claim that Hom(TY− ,
∧2 TY−(−2)) = 0, so that, in particular we conclude that

NY±|Dn(n−1) � ∧2 TY±(−2). If there was a non-trivial morphism TY− → ∧2 TY−(−2),
twisting it with OY−(−1), we would obtain a non-trivial map

TY−(−1) −→
2∧

TY−(−3).

Since TY−(−1) is globally generated, this would imply that H0(Y−,
∧2 TY−(−3)) �= 0. On

the other hand, we have that

2∧
TY−(−3) �

n−3∧
�Y−(n − 3)

and that H0(Y−,
∧n−3

�Y−(n − 3)) = 0 by Bott formula (cf. [13, p.8]), leading to a contra-
diction. ��

5.1.3 H1-action on orthogonal Grassmannians

We consider here together the cases of the equalized and balanced H1-actions on the orthog-
onal Grassmannian X � Bn(k) or X � Dn(k). We refer to Sects. 3.2 and 3.4.1 for the
notation and preliminary results. In particular, the fixed-point components are RH varieties
of type Bn−1 or Dn−1, respectively (that can be identified with orthogonal Grassmannians of
isotropic subspaces in V0 ⊂ V ), and the possible pairs (Y−, Y+) are:

(Bn−1(k − 1),Bn−1(k − 1)) if X � Bn(k),

(Dn−1(k − 1),Dn−1(k − 1)) if X � Dn(k) with k ≤ n − 2,

(Dn−1(n − 2),Dn−1(n − 1)) if X � Dn(n − 1),

(Dn−1(n − 1),Dn−1(n − 2)) if X � Dn(n).

As orthogonal Grassmannians of (k − 1)-dimensional isotropic subspaces of V0, Y± support
two universal bundles S±,Q± of rank k − 1 and dim V0 − (k − 1), respectively, fitting in
short exact sequences

0 → S± −→ V0 ⊗ OY± −→ Q± → 0.

The case k = 1 gives us the Cremona transformation as described in Sect. 4; we will
provide later a projective description of the map ψ obtained in this case (cf. Remark 5.8).
More generally, the following statement holds:

Proposition 5.7 With the notation as above, consider the equalized and balanced H1-action
on the orthogonal Grassmannian X � Bn(k) or X � Dn(k). Then

NY±|X � Q±.

Proof We will prove the statement for the sink Y−, being the case of Y+ analogous. We start
by writing Y− as the RH G⊥-variety G⊥/P⊥ (Sect. 2.4.2); then, since both NY−|X and Q−
are homogeneous G⊥-bundles (Lemma 2.7), it is enough to show that their fibers at eP⊥ are
isomorphic as P⊥-modules.
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On one hand, Lemma 2.7 tells us that

NY−|X , eP⊥ = N− :=
⊕
β∈S

gβ

where S = {
β ∈ �− : σ1(β) < 0, σk(β) < 0

}
. Using the notation of Bourbaki (cf. [3,

Planche II,IV]), there exists a basis {εi , i = 1, . . . n} of Z� ⊗Z R such that the positive
simple roots of g can be written as:

αi = εi − εi+1 for i < n and αn =
{

εn if g = Bn,

εn−1 + εn if g = Dn,

hence we can rewrite S as

S = {−ε1 + ε j
}n

j=k+1 ∪ {−ε1 − ε j
}n

j=2 ∪
{

{−ε1} if g = Bn

∅ if g = Dn

in the case X �� Dn(n − 1) and

S = {−ε1 + εn} ∪ {−ε1 − ε j
}n−1

j=2 .

otherwise.
Since the first fundamental weight ω1 is ε1, by Remark 2.5 the H⊥-weights of the action

are

{
ε j

}n
j=k+1 ∪ {−ε j

}n
j=2 ∪

{
{0} if g = Bn

∅ if g = Dn

when X �� Dn(n − 1) and

{εn} ∪ {−ε j
}n−1

j=2

otherwise.
On the other hand, consider the basis B = {ei } of V introduced in Sects. 3.2 and 3.4.

Then B \ {e0, en} is a basis for V0; in particular, for i < n, the H⊥-weight of ei is εi+1, the
H⊥-weight of en+i is −εi+1 and, if g = Bn , the H⊥-weight of e2n is 0. We denote

V0 ⊃ W :=
{

〈e1, . . . , ek−1〉 if X �� Dn(n − 1),

〈e1, . . . , en−2, e2n−1〉 if X � Dn(n − 1),

we have that

Q− = G⊥ ×P⊥
V0/W .

Then a straightforward computation shows that the decomposition of V0/W on H⊥-
eigenspaces is the same as the one obtained above. ��
Remark 5.8 In the case k = 1, the induced map ψ is a Cremona transformation determined
by the inversion in a Jordan algebra (see Sect. 4). Furthermore, ψ : P(g−) → P(g+) is a
linear isomorphism that can be projectively described as follows. The symmetric bilinear
form defining the Lie algebra g determines a quadric Q = D(1) (D = Bn or Dn) in the
projectivization of the standard representation V = V (ω1) of g. Then g± correspond to the
tangent spaces of Q at sink and source Y±, which are isolated points. Consider a tangent
direction [v−] ∈ P(g−), it determines a line �− passing by Y−. The plane �− + Y+ intersects
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Q on a (C∗-invariant) conic, which is smooth at Y+; the tangent direction to the conic at Y+
is ψ([v−]).

Let us now describe projectively also the cases in which k > 1.

Remark 5.9 In the cases in which X is a spinor variety, i.e. X � Bn(n),Dn(n − 1),Dn(n),
there are no inner fixed-point components, hence the induced birational transformation ψ in
the statement above is an isomorphism. In the remaining cases, ψ : P(Q−) ��� P(Q+) is an
Atiyah flip (cf. [11, 12]), that can be described projectively as follows.

Again, we identify Y± with two orthogonal Grassmannians of (k − 1)-dimensional
isotropic subspaces of V0. Then the bundle P (Q−) can be identified with the family of
pairs (W−, W0), where W− ∈ Y−, and W0 ⊂ V0 is a subspace of dimension k containing
W−. A similar description applies to P (Q+).

Given two pairs (W−, W0) ∈ P (Q−), (W+, W ′
0) ∈ P (Q+), we have that ψ sends

(W−, W0) to (W+, W ′
0) if W0 = W ′

0 and the set of isotropic vectors of W0 is precisely
W− ∪ W+. The maps ψ , ψ−1 are not defined, respectively, in the sets

�± := {(W±, W0) ∈ P(Q±) : W0 ⊂ V0 isotropic} ⊂ P(Q±).

Denote Z � Adim V0−1(k), the Grassmannian of k-dimensional subspaces of V0. We have
an obvious (small) contraction P(Q±) → Z , sending (W±, W0) to W0; the image of �±
via this contraction, that we denote by � ⊂ Z , is the orthogonal Grassmannian of isotropic
k-dimensional subspaces of V0. Then the mapψ is precisely a flip for these two contractions:

P(Q−)

ψ

small

�− �+ P(Q+).

small
�

Z

5.2 Proof of Theorem 1.4

To complete the description of the birational maps associated to a short and balanced grading,
we are left with the case of E7 and the grading given by the height map σ7. The corresponding
H7-action on the variety E7(7) has isolated sink and source, and the associated birational
mapψ : P(TE7(7),Y−) ��� P(TE7(7),Y+) is a Cremona transformation P26 ��� P

26. Following
[11, Section 8], this is the special Cremona transformation whose exceptional locus is the
Cartan variety E6(6) � E6(1), which is the 16-dimensional Severi variety.

Let us now consider the induced H7-action on varieties E7(k), k < 7. As in the cases of
classical type, the induced birational map is completely determined by the normal bundles
NY±|E7(k) (cf. Corollary 5.2). The extremal fixed-point components of the action Y± ⊂ E7(k),
which are RH E6-varieties (see Table 4 below), can be obtained by applying directly the
arguments in Sect. 2.4.2.

Note that in each case, the markings of the Dynkin diagram E6 for the sink and the source
are symmetric with respect to the nontrivial automorphism of the E6 diagram (cf. Remark
2.6) that we denote by s:

s(1) = 6, s(2) = 2, s(3) = 5, s(4) = 4, s(5) = 3, s(6) = 1.
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Table 4 Extremal fixed-point
components of the H7-action in
E7(k), k < 7

k Y− Y+ dim(Y±) rank(NY±,E7(k))

1 E6(1) E6(6) 16 17

2 E6(2) E6(2) 21 21

3 E6(3) E6(5) 25 22

4 E6(4) E6(4) 29 24

5 E6(5) E6(3) 25 25

6 E6(6) E6(1) 16 26

Notation 5.10 In order to include the case of E7(7), we define s(7) := 0.

The variety E6(6) can be embedded via L , the generator of its Picard group, into the projec-
tivization of the (27-dimensional) representation V (ω6), so that V (ω6)

∨ = H0 (E6(6), L).
On the other hand, for every k ≤ 6, the variety E6(k) can be thought of as a family of
projective spaces in P(V (ω6)). In fact, for k = 6 this is given simply by the embedding
E6(6) ⊂ P (V (ω6)). For k �= 1, 6 the natural projections of E6-varieties

E6(k, 6)
pk qk

E6(k) E6(6) P(V (ω6))

present E6(k) as a family ofP5’s,P4’s,P2’s, andP1’s, in the cases k = 2, 3, 4, 5, respectively.
Finally, the variety E6(1) parametrizes smooth 8-dimensional quadrics in E6(6); considering
the linear span of these quadrics, we may also think of E6(1) as the parameter space of a
family of (9-dimensional) projective subspaces of P(V (ω6)):

E6(1, 6)
p1 q1

E6(1) P(V (ω6)).

These families of (9, 5, 4, 2, 1-dimensional) projective subspaces of P (V (ω6)) are the pro-
jectivizations of the following E6-homogeneous vector bundles:

Sk := pk∗q∗
k OP(V (ω6))(1).

This is a subbundle of the trivial vector bundle V (ω6) ⊗ OE6(k), and we denote the corre-
sponding cokernel:

Qk := (
V (ω6) ⊗ OE6(k)

)
/Sk .

Analogously, if we start with E6(1) ⊂ P(V (ω1)), then we can describe the other E6-
homogeneous varieties of Picard number one as families of projective spaces in P (V (ω1)):

E6(1, k)

p′
k q ′

k

E6(k) P (V (ω1)) .

123



21 Page 28 of 29 Geometriae Dedicata (2024) 218 :21

In particular, we have a homogeneous vector bundle S ′
k := p′

k∗q ′∗
k OP(V (ω1))(1) over E6(k)

which is subbundle of the trivial vector bundle V (ω1) ⊗ OE6(k), and we denote the corre-
sponding cokernel as Q′

k .

Proposition 5.11 With the notations as above, consider the equalized and balanced H7-action
on E7(k). Then Y− � E6(k), Y+ � E6(s(k)), and

NY−|E7(k) = Qk, NY+|E7(k) = Q′
s(k).

Sketch of the proof The proof is analogous to the one in Proposition 5.7. The homogeneous
bundles Qk , NY−|E7(k) (respectively Q′

s(k), NY+|E7(k)) are completely determined by their

fibers at a point, which are P⊥-modules. One can check that these modules are isomorphic
by computing their H⊥-weights, for instance by using SageMath software. ��
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