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TERRACINI LOCUS FOR THREE POINTS ON A SEGRE VARIETY∗

EDOARDO BALLICO† , ALESSANDRA BERNARDI‡ , AND PIERPAOLA SANTARSIERO§

Abstract. We introduce the notion of r-th Terracini locus of a variety and we compute it for
at most three points on a Segre variety.
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1. Introduction. The celebrated Terracini Lemma [48, 6] is a well-known and
extremely powerful result in Algebraic Geometry that allows to compute the dimen-
sions of r-th secant varieties of a given variety X in terms of the dimensions of the
sum of tangent spaces at r generic points of X. If X is the embedding of a variety
Y into a projective space via a complete linear system L, then the codimension of
the r-th secant variety of X is equal to h0(Y, IZ ⊗ L) where Z is a 0-dimensional
scheme of r double generic fat points (cf. e.g. [25, 30, 38]). The classical apolarity
theory [37, 42] is the very well-known example in which the variety X is Y = Pn

embedded via O(d) for which Alexander-Hirschowitz completely classified dimensions
of all secant varieties to any Veronese variety (cf. [8]). Another complete classifica-
tion is for secant varieties of Segre-Veronese embedding of products of Y = (P1)’s
via O(d1, . . . , dk) due to Laface-Postinghel (cf. [44]). Recently Galuppi-Oneto de-
termined dimensions of secant varieties in the case of Segre-Veronese embedding of
Y = Pm×Pn in bidegree (d1, d2) for all d1, d2 ≥ 3 (cf. [34]). There is a vast literature
in this field (see e.g. [1, 2, 3, 4, 11, 12, 14, 16, 23, 27, 35, 36] and references therein)
but almost nothing has been said for the case in which the 0-dimensional scheme of
double fat points is not necessarily supported on generic points. Clearly if the points
are not generic, the equivalence between h0 (Y, IZ ⊗ L) and the codimension of the
secant variety of X is not valid anymore. Indeed, for r general points P1, . . . , Pr ∈ X
and for a generic Q ∈ 〈P1, . . . , Pr〉, Terracini lemma states that dim〈TP1

X, . . . , TPr
X〉

is the dimension of the variety σr(X), while for non-general P1, . . . , Pr ∈ X one can
only say that dim〈TP1

X, . . . , TPr
X〉 ≤ dimσr(X). This phenomenon is related to the

fact that codim〈TP1X, . . . , TPrX〉 = h0(Y, IZ ⊗L) which may be higher than the one
for generic points. Consider the exact sequence

0 −→ IZ −→ OY −→ OZ −→ 0

and tensorize it by L:

0 −→ IZ ⊗ L −→ L −→ LZ −→ 0.

If h1 (Y,L) = 0, then we get the exact sequence

0 −→ H0 (Y, IZ ⊗ L) −→ H0 (Y,L) −→ H0 (Z,L|Z) −→ H1 (Y, IZ ⊗ L) −→ 0.
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We will always take (Y,L) such that h1 (Y,L) = 0. Therefore, one gets

h0 (Y,L)− h0 (Y, IZ ⊗ L) = h0 (Z,L|Z)− h1 (Y, IZ ⊗ L)
that is to say that the dimension of the span of embedding of Z via L can be computed
as

h0 (Z,L|Z)− h1 (IZ ⊗ L)− 1.

From this one easily see the role played by the h1(IZ⊗L) in controlling the value
of h0(Y, IZ ⊗ L).

In this paper we fix our attention on the case of Segre varieties, i.e. the embedding
of Y = Pn1 × · · · × Pnk via O(1, . . . , 1) and Z a scheme of either 2 or 3 double fat
points. We will define the key object that we will call the r-th Terracini locus that
will essentially contain all the subsets of r points for which both h0 (IZ(1, . . . , 1)) > 0
and h1 (IZ(1, . . . , 1)) > 0.

We like to point out the geometric importance of the r-th Terracini locus. Con-
sider the open part of the r-th Abstract Secant variety Absr(X) of a Segre Variety
X ⊂ PN , namely

Abs0r(X) := {(Q, (P1, . . . , Pr)) ∈ PN ×Xr
reg |Q ∈ 〈P1, . . . , Pr〉 ∼= Pr−1}.

Note that in the definition of Abs0r(X) we only take P1, . . . , Pr linearly independent.
If one considers the first projection on PN one gets that Abs0r(X) projects onto what
we can call an “ open part ” of the r-th secant variety of X, namely σ0

r(X) := {Q ∈
PN |Q ∈ 〈P1, . . . , Pr〉 ∼= Pr−1, where all Pi ∈ X}:

Tr : Abs0r(X) −→ σ0
r(X).

We call such a projection Tr the r-th Terracini map. The differential of the r-th
Terracini map is defined on each point of Abs0r(X) and the r-th Terracini locus is
nothing else than a measure of the degeneracy of such a linear map. Remark that any
point of Abs0r(X) is smooth since X is smooth. Notice that the Terracini map is a
differential only when defined on the open part Abs0r(X), i.e. before taking its Zariski
closure. Moreover, we remark that the rank of the differential of the r-th Terracini
map a priori depends both on the points P1, . . . , Pr ∈ X and on Q ∈ 〈P1, . . . , Pr〉.

We like to point out that the interest of studying the behaviour of a set of fixed,
not necessarily generic, points is not only a purely, however extremely interesting,
mathematical speculation but it is object of study also in applied and numerical fields
(cf. e.g. [21, 31, 18, 32, 50, 11, 47, 20]).

1.1. A numerical point of view. Working with tensors coming from applied
problems measurement errors may occur. Moreover, working with a machine, one is
forced to use non-exact arithmetic and, even if we start with an exact tensor, round-
off errors may occur due to the possibly inexact representation of the given tensor
into the machine.

Therefore, when running algorithms that involve tensors coming from actual ap-
plications, the actual input is a perturbed tensor and the error representation one is
starting with may be amplified when performing algorithms.

The condition number of a function measures the rate of error that happens to
the output element conditioned to a small change on the element in the domain (see
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(1) below for a formal definition). Moreover, a problem is said to be well-conditioned
if it has a small condition number and it is ill-conditioned otherwise. In this last case
one says that the problem is sensitive to small perturbations.

Terracini loci are involved when measuring the sensitivity of a tensor rank de-
composition, also called CPD: canonical polyadic decomposition (cf. e.g. [33]).

Denote by T−1
r,(p1,...,pr)

the local inverse of Tr at (p1, . . . , pr) ∈ (X)r. If the dif-

ferential d(p1,...,pr)Tr of Tr at (p1, . . . , pr) is invertible, then a local inverse exists at

(p1, . . . , pr). Moreover, we recall that
(
d(p1,...,pr)Tr

)−1
= dqT

−1
r,(p1,...,pr)

. To define the

condition number of a r-uple (p1, . . . , pr) ∈ (X)r, we follow the spectral characteriza-
tion of [21, Theorem 1.1].

Denote by Ui an orthonormal basis of the affine tangent space Tpi
X for all i =

1, . . . , r and let U = [U1 · · ·Ur]. We recall that the spectral norm ‖U‖2 of U is the
largest singular value ζ(U) of U , i.e. ζ(U) is the square root of the biggest eigenvalue
of UU∗.

If Tr is locally invertible at (p1, . . . , pr) then

‖ (d(p1,...,pr)Tr

)−1 ‖2 = ‖U−1‖2 = ζ(U−1) =
1

min{λ | λ is a singular value of U} .

In this case they define the condition number of (p1, . . . , pr) as

κ(p1, . . . , pr) := ‖
(
d(p1,...,pr)Tr

)−1 ‖2.

Otherwise, if dTr is not invertible at (p1 . . . , pr), then U has an eigenvalue equal to 0,
which is also the smallest singular value of U , and in this case we set κ(p1, . . . , pr) =∞.
The condition number of the r-uple (p1, . . . , pr) is

κ(p1, . . . , pr) :=

{
‖ (d(p1,...,pr)Tr

)−1 ‖2 if dTr is invertible at (p1, . . . , pr),

∞ otherwise.
(1)

The condition number of a tensor rank decomposition is therefore a measure of the
sensitivity of the decomposition itself under errors perturbations. One would like
to avoid points of (X)r whose condition number is infinite since in these cases to
a unique element q ∈ PN correspond different r-uples in (X)r and this behaviour
generates ambiguity in the interpretations of the results when performing algorithms
of tensor rank decomposition.

In [21], the authors defined the ill-posed set of a decomposition (p1, . . . , pr) as
ΣP = {(p1, . . . , pr) ∈ (X)r : κ(p1, . . . , pr) =∞}.

This locus contains precisely all r-uples (p1, . . . , pr) ∈ (X)r for which the differential
of the map Tr has not maximal rank. Therefore, the distinction between the r-th
Terracini locus of a multiprojective space and the ill-posed locus ΣP relies on

• considering the r rank-1 tensors as a set of points instead of a tuple;
• working with the minimal multiprojective space containing the r points.

Indeed, after passing from tuples to sets, the variety ΣP contains the Terracini locus,
and when restricted to the minimal multiprojective space containing the r points,
they are equal.

Remark 1.1. Even though we will work under minimality assumption for the
multiprojective space containing a set of points, the result we will achieve in this
paper are interesting from a numerical point of view: in [31] the authors proved that
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the condition number of a CPD does not change under Tucker compression of the
CPD itself, which is the analogous of considering the minimal multiprojective space
containing both the tensor and all its possible rank decompositions.

In the first section of this paper we introduce the notation and we show that
the second Terracini locus is empty, meaning that the differential of the second Ter-
racini map has everywhere full rank. The second section is a technical one where we
concentrate all the core lemmas that will be needed in the sequel in order to prove
our main theorem (Theorem 5.9) that is a complete description of the 3-rd Terracini
locus. Section 4 is a crucial section where we show all the examples that will turn
out the only cases in which the 3-rd Terracini locus will be not empty. Section 5 is
devoted to the proof of the main theorem that essentially will be a discussion on why
the already highlighted examples in Subsections 4.1 and 4.2 are the only nonempty
3-rd Terracini loci.

In summary: We describe all classes of Terracini 3-loci for concise tensors.
In each case we describe several geometric properties.

Let Z ⊂ Y be a scheme of r ≥ 2 double points embedded via Segre in an n-
dimensional multiprojective space Y . In the last section we compute the maximal
value maxn>0,r≥2{h1 (IZ(1, . . . , 1)) > 0}. We will show that

h1 (IZ(1, . . . , 1)) ≤ (r − 1)(n+ 1)

and that equality holds if and only if Y = Pn. Since h0 (Pn, IPn(1)) = 0, we compute
the maximal value of such dimension providing that also h0 (IZ(1, . . . , 1)) > 0. Finally
we prove that for any multiprojective space Y of dimension n ≥ 3, one can always
find r ≥ 3 points S ⊂ Y belonging to the corresponding r-th Terracini locus. This
conclusion might open to further investigation of the introduced locus.

2. Notation. We work over an algebraically closed field K of characteristic 0.
In the following we will always deal with a multiprojective space of k > 0 factors Y
of the form

Y := Pn1 × · · · × Pnk .

Notation 2.1. Let V1, . . . , Vk be K-vector spaces of dimensions n1+1, . . . , nk+1
respectively. Denote by ν the Segre embedding of Y , which is defined as

ν : P(V1)× · · · × P(Vk)→ P(V1 ⊗ · · · ⊗ Vk)

([v1], . . . , [vk]) → [v1 ⊗ · · · ⊗ vk].

We will denote the Segre variety of Y by

X := ν(Y ).

Notation 2.2. We denote the projection of Y onto the i-th factor by

πi : Y −→ Pni .
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Fix Yi := Pn1 × · · · P̂ni × · · ·×Pnk , for some 1 ≤ i ≤ k. By ηi we denote the map that
projects Y onto Yi forgetting the i-th factor, i.e.

ηi : Y −→ Yi.

The Segre embedding of Yi is denoted via

νi : Yi −→ P(V1 ⊗ · · · ⊗ V̂i ⊗ · · · ⊗ Vk).

Let X ⊂ PN be an irreducible non-degenerate projective variety of dimension n.
Fix r ≥ 2. The r-th secant variety σr(X) ofX is the Zariski closure of all (r−1)-planes
spanned by r linearly independent points of X. Namely

σr(X) :=
⋃

p1,...,pr∈X

〈p1, . . . , pr〉.

Remark that dimσr(X) ≤ min{r(n + 1) − 1, N}. If the previous inequality is strict,
the r-th secant variety of X is said to be defective with defect min{r(n+1)− 1, N}−
dimσr(X).

Notation 2.3. For any smooth p ∈ Y , denote by (2p, Y ) the first infinitesimal
neighbourhood of p in Y , i.e. the closed subscheme of Y with (Ip,Y )2 as its ideal
sheaf. For any finite set S ⊂ Y let (2S, Y ) := ∪p,S(2p, Y ). We often write 2p and 2S
instead of (2p, Y ) and (2S, Y ) if the dependence from Y is clear.

Remark 2.1. Fix two projective varieties A ⊇ B and let p ∈ Areg ∩ Breg. Thus
both (2p,A) and (2p,B) are defined and deg(2p,A) = dimA + 1 and deg(2p,B) =
dimB + 1. Set x := dimA and y := dimB. We claim that

(2p,B) = (2p,A) ∩B (scheme-theoretic intersection). (2)

Indeed, let R be the local ring OA,p and I ⊆ OA,p the ideal such that R/I = OB,p. Let
μ denote the maximal ideal of the local ring OA,p. Note that μ/I is the maximal ideal
of R/I. Since both sides of the equality (2) are zero-dimensional, both sides of (2) are
the spectrum of R by some ideals and we need to prove that these ideals are equal.
Since p is a smooth point of B, there are regular generators u1, . . . , uy of μ/I. Take
vi ∈ μ, i = 1, . . . , y, such that vi/I = ui. Since p is a smooth point both of A and of
B, there are x−y elements vj , y+1 ≤ j ≤ vx, such that they generate I and v1, . . . , vx
generate μ ([46, Prop. 22 at p. 77]). The scheme (2p,A)∩B is associated to the ideal
of R generated by all vivj , 1 ≤ i ≤ j ≤ x, and all vj , j = y + 1, . . . , vx. The scheme
(2p,B) is associated to the ideal of R/I generated by all uiuj , 1 ≤ i ≤ j ≤ y, and hence
to the ideal of R generated by all vivj , 1 ≤ i ≤ j ≤ y, and all vj , j = y + 1, . . . , vx.
Obviously these two ideals of R are equal.

Remark that if W ⊂ Y is a proper multiprojective subspace and p ∈ W , then
(2p,W ) �= (2p, Y ) as schemes. In fact deg(2p,W ) = dimW + 1 and deg(2p, Y ) =
dimY + 1. However by Remark 2.1, (2p,W ) = (2p, Y ) ∩ W (scheme-theoretic in-
tersection) and hence (2p,W ) ⊆ (2p, Y ). Thus for any finite set S ⊂ W one has
(2S,W ) = (2S, Y ) ∩W .

Notation 2.4. For k > 0 fix the following notation:
• εi := (0, . . . , 0, 1, 0, . . . , 0) ∈ Nk is the k-uple given by all 0’s but 1 in the i-th

position;
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• ε̂i := (1, . . . , 1, 0, 1, . . . , 1) ∈ Nk is the k-uple given by all 1’s but 0 in the i-th
position;

• εI is the k-uple having 1’s in the places indexed by the finite set I ⊂ {1, . . . , k}
and 0’s everywhere else;

• ε̂I is the k-uple having 0’s in the places indexed by I and 1’s everywhere else.

Let Z ⊂ Y be a 0-dimensional scheme. Fix a finite set I ⊂ {1, . . . , k} and
H ∈ |O(εI)|. Denote by ResH(Z) the residue of Z with respect to H, i.e. the 0-
dimensional scheme defined by the ideal sheaf IZ : IH . By H ∩Z denote the scheme-
theoretic intersection of Z and H. The residual exact sequence of Z with respect to
H is

0 −→ IResH(Z)

(
ε̂I

) −→ IZ(1, . . . , 1) −→ IH∩Z,H(1, . . . , 1) −→ 0,

(cf. [9, Definition 2.1]). Since throughout the paper we will deal with double points,
we recall how to adapt the residual exact sequence in this case.

Take Z := (2S, Y ), where S ⊂ Y is a finite set, consider a proper subset S′ ⊂ S
such that S′ = S ∩H and denote by S′′ := S \ S′. In this case, the scheme-theoretic
intersection of Z and H is (2S′, H), while ResH(Z) is the zero-dimensional scheme of
what is left once we specialized (2S′, Y ) into H, namely

ResH(Z) = S′ ∪ (2S′′, Y ).

Since we will use the restricted exact sequence only with 0-dimensional schemes,
we recall the restriction sequence of Z with respect to Y , namely

0 −→ IZ(1, . . . , 1) −→ OY (1, . . . , 1) −→ OZ(1, . . . , 1) −→ 0.

Since this exact sequence is defined for any embedding of Y , one can also use it for
any line bundle given by O(εI) instead of the one given by O(1, . . . , 1), i.e.

0 −→ IZ
(
εI

) −→ OY

(
εI

) −→ OZ

(
εI

) −→ 0.

The corresponding cohomology exact sequence

0 −→ H0 (Y, IZ(εI)) −→ H0 (Y,OY (εI)) −→ H0 (Y,OZ(εI)) −→ H1 (Y, IZ(εI)) −→ 0

shows that the dimension of the subspace

〈ν(Z)〉 = P
(
H0(Y, IZ(εI))⊥

)
is equal to h0 (OZ(εI))− h1 (IZ(εI))− 1.

From this one easily sees the role played by the h1 (IZ(εI)) in controlling the
dependence of the multilinear forms passing through Z and therefore the speciality
of Z.

Since it will be used several times later, let us clearly state the above discussion
in the following lemma.

Lemma 2.5. Let Y be a multiprojective space of k ≥ 1 factors and let S ⊂ Y be
a set of r points. The restriction exact sequence of (2S, Y ) in Y gives

deg(2S, Y ) + h0
(I(2S,Y )(1, . . . , 1)

)
= h0 (OY (1, . . . , 1)) + h1

(I(2S,Y )(1, . . . , 1)
)
.
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Remark 2.2. For the sake of clarity, we also recall that for a generic S ⊂ Y
with #S = r, the quantity dim〈ν(S)〉 is equal to h0 (OY (1, . . . , 1))−h0 (IS(1, . . . , 1)),
while dimσr(X) = h0 (OY (1, . . . , 1))− h0

(I(2S,Y )(1, . . . , 1)
)
.

Notation 2.6. For any zero-dimensional scheme Z ⊂ Y set

δ(Z, Y ) := h1 (IZ(1, . . . , 1)) .
If W ⊆ Y is a multiprojective subspace such that Z ⊂ W , set δ(Z,W ) :=
h1 (W, IZ,W (1, . . . , 1)) .We remark that δ(Z,W ) = δ(Z, Y ) since hi (IW (1, . . . , 1)) = 0
for i = 1, 2. Sometimes we will write δ(Z) instead of δ(Z, Y ), when the dependence
on Y is clear.

In particular for any finite set S ⊂W there are defined the integers δ((2S, Y ), Y ),
δ((2S,W ),W ) and δ((2S,W ), Y ). Set

δ(2S, Y ) := δ((2S, Y ), Y ) and δ(2S,W ) := δ((2S,W ),W ).

Clearly δ(2S,W ) = δ((2S,W ), Y ). For the specific case of double fat points, δ(2S, Y )
will be called the Terracini defect of S in Y (see Definition 2.8).

Remark 2.3. By using the residue exact sequence with H ∈ |OY (εi)|, i ∈
{1, . . . , k}, for a finite set S ⊂ H such that h0 (H, IS∩H,H(1, . . . , 1)) = 0 one has
δ(2S, Y ) = δ(2S,H) + h0 (IS(ε̂i)), since ResH(2S) = S.

Notation 2.7. Let Y be any multiprojective space of k factors, with k > 0. For
all positive integers r, denote by S(Y, r) the set of all subsets of Y with cardinality r.

Let S ∈ S(Y, r) be a set of r > 0 distinct points. The minimal multiprojective
space containing S is Y ′ := Pn′

1 × · · · × Pn′
k′ ⊆ Y where Pn′

i := 〈πi(S)〉, i = 1, . . . , k′

and k′ ≤ k. The integer k′ ≤ k is the maximum integer such that #πi(S) > 1 for
all i ≤ k. Clearly Pn′

1 × · · · × Pn′
k′ × {ok′+1} × · · · × {ok} ∼= Pn′

1 × · · · × Pn′
k′ and

the convention of forgetting factors of dimension 0 will be used even after a suitable
permutation, hence in general Y ′ is such that k′ ≤ k and n′

i > 0 for all i’s.
Let S ⊂ Y be a finite set. We remark that working with the minimal multiprojectve
space Y ′ ⊂ Y containing S is a harmless assumption that allows us to work with
smaller multiprojective spaces. Moreover in the forthcoming Lemma 3.2 we describe
the relations between the values δ(S, Y ′) and δ(S, Y ).

We have now introduced all the necessary tools to define the r-th Terracini
locus that will be the main actor of the present paper.

Definition 2.8. For all positive integers r and for any multiprojective space Y ,
define

T1(Y, r) :=
{
S ∈ S(Y, r) | h0

(I(2S,Y )(1, . . . , 1)
)
> 0 and δ(2S, Y ) > 0

}
.

We will call the r-th Terracini locus T(Y, r) of all r-uple of points of Y the set

T(Y, r) := {S ∈ T1(Y, r) |Y is the minimal multiprojective space containing S} .

For any S ∈ T1(Y, r) we call the integer δ(2S, Y ) introduced in Notation 2.6 the
r-th Terracini defect of S in Y or the defect of 2S in Y .
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If Y ′ ⊆ Y is the minimal multiprojective space containing a set S, the integer
δ(2S, Y ′) := h1

(
Y ′, I(2S,Y ′)(1, . . . , 1)

)
is called the absolute r-th Terracini defect of

S.

Set S = {p1, . . . , pr} ⊂ Y . Notice that the condition h0
(I(2S,Y )(1, . . . , 1)

)
> 0

means that 〈Tp1
X, . . . , Tpr

X〉 does not fill the ambient space, and that the condition
δ(2S, Y ) > 0 means that the tangent spaces Tp1

X, . . . , Tpr
X are linearly independent.

2.1. The 2-nd Terracini locus is empty. In this subsection we prove that no
sets of two distinct points S ⊂ Y such that Y is the minimal multiprojective space
containing S, is contained in the 2-nd Terracini locus T(Y, 2).

Proposition 2.9. The 2-nd Terracini locus T(Y, 2) is empty for any multipro-
jective space Y .

Proof. Let S ∈ S(Y, 2) be such that Y is the minimal multiprojective space
containing S. So #πi(S) = 2 for all i’s and Y ∼= (P1)k for some k ≥ 1. By
definition of T(Y, 2), we need to prove that either h0

(I(2S,Y )(1, . . . , 1)
)

= 0 or

h1
(I(2S,Y )(1, . . . , 1)

)
= 0. Clearly if k = 1 then h0

(I(2S,P1)(1)
)
= 0. If k = 2,

then h0
(I(2S,Y )(1, 1)

)
= 0 since S can be seen as a general subset of 2 distinct points

by the action of (Aut(P1))2 and a general 2× 2 matrix has rank 2.
Let k ≥ 3. Let E be the set of all A ⊂ Y such that #A = #πi(A) = 2 for all i’s.

The group (Aut(P1))k acts transitively on E. Thus S may be considered as a general
subset of Y with cardinality 2. Hence in this case dimσ2(X) = h0 (OY (1, . . . , 1)) −
h0

(I(2S,Y )(1, . . . , 1)
)
(cf. Remark 2.2) and since dimσ2(X) = 2k+1 for all k ≥ 3 (cf.

[43, 49]), Terracini’s lemma gives h1
(I(2S,Y )(1, . . . , 1)

)
= 0.

Let’s point out some consequence of Proposition 2.9 in terms of identifiability of
rank 2 tensors. Since we are dealing with finite subsets S of two distinct points, the
minimal multiprojective space containing S is Y = (P1)k for some k ≥ 1, which is
equivalent to say that #πi(S) = 2 for all i’s. Thus we may look at S := {p1, p2} as a
general set of two distinct points thanks to the action of (Aut(P1))k.
The emptiness of the 2-nd Terracini locus T(Y, 2) means that the differential of the
map T2 : Abs0r(X) −→ σ0

r(X) has full rank for any X = ν((P1)k), with arbitrary k ≥ 2.
Since we are working with general points, the condition

h0
(I(2S,Y )(1, . . . , 1)

)
> 0

corresponds to prescribe that the 2-nd secant variety σ2(X) does not fill the ambient
space. This condition together with

h1
(I(2S,Y )(1, . . . , 1)

)
> 0

are equivalent to ask that the dimension of the tangent space Tqσ2(X) at a general

q ∈ P2k−1 such that q ∈ 〈ν(p1), ν(p2)〉, is strictly less than 2(k + 1)− 1.

3. Main lemmas.

Remark 3.1. If A ⊂ B ⊂ Y are zero-dimensional schemes, then

δ(A, Y ) ≤ δ(B, Y ) ≤ δ(A, Y ) + deg(B)− deg(A). (3)

Indeed the first inequality is clear since A ⊂ B. Moreover we remark that if A ⊂ B
then h0 (IB(1, . . . , 1)) ≤ h0 (IA(1, . . . , 1)). So by the restriction exact sequences of
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both A and B with respect to Y (cf. Lemma 2.5), we get the second inequality. In
particular for all S′ ⊂ S ⊂ Y we have

δ(2S′, Y ) ≤ δ(2S, Y ) ≤ δ(2S′, Y ) + (#S −#S′)(dimY + 1). (4)

Definition 3.1. We say that a finite set S ⊂ Y is minimally Terracini if
δ(2S, Y ) > 0 and δ(2S′, Y ) = 0 for all S′ � S.

By Remark 3.1, if S′ ⊂ S is a scheme of r double points, the r-th Terracini defect
δ(2S′, Y ) is smaller than δ(2S, Y ). It is natural to wonder what happens if instead
we fix the finite set S ∈ S(W, r) and we compare the behaviour of the two r-th
Terracini defects δ(2S,W ) and δ(2S, Y ), where W � Y is a smaller multiprojective
space. In this case, since Y is no longer the minimal multiprojective space containing
S ⊂W � Y , the r-th Terracini defect δ(2S, Y ) may be bigger than δ(2S,W ).

In the following key lemma we explicit this behaviour and we can consider the
forthcoming result as a sort of concision for the Terracini locus of a finite set S ⊂ Y .
More precisely, in case 3.2 of Lemma 3.2 we give an upper bound for δ(2S, Y ) via
δ(2S,W ). Case 3.2 can be considered as a strong version of concision because the
achievement of equality δ(2S,W ) = δ(2S, Y ) is telling that the defect of 2S is inde-
pendent of the number of factors of the multiprojective space where S is embedded.

Lemma 3.2. Let W � Y be multiprojective spaces. Let S ⊂ W be a finite set.
Then:

(a) δ(2S,W ) ≤ δ(2S, Y ) ≤ δ(2S,W ) + (#S − 1)(dimY − dimW ).
(b) If Y = W × Y ′, with Y ′ a multiprojective space of positive dimension and

ν(S) is linearly independent, then δ(2S,W ) = δ(2S, Y ).

Proof. Since the restriction map H0 (Y,OY (1, . . . , 1)) −→ H0 (W,OW (1, . . . , 1)) is
surjective and (2S,W ) ⊆ (2S, Y ), the first inequality of part 3.2 is the first inequality
of (3). So we just need to prove the second inequality of 3.2: we will do it by induction
on the integer dimY − dimW .

First assume dimY = dimW + 1. Thus there is i ∈ {1, . . . , k} such that W ∈
|OY (εi)|. Note that W ∩ (2S, Y ) = (2S,W ) and that ResW (2S, Y ) = S. Thus the
residual exact sequence of W gives the following exact sequence

0 −→ IS(ε̂i) −→ I(2S,Y )(1, . . . , 1) −→ I(2S,W )(1, . . . , 1) −→ 0. (5)

Since the restriction map H0 (Y,OY (1, . . . , 1)) −→ H0 (W,OW (1, . . . , 1)) is surjective,
h1

(
Y, I(2S,W )(1, . . . , 1)

)
= h1

(
W, I(2S,W )(1, . . . , 1)

)
. Since S is a finite set, hi(L ⊗

OS) = 0 for all i > 0 and L line bundles on Y . The long cohomology exact sequence
of the exact sequence

0 −→ IS(ε̂i) −→ OY (ε̂i) −→ OS(ε̂i) −→ 0

gives h2 (IS(ε̂i)) = h2 (OY (ε̂i)) = 0. Indeed, we remark that the vanishing
of h2 holds also when dimY = 2, since in this case by duality we have that
h2 (OY (ε̂i)) = h0 (OY (ωY ⊗−ε̂i)). Since h1 (OY (ε̂i)) = 0 and OY (ε̂i) is globally
generated, h1 (IS(ε̂i))) ≤ #S − 1. Thus (5) gives part 3.2. Note that we have
δ(2S,W ) = δ(2S, Y ) if h1 (IS(ε̂i)) = 0.

Now assume dimY ≥ dimW + 2. We can always find a multiprojective space
M such that W � M ⊆ Y and in particular we take M ∈ |OY (εi)| for some i. The
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inductive step follows by applying the codimension one case to the inclusion M ⊂ Y
and we conclude by applying the inductive assumption on the inclusion W ⊂M .

Assume that W is isomorphic to a factor of Y , say Y ∼= W ×Y ′. We will show 3.2
by induction on the number of factors of Y ′. Assume Y = W × Pm for some m > 0,
where W ∼= W ′×{o} for some o ∈ Pm and some positive dimensional multiprojective
space W ′. We will work by induction on m ≥ 1.
First assume m = 1, so W ∈ |OY (ε2)| and in particular W = π−1

2 (o) where o ∈ P1.
We remark that the Segre embedding ν2 of W can be seen as the restriction to W
of the Segre embedding of Y . Thus ν(S) is linearly independent if and only if ν2(S)
is linearly independent. Note that the linear independence of ν2(S) is equivalent
to h1 (IS(1, 0)) = 0 because π2(S) = {o}. Since we already proved part 3.2 and
h1 (IS(1, 0)) = 0 we get the result.

Assume now m ≥ 2 and fix H ∈ |OY (ε2)| containing W . By induction we get
δ(2S,W ) = δ(2S,H). Since H is a divisor of Y and h1 (IS(0, 1)) = 0 we get the result
by applying the base case of 3.2.

Assume now Y has k ≥ 3 factors, i.e. Y ∼= W × Y ′ where Y ′ is a multiprojective
space with at least two factors. Let Pnk be the last factor of Y , again we will show
the result by induction on nk ≥ 1. If nk = 1, one can always find M ∈ |OY (εk)|
containing W and by induction we get δ(2S,W ) = δ(2S,M). We remark as before
that the Segre embedding of ν(S) is linearly independent if and only if νk(S) is linearly
independent and this is equivalent to say that h1(IS(ε̂k)) = 0. Since M = π−1

k (o), for
some o ∈ P1 we get the result by applying 3.2.

Assume now nk ≥ 2, and take some M ∈ |OY (εk)| containing W . By induction
δ(2S,W ) = δ(2S,M), since h1(IS(ε̂k)) = 0 and M is a divisor of Y we get δ(2S,M) =
δ(2S, Y ) by 3.2.

Lemma 3.3. Let Y := Pn1 × Pn2 and Y ′ ⊆ Y with Y ′ := Pm1 × Pm2 for some
mi > 0. Let S ⊂ Y ′ be a finite subset such that Y ′ is the minimal multiprojective space
containing S and suppose that both π1|S and π2|S are injective and both π1(S) and

π2(S) are linearly independent. Then m1 = m2 = #S−1 and h1
(
Y ′, I(2S,Y ′)(1, 1)

)
=

h1
(
Y, I(2S,Y )(1, 1)

)
.

Proof. Since πi(S) is linearly independent and Y ′ is the minimal multiprojective
space containing S, we have m1 = m2 = #S − 1. Moreover since h0 (IS(1, 0)) =
h0 (IS(0, 1)) = 0, the same holds for the corresponding h1’s. To conclude it is sufficient
to use the proof of part 3.2 of Lemma 3.2. More precisely, we can consider the following
exact sequence

0 −→ IS(0, 1) −→ I(2S,Y )(1, 1) −→ I(2S,Y ′)(1, 1) −→ 0

and since h1(IS(0, 1)) = 0 we get h1
(
Y ′, I(2S,Y ′)(1, 1)

)
= h1

(
Y, I(2S,Y )(1, 1)

)
.

We recall here the Horace Differential Lemma ([7, 9], see also [19]).

Lemma 3.4 (Horace Differential Lemma [7, 9]). Let M be an integral projec-
tive variety, D an integral effective Cartier divisor of M and L a line bundle on
M such that hi(L) = 0 for all i > 0 and h1(L(−D)) = 0. Set n := dimM .
Let Z � M be a closed subscheme. Suppose h1

(
M, IResD(Z) ⊗ L(−D)

)
= 0 and

h1
(
D, IZ∩D,D ⊗ L|D

)
= 0. Fix i ∈ {0, 1}. To prove that a general union A

of Z and one double point satisfies hi (IA ⊗ L) = 0 it is sufficient to prove that
hi

(IResD(Z)∪(2o,D) ⊗ L(−D)
)
= 0 and hi

(
D, I(Z∩D)∪{o} ⊗ L|D)

)
= 0, where o is a

general point of D. Since o is general in D, h1
(
D, I(Z∩D)∪{o} ⊗ L|D)

)
= 0 if and
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only if h1
(
D, IZ∩D,D ⊗ L|D

)
= 0 and h0

(
D, IZ∩D,D ⊗ L|D

)
> 0. The same trick

works for a general union of Z and finitely many double points.

Proposition 3.5. Write Y = Pn1 × Y1 as in Notation 2.2. For any fixed point
o ∈ Pn1 and closed subscheme Z1 ⊂ Y1, let Z

′ := {o} × Z1 ⊂ Y . Then

dim〈ν(Z ′)〉 = (n1 + 1)(dim〈ν1(Z1)〉+ 1)− 1.

Proof. By assumption h0
(
Y1, IZ1,Y1

(1, . . . , 1)) = h0(OY1
(1, . . . , 1)

) −
dim〈ν1(Z1)〉 − 1. The Künneth formula gives

h0 (IZ′(1, . . . , 1)) = (n1 + 1)
(
h0(OY1(1, . . . , 1))− dim〈ν1(Z1)〉 − 1

)
.

Since h0 (OY (1, . . . , 1)) = (n1 + 1)h0 (OY1(1, . . . , 1)), we get the result.

Proposition 3.6. Fix a finite set S ⊂ Y . Assume that there exists an index
i ∈ {1, . . . , k} for which the projection ηi|S : S −→ Yi is injective. If δ(2ηi(S), Yi) = 0,
then also δ(2S, Y ) = 0.

Proof. With no loss of generality we may assume i = 1. Set S′ := η1(S),
s := #S and m := n2 + · · · + nk = dimY1. The submersion η1 : Y −→ Y1 has the
property that η∗1(OY1

(1, . . . , 1)) ∼= OY (ε̂1) and this isomorphism induces an isomor-
phism of global sections. By assumption 2S′ imposes s(m+1) independent conditions
on H0 (Y1,OY1

(1, . . . , 1)). Thus the scheme η−1
1 (2S′) imposes s(m + 1) independent

conditions on H0 (OY (ε̂1)). The scheme η−1
1 (S′) is the union of s disjoint varieties

isomorphic to Pn1 and embedded by ν as linear spaces and η−1
1 (2S′) is the union of

the first infinitesimal neighborhoods of the corresponding Pn1 ’s in Y . By Proposition
3.5 the scheme (2η−1

1 (S′), Y ) imposes s(n1 + 1)(m + 1) independent conditions on
H0 (OY (1, . . . , 1)), i.e. the s connected components of η−1

1 (2S′) span linearly inde-
pendent linear spaces. For each o ∈ S the scheme η−1

i (2o′) = 2η−1
i (o′), o′ := η1(o),

contains the double point (2o, Y ). In the Segre embedding the scheme ν((2o, Y )) gives
dimY + 1 independent conditions. Since the s subspaces spanned by the connected
components of ν(η−1

1 (2S′)) are linearly independent, ν(2S, Y ) is linearly independent,
i.e. δ(2S, Y ) = 0.

4. The examples. The following examples will be crucial for the main theorem.

4.1. Example: two of the three points share the last k− 1 coordinates.
In the first example we work over Y = Pm×(P1)k−1, where m ∈ {1, 2} and k ≥ 3. We
consider a set of three distinct points S ⊂ Y with S := {a, b, c} such that a and b share
all the last k − 1 coordinates and we request that Y is the minimal multiprojective
space containing S.

Example 4.1. Let Y = Pm × (P1)k−1 for some k ≥ 3, with m ∈ {1, 2}. Define
S := {a, b, c} ⊂ Y be such that

a := (a1, u2, . . . , uk), b := (b1, u2, . . . , uk), c := (c1, . . . , ck), with

a1, b1, c1 ∈ Pm such that a1 �= b1 and ui �= ci for all i > 1.

Moreover if m = 2 assume also dim〈π1(S)〉 = 2.

In the following proposition we prove that a necessary and sufficient condition for
a set S of three points as in Example 4.1 to lie in the third Terracini locus T(Y, 3) is
that k ≥ 4.



386 E. BALLICO, A. BERNARDI, AND P. SANTARSIERO

Fig. 1. Picture of Example 4.1 with m = 1.

Fig. 2. Pseudo-picture of Example 4.1 with m = 2 (the red axis is a P2)

Proposition 4.1. Let Y = Pm × (P1)k−1 for some k ≥ 3, with m ∈ {1, 2}. Let
S ⊂ Y be as in Example 4.1. Then S ∈ T(Y, 3) if and only if k ≥ 4.

Proof. We remark that since #πi(S) ≥ 2 for all i’s and #π1(S) = 3 if m = 2,
then Y is the minimal multiprojective space containing S. If we consider the subset

S′ := {a, b}
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of S we may apply Remark 3.1 and have that δ(2S, Y ) ≥ δ(2S′, Y ). Since S′ ⊂
Pm × {u2} × · · · × {uk} ⊂ Y , one can use case 3.2 of Lemma 3.2, with W := Pm, to
get

δ(2S′, Y ) = m+ 1.

Thus in order to see if S ∈ T(Y, 3), it suffices to understand whether

h0
(I(2S,Y )(1, . . . , 1)

)
> 0.

• If k ≥ 4 then h0 (OY (1, . . . , 1)) = (m + 1)2k−1 > 3(m + k) = deg(2S, Y ) so we
easily have that if k ≥ 4 then S ∈ T(Y, 3).

• Let now k = 3. If we show that in this case none of the sets S ⊂ Y as above
belongs to T(Y, 3) we will be done.
Remark that by assumption ui �= ci for i = 2, 3. To determine whether
h0

(I(2S,Y )(1, 1, 1)
)
> 0 or not, we distinguish two cases depending on m being

equal to either 1 or 2.
(a) Assume m = 2, i.e. Y = P2 × P1 × P1.

Since h0(OY (ε1)) = 3, there exists H ∈ |I{a,c}(ε1)| and remark that

H ∼= P1 × P1 × P1.

Since 〈π1(S)〉 = P2, thenH∩S = {a, c}. Consider the residual exact sequence
of S with respect to H:

0 −→ IResH(2S,Y )(0, 1, 1) −→ I(2S,Y )(1, 1, 1) −→ IH∩(2S,Y )(1, 1, 1) −→ 0.

Since H is smooth then H ∩ (2S, Y ) = (2(S ∩H), H) = (2a ∪ 2c,H) and the
residue of (2S, Y ) with respect to H is

ResH(2S, Y ) = {a, c} ∪ (2b, Y ).

Remark that h0
(IResH(2S,Y )(0, 1, 1)

)
= h0

(
Y1, Iη1(ResH(2S,Y ))(1, 1)

)
.

Since πi(a) = πi(b) �= πi(c) for i = 2, 3, then η1(ResH(2S, Y )) = η1({a, c} ∪
(2b, Y )) = η1(c) ∪ (2η1(b), Y1).
In order to compute h0

(
Y1, Iη1(c)∪(2η1(b),Y1)(1, 1)

)
, we have to look at the

hyperplanes of P3 containing both ν1(η1(c)) and Tν1(η1(b))ν1(Y1). Note that
the tangent space Tν1(η1(b))ν1(Y1) is spanned by the union of two lines through
ν1(b), i.e. the set of all x ∈ Y1 with π2(x) = π2(b) and the set of all y ∈ Y1

with π3(y) = π3(b). Thus, since ui �= ci for i = 2, 3, there are no such
hyperplanes, hence

h0
(
Y1, Iη1(ResH(2S,Y ))(1, 1)

)
= 0.

So by the residual sequence of S with respect to H recalled above, it is
sufficient to prove that h0

(
H, I(2a∪2c,H)(1, 1, 1)

)
= 0.

Since 〈π1(S)〉 = P2 then πi(a) �= πi(c) for i = 1, 2, 3. Since H ∼= P1 × P1 × P1

thus {a, c} is in the open orbit of ν(P1×P1×P1) for the action of (Aut(P1))3

on H. Since σ2(ν(P1 × P1 × P1)) = P7 (cf. e.g. [25, 26, Proposition 2.3]), we
have

h0
(
H, I(2{a,c},H)(1, 1, 1)

)
= 0.
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(b) Assume m = 1, i.e. Y = (P1)3.
Fix H ∈ |Ia(ε3)|. Since ui �= ci for i = 2, 3 and H is smooth we have that
H ∩S = {a, b} and ResH(2S,H) = {a, b}∪ (2c, Y ). As in the last part of step
(a), we remark that h0(IResH(2S,Y )(1, 1, 0)) = h0(Y3, Iη3({a,b}∪(2c,Y ))) and in
order to compute it we have to look at the hyperplanes of P3 containing both
Tν3(η3(c))ν3(Y3) and ν3(η3({a, b})).
So h0(IResH(2S,Y )(1, 1, 0)) = 0. Moreover, identifying ν(H) with a smooth
quadric surface, by looking at case k = 2 of the proof of Proposition 2.9 we
get h0

(I({a,b},H)(1, 1)
)
= 0, therefore h0

(
H, I(2S,Y )(1, 1, 1)

)
= 0 .

Thus any set of points S ⊂ Y constructed as above is in the 3-rd Terracini locus
T(Y, 3) if and only if k ≥ 4.

4.2. Example: two of the three points share the last k− 2 coordinates.
In the second example, we work over Y = Pn1 ×Pn2 × (P1)k−2, where n1, n2 ∈ {1, 2}.
We consider S ⊂ Y , with S := {u, v, o} such that u and v share just the last k − 2
components and we request that Y is the minimal multiprojective space containing
S.

Example 4.2. Let Y := Pn1 × Pn2 × (P1)k−2, where n1, n2 ∈ {1, 2} and k ≥ 3.
Let S := {o, u, v} where

u = (u1, u2, u3 . . . , un), v = (v1, v2, u3, . . . , un), o = (o1, . . . , on) with

〈ui, vi〉 := Li
∼= P1 for i = 1, 2 and oj �= uj for all j = 3, . . . , k.

Moreover if ni = 2 assume also that oi /∈ Li for i = 1, 2.

Remark 4.1. Example 4.1 is not a particular case of Example 4.2. To fix the
ideas let Y = P2×P1×P1 and take S, S′ ⊂ Y as in Examples 4.1 and 4.2 respectively.
Then S = {a, b, c} with

a = (a1, a2, a3), b = (b1, a2, a3), c = (c1, c2, c3) such that

ai �= ci for all i = 2, 3 and 〈a1, b1, c1〉 ∼= P2,

while S′ = {o, u, v} with

u = (u1, u2, u3), v = (v1, v2, u3), o = (o1, o2, o3) such that

u3 �= o3 and 〈u1, v1, o1〉 ∼= P2.

Notice that S′ cannot be as in Example 4.1 even if o2 ∈ {u2, v2}.
Taking S ⊂ Y as in Example 4.2, we will prove that
• if k ≥ 4 then S ∈ T(Y, 3);
• if k = 3 and n1 = n2 = 2 then S ∈ T(Y, 3);
• if k = 3 and either {n1, n2} = {1, 2} or n1 = n2 = 1 then we need to add

more restrictive conditions to the points of S in order to get S ∈ T(Y, 3).
The previous properties are an immediate consequence of the following, more

precise, result.

Proposition 4.2. Let Y := Pn1 × Pn2 × (P1)k−2, where n1, n2 ∈ {1, 2} and
k ≥ 3. Let S = {o, u, v} ⊂ Y be as in Example 4.2. Set

Y ′ := L1 × L2 × {π3(u)} × · · · × {πk(u)} ⊂ Y.

Then
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(i) 2 ≤ δ(2S, Y ) ≤ 5.
(ii) If k ≥ 4 then δ(2S, Y ) = 2 and

h0
(I(2S,Y )(1, . . . , 1)

)
= 2 + (n1 + 1)(n2 + 1)2k−2 − 3(n1 + n2 + k − 1) > 0.

(iii) If k = 3 and n1 = n2 = 2 then δ(2S, Y ) = 2 and h0
(I(2S,Y )(1, 1, 1)

)
= 2.

(iv) If k = 3 and n1 = n2 = 1 then 4 ≤ δ(2S, Y ) ≤ 5 and h0
(I(2S,Y )(1, 1, 1)

)
> 0

if and only if πi(u) = πi(o) and πh(v) = πh(o) for some i, h ∈ {1, 2}.
(v) If k = 3 and {n1, n2} = {1, 2} then δ(2S, Y ) ≥ 3 and h0

(I(2S,Y )(1, 1, 1)
)
> 0

if and only if π2(o) ∈ π2(S
′).

Fig. 3. Picture of Proposition 4.2.

Proof. Remark that S′ := {u, v} ⊂ Y ′, and Y ′ is actually the minimal multipro-
jective space containing S′ while Y is the minimal multiprojective space containing
S. Part 3.2 of Lemma 3.2 gives h1

(
Y, I(2S′,Y )(1, . . . , 1)

)
= h1

(
Y ′, I(2S′,Y ′)(1, 1)

)
and

hence h1
(I(2S′,Y )(1, . . . , 1)

)
= h1

(I(2S′,Y ′)(1, 1, 0, . . . , 0)
)
. Proposition 2.9 (or rather

its proof for k = 2) and Lemma 3.3 give h1
(
Y ′, I(2S′,Y ′)(1, 1)

)
= 2.

Moreover, we remark that in each case we immediately recover the value of
h0(I(2S,Y )(1, . . . , 1)) once we computed δ(2S, Y ) (cf. Lemma 2.5).
(ii) Assume k ≥ 4. Let M be the only element of |Io(εk)|. The residual ex-

act sequence of M gives h1(Y, I(2S,Y )(1, . . . , 1)) ≤ h1(Y, I(2S′,Y )∪{o}(ε̂k)). Let

G be the subgroup of Aut(Pn1) × Aut(Pn2) × Aut(P1)k−2 fixing pointwise Y ′.
The group G has an open orbit U and o /∈ U . Since k ≥ 4, we get that
h0(Y, I(2S′,Y )∪{o}(ε̂k)) = h0(Y, I(2S′,Y )(ε̂k)) − 1. Thus h1(Y, I(2S′,Y )∪{o}(ε̂k)) =
h1(Y, I(2S′,Y )(ε̂k)). We saw at the beginning of the proof of the proposition that

h1
(I(2S′,Y )(1, . . . , 1)

)
= h1

(I(2S′,Y ′)(1, 1, 0, . . . , 0)
)
= h1

(
Y ′, I(2S′,Y ′)(1, 1)

)
= 2

and this concludes the proof.
(iii) Assume k = 3 and n1 = n2 = 2. Let M ∈ |OY (ε3)| containing o and consider the

residual exact sequence of M

0→ I(2S′,Y )∪{o}(1, 1, 0)→ I(2S,Y )(1, 1, 1)→ I(2o,Y )∩M (1, 1, 1).

We have h1(I(2S,Y )(1, 1, 1)) ≤ h1(I(2S′,Y )∪{o}(1, 1, 0)) since h1(I(2o,Y )(1, 1, 1))

= 0. Since h0
(
Y, I(2S′,Y ′)(1, 1, 0)

)
> 0 and o is in the open orbit U , we have

h0
(
Y, I(2S′,Y ′)∪{o}(1, 1, 0)

)
= h0

(
Y, I(2S′,Y ′)(1, 1, 0)

) − 1. Therefore we have

h1
(
Y, I(2S′,Y ′)∪{o}(ε̂3)

)
= h1

(
Y, I(2S′,Y ′)(ε̂3)

)
. The result follows since at the

beginning of the proof of the proposition we showed that h1
(I(2S′,Y )(1, . . . , 1)

)
=

h1
(I(2S′,Y ′)(1, 1, 0, . . . , 0)

)
= h1

(
Y ′, I(2S′,Y ′)(1, 1)

)
= 2.
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(iv) Assume k = 3 and n1 = n2 = 1.
Since h0 (OY (1, 1, 1)) = 8 and deg(2S, Y ) = 12, by Lemma 2.5, we have
h1

(I(2S,Y )(1, 1, 1)
)
= 4 + h0

(I(2S,Y )(1, 1, 1)
)
, so h1

(I(2S,Y )(1, 1, 1)
) ≥ 4. To con-

clude this case it is sufficient to show the following

Claim 4.2.1. With the notation as above, h0
(I(2S,Y )(1, 1, 1)

)
> 0 if and

only if πi(u) = πi(o) for some i ∈ {1, 2} and πj(v) = πj(o) for some j ∈
{1, 2}. In this case h0

(I(2S,Y )(1, 1, 1)
)
= 1 and h1

(I(2S,Y )(1, 1, 1)
)
= 5.

Proof. TakeH ∈ |I{u}(ε3)|. Since π3(u) = π3(v), thenH∩S = S′. Since
H is smooth, (2S, Y )∩H = (2S′, H) and ResH(2S, Y ) = S′ ∪ {2o}. We
identify ν(H) with a smooth quadric surface Q ⊂ P3. Since a tangent
plane to a smooth quadric surface Q is tangent to Q at a unique point,
then we have the vanishing of h0

(
H, I(2S,Y )∩H,H(1, 1, 1)

)
.

Consider the residual exact sequence of S with respect to H:

0 −→ IS′∪{2o}(1, 1, 0) −→ I(2S,Y )(1, 1, 1) −→ I(2S,Y )∩H,H(1, 1, 1) −→ 0. (6)

Since h0
(
H, I(2S,Y )∩H,H(1, 1, 1)

)
= 0, then

h0
(I(2S,Y )(1, 1, 1)

)
= h0

(IS′∪{2o}(1, 1, 0)
)
.

Moreover h0
(IS′∪{2o}(1, 1, 0)

)
= h0

(
Y3, Iη3(S′)∪(2η3(o),Y3)(1, 1)

)
and we

can think of ν3(Y3) as a smooth quadric surface. Since Tν3(o)ν3(Y ) is a

plane h0
(
Y3, Iη3(S′)∪(2η3(o),Y3)(1, 1)

) ≤ 1.

Now h0
(
Y3, Iη3(S′)∪(2η3(o),Y3)(1, 1)

)
= 1 if and only if both ν3(η3(u)) and

ν3(η3(u)) are contained in ν3(Y3) ∩ Tν3(η3(o))(ν3(Y3)). We remark that
Tν3(η3(o))(ν3(Y3)) is spanned by the union of two lines through ν3(η3(o)),
i.e. the image by ν3 of the set of all x ∈ Y3 with π1(x) = π1(o) and the set
of all y ∈ Y3 with π2(y) = π2(o). Hence Claim 4.2.1 is just a translation
of this observation.

(v) Assume {n1, n2} = {1, 2} and k = 3.
With no loss of generality we may assume n1 = 2 and n2 = 1. Since
h0 (OY (1, 1, 1)) = 12 and deg(2S, Y ) = 15, we have h1

(I(2S,Y )(1, 1, 1)
)

=

3 + h0
(I(2S,Y )(1, 1, 1)

)
. Hence δ(2S, Y ) ≥ 3.

We remark that by assumption π1(o) /∈ 〈π1(u), π1(v)〉, π2(u) �= π2(v) and
π3(o) �= π3(u) = π3(v).
To conclude this case we have to show that h0

(I(2S,Y )(1, 1, 1)
)
> 0 if and only if

π2(o) ∈ π2(S
′).

• Assume π2(o) ∈ π2(S
′). Without loss of generality we may assume that

π2(u) = π2(o). Since h0 (OY (ε2)) = 2 then |Io(ε2)| is a singleton. Set {H} :=
|Io(ε2)|. Since H ∼= P2 × P1 it is smooth, hence (2S, Y ) ∩ H = (2{o, u}, H)
scheme-theoretically and ResH(2S, Y ) = (2v, Y ) ∪ {o, u}. Remark that
h0

(I(2v,Y )∪{o,u}(1, 0, 1)
)
= h0

(
Y2, I(2η2(v),Y2)∪{η2(o),η2(u)}(1, 1)

)
. We remark

that Y2
∼= P2 × P1 and h0 (OY2

(1, 1)) = 6 = deg((2η2(v), Y2) ∪ {η2(o), η2(u)}).
This last equality implies that

h0 (Y2, I(2η2(v),Y2)∪{η2(o),η2(u)}(1, 1)
)
= h1 (Y2, I(2η2(v),Y2)∪{η2(o),η2(u)}(1, 1)

)
.

To show that h0
(
Y2, I(2η2(v),Y2)∪{η2(o),η2(u)}(1, 1)

)
> 0, we have to look at the

hyperplanes of P5 ⊃ ν2(Y2) that contain both the tangent space Tν2(η2(v))ν2(Y2)
and the points ν2(η2({o, u})). Remark that Tν2(η2(v))ν2(Y2) ∩ ν2(Y2) is the
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union of 2 linear spaces containing ν2(η2(v)), one of dimension 2 and one of di-
mension 1, spanning the 3-dimensional projective space Tν2(η2(v))ν2(Y2). Since
π3(u) = π3(v), then ν2(η2(u)) is a point of the 2-dimensional irreducible com-
ponent of the tangent space Tν2(η2(v))ν2(Y2) ∩ ν2(Y2).

Thus h0
(IResH(2S,Y )(1, 0, 1)

)
> 0. Hence, by the long cohomology exact se-

quence induced by the exact sequence of the residue of S with respect to H,
we get h0

(I(2S,Y )(1, 1, 1)
)
> 0.

• Assume π2(o) /∈ π2(S
′). Since h0 (OY (ε3)) = 2 then |Iu(ε3)| is a single-

ton. Set {M} := |Iu(ε3)|. Since M is smooth and M ∩ S = S′, then
(2S, Y ) ∩M = (2S′,M) scheme-theoretically and ResM (2S, Y ) = S′ ∪ (2o, Y ).
We have h0

(IS′∪(2o,Y )(1, 1, 0)
)
= h0

(
Y3, Iη3(S′)∪(2η3(o),Y3)(1, 1)

)
. Obviously

h0
(
Y3, I(2η3(o),Y3)(1, 1)

)
= 2. Since η3(S) is in the open orbit of S(Y3, 3) for

the action of Aut(P2) × Aut(P1), h0
(
Y3, Iη3(S′)∪(2η3(o),Y3)(1, 1)

)
= 0. The

set S′ is in the open orbit of Aut(M) for its action in S(M, 3). Since any
3 × 2 matrix has rank at most 2, we know that σ2(ν(M)) = P5. Thus
h0

(
H, I(2S,Y )∩H,H(1, 1, 1)

)
= 0. The residual exact sequence of S with respect

to M gives h0
(I(2S,Y )(1, 1, 1)

)
= 0.

In summary if k = 3 and {n1, n2} = {1, 2}, then S ∈ T(Y, 3) if and only if
π2(o) ∈ π2(S

′).

5. Main theorem. In this section we prove the main theorem of the present
paper.

Remark 5.1. Let Y = (P1)k, for some k ≥ 2. Given any two subsets S, S′ ∈
S(Y, 3) such that #πi(S) = #πi(S

′) = 3 for all i’s, one can always find f ∈ (Aut(P1))k

such that S = f(S′). Since Y is the minimal multiprojective space containing both S
and S′, then S ∈ T(Y, 3) if and only if S′ ∈ T(Y, 3).

Lemma 5.1. Let Y = P1×P1×P1 and let S := {u, v, o} ∈ S(Y, 3) such that Y is
the minimal multiprojective space containing S. Then S ∈ T(Y, 3) if and only if there
exist h ∈ {1, 2, 3} and i, j ∈ {1, 2, 3} \ {h}, with i < j such that

πh(u) = πh(v) �= πh(o), πi(o) = πi(u) �= πi(v), πj(o) = πj(v) �= πj(u).

Proof. Up to a permutation of the index h ∈ {1, 2, 3} we may assume h = 3.
Take S ∈ S(Y, 3) and let X := ν(Y ). If #πi(S) = 3 for all i’s, since dimσ3(X) = 7
(see e.g. [29]), we have, by Remark 5.1, that h0

(I(2S,Y )(1, 1, 1)
)
= 0. Hence S /∈

T(Y, 3). Now assume #πi(S) ≤ 2 for some i. Remark that since Y is the minimal
multiprojective space containing S then #πi(S) = 2. We distinguish different cases
depending on the number of indices i ∈ {1, 2, 3} for which #πi(S) = 2.
• If there exists only an index i such that #πi(S) = 2 then S is as in Example 4.2
and by case (iv) of Proposition 4.2 we know that h0

(I(2S,Y )(1, 1, 1)
)
= 0.

• If #πi(S) = 2 for two indices, then S is as in Example 4.2 or as in Example 4.1.
For both cases we have h0

(I(2S,Y )(1, 1, 1)
)
= 0 (cf. case (iv) of Proposition 4.2

and Proposition 4.1).
• Finally, if #πi(S) = 2 for all i ∈ {1, 2, 3}, then S is as in Example 4.2 and by case

(iv) of Proposition 4.2 we get that h0
(I(2S,Y )(1, 1, 1)

)
= 1.

Remark 5.2. Let Y = P1 × P1 × P1 and let S ∈ S(Y, 3) such that Y is the
minimal multiprojective space containing S. We remark that the characterization
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of the elements T(Y, 3) presented in Lemma 5.1 is the well-known description of the
general element of the tangential variety τ(X), which is also called W-state in quantum
information literature (cf. [24, 15]). Indeed let S = {u, v, o} ∈ T(Y, 3) and without
loss of generality take {i, j, h} = {1, 2, 3}. Then

u = (α, b, γ), v = (a, β, γ), o = (α, β, c),

for some distinct α, β, γ, a, b, c ∈ P1. Now it is straightforward to see that the general
q ∈ 〈ν(S)〉 is actually an element of Tν(p)X where p = (α, β, γ).

Remark 5.3. Fix Y = (P1)4 and let A ⊂ Y be a general subset of three distinct
points. Since the 3-rd secant variety of X := ν(Y ) ⊂ P15 is defective with defect 1 (cf.
[27, 28]), then dim(σ3(X)) = 13 and h0

(I(2A,Y )(1, 1, 1, 1)
)
= 2. Hence, by Lemma

2.5 we get

h1
(I(2A,Y )(1, 1, 1, 1)

)
= deg(2A, Y )− dim(σr(X))− 1 = 1.

Moreover, by the semicontinuity theorem for cohomology (cf. [40, Ch. III §12]) we
get h1

(I(2S,Y )(1, 1, 1, 1)
) ≥ 1 and h0

(I(2S,Y )(1, 1, 1, 1)
) ≥ 2 for all S ∈ S(Y, 3). We

remark that Y is the minimal multiprojective space containing S ∈ S(Y, 3) if and only
if πi(S) ≥ 2 for all i = 1, 2, 3, 4.

Thus S(Y, 3) ⊂ T1(Y, 3) and the 3-rd Terracini locus T(Y, 3) contains all subsets
S ∈ S(Y, 3) such that πi(S) ≥ 2 for all i.

Remark 5.4. Let Y = (P1)k with k ≥ 5. By [27, Theorem 2.3] we know that
dim(σ3(X)) = 3k + 2. Moreover, we recall that for a general S of cardinality 3

h1
(I(2S,Y )(1, . . . , 1)

)
= deg(2S, Y )− dim(σr(X))− 1 = 0.

So a general S ⊂ Y with #S = 3 is not in the 3-rd Terracini locus T(Y, 3). Thus by
Remark 5.1, for all S ∈ S(Y, 3) such that #πi(S) = 3 for all i, then S /∈ T(Y, 3).

Lemma 5.2. Let Y = (P1)k with k ≥ 5. Fix S := {a, b, c} ∈ S(Y, 3) such that
Y is the minimal multiprojective space containing S. Assume that there are at least
k− 2 indices i’s for which πi(a) = πi(b). Then S is either as in Example 4.2 or as in
Example 4.1.

Proof. Define E := {i ∈ {1, . . . , k} | πi(a) = πi(b)}, by assumption #E ≥ k − 2
and since a �= b then #E ≤ k − 1. By permuting the factors of Y if necessary, one
can always assume that E contains the last k − 2 indices and that the index 1 /∈ E.
If 2 /∈ E then S is constructed as in Example 4.2 with n1 = n2 = 1, else S is as in
Example 4.1 where we took m = 1.

Lemma 5.3. Let Y = (P1)k with k ≥ 5. Fix S ∈ S(Y, 3) such that Y is the
minimal multiprojective subspace containing S. If S ∈ T(Y, 3) then S is either as in
Example 4.2 or as in Example 4.1.

Proof. Write S := {u, v, z}. Since S ∈ T(Y, 3), by Remark 5.4 we may assume
that πi(u) = πi(v) for at least one i ∈ {1, . . . , k}. With no loss of generality we
may assume i = 1. Since h0 (OY (εi)) = 2 for i = 1, 2, both |Iu(ε1)| and |Iz(ε2)| are
singletons. Set {H} := |Iu(ε1)| and {M} := |Iz(ε2)|. Since v ∈ H, then S ⊂ H ∪M .
Moreover, since Y is the minimal multiprojective space containing S, then z /∈ H and
#(S ∩M) ≤ 2.
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Claim 5.3.1. h1 (IS(0, 0, 1, . . . , 1)) = 0 unless S is either as in
Example 4.2 or as in Example 4.1.

Proof. Call η : Y −→ (P1)k−2 the projection onto the last k−2 factors
of Y and set Y ′ := (P1)k−2.
Assume h1 (IS(0, 0, 1, . . . , 1)) > 0. Therefore either η|S is not injec-

tive or #η(S) = 3 and h1
(
Y ′, Iη(S)(1, . . . , 1)

)
> 0. In the first case

S is either as in Example 4.2 or as in Example 4.1 by Lemma 5.2. In
the second case by [17, Lemma 4.4] there is i ∈ {3, . . . , k} such that
#πh(S) = 1 for all h ∈ {3, . . . , k} \ {i} contradicting the minimality
of Y ′ for η(S), which is a consequence of the minimality of Y for S.

Assume by contradiction that S is neither as in Example 4.2 nor as in Example
4.1.
(a) Assume #(S ∩ M) = 1, i.e. S ∩ (H ∩ M) = ∅. So S is contained in

the smooth part of H ∪ M and ResH∪M (2S) = S. Since S is not as in
one of the examples, by Claim 5.3.1 we get h1

(IResH∪M (2S,Y )(0, 0, 1, . . . , 1)
)
=

h1 (IS(0, 0, 1, . . . , 1)) = 0. Moreover, by the restriction exact sequence of S (cf.
Lemma 2.5), we get h0 (IS(0, 0, 1, . . . , 1)) = 2k−2 − 3. Since by assumption S ∈
T(Y, 3), then h0

(I(2S,Y )(1, . . . , 1)
)
> 0 and more precisely h0

(I(2S,Y )(1, . . . , 1)
)
>

2k − 3(k + 1), where k ≥ 5. Thus the residual exact sequence of H ∪M gives
h1

(
H ∪M, I(2S,H∪M),H∪M (1, . . . , 1)

)
> 0. Since by assumption S ∩ (H ∩M) = ∅,

(2S,H ∪M) is equal to (2u,H) ∪ (2v,H) ∪ (2z,M).
Denote by G the set of all g ∈ (Aut(P1))k acting as the identity on the last
k − 1 factors of Y ; we remark that the elements of G are 3-transitive on
the first factor. Let Gu be the subgroup of G fixing also the first compo-
nent π1(u) of u ∈ S. Hence, since we assumed π1(u) = π1(v), any g ∈ Gu

fixes both u and v. Obviously h1
(
H ∪M, I(2u,H)∪(2v,H)∪(2z,M),H∪M (1, . . . , 1)

)
=

h1
(
H ∪M, I(2u,H)∪(2v,H)∪(2g(z),M),H∪M (1, . . . , 1)

)
for all g ∈ Gu. Thus it is suffi-

cient to find a contradiction for a single z′ ∈ M \H ∩M with πi(z
′) = πi(z) for

i > 1.
We may specialize z by considering a general o ∈ H∩M . So it is sufficient to work
on H rather than H ∪M . Denote by Z := (2u,H)∪ (2v,H) and call A the union
of Z and the double point (2o,H ∩M). We want to use the Differential Horace
Lemma with H ∩M as a divisor of H (cf. Lemma 3.4). We remark that Z ⊂ H
satisfies the assumptions of the Differential Horace Lemma, i.e. both

h1
(
H, IRes(H∩M)(Z) ⊗ L(−H ∩M)

)
= 0

and h1
(
H ∩M, IZ∩(H∩M),H∩M ⊗ L|H∩M

)
= 0,

where L = O(1, . . . , 1). Indeed the latter is trivial since by assumption #S∩M = 1.
The former is zero since H is the minimal multiprojective space containing Z
and, by Proposition 2.9 and its proof, we know that T(H, 2) = ∅ and in par-
ticular that δ(2{u, v}, H) = 0. Thus by Lemma 3.4, in order to show that
h1 (H, IA(1, . . . , 1)) = 0, it suffices to show that both

h1
(
H ∩M, I(Z∩(H∩M))∪{o}(1, . . . , 1)

)
= 0

and h1
(
H, IResH∩M (A)(1, 0, 1, . . . , 1)

)
= 0.
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Clearly since (Z∩(H∩M))∪{o} = {o} then h1
(
H ∩M, I(Z∩(H∩M))∪{o}(1, . . . , 1)

)
is trivially zero. The second equality follows from (3) of Remark 3.1 since we
already pointed out that δ(2{u, v}, H) = 0.

(b) Assume #(S ∩M) = 2. Taking {Mi} = |Iz(εi)| for i = 3, . . . , k and applying step
(a) to H ∪Mi, we see that it is sufficient to handle the case with #πi(S) = 2 for
all i’s.
Write S = {a, b, c}. Since Aut(P1) is 2-transitive, by composing with an element
of Aut(P1)k, we may assume πi(S) = {α, β} for all i’s.
Without loss of generality we may also assume πi(a) = α for all i’s. Thus β ∈
{πi(b), πi(c)} for all i. Moreover, since S is neither as in Example 4.2 nor as in
Example 4.1, for all A ⊂ S with #A = 2 then #πi(A) = 2 for at least 3 indices
i’s.
We define the maximum number of common components that any two points of
S can have as

t := max{#I ⊂ {1, . . . , k} | ∃A ⊂ S with #A = 2 such that ∀i ∈ I πi(A) = 1}.
By relabeling if necessary, we may assume that {a, b} is one of the subsets of S
reaching such t. By assumption t ≤ k − 3.
We distinguish different cases depending on the integer k ≥ 5. In particular, for
k = 5, 6, we will get to a contradiction with the assumption δ(2S, Y ) > 0 by direct
computation with Macaulay2 (cf. [39]).
(i) Assume k = 5. So t ≤ 2 and since #πi(S) = 2 for all i and k > 3 then t = 2.

Permuting the factors of Y we may assume πi(b) = α for i = 1, 2 and πi(b) = β
for i = 3, 4, 5. Since #πi(S) = 2 for all i, then π1(c) = π2(c) = β. Since a
and c have at most 2 common projections, then we may assume πi(c) = α for
i = 3, 4 and π5(c) = β. Thus S = {a, b, c} is such that

a = (α, α, α, α, α), b = (α, α, β, β, β), c = (β, β, α, α, β)

and, up to a permutation of the elements of S and of the factors of Y , there is
a unique such S.
By direct computation one can see that h0

(I(2S,Y )(1, 1, 1, 1, 1)
)
= 14 and con-

sequentially h1
(I(2S,Y )(1, 1, 1, 1, 1)

)
= 0 contradicting the assumption.

(ii) Assume k = 6. We have t ≤ 3. Moreover, since #πi(S) = 2 for all i, then
t ≥ 2. We distinguish two different cases in dependence on the value t ∈ {2, 3}.
Assume t = 3. Permuting if necessary the factors of Y , we may assume π1(b) =
π2(b) = π3(b) = α and π4(b) = π5(b) = π6(b) = β. Thus since #πi(S) = 2
for all i’s, then π1(c) = π2(c) = π3(c) = β. Moreover c and a can have 2 or 3
common components. In the first case S = {a, b, c} is such that

a = (α, α, α, α, α, α), b = (α, α, α, β, β, β), c = (β, β, β, β, α, α).

In the second case S = {a, b, c} is such that

a = (α, α, α, α, α, α), b = (α, α, α, β, β, β), c = (β, β, β, α, α, α).

We remark that up to permuting the factors of Y and relabeling the elements
of S, these are the only cases for t = 3. As before, by direct computation, one
gets for both cases δ(2S, Y ) = 0 contradicting the assumption.
Assume t = 2. Permuting the factors of Y we may assume π1(b) = π2(b) = α
(and hence π1(c) = π2(c) = β) and π3(b) = π4(b) = π5(b) = π6(b) = β. Since
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#{πi(a), πi(c)} = #{πi(b), πi(c)} = 1 for at most 2 indices, among the set
{3, 4, 5, 6} exactly 2 i’s have πi(c) = β, while the other ones have πi(c) = α.
Thus S = {a, b, c} is such that

a = (α, α, α, α, α, α), b = (α, α, β, β, β, β), c = (β, β, β, β, α, α).

Up to relabeling the points of S and a permutation of the factors of Y , there is a
unique such S. By direct computation one gets h0

(I(2S,Y )(1, 1, 1, 1, 1, 1)
)
= 20,

so δ(2S, Y ) = 0 contradicting the assumption.
(iii) Now assume k ≥ 7. Exchanging if necessary the names of the points of S we

may assume π1(a) = π1(b) = α and hence π1(c) �= α. For any t ∈ P1 set
St := {a, b, ct}, where π1(ct) := t and πi(ct) := πi(c) for all i > 1. Since we are
not as in Example 4.1 or Example 4.2, any two of the points of S differ in at least
three coordinates, hence #St = 3 for all t. Since Aut(P1) is 3-transitive, for
each t ∈ P1 \ {π1(a)} there is gt ∈ (Aut(P1)k) ⊂ Aut(Y ) such that gt(St) = S.
Thus δ(2S) = δ(2St) for all t ∈ P1 \ {π1(a)}. Denote a1 := π1(a), by the
semicontinuity theorem for cohomology it is sufficient to prove δ(2Sa1

, Y ) = 0.
To show that δ(2Sa1

, Y ) = 0, we proceed by induction on the integer n := k−7.
Assume n = 0, i.e. k = 7. Since h0(OY (ε1)) = 2, |Ia(ε1)| is a singleton. Set
{H} := |Ia(ε1)|, so H ⊃ Sa1 by definition. Since any two points of S differs in
at least 3 coordinates, by [17, Lemma 4.4] we know that h1

(
H, ISa1

(ε̂1)
)
= 0.

By case 3.2 of Lemma 3.2 we know that δ(2Sa1
, Y ) = δ(2Sa1

, H). In item
(ii) we proved that for any subset S ⊂ (P1)6 of three points such that any
two of them have at least 3 distinct components, then δ(2S, (P1)6) = 0. Thus
δ(2Sa1 , H) = 0, and hence δ(2Sa1 , Y ) = 0.
Assume now n > 0, i.e. k > 7. As before, we set {H} := |Ia(ε1)|, so H ⊃ Sa1

by definition. By the same argument we get δ(2Sa1
, Y ) = δ(2Sa1

, H). If
ca1

differs from a and from b in at least 3 coordinates, then the inductive
assumption gives δ(2Sa1

, H) = 0 and hence δ(2S, Y ) = 0. We conclude since
k > 7 and #πi(S) = 2 for all i, so not all pairs of points of S may differ in only
3 coordinates.
Thus we proved that for all k ≥ 7, then δ(Sa1 , Y ) = 0, so by the semicontinuity
theorem for cohomology, for all k ≥ 7 we get δ(S, Y ) = 0 contradicting the
assumption δ(2S, Y ) > 0.

Lemma 5.4. Let Y = P2 × P2 × P1. Then each S ∈ T(Y, 3) is as in Example 4.2
for k = 3 and n1 = n2 = 2.

Proof. Set U := {S ∈ S(Y, 3) |Y is the minimal multiprojective space containing
S}. So any S ∈ U is such that #π3(S) ≥ 2, π1|S and π2|S are injective and
dim〈π1(S)〉 = dim〈π2(S)〉 = 2. The group Aut(P2) × Aut(P2) × Aut(P1) acts on
U with exactly 2 orbits:

(1) #π3(S) = 3;
(2) #π3(S) = 2.

Call O1 the first orbit and O2 the second one. Obviously h1(I(2S,Y )(1, 1, 1)) =
h1(I(2S′,Y )(1, 1, 1)) for all S, S′ in the same orbit. Among the elements of O1 there
is the general subset of Y with cardinality 3. Since σ3(ν(Y )) = P17 (cf. [28])
h1

(I(2S,Y )(1, 1, 1)
)
= 0 for all S ∈ O1. Note that the elements of O2 are exactly

the sets S described in Example 4.2 for n1 = n2 = 2 and k = 3.

Lemma 5.5. Let Y = P2 × P2 × P2. The 3-rd Terracini locus T(Y, 3) is empty.
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Proof. Let S ∈ S(Y, 3) be such that Y is the minimal multiprojective space that
contains S, i.e. πi|S is injective and dim〈πi(S)〉 = 2 for all i. By the action of Aut(P2)3,
we can reduce to work with a general set S ∈ S(Y, 3). Since σ3(X) is not defective
(cf. [25, Example 4.1]) we know that dim(σ3(X)) = 20, so h0

(I(2S,Y )(1, 1, 1)
)
= 6.

Hence, by Lemma 2.5, δ(2S, Y ) = 0.

Lemma 5.6. Let Y = P2×P1×P1. If S ∈ T(Y, 3) then S is either as in Example
4.1 or as in Example 4.2.

Proof. Let S ∈ S(Y, 3) such that Y is the minimal multiprojective space contain-
ing S, i.e. π1|S is injective, dim〈π1(S)〉 = P2 and #πi(S) ≥ 2 for all i ∈ {2, 3}. We
remark that S is as in Example 4.2 or as in Example 4.1 if and only if there exists an
index i ∈ {2, 3} such that #πi(S) = 2.

Assume by contradiction that S is neither as in Example 4.2 nor as in Example
4.1, i.e. assume that #πi(S) = 3 for i = 2, 3. Since Aut(P2) is transitive on the
set of triples of linearly independent points of P2 and Aut(P1) is 3-transitive, S is
in the open orbit for the action of Aut(P2) × Aut(P1) × Aut(P1) on S(Y, 3). So we
can deal with a general set S ∈ S(Y, 3). By [5, Theorem 4.5] we know that σ3(X) is
non-defective, so σ3(X) = P11 and hence h0

(I(2S,Y )(1, 1, 1)
)
= 0, contradicting the

assumption.

Lemma 5.7. Let Y := Pn1 × · · · × Pnk , where k ≥ 5 and ni ∈ {1, 2} for all i’s.
If S ∈ T(Y, 3) then S is either as in Example 4.1 or as in Example 4.2. In particular
T(Y, 3) = ∅, unless ni = 1 for at least k − 2 indices i.

Proof. We proceed by induction on the integer t := dimY − k.
The base case t = 0 corresponds to Lemma 5.3. Assume t > 0 and that the lemma
is true for any multiprojective space Y of dimension at most k + t − 1. Since t > 0,
there exists at least an index i such that ni = 2, without loss of generality we may
assume i = 1. Fix S ∈ T(Y, 3). So we know that δ(2S, Y ) > 0 and Y is the minimal
multiprojective space containing S. Thus π1|S is injective and 〈π1(S)〉 = P2. Fix a
general o ∈ P2 \ π1(S). Choose a system of homogeneous coordinates {x0, x1, x2} of
P2 such that o = [1 : 0 : 0], the line L := {x0 = 0} contains no points of π1(S) and o
is not contained in one of the three lines spanned by two of the points of π1(S). Let
�o : P2 \ {o} −→ L denotes the linear projection from o, i.e. the rational map defined
by [a0 : a1 : a2] → [0 : a1 : a2].

Write Y = P2 × Y ′ with Y ′ =
∏

i>1 P
ni and set H := L × Y ′ ∈ |OY (ε1)|. The

morphism �o extends to a morphism

fo :
(
P2 \ {o})× Y ′ −→ H

(a, b) → (�o(a), b),

We remark that #fo(S) = 3 and that H is the minimal multiprojective subspace of
Y containing fo(S).

For each λ ∈ K \ {0} let uλ : P2 −→ P2 denotes the automorphism of P2 defined
by the formula [a0 : a1 : a2] → [λa0 : a1 : a2]. Let K′ ⊆ K \ {0} be the set of all
λ ∈ K \ {0} such that no line spanned by 2 of the points of uλ(π1(S)) contains o. For
each λ ∈ K′ we have #uλ(π1(S)) = 3 and uλ(π1(S)) spans P2.
For each λ ∈ K′ define

gλ : Y −→ Y

(a, b) → (uλ(a), b).
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Composing fo with the inclusion j : H ⊂ Y we see that the rational map j ◦ fo
is a limit for λ going to 0 of the family {gλ}λ∈K′ of automorphisms of Y . By the
semicontinuity theorem for cohomology δ(2(j ◦ fo(S)), Y ) ≥ δ(2S, Y ) > 0.

Claim 5.7.1. δ(2g0(S), H) = δ(2(j ◦ fo(S)), Y ).

Proof. Since dimY = dimH + 1, part (a) of Lemma 3.2 gives
δ(2g0(S), H) ≤ δ(2(j ◦ fo(S)), Y ) ≤ δ(2g0(S), H) + h1 (IS(ε̂1)).
To conclude the proof of Claim 5.7.1 it is sufficient to prove that
h1 (IS(ε̂1)) = 0. Assume h1 (IS(ε̂1)) > 0. By [17, Lemma 4.4] either
there are u, v ∈ S such that u �= v and η1(u) = η1(v) or there is
i ∈ {2, . . . , k} such that #πh(S) = 1 for all h ∈ {2, . . . , k} \ {i}. In
the former case, i.e. if πi(u) = πi(v) for all i > 1, S is as in Example
4.1. In the second case we are either in Example 4.2 or in Example
4.1.

By Claim 5.7.1 and the inequality h0 (OH(1, . . . , 1)) > 3 dimH (true because
k ≥ 5) fo(S) ∈ T(H, 3). By the inductive assumption fo(S) is as in one of the
Examples 4.2 or 4.1 and in particular nh = 1 for at least k − 2 of the last (k − 1)
indices h, say for h ∈ {3, . . . , k}. Moreover there is A ⊂ fo(S) such that #A = 2 and
#πh(A) = 1 for all h > 2. Since fo acts as the identity on the last (k−1) components
of any p ∈ Y \ H, we get that S is described by the same example which describes
fo(S).

Lemma 5.8. Take Y = Pn1 × Pn2 × Pn3 × Pn4 with ni ∈ {1, 2} for all i’s and
n1 + n2 + n3 + n4 ≥ 5. If S ∈ T(Y, 3), then S is either as in Example 4.2 or as in
Example 4.1.

Proof. We will show the result by induction on the integer t = n1+· · ·+n4−5 ≥ 0.
First assume t = 0, i.e. n1 + n2 + n3 + n4 = 5. With no loss of generality we

may assume Y = P2 × P1 × P1 × P1. Since Y is the minimal multiprojective space
containing S and n1 = 2, the restriction π1|S is injective. Assume for the moment
that πi|S is injective for i = 2, 3, 4. Since Aut(P1) is 3-transitive, S is in the same
orbit for the action of Aut(P2) × Aut(P1)3 of 3 general points of Y . We know that
dimσ3(ν(Y )) = 17 ([5, Theorem 4.5]), so δ(2S, Y ) = 0 contradicting the assumption.
Thus we may assume #πi(S) = 2 for some i ∈ {2, 3, 4}. With no loss of generality
we may assume that at least #π3(S) = 2. Since π1|S is injective, η4|S is injective.
The set η4(S) is as in case (v) of Example 4.2. Using η2 and η3 instead of η4 we see
the existence of at least two indices h ∈ {2, 3, 4} such that #πh(S) = 2. With no loss
of generality we may assume #π3(S) = #π4(S) = 2, i.e. neither π3|S nor π4|S are
injective. If there is S′ ⊂ S such that #S′ = 2 and #π3(S

′) = #π4(S
′) = 1, then we

are in Example 4.2 or Example 4.1. The non-existence of such S′ shows that we may
name S = {a, b, c} so that π4(a) = π4(b), π3(a) = π3(c). We distinguish two cases:

(i) #π2(S) = 2;
(ii) #π2(S) = 3.

Write a = [a1, a2, a3, a4], b = [b1, b2, b3, b4] and c = [c1, c2, c3, c4]. Since Aut(P2)
is transitive on the set of all triples of linearly independent points, we may assume
a1 = [1 : 0 : 0], b1 = [0 : 1 : 0] and c1 = [0 : 0 : 1]. Since Aut(P1) is 3-transitive
we may assume a2 = a3 = a4 = α, b3 = β, b4 = α, c3 = α and c4 = β, for some
α �= β ∈ P1. Moreover, in case (i) we may assume b2 = c2 = β, while in case (ii) we
may assume b2 = β and c2 = γ, for some γ ∈ P1 with γ �= α, β. For both cases, by
direct computation one gets h0

(I(2S,Y )(1, 1, 1, 1)
)
= 17, so δ(2S, Y ) = 0 contradicting

the assumption.
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Now assume t > 0, i.e. n1 + n2 + n3 + n4 ≥ 6. As in the proof of Lemma 5.7,
one can use a linear projection from a general point of a 2-dimensional factor of Y to
conclude by induction on the integer n1 + n2 + n3 + n4.

Remark 5.5. The case of Y = (P2)k with k ≥ 4 is already contained in both
Lemma 5.8 and Lemma 5.7 but it can be easily treated as follows. Let S ∈ S(Y, 3)
such that Y is the minimal multiprojective space containing S, i.e. πi|S is injec-
tive for all i ≤ k. We can look at S as a general set of three distinct points by
the action of (Aut(P2))k. By [5, Theorem 4.5] σ3(X) is never defective, therefore
h1

(I(2S,Y )(1, . . . , 1)
)
= 0 and hence T(Y, 3) = ∅.

Theorem 5.9. Let Y be the minimal multiprojective space of k ≥ 1 factors con-
taining a set S of 3 points, where all ni ∈ {1, 2}. Then the following characterization
of the 3-rd Terracini locus holds.

T(Y, 3) is empty if and only if either k = 1, 2 or Y = (P2)k, for all k ≥ 3.

Moreover the non-empty S ∈ T(Y, 3) can only be as follows.
• (Y, S) either as in Example 4.1 or Example 4.2 with k ≥ 4 factors.
• Y = P2 × P2 × P1 and S ⊂ Y as in Example 4.2.
• Y = Pn1 × Pn2 × P1 , with {n1, n2} = {1, 2} and S = {u, v, o} ⊂ Y as in

Example 4.2 with the condition that π2(o) ∈ π2({u, v}).
• Y = P1 × P1 × P1 and S = {u, v, o} ⊂ Y as in Example 4.2 such that
πi(u) = πi(o) and πh(v) = πh(o) for some i, j ∈ {1, 2}.

• Y = (P1)4, in this last case all S ⊂ Y with #(S) = 3 that have Y as minimal
multiprojective space lie in T(Y, 3).

Proof. Let S ∈ T(Y, 3) such that Y is the minimal multiprojective space contain-
ing S, so Y = Pn1 × · · · × Pnk where all ni ∈ {1, 2}.

If k = 1 we always have h0 (I2S(1)) = 0, thus the case of Y = P2 is clear.
Assume k = 2. In this case Y = Pn1 × Pn2 with 1 ≤ n1 ≤ 2 and 1 ≤ n1 ≤ 2. If

n1 = n2 = 1, then obviously h0 (I2S(1, 1)) = 0. If ni = 2, then πi|S is injective and
πi(S) is linearly independent.

Thus if n1 = n2 = 2, then S is in open orbit for the action of Aut(P2)×Aut(P2)
of S(Y, 3). Since a general 3 × 3 matrix has rank 3 we get σ3(ν(Y )) = P8. Hence
h0

(I(2S,Y )(1, 1)
)
= 0, contradicting the assumption S ∈ T(Y, 3).

Now assume ni = 1 for exactly one i, say for i = 1. Since Y is the minimal
multiprojective space containing containing Y , #π1(S) ≥ 2 and #π2(S) = 3. Thus
there is S′ ⊂ S such that #S′ = #π1(S

′) = 2. S′ is in the open orbit for the action
of Aut(P1)×Aut(P2) on S(Y, 2). Since a general 2×3 matrix has rank 2, σ2(ν(Y )) =
P5. Thus h0

(I(2S′,Y )(1, 1)
)
= 0. Hence h0

(I(2S,Y )(1, 1)
)
= 0, contradicting the

assumption S ∈ T(Y, 3). This concludes the case of two factors.
The case of k = 3 is completely covered by Lemmas 5.1, 5.5, 5.6 and 5.4. In

the case of k = 4 there is the defective 3-rd secant variety of the Segre embedding of
Y = (P1)4 (cf. Remark 5.3). For any other couple (S, Y ) where Y � (P1)4, Lemma
5.8 shows that S must be either as in Example 4.1 or as in Example 4.2. If k ≥ 5 it
is sufficient to use Lemma 5.7.

6. Computing the maximal r-th Terracini defect. Fix any multiprojective
space Y of dimension n > 0. For any p ∈ Y the very ampleness of OY (1, . . . , 1)
implies h1

(I(2p,Y )(1, . . . , 1)
)
= 0. For any integer r ≥ 2 there are many S ∈ S(Y, r)
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with δ(2S, Y ) > 0. In the following we compute the maximal value of all δ(2S, Y ) for
some multiprojective space Y of dimension n.

Definition 6.1. For any integer n > 0, denote by U(n) the set of all multipro-
jective spaces of dimension n. For any integer r ≥ 2, n ≥ 2 define

E(n, r) := {(Y, S) ∈ U(n)× S(Y, r) | S ∈ T1(Y, r)},

E(n, r) := {(Y, S) ∈ U(n)× S(Y, r) | S ∈ T(Y, r)}.

The set of all (n, r) such that E(n, r) �= ∅ is easily computed in Lemma 6.4 and
we will show that E(n, r) �= ∅ if and only if n ≥ 3 and r ≥ 2.

Notation 6.2. Fix integers n, r > 0 and recall that given a finite S ⊂ Y , we
defined δ(2S, Y ) = h1(I(2S,Y )(1, . . . , 1)). Denote by

δ1(n, r) := max{δ(2S, Y ) | (Y, S) ∈ E(n, r)}.

We remark that given any S ∈ S(Y, r) such that h0
(I(2S,Y )(1, . . . , 1)

)
> 0, asking

whether S ∈ T1(Y, r) is equivalent to request that δ(2S, Y ) > 0. Similarly, if S ∈
S(Y, r) is such that δ(2S, Y ) > 0, then to show that S ∈ T1(Y, r) it suffices to prove
h0

(I(2S,Y )(1, . . . , 1)
)
> 0. In Proposition 6.5 we will show that

δ1(n, r) = (r − 1)(n+ 1)− 1.

If we also prescribe that (Y, S) ∈ E(n, x), i.e. if we assume that Y is the minimal
multiprojective space containing S, then we get the definition of the integer δ(n, x).

Proposition 6.3. Fix integers n > 0 and r ≥ 2. Fix Y ∈ U(n) and S ∈ S(Y, r).
Then

h1
(I(2S,Y )(1, . . . , 1)

) ≤ (r − 1)(n+ 1).

The equality holds if and only if Y = Pn.

Proof. Fix Y ∈ U(n), say Y = Pn1 × · · · × Pnk with ni > 0 for all i’s and
n1 + · · · + nk = n and assume k ≥ 2, i.e. assume Y � Pn. Fix S ∈ S(Y, r) and take
o ∈ S. Since OY (1, . . . , 1) is very ample, we have h1

(I(2o,Y )(1, . . . , 1)
)
= 0. Thus by

(4) of Remark 3.1 we get h1
(I(2S,Y )(1, . . . , 1)) ≤ deg(2(S \ {o}), Y )

)
= (r−1)(n+1),

concluding the proof of the inequality.
Let us prove now that h1

(I(2S,Y )(1, . . . , 1)
)
= (r−1)(n+1) if and only if Y = Pn.

The “ if ” part of the equality is clear, so we just need to prove the “only if ” part and
for this we will use induction on the integer n starting with the case n = 2.

Let n = 2 and assume by contradiction that Y � P2, so Y = P1 × P1. Thus
h0 (OY (1, 1)) = 4. Since each tangent plane of ν(P1×P1) is tangent to a unique point
of the smooth quadric ν(P1×P1) and r ≥ 2, we have h0

(I(2S,Y )(1, 1)
)
= 0 and hence

h1
(I(2S,Y )(1, 1)

)
= 3(r − 1) − 1 �= 3(r − 1). Now assume n > 2 and remark that by

assumption h1
(I(2S,Y )(1, . . . , 1)

)
= (r− 1)(n+1) and we have to prove that Y = Pn.

We distinguish two different cases depending on whether r = 2 or not.
(a) Assume r = 2. By assumption h1

(I(2S,Y )(1, . . . , 1)
)
= n+1. Since deg(2S) =

2(n+ 1), we get h0 (OY (1, . . . , 1)) = n+ 1. Since dimY = n and OY (1, ..., 1)
is very ample, we get Y ∼= Pn.
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(b) Assume r > 2. Write S = A ∪ B with #A = 2 and #B = r − 2. By part
(a) we have h1

(I(2A,Y )(1, . . . , 1)
) ≤ n. Thus by 4 of Remark 3.1 we get

h1
(I(2S,Y )(1, . . . , 1)

) ≤ h1
(I(2A,Y )(1, . . . , 1)

)
+deg(2B, Y ) ≤ n+(r− 2)(n+

1), which is absurd since by assumption h1
(I(2S,Y )(1, . . . , 1)

)
= (r−1)(n+1).

Theorem 6.5 below shows that the following example is the only one which
achieves the maximum δ1(n, r).

Example 6.1. Let n ≥ 3, fix an integer 1 ≤ μ ≤ n−1 and let r ≥ μ+1, so r > 1
since μ ≥ 1. Let L ⊂ Pn−1 be a μ-dimensional linear subspace and let Y := Pn−1×P1.
Fix o ∈ P1 and and fix any finite set S ⊂ L × {o} with #S = r and such that
〈π1(S)〉 = L. The aim of this example is to show that δ(2S, Y ) = (r − 1)(n+ 1)− μ.

Take H := π−1
2 (o) ∈ |OY (ε2)|. Note that S ⊂ H. Thus the residual exact sequence

of (2S, Y ) with respect to H is

0 −→ IS(1, 0) −→ I(2S,Y )(1, 1) −→ I(2S,H),H(1, 1) −→ 0. (7)

We remark that S �= ∅ and in particular #S ≥ 2. Moreover H ∼= Pn−1, so
h0

(
H, I(2S,H)(1, 1)

)
= 0. Since by assumption 〈π1(S)〉 = L, where dimL = μ, we

get h0 (IS(1, 0)) = n − 1 − μ. So by (7) we get h0
(I(2S,Y )(1, 1)

)
= n − 1 − μ. Thus

δ(2S, Y ) = r(n+ 1)− 2n+ n− μ− 1 = (r − 1)(n+ 1)− μ.
In particular for μ = 1, i.e. if L is a line, we obtain δ(2S, Y ) = (r − 1)(n +

1) − 1. Since h0 (OY (1, 1)) = 2n and deg(2S, Y ) = r(n + 1), when μ = 1 we get
h0

(I(2S,Y )(1, 1)
)
= 2n − r(n + 1) + (r − 1)(n + 1) − 1 = n − 2 > 0. Thus if μ = 1,

S ∈ T1(Y, r) and in particular δ1(S, Y ) = (r − 1)(n+ 1)− 1.
Obviously also P1 × Pn−1 gives an example, taking an L in the second factor of Y .

Lemma 6.4. Fix integers n ≥ 2 and r ≥ 2. E(n, r) �= ∅ if and only if n ≥ 3.

Proof. For n = 2 we remark that U(2) = {P2,P1 × P1}. For both cases, by
Proposition 6.3 we get h0

(I(2S,Y )(1, . . . , 1)
)
= 0. Viceversa, if n ≥ 3 we may take

Y = Pn−1 × P1 and S as in Example 6.1.

Remark 6.1. Let n > 0 and r ≥ 2. By Proposition 6.3, for all Y ∈ U(n) and
S ∈ S(Y, r) the maximum value of h1

(I(2S,Y )(1, . . . , 1)
)
is achieved when Y = Pn.

Clearly if Y = Pn, h0
(I(2S,Y )(1, . . . , 1)

)
= 0. Thus the couple (Y, S) ∈ U(n)×S(Y, r)

evincing δ1(n, r) is such that Y is a multiprojective space with k ≥ 2 factors.

Theorem 6.5. Fix integers n ≥ 3 and r ≥ 2. Then δ1(n, r) = (r − 1)(n+ 1)− 1
and any (Y, S) with Y of k ≥ 2 factors evincing δ1(n, r) is as in Example 6.1 with
μ = 1.

Proof. By Proposition 6.3, for all (Y, S)

δ(2S, Y ) ≤ (r − 1)(n+ 1)− 1.

The case μ = 1 of Example 6.1 gives the inequality δ1(n, r) ≥ (r−1)(n+1)−1. Thus
it remains to prove that this is the only case.

Fix (Y, S) evincing δ1(n, r). Thus Y = Pn1×· · ·×Pnk where all ni > 0 and are such
that n1+· · ·+nk = n. The finite set S ∈ S(Y, r), is such that h0

(I(2S,Y )(1, . . . , 1)
)
> 0

and h1
(I(2S,Y )(1, 1)

) ≥ (r − 1)(n+ 1)− 1.
We will show the result by induction on n ≥ 3.
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If n = 3 then U(3) = {P3,P2 × P1, (P1)3}.
Clearly the case Y = P3 is excluded by Remark 6.1. If Y = P2 × P1, it suffices

to show that for any other r-uple of points Ŝ ∈ S(Y, r) that is not as in Example
6.1, we get δ(2Ŝ, Y ) < 4(r − 1) − 1. If r = 2 this is true since δ(2S, Y ) = 2 unless
S ∈ S(Y, 2) is as in Example 6.1. Moreover, since any 3×2 matrix has rank at most 2,
h0(I2S(1, 1)) = 0 if r ≥ 3 and P2×P1 is the minimal multiprojective space containing
S.

Let Y = (P1)3. By Proposition 2.9 we exclude the case r = 2 since either δ(2S, Y )
or h0

(I(2S,Y )(1, 1, 1)
)
is zero. Notice that if h0 (I2S(1, 1, 1)) = 0, then δ(2S, Y ) =

4r− 8. Now assume h0 (I2S(1, 1, 1)) > 0. If r = 3, Lemma 5.1 gives the only cases for
which S ∈ T(Y, 3) and for such cases we already proved that δ(2S, Y ) = 5 < δ1(3, 3)
and h0

(I(2S,Y )(1, 1, 1)
)
= 1. Now assume r ≥ 4 and write S = S′ ∪ S′′ with #S′ = 3

and S′ ∩ S′′ = ∅. We have

δ(2S, Y ) ≤ 4(r − 3) + δ(2S′, Y ).

Thus for r ≥ 4 we get h0
(I(2S,Y )(1, 1, 1)

)
= 0 for all S ∈ S(Y, r) that are not as in

Example 6.1.
Assume that the proposition is true for all n′ < n. We will prove the inductive

step by induction on r ≥ 2. Case (a) will be the base case and in case (b) we will
show the inductive step.

(a) Assume r = 2 and let L := 〈ν(S)〉.
First assume that Y has k = 2 factors, i.e. Y = Pn1 × Pn2 . With no loss of
generality we may assume n1 ≥ n2. To conclude this case it is sufficient to
prove that n2 = 1 and #π2(S) = 1 and we will do it by contradiction.
First assume n2 ≥ 2. Since h0 (OY (0, 1)) = n2+1 > 2, there isM ∈ |IS(0, 1)|.
Thus S ⊂ M . If (S,M) is as in Example 6.1 there is nothing to prove,
otherwise by the inductive step we get h1

(
M, I(2S,M)(1, 1)

) ≤ n − 2. Since
dimY = dimM+1, part 3.2 of Lemma 3.2 gives h1(I(2S,Y )(1, 1)) ≤ n−2+1 <
n which is absurd since we took (Y, S) evincing δ1(2, n) = n.
Assume now that #π2(S) = 2. Again if #π1(S) = 1 then S is as in Example
6.1, so assume also #π1(S) = 2. Thus the minimal multiprojective space
containing S is Y = P1 × P1. So S is in the open orbit for the action of
Aut(P1)2 on S(Y, 3). Hence h0

(I(2S,Y )(1, 1)
)
= 0 and consequently, since

deg(2S, Y ) = 15 and h0 (OY (1, 1)) = 9, we get δ(2S, Y ) = 6 < δ1(4, 3).
Assume now Y has k > 2 factors. By Lemma 3.2 and the equality δ1(n

′, 2) =
(r − 1)(n′ + 1) − 1 for all n′ < n, Y is the minimal multiprojective space
containing S. Thus Y = (P1)k. Fix H ∈ |OY (εk)| containing at least on point
of S. Since S � H, #(S ∩ H) = #(S \ S ∩ H) = 1. Denote by S := {a, b}
and by relabeling if necessary, assume S ∩H = {a} and S \ S ∩H = {b}.
Consider the residual exact sequence of H:

0 −→ I(2b,Y )∪(a,Y )(ε̂k) −→ I(2S,Y )(1, . . . , 1) −→ I(2a,H),H(1, . . . , 1) −→ 0. (8)

Since #(S ∩ H) = 1 and OH(1, . . . , 1) is very ample, δ(2a,H) = 0. Since
#(S \ S ∩H) = 1, OYk

(1, . . . , 1) is very ample and dimY − dimYk = 1, we
have h1

(I(2b,Y )(ε̂k)
)
= 0. Since #(S ∩H) = 1, h1

(
H, I(2b,Y )∪(a,Y )(ε̂k)

) ≤ 1.

Thus (8) gives h1
(I(2S,Y )(1, . . . , 1)

) ≤ 1 < n, a contradiction.
(b) Assume now r ≥ 3. Fix any A ⊂ S such that #A = r − 1. Since δ(2S, Y ) ≤

δ(2A, Y ) + n + 1 (cf. Remark 3.1), the inductive assumption gives the pair
(Y,A) is as in Example 6.1. Thus either Y ∼= Pn−1 × P1 or Y ∼= P1 ×
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Pn−1. With no loss of generality we may assume Pn−1 × P1. The inductive
assumption gives the existence of a line LA ⊂ Pn−1 and a point oA ∈ P1 such
that A ⊂ L× {oA}. Since r ≥ 3 there is B ⊂ S with #B = r − 1, B ∩A �= ∅
and B �= A. We get {oA} = π2(A) = π2(B) = {oB}. Thus #π2(S) = 1.
To conclude the proof it is sufficient to show that π1(S) spans a line and
we will do it by induction on r ≥ 3. Take for the moment r = 3, assume
that 〈π1(S)〉 is a plane and set M := 〈π1(S)〉 × P1. By part 3.2 of Lemma
3.2 and the assumption δ(2S, Y ) = 2(dimY + 1) − 1, we have δ(2S,M) ≥
2(dimM +1)− 1. Moreover δ(2S,M) = 2(dimM +1)− 1 = 7, because M is
not a projective space. However, by direct computation, one gets δ(2S,M) =
3(dimM + 1)− 6 = 6.
Let r ≥ 4. Take any 2 distinct subsets A, B of r with #A = #B = r − 1.
Since #A ∩ B = r − 2 ≥ 2, the lines LA and LB have at least 2 common
points. Thus LA = LB . Hence π1(S) spans a line.

Example 6.1 gives the following result, the last equality being true by Theorem
6.5.

Theorem 6.6. Fix integers n > μ ≥ 2 and r ≥ μ + 1. Then there is (Y, S) ∈
E(n, r) such that δ(2S, Y ) = (r − 1)(n+ 1)− μ = δ1(n, r)− μ+ 1.

Remark 6.2. If S ∈ S(Y, 2) is such that Y is the minimal multiprojective space
containing S, then Y = (P1)k, for some k ≥ 1. Proposition 2.9 gives E(n, 2) = ∅.
By Theorem 5.9 we have that E(n, 3) is given by all couples (Y, S) where Y = Pn1 ×
Pn2 × (P1)n−n1−n2 with 1 ≤ n2 ≤ n1 ≤ 2 and n > n1 + n2, S ⊂ Y is of cardinality 3
such that Y is the minimal multiprojective space containing S.

Example 6.2. Let r, n ≥ 3 and let Y := (P1)n. Take A ⊂ P1 such that #A = r−1
and define S := {p1, . . . , pr} ⊂ Y where

pi = (ai, e2, . . . , en) for i = 1, . . . , r − 1 with all ai ∈ A and all ej ∈ P1

pr = (o1, . . . , or), with o1 ∈ P1 \A, ok ∈ P1 : ok �= ek for all k = 2, . . . , n

Set S′ = S \ {pr} and let Y ′ := P1 × {e2} × · · · × {en}. Note that Y ′ ∼= P1 is
the minimal multiprojective subspace containing S′ and that Y is the minimal multi-
projective subspace containing S. From (4) of Remark 3.1 we know that δ(2S, Y ) ≥
δ(2S′, Y ) ≥ δ(2S′, Y ′) = δ(2A,P1) = 2(r − 2) > 0. Take H := π−1

n (en) ∈ |OY (εn)|.
Since S′ ⊂ H, the residual exact sequence of 2S′ with respect to H gives

0 −→ IS′(1, . . . , 1, 0) −→ I(2S′,Y )(1, . . . , 1) −→ I(2S′,H),H(1, . . . , 1) −→ 0 (9)

Thus (9) gives h0
(I(2S′,Y )(1, . . . , 1)

) ≥ h0 (IS′(1, . . . , 1)). Since ν(S′) spans a

line, h0 (IS′(1, . . . , 1)) = 2n − 2. Since n ≥ 3, h0
(I(2S′,Y )(1, . . . , 1)

) ≥ n + 2. Thus

δ(2S, Y ) > 0 and h0
(I(2S,Y )(1, . . . , 1)

)
> 0.

The previous example gives us a bound on the quantity δ(n, r), introduced in
Notation 6.2, namely

δ(n, r) ≥ 2(r − 2).

We do not have a general formula about this quantity, but one can easily notice the
following. Clearly δ(n, r) ≤ δ1(n, r) = (r − 1)(n + 1). Moreover, if r > n, then
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δ(n, r) = δ1(n, r), because r general points of Pn span Pn. If r = 2 to compute δ(n, r)
we only need to test (P1)n and we know that δ(n, 2) = 0 for n > 2, while δ(2, 2) = 2
since h0 (OP1×P1(1, 1)) = 4 and a general 2× 2 matrix has rank 2.

Proposition 6.7. E(n, r) �= ∅ if and only if n ≥ 3 and r ≥ 3.

Proof. If n ≥ 3 and r ≥ 3, Example 6.2 shows that E(n, r) �= ∅. The other
implication follows from Lemma 6.4 since E(n, r) ⊆ E(n, r) and T(Y, 2) = ∅ (cf.
Proposition 2.9).
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