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Abstract

Developing measures for rapid and early detection of disease re-emergence is important to

perform science-based risk assessment of epidemic threats. In the past few years, several

early warning signals (EWS) from complex systems theory have been introduced to detect

impending critical transitions and extend the set of indicators. However, it is still debated

whether they are generically applicable or potentially sensitive to some dynamical charac-

teristics such as system noise and rates of approach to critical parameter values. Moreover,

testing on empirical data has, so far, been limited. Hence, verifying EWS performance

remains a challenge. In this study, we tackle this question by analyzing the performance of

common EWS, such as increasing variance and autocorrelation, in detecting the emer-

gence of COVID-19 outbreaks in various countries. Our work illustrates that these EWS

might be successful in detecting disease emergence when some basic assumptions are sat-

isfied: a slow forcing through the transitions and not-fat-tailed noise. In uncertain cases, we

observe that noise properties or commensurable time scales may obscure the expected

early warning signals. Overall, our results suggest that EWS can be useful for active moni-

toring of epidemic dynamics, but that their performance is sensitive to certain features of the

underlying dynamics. Our findings thus pave a connection between theoretical and empiri-

cal studies, constituting a further step towards the application of EWS indicators for inform-

ing public health policies.

Author summary

To extend the toolkit of alerting indicators against the emergence of infectious diseases,

recent studies have suggested the use of generic early warning signals (EWS) from the the-

ory of dynamical systems. Although extensively investigated theoretically, their empirical

performance has still not been fully assessed. We contribute to it by considering the emer-

gence of subsequent waves of COVID-19 in several countries. We show that, when some

basic assumptions are met, EWS could be useful against new outbreaks, but they may fail

to detect rapid or noisy shifts in epidemic dynamics. Hence, we discuss the potential and
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limitations of such indicators, depending on country-specific dynamical characteristics

and on data collection strategies.

Introduction

Epidemics such as the current COVID-19 pandemic pose important and long-lasting threats

to human societies [1]. Hence, developing tools for rapid and early detection of disease emer-

gence is important to perform science-based risk assessment [2]. In principle, detailed mecha-

nistic understanding could help formulate predictive models. However, combinations of non-

linearity, noise and a lack of curated data sets hamper the development of mechanistic models.

Therefore, numerous recent studies have suggested using different methods, agnostic of

detailed mechanistic models, that could detect shifts in epidemic dynamics [3–7]. These meth-

ods are based on the theory of critical transitions in dynamical systems [8] and require the cal-

culation of statistical early warning signals (EWS) from observed data. However, the

applicability of such early warning signals is still debated, as it might depend on the interplay

of modelling predictions and empirical observed dynamics.

Critical transitions encompass a broad class of complex phenomena characterized by sud-

den shifts in the system dynamics. Key mechanisms for deterministic shifts are dynamical

bifurcations [9], i.e. qualitative changes of equilibria due to leading eigenvalues crossing a

threshold value. In epidemiology, the leading parameter is the reproduction number R, the

average number of secondary infections from a single contagious case in a susceptible popula-

tion [10]. When this evolves over time, e.g. reflecting the effect of pharmaceutical or non-phar-

maceutical interventions, we speak of effective time-dependent reproduction number R(t)
[11]. Re-emergence of infectious diseases thus involves a transmission system that is pushed

over the critical point R(t) = 1 through a transcritical bifurcation [7]. As a consequence, it may

in principle be possible to apply results from the theory of critical transitions to detect impend-

ing epidemic re-emergence. In particular, proposed early warning signals (EWS) are summary

statistics indicators that might change in a predictable way when approaching the critical

threshold. Common EWS are increasing variance and autocorrelation, which have been sug-

gested to be generically applicable to detect impending regime shifts in different systems [12,

13]. If this would be the case, the consequence would be the possibility to expand the set of epi-

demic indicators. Several theoretical and computational studies already investigated EWS per-

formance on abstract epidemiological models [4, 7, 14–16], but so far only a few testings on

empirical data have been performed. A first observation was reported in [17]; further data-

driven approaches have been applied in [18]. An approach derived from bifurcation theory on

networks was applied on COVID-19 data in [19]. A review can be found in [20]. Performing

more tests is thus a necessary next step towards the application of EWS in routine surveillance

procedures. In addition, it is essential to characterise the potential confounders that might

affect the expected signals.

In this study, we aim at testing the performance of EWS in detecting the re-emergence of

observed epidemics, and at interpreting the observed performances based on the correspon-

dence of modelling assumptions and dynamic features observed in the data. Specifically, we

are not screening all possible EWS on all possible empirical data as it was done in [21, 22]; on

the opposite, we are testing whether some EWS work when they are expected to, what happens

in other cases, and why. In fact, theoretical predictions like early warning signals should ideally

be tested in controlled experiments [23], but these are often not feasible in complex phenom-

ena like epidemics. Instead, the present work considers curated observational data from many
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outbreaks of the same disease, following the strategy of “natural experiments” [24]: first, con-

structing a data set that includes relevant time series data; second, accounting for possible con-

founders, i.e. dynamical characteristics that might alter the expected signals; third, evaluating

the performance of EWS and interpreting it in light of previous theoretical results.

To this end, we use worldwide data from the current COVID-19 epidemic. The COVID-19

disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [25], rap-

idly diffused in the whole world during 2020 and 2021. After a first outbreak, characterised by

a sudden emergence followed by an exponential diffusion, countries worldwide managed to

curb the local infection curves with combinations of non-pharmaceutical interventions. From

a dynamical perspective, this corresponded to tuning the effective time-dependent reproduc-

tion number R(t) to values below 1 [26]. Later during the year 2020, many countries experi-

enced epidemic re-emergences (often called “second waves”) associated to R(t) re-crossing 1

from below [27, 28]. We thus concentrated on this re-emergence, in order to study signals

associated with a bifurcation being crossed. The unprecedented diffusion of the virus, as well

as the various degrees of intervention strengths, provide abundant epidemic data to construct

the test set. Known dynamical features associated to modelling assumptions, such as noise and

rate of evolution of R(t) [29], are then accounted for by analysing the time series of each coun-

try. These features allow to interpret the trends observed in empirically derived EWS and their

performance in different contexts.

The paper is organised as follows. First, we recall theoretical results from literature, to allow

the subsequent comparison with expected EWS behavior. Then, we describe how the test set

was constructed and analysed. After that, we study the behavior and the performance of EWS

from empirical data and their dependence on dynamical characteristics associated with model-

ling assumptions. Finally, we discuss the current findings, their limitations and their implica-

tions for future studies.

Methods and mathematical theory

Mathematical theory and derivation of EWS

The scope of this article is to test theoretical predictions in light of their assumptions. Hence,

we provide a brief review of the theoretical basis of critical transitions in epidemic dynamics,

as well as on the derivation and assumptions that underlie their associated early warning sig-

nals. This way, we highlight the theoretical results to be tested as well as their supporting

hypothesis, which will be central for this study. Further details can be found in supplementary

S1 Text as well as in the references provided.

It is often recognised that epidemics can be described as complex systems, whose macro-

scale dynamics evolves out of equilibrium [3, 7, 13]. In different complex systems, sudden

dynamical changes can happen when the system is pushed over a critical point through a bifur-

cation [30]. Critical transitions observed in complex systems are often associated with such

bifurcations [31]. Recent studies have shown that the trend of certain statistical indicators may

signal the approach to a critical transition in slowly forced dynamical systems [9, 32]. In gen-

eral, a slowly forced system with variables x and control parameter q is [33]:

_x ¼ fðx; qÞ

_q ¼ �gðx; qÞ

(

ð1Þ

with 0< �� 1. Typical models of epidemic dynamics, such as SIR based models [26, 34], can

be expressed as a slowly forced system like Eq 1 when the control parameter R slowly

approaches its critical value 1.
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In the presence of small random fluctuations, the approach to the critical point is often

associated with predictable trends of several statistical indicators of variability, which have

been proposed as early warning signals of impending transitions [35, 36]. The reason is that

noise can push the system state around the deterministic trend of Eq 1; at the same time, its

statistical properties might change as the system approaches the transition and could be used

to detect it [33]. If the noise is relatively small with respect to the deterministic trend and nor-

mally distributed, the trend of the most common summary statistics (variance, autocorrela-

tion, skewness, coefficient of variation), computed on detrended residuals, is expected to

increase next to the transition, thus providing an early warning signal [13, 37]. If this signal

can be observed prior to the transition, it would constitute an early warning.

Several early warning signals from the critical transitions theory have been predicted to

apply on epidemiological models. A particularly relevant theoretical result is from [7]. The

authors consider an extended SIR model:

_X ¼ mð1 � pÞ � bXY � ðZþ mÞX

_Y ¼ bXY þ ZX � ðgþ mÞY

_Z ¼ mpþ gY � mZ

ð2Þ

with variable X for susceptible, Y for infectious, Z for removed. β represents the infection rate

and γ the removal rate [38]; μ describes the flux of people across country boundaries; η is an

influx of infected cases that could trigger a new infection; p represents a protection rate for the

susceptible population, either by non-pharmaceutical interventions or by vaccination [39]. In

this case, the reproduction number is [7]:

R ¼
b

gþ m
ð1 � pÞ : ð3Þ

There is a transcritical bifurcation on the (Y, p) diagram when R reaches its critical value

R = 1 for p� = 1 − (γ + μ)/β. The R introduced above corresponds to the empirical effective

reproduction number R(t) if we explicitly consider the time-dependence of p as p(t). When

considering the stochastic version of Eq 2, it is possible to analyse its fluctuations next to the

transition and extrapolate the early warning signals from the associated summary statistic indi-

cators. The kind of noise (additive or multiplicative) that is considered constitutes a modelling

assumption. How the most common indicators—variance and lag-1 autocorrelation—are

derived (from [7]) is reported in the supporting information, along with their predicted evolu-

tion next to the critical transition when the slow-fast assumption is satisfied, or not (Fig A in

S1 Text). Their increasing trends prior to the transition provide the predicted early warning

signal.

Further computational results, which also consider additional indicators, suggest that the

increases in variance are the best performing indicators of re-emergence, in terms of signal-to-

noise ratio and of detection performance [3, 4]. However, as noticed in follow-up studies [33,

40, 41], their performance is linked to whether their modelling assumptions are satisfied. If it

is the case, such indicators perform well; but what happens in other contexts is still less clear.

We here recall the main modelling assumptions underlying the prediction of EWS, as well

as their relevance for their performance. (1) Critical transitions are local phenomena. Hence,

EWS are not global measures, but are expected to work in the vicinity of the regime shift. (2) It

should be possible to express the epidemic dynamics in terms of a fast-slow system like Eq 1.

When approximating R approaching to 1 as a linear trend, the modelling assumption Eq 1 is

satisfied if the regression coefficient (the slope of the linear trend) is small. Otherwise,
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literature results suggest that the expected patterns will be either distorted or will not occur

[3, 7]. (3) The closer random fluctuations are to be additive noise, the more robust the perfor-

mance of EWS is. If there are deviations from white noise, EWS trends can be modified or dis-

rupted. For instance, decreasing variance was observed in case of non-white multiplicative

noise [41]. (4) In case of combinations of non-white noise and of non-fast-slow description,

one might observe bifurcation delays, i.e. changes of the system state (and of its indicators)

that lag behind the theoretical bifurcation. This would translate in a warning signal that

emerges much time later than the epidemic re-emergence. (5) If the transition is triggered by

large random fluctuations—the so called noise-induced transitions [9]—no EWS is expected

to be observed [42].

Data collection and curation

This paper studies the re-emergence of infectious diseases, with COVID-19 as a case study, in

a number of observations from all over the world. Our aim is to verify whether EWS work

when they are expected to based on the theory recalled above and explain why they might mal-

function otherwise, rather than perform an observational study over all COVID-19 re-emer-

gencies (for such a study, refer to [21]). Consequently, to construct the data set, we considered

data from countries that faced a re-emergence of positive COVID-19 cases between beginning

of March (starting of wide viral diffusion) to mid-September 2020. We did not consider fur-

ther data points as many countries began issuing new social measures that rapidly impacted

the epidemic trends. These would hinder the careful analysis of confounders.

When possible, we use prevalence data, i.e. active cases over the whole population of a

regional area, in accordance to what is modeled by SIR-like models and to what was suggested

in literature [14]. Active cases from Luxembourg are directly retrieved from the government

website (COVID19.public.lu/fr/graph). They are derived from random samples over the whole

population, using a Large Scale Testing strategy [43] and careful control of the hospital system.

As they are not directly available for the other countries, active cases A are estimated, following

[44], by the proxy:

A ¼ C � D � ~R ð4Þ

where C indicates the cumulative positive cases, D the number of registered deaths and ~R the

number of recovered patients. Country data are obtained from public repositories of con-

firmed detected, deceased and recovered cases: the John Hopkins University collection [45]

and the European Centre for Disease Prevention and Control database (https://www.ecdc.

europa.eu/en/COVID-19/data). We also use Italian data from the Veneto region, as an exam-

ple of regional data with an identifiable second wave during the considered time interval.

Veneto time series for detected, deceased and recovered cases are retrieved from the Github

repository of the Italian “Dipartimento della Protezione Civile—Emergenza Coronavirus”

(https://github.com/pcm-dpc/COVID-19). All databases are accessed up to 15/09/2020.

To best curate the database, an initial screening on data quality is performed. We reject

time series with very few active cases, as in such time-series the intrinsic stochasticity of the

contagions and the measurement noise dominate over the deterministic behaviour captured

by SIR-like models. We also discard time series for which the share of positive cases over per-

formed tests is> 5% next to the transition, as WHO guidelines suggest possible undertesting

(we refer to WHO reports such as https://bit.ly/3dARcy1). Information about the share of pos-

itive tests is obtained from the OurWorldInData curated dashboard [46] and is reported as a

summary in Table A in S1 Text. As EWS from critical transitions are based on mean-field

homogeneous SIR-like models, we do not consider whole countries with clear spatial
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heterogeneity like Italy [47], but we instead use regional data if available. Finally, we discard

some public time series that behave clearly differently from the common reconstructed epide-

miological curves [44] (see Fig B in S1 Text).

We acknowledge that data quality, particularly about R̂ cases, plays a major role to obtain a

robust estimator for A. The selection criteria were designed to enhance data quality; hence, in

the remainder of this study, we focus on prevalence data to compare the results with interpreta-

tions from various literature sources. In addition, we perform an investigation on the use of

incidence data, using reported daily new cases from the same sources listed above. Incidence

data might as well be influenced by testing bias (e.g. lower testing over weekends) and other

factors; hence, this analysis complements the one on prevalence data by investigating EWS per-

formance on real-world monitoring protocols. Such analysis is reported in Sec H in S1 Text.

Analysis of dynamical features

To identify the transition a posteriori and get a “ground truth” date of re-emergence, we use a

data-driven estimation of the time-dependent R(t). Similar to [4, 48, 49], R(t) is estimated with

Bayesian inference by means of a Markov Chain Monte Carlo (MCMC) method. For each day

when data are available, we estimate the probability of observing a certain value of R(t) by cal-

culating the likelihood of seeing k new cases, given the candidate R(t), following a Poisson

transmission process. To avoid fitting spurious bumps, the data are previously smoothed with

a Gaussian window of 7 days. Note that, since this is only used for a retrospective analysis, it

does not modify the non-anticipating scheme for the EWS. We update the prior at time t with

the posterior at time t − 1. A Metropolis-Hastings MCMC scheme was used to generate candi-

dates for R(t). We describe this in depth in Sec D in S1 Text. As we adapted a previous imple-

mentation from [48], we also refer to it for further details.

Then, we employ the posterior probability density function obtained from the Bayesian

framework: p(R|data). This was used to estimate the probability that the control parameter is

greater than 1, PðRðtÞ > 1Þ. This was calculated, as for any stochastic variable, by integrating

over all possible probability values associated with R(t)> 1:

PðRðtÞ > 1Þ ¼

Z 1

1

pðRjdataÞdR : ð5Þ

Since R(t) > 1 is associated with an exponential increase of infectious cases after a transcri-

tial bifurcation, PðRðtÞ > 1Þ can be interpreted as the probability of seeing an epidemic out-

break. Then, the most likely day tem in which the transition happened, assumed as our ground

truth, corresponds to the first time when PðRðtÞ > 1Þ from Eq 5 reaches its maximum value

of 1 (see Fig C in S1 Text).

After calculating the outbreak date, we test the modelling assumptions of normally distrib-

uted fluctuations and of slow approach to the critical transition.

To test the additive noise assumption, we analyze the global distribution of stochastic fluc-

tuations, filtered from the time series with a 7-days moving Gaussian kernel as suggested in

[50, 51]. The window size reflects typical cycles of data reporting and of COVID-19 fluctua-

tions [52]. The distribution of fluctuations over the complete time series is indicative of the

average noise distribution. We computed skewness and kurtosis to measure deviations from

Gaussian noise, which is characterized by skewness = 0 and kurtosis = 3 [53].

To test the assumption of slow approach to the transition, we measure the rate of approach

of the control parameter to its critical value. For this, we compute the time-dependent R(t) like

above and, consistently with the fast-slow system description of Eq 1, we fit a linear function:

RðtÞ ¼ aþ b � t ð6Þ
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in the interval t 2 ½~t ; tem�. Here, tem corresponds to the day associated with novel disease emer-

gence as explained above; ~t is the day associated with the minimum of R(t) after the first wave.

The regression coefficient b ± σb measures the ramping speed of the control parameter (along

with its uncertainty). As an indication, R(t) is said to be “slowly evolving” if it goes from its

minimum value to 1 in a period of time that is much longer than the COVID-19 serial interval

(around 4 days [54]), which is a proxy of the disease duration time scale. For the fitting, we use

the scipy Python library. Refer to Sec E in S1 Text for details.

Estimation of EWS

Estimation of early warning signals from time series data is performed following standard

methods from literature [29].

First, we detrend the time series to obtain a moving average, representative of the determin-

istic trend. The “residuals” or detrended fluctuations are obtained by subtracting the moving

average from the original time series. To investigate possible effects of detrending approaches—

as discussed in previous theoretical studies [13, 32, 50]—we use and compare three detrending

methods: a uniform moving mean, a Gaussian kernel, and ARIMA models [55]. The ARIMA

models are specifically tuned for each country, see Table B in S1 Text and Table D in S1 Text.

Then, we compute the statistical indicators associated to each point with a backward sliding

window, i.e. one where the associated time point is the rightmost one. In a similar spirit, all

detrending methods are non-anticipating. This way, all estimates are agnostic of future values

and reflect practices used in active monitoring: the estimation of an indicator is performed as

soon as a new data point becomes available. All EWS indicators are estimated on the detrended

time series. We initially calculate the variance, which is suggested to be the most robust indica-

tor for epidemic re-emergence [3, 4, 7, 14] as:

Vari;t ¼
1

M � 1

Xt

s¼t0

ðAi;s � Âi;sÞ
2

ð7Þ

for any time point i with active cases A, over a sliding window with size t − t0 including M time

points. Â is the moving average. We also estimate other common statistics such as lag-1 auto-

correlation AC(1), coefficient of variation (CV) and skewness, which are constructed similarly

to the variance over the same sliding window. The sampling frequency of COVID-19 data is

not sufficient to allow estimation of the power spectrum reddening [56] or of the sample

entropy [3]. All indicators are estimated with their corresponding MATLAB functions. Note that

the estimation of PðRðtÞ > 1Þ is done a posteriori, that is, once we know the complete time

series. Instead, the early warning signals are calculated a priori, without knowing in principle

if a transition is approaching.

Quantification of EWS trends and receiver operator characteristics analysis

Recent studies [14, 29, 40] suggest to quantify the expected increasing trend of EWS next to

the transition with the Kendall’s τ coefficient of monotonicity. The Kendall’s τ score is defined

as [57]:

t ¼
# concordant pairs � # discordant pairs

MðM � 1Þ=2
:

M is the number of considered time points. Two generic points (t1, x1) and (t2, x2) are said

to be a concordant pair if, for t1 < t2, x1 < x2, and a discordant pair otherwise. A constant

trend is expected to have τ = 0. We compare this value with the τ scores calculated on time
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series with identified transitions. To go beyond simple visual inspection, we quantify the detec-

tion power of each statistical indicator using its time-changing trend, classifying data as either

belonging to the second wave or not. After calculating each indicator on a moving window (its

size is discussed later in the text) for each detrended time series, we estimated the Kendall’s τ
score for each timepoint on windows of the same size, over an overall period −30< tem< 5

days around the transition, as our positive data set. t> −30 is chosen to avoid significant over-

laps with the first epidemic wave, t< 5 to account for possible small bifurcation delays [13].

For the negative data set, we use τ values taken way before the transition occurs, that is on win-

dows associated with timepoints t< −30.

We use Receiver Operator Characteristics (ROC) analysis to classify each time point as

either before or after re-emergence. We compare each statistical indicator’s ability to correctly

distinguish which Kendall’s τ scores belong to those from before or after re-emergence, that is,

we determine whether the estimated τ is higher or lower than some threshold value at that

timepoint and determine whether each time series is classified correctly by that threshold. This

gives a proportion of true positives and false positives. To do so, we compare various values for

0< τ< 1 to those of the positive and negative data set, for each country. We calculate the indi-

cator for each country in a test set at the given timepoint, and then group the specificity and

sensitivity results to obtain the final ROC curve. The ROC analysis returns the Receiver Opera-

tor Characteristics (ROC) curve, a parametric plot of the sensitivity and specificity of a classifi-

cation method as a function of the detection threshold [4, 58]. The overall detection

performance of each EWS is quantified by the area under the ROC curve (AUC). A value

AUC = 0.5 means that the statistics detection performance is as good in classifying as ran-

domly guessing. A good indicator should have AUC close to 1, which informs that it is possible

to identify the transition by the increasing trend of the indicator. An AUC close to 0 indicates

good classification, although resulting from a decreasing indicator that does not correspond to

the predetermined theoretical prediction.

Results

Analysis of country-wise dynamical characteristics associated to the spread

of COVID-19

Table 1 reports the list of countries that satisfy the curation requirements discussed in “Meth-

ods and Mathematical Theory” and are thus included in the analysed data sets. Table 1 also

reports the dates of re-emergence, identified by the analysis of R(t). Fig 1A shows an example

Table 1. Selected countries for the dataset, abbreviations and date of second epidemic insurgence. Refer to “Data

Collection and Curation” for how the date marking the second wave is obtained.

Country Abbr. Date

State of Victoria (Australia) AUS 27/06/2020

Austria AUT 01/07/2020

Denmark DNK 03/08/2020

Israel ISR 01/06/2020

Japan JPN 28/06/2020

Korea, South KOR 13/08/2020

Luxembourg LUX 29/06/2020

Nepal NPL 29/07/2020

Singapore SGP 25/07/2020

Veneto (Italy) VEN 29/07/2020

https://doi.org/10.1371/journal.pcbi.1009958.t001
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of time series of active cases for Luxembourg, from March to mid-September 2020, with the

date of estimated re-emergence (dashed line).

The time series of the considered countries show different dynamical features. Fig 1B shows

various ranges of noise distribution, measured by skewness and kurtosis. Austria, Luxem-

bourg, Nepal, Singapore and Veneto display noise distributions that are close to Gaussian,

while noise in the other countries is further away from white than in the previously mentioned

ones. This could be associated to social dynamics or imperfect data reporting [59].

The rate of approach of R(t) to its critical value also differs, as indicated in Fig 1C by the

regression coefficient of a linear fit for R(t) (cf. Eq 6). State of Victoria, Austria, Luxembourg,

Singapore and Veneto display a slow approach to the critical value and can thus be better

suited to be appropriately described as slow-fast systems like Eq 1. Japan and South Korea

Fig 1. Analysis of the dynamical characteristics of the countries included in the data set. A: An example of an epidemiological curve of active cases

from Luxembourg. The dashed line indicates the transition, measured by R> 1. The latter is objectively identified by the date at which the probability

of R(t) to be greater than 1 is at its first maximum (see “Analysis of dynamical features”). B: Measures of the distribution of data fluctuations. Skewness

μ indicates the symmetry of the distribution, whereas kurtosis γ indicates the relevance of its peak with respect to the tails. Large deviations from μ = 0

(dashed line) and γ = 3 are associated with non-normal distributions, so we display the excess of kurtosis γ − 3. C: The regression coefficient of R(t) and

its associated uncertainty, as obtained from the linear fit Eq 6.

https://doi.org/10.1371/journal.pcbi.1009958.g001
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show intermediate values, while other countries—Denmark, Israel and Nepal—have a faster

evolution of the control parameter, which does not satisfy the assumption of slow evolution.

Following this analysis, we subdivide the considered countries into two test sets, based on

whether the country satisfies or not some of the assumptions of slow approach to the transition

and noise distribution close to white. These two properties can be assessed respectively from

Fig 1C and 1B. Instead of using hard thresholds, we use group clustering to make the subdivi-

sion. As discussed above, State of Victoria, Austria, Luxembourg, Singapore and Veneto are

grouped together to represent the assumption of slow rate, as can be seen from Fig 1C. More-

over, except for Australia, their noise distribution is close to Gaussian, as their skewness and

kurtosis show in Fig 1B. They thus form the test set Y, used to further assess the performance

of EWS. On the other hand, Denmark, Israel and Nepal display higher rates of approach to

R(t) = 1 and large deviations for Gaussian noise distribution. Hence, they are grouped together

in a set N ; this is used to interpret the performance of EWS in settings that are not properly

described by theoretical models and represent possible limitations of the predetermined pre-

dictions. South Korea and Japan are more ambiguous when clustering over the slope of R(t),
therefore we split them into Y and N , respectively, based on their relative vicinity to Gaussian

noise distribution.

Among these countries, Luxembourg is peculiar, as it satisfies the modelling assumptions

and is the closest to being a “controlled experiment” according to the criteria described in the

section about deriving EWS. In fact, we know from literature and practical experience that the

country is small, homogeneous population-wide interventions were in place, and a Large Scale

Testing (LST) strategy was implemented to best monitor the virus diffusion in the country

[43]. This country wide testing strategy reached more than 70.000 tests per week over a popu-

lation of about 600.000, thus allowing extensive and frequent monitoring. Hence, we use it as

an initial sample to test the theoretical predictions about the local behavior of EWS.

Local trends on controlled data and impact of detrending methods

We first focus on Luxembourg, that displays the best data in terms of curation of prevalence

data (see “Methods and mathematical theory”) and of satisfaction of theoretical assumptions

(see above). Here we test the theoretical predictions about the local behavior of common EWS.

Summary statistical indicators are estimated from the detrended fluctuations (residuals)

around prevalence data as per standard methods [29].

We first investigate the effect of the detrending method in generating residuals. To do so,

we compare the fluctuations around the deterministic trend obtained with a Gaussian kernel

smoothing [32, 50], a moving average filtering [13] and an ARIMA(2,1,3) model [55]. Fig 2

shows the time evolution of the residuals obtained with the three methods, as well as their

mutual correlations. As quantified by the Pearson correlation coefficient, the Gaussian and

moving average filtering have similar output (correlation coefficient ρ = 0.95). This is likely

related to the Gaussian bandwidth of 7 days, used to reflect known weekly fluctuations related

to testing routines. Consequently, the Gaussian kernel smoothing is used in the rest of the

analysis. However, the ARIMA method returns residuals that are less correlated with the previ-

ous ones (ρ = 0.23), whose effect on EWS needs further investigation.

Then, we study the behavior of the variance (theoretically, the most robust EWS [4]) next

to the transition point, identified as the day when the estimated R(t) crosses 1 (dashed line in

Fig 3). The increase in variance prior to the transition, as expected from theoretical studies, is

evident in Fig 3, irrespective of the moving window size and on the detrending method.

Although the lead time is slightly advanced for shorter window sizes, the corresponding Ken-

dall’s τ measure of monotonous increase is similar for both methods and all window sizes (cf.
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values reported in Fig 3). In general, a large window size produces smaller fluctuations but a

visually reduced absolute increase; in addition, too large windows might capture old decreas-

ing trends, that we want to avoid analysing. On the contrary a small window size is associated

with less smoothed curves but a larger absolute value of variance. Nonetheless, it might not

include enough data points to capture the trends in more noisy estimators like AC(1) [50].

From here on, we will use a window of 14 days as a reasonable trade-off, collecting enough

data to be robust without being over-dependent on past history. The ARIMA residuals pro-

duce a visually clearer increase in variance, but the Kendall’s τ quantifies an analogous trend

(even slightly lower). For the incoming quantitative analysis on the EWS performance, we will

thus study the effect of both detrending methods.

These findings confirm that, in a controlled setting that satisfy the modelling assumptions

(Luxembourg), an increasing trend of the variance in the vicinity of the transition point could

serve as early warning to detect the transition to disease emergence.

Fig 2. Analysis of the residuals from the detrending methods (case study from Luxembourg shown). a) The detrended fluctuations time series. b)

Correlation between residuals obtained from Gaussian or moving average filtering. c) Correlation between residuals obtained from Gaussian or

ARIMA filtering.

https://doi.org/10.1371/journal.pcbi.1009958.g002
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Global trends of EWS

After confirming the local behavior of the variance in the Luxembourg highly controlled set-

ting, we widen the analysis to the global performance of other EWS, i.e. far from the bifurca-

tion, and for different countries from the pre-defined dataset, cf. Table 1. This way, we further

test the theoretical predictions and the EWS potential use in more general contexts.

Among the indicators, we estimate lag-1 autocorrelation (AC(1)), skewness and coefficient

of variation (CV), which are often proposed as alternatives to the variance. The size of the

moving window is set to 14 days as discussed above. To compare the trend of EWS with the

approach to the bifurcation, the probability of R(t) to be greater than one (from Eq 5) is also

calculated and reported.

Fig 4 shows the results for Luxembourg, Austria, State of Victoria (from the test set Y). In

addition, Israel, which does not satisfy the EWS assumptions (cf. Fig 1) is reported to inspect a

deviant case. The figure focuses on EWS trends after the first wave, up to about a month after

the second epidemic insurgence. The graphs for other countries from Table 1 are reported in

Fig 3. Analysis of the variance in the Luxembourg setting. Its increase is evident prior to the transition (dashed vertical line). τ, which quantifies

the overall increasing trend, is little sensitive to the sliding window size, as displayed by the three curves and by τ values reported in the text. The

variance is computed over the residuals from Gaussian filtering and ARIMA detrending. The increasing trend during the considered time window

is quantified by the associated τ values.

https://doi.org/10.1371/journal.pcbi.1009958.g003
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Fig 4. Evolution of EWS far from the transition point. Four example countries are shown: Luxembourg and Austria,

with controlled features; State of Victoria (Australia), with small deviations from controlled features; and Israel that

does not satisfy theoretical conditions. Considered EWS are the most common ones (variance, lag-1 autocorrelation,

coefficient of variation, skewness). In addition, to mark the approach to the transition, PðRðtÞ > 1Þ from the Bayesian

estimation (see Eq 5) is displayed. The vertical line reports the transition date. Left column: detrending method

employed: Gaussian filtering. Right column: detrending method employed: ARIMA. Other countries are reported in

S1 Text.

https://doi.org/10.1371/journal.pcbi.1009958.g004
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Fig E in S1 Text, along with their associated prevalence data and estimated R(t). In Fig 4, the

left column refers to indicators estimated after Gaussian filtering, while the right column is for

indicators estimated after ARIMA detrending.

Focusing first on Luxembourg and Austria, the variance follows its theoretically predicted

behavior closely (cf., e.g., Fig 9b in [7] and Fig A in S1 Text), with a small but visible increase

prior to the transition and a subsequent monotonous trend along the second wave. In Austria,

though, it still displays some fluctuations after the relaxation of the first wave. The same hap-

pens for the coefficient of variation CV, which depends on the variance and on a stable equilib-

rium in infectious numbers. On the other hand, the lag-1 autocorrelation shows an increasing

trend very close to the transition point, but gives possibly spurious signals during the global

time series. Finally, the skewness does not display immediately detectable relevant trends, as

anticipated by computational studies [14]. This might be related to noise properties, as sug-

gested by [60].

Variance and CV on Australian data, when processed by eye, start increasing close to the

transition, but this becomes more pronounced around the 7th of July. This might be related

to the so-called “bifurcation delay”, which is associated with deviations from Gaussian noise

[13, 41], or to delays due to tests results reporting or symptoms onset.

Finally, Israel provides an interesting case study as it diverges from the theoretical assump-

tions, see Fig 1. In fact, its transition to epidemic re-emergence is rapid, and the noise distribu-

tion is far from being Gaussian. These characteristics disrupt the EWS trends as predicted by

the theory. In fact, the variance remains flat around the transition (it is even slightly decreas-

ing), CV and skewness slightly decrease, while lag-1 autocorrelation does not display informa-

tive patterns. A delay is reported more than 20 days after the transition, but it is as abrupt as

the exponential increase in infectious data (see electronic supporting information). This shows

that the application of early warning signals indicators on appropriate contexts is crucial to

obtain reliable signals for developing risk assessment analysis.

Similarly to what observed in Fig 3, the variance trends are similar between Gaussian- and

ARIMA-related indicators. We quantify their potentially different performance in the next

section. The behavior of CV and AC(1) is also qualitatively rather similar. On the other hand,

the skewness behaves differently. For instance in Austria, it increases when the detrending is

performed with Gaussian kernel, but it decreases after ARIMA. This might be associated to the

fact that the skewness is very sensitive to the noise distribution [60]: small changes in the resid-

uals, due to the different filtering procedure, might suffice to modify its trend.

ROC quantitative analysis of EWS performance

For the online detection of incoming re-emergence, distinguishing between robust increases

and spurious fluctuations is crucial to optimise the true positive signals and minimise the false

negatives. Hence, a retrospective analysis of time data is often not sufficient and is only useful

for offline detection. Thus, we provide a quantitative estimation of EWS performance in

robustly detecting the transition. The Kendall’s τ score is used to evaluate if a certain indicator

corresponds to an increasing or decreasing trend and compare this for different data types [14,

40]. Hence, we evaluate τ for each indicator, over the same 14 days window, and we assess

which values are associated with a passage through the transition point. The increase in τ is

reflected in the Receiver Operator Characteristics (ROC) curve and quantified by Area Under

the Curve (AUC) scores. Fig 5 shows the ROC curves for the considered indicators averaged

over the countries in Y. Panel (a) reports ROC curves calculated over data detrended with

Gaussian filtering; panel (b) focuses on ARIMA detrended data. Table 2 reports the corre-

sponding AUC values, for both methods. The variance is the only indicator that consistently
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performs better than a random classifier, while the lag-1 autocorrelation seldom performs

slightly better than that. This is in line with aforementioned theoretical results from literature,

e.g. [4, 14]. Instead, the skewness does not improve the detection performance. This is proba-

bly due to its fluctuations around the 0 value, as noticed in Fig 3, which is in turn associated

with noise distribution of original data. Interestingly, the coefficient of variation is overall the

worst performer. We speculate that this is due to its sensitivity to data fluctuations, which are

often non negligible even in countries that belong to the test set Y (cf. Fig 1). We acknowledge

that our findings are sensitive to the estimated time of emergence, which also complicates the

estimation of the lead time. Currently, the best lead time is of 5 days for Luxembourg, a setting

that is close to the analytical assumptions.

For all indicators, the ARIMA detrending method yields better performances, quantified by

higher AUC values. AC(1) is an exception, as both methods return similar values, close to the

ones of a random classifier. That ARIMA residuals yield higher AUC is potentially linked to

the ARIMA estimating trends more closely at different time scales, thus returning more accu-

rate fluctuations; on the contrary, the Gaussian filtering might be slightly more rough in con-

sidering only average time scales and returns approximated estimates for the fluctuations. This

argument might explain why the skewness performs slightly better than a random classifier

over ARIMA residuals: by considering more fine-grained time scales, the ARIMA seems able

to pick the slight asymmetry in residual distributions that yield skewness-related signals [60].

Fig 5. ROC curves for each considered indicator, with sensitivity and specificity calculated on each timepoint for all countries in Y. Each point

corresponds to a test value for τ, to define if the detection is positive. The diagonal line corresponds to the ROC of a random classifier. Curves above it

imply better performance. a) Computed on Gaussian filtered data; b) Computed on ARIMA detrended data.

https://doi.org/10.1371/journal.pcbi.1009958.g005

Table 2. AUC scores for different indicators, over Y and N datasets, after Gaussian or ARIMA detrending

methods.

Indicator Gaussian det. ARIMA det.

over Y over N over Y over N
Variance 0.6671 0.1981 0.7123 0.0934

AC(1) 0.5258 0.4995 0.5182 0.2840

CV 0.3968 0.1043 0.3626 0.0368

Skewness 0.4664 0.2925 0.5482 0.4609

https://doi.org/10.1371/journal.pcbi.1009958.t002
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This analysis thus indicates the importance of choosing the detrending method to increase the

detection performance of various indicators.

The same analysis was performed over the set N of countries that do not satisfy the theoret-

ical assumptions. Their AUC values are reported in Table 2. Such values clearly show that the

considered indicators are not able to detect the transitions, overall performing worse than ran-

dom classifiers. This supports what was already noticed for Israel in Fig 4, where disrupted

trends were observed, contradicting what was expected and thus returning a false negative sig-

nal. For variance and CV, an AUC value close to 0 indicates that the transition is well detected

by decreasing trends. This would contradict the theoretical predictions. Investigating this issue

reveals that such features are possibly linked to non-complete relaxation of the indicators after

the first wave or to delays. We thus conclude that it is an instance of spurious signal, to be care-

fully interpreted. See also Sec G in S1 Text and Fig F in S1 Text for further discussion. The

time series for indicators of other countries in N are also reported in Fig E in S1 Text. Hence,

if a system is not known or there is difficulty in determining the type of data, incorrect conclu-

sions could be drawn when interpreting the time series trend.

Discussion

Research on early warning signals from the theory of dynamical systems has greatly progressed

in the last years, with a relevant focus on disease re-emergence. However, verifying and inter-

preting empirical analysis according to theoretical assumptions has been so far limited. In this

study, we observe that some EWS from the critical transitions framework are able to detect the

transition to disease re-emergence when necessary theoretical assumptions like normal distri-

bution of data fluctuations and slow change rates are satisfied. On the contrary, we observe

(along with [21]) that noise and commensurable time scales can obscure the early warning sig-

nals, which calls for caution when interpreting monitoring outputs. We suggest that dynam-

ical-based EWS can be suitable candidates for epidemic monitoring. Theory-based indicators

can provide useful evidence, particularly when scarce data and few prior information are a

constraint for using large scale statistics or Machine Learning (ML) methods. However, their

alternate performance on unknown dynamics asks for careful assessment of the underlying

dynamics. EWS have the potential to complement the existing toolbox of indicators to

improve epidemic risk assessment and deserve further investigation by scholars and decision-

makers.

To support the growing corpus of theoretical studies, this study tested whether observed

epidemic outbreaks behave consistently with the theory. When randomised experimental stud-

ies are not possible, observational studies provide stronger evidence if consistent patterns are

seen in multiple locations and at multiple times, after checking for possible confounders.

Hence, we employed world-wide available data about the ongoing COVID-19 pandemic, con-

centrating on the re-emergence of the disease after a first wave in spring 2020. To limit biases

associated with country-specific testing and reporting capacities, we constructed a limited, but

curated set of time series data. Like R(t) and other indicators [61], EWS are estimates that rest

on assumptions; hence, we screened the dataset to assess the matching of empirical features

and theoretical assumptions. This pre-analysis showed that the same disease in diverse coun-

tries might have different noise distributions and evolve at different rates, which could depend

on several factors including human behavior and population-wide interventions [62].

Furthermore, we tested how the best performing EWS detected the epidemic re-emergence.

We carried out an extensive analysis of the effect of different detrending methods, showing

that they are overall robust in highlighting the local trends of EWS. Such trends were studied

both qualitatively and quantitatively, with ROC/AUC values. In particular, the ROC analysis
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assesses the robustness of online detection in distinguishing between real increasing trends

and spurious fluctuations, which are often not studied in retrospective observations of time

series data. In controlled settings, our results reconstructed the expected trends in early warn-

ing signals and the potentials of the indicator system proposed. In particular, we showed that

dynamical EWS are likely to operate successfully in contexts where the approach to the transi-

tion is gradual and not subject to high fluctuations. Further studies could associate these fea-

tures to social behaviours and political strategies.

We also studied the different impact of detrending methods on the performance of warning

signals. We showed that detrending time series with ARIMA models, appropriately calibrated

for each country, increases the AUC score. This observation supports early theoretical works

[50] and informs researchers about the importance of data processing methods to improve the

performance of various indicators.

Finally, we analysed the potential limitations of the indicator system in other contexts, char-

acterised by different dynamical features such as rapid increases of R(t) and strong or non-

additive noise. This emphasises that, for EWS to properly work, the real system must fulfill the

discussed conditions underlying the theoretical modelling. These open problems highlight

that knowledge of the type of collected data is imperative to avoid misleading judgements in

response to time series trends: EWS as epidemiological constructs will only remain valuable

and relevant when used and interpreted correctly [63].

We acknowledge the limitations of this study, which might be overcome when new and bet-

ter curated data sets will become available. First, data quality could be a limiting factor, despite

being representative of real world monitoring capacities. Reliable estimates of recovered and

dead patients are necessary to guarantee the robustness of a proxy for active cases like A.

Another potential data quality issue is that the official numbers of positives might still neglect

undetected asymptomatic cases. The data set selection highlights the importance of monitor-

ing and of high quality prevalence data (as already suggested in [14]). Secondly, our estimators

come with uncertainties: the empirical R(t) is an estimate of the true reproduction number

that rests on the assumption of homogeneous dynamics, while the use of moving windows

might yield odd behaviors of EWS [50] which can contribute to poor signals, in addition to

rapid transition and non-white noise. Third, our definition of “ground truth” transition date is

somewhat conservative, as we requested to have maximum probability of R(t), the control

parameter, to be greater than 1. In the real world, the appropriate detection threshold is condi-

tional on the various costs of a late outbreak alert, and requires an assessment by public health

authorities which could modify the estimated lead time. This aspect might also influence our

interpretation of the “bifurcation delays”: depending on the definition of the “ground truth”,

they might be less severe than what discussed before. Moreover, an alternative explanation for

such observed delays might involve COVID-19 latency periods and reporting delays. When

extra data are available, this aspect can be further elucidated using nowcasting methods [64].

Fourth, due to statistical uncertainties, a reliable estimation of the lead time—how much in

advance a re-emergence can be predicted—was not entirely possible. Future studies will likely

concentrate on this aspect, as early prediction would advance the current on-time detection.

This study uses a proxy A for active cases (Eq 4) to compare theoretical results from various

literature sources obtained from on prevalence data. To expand the testing of EWS on epi-

demic data, to compare them with more recent studies on incidence data [14, 22] and to avoid

the potential biases associated with the proxy A (see Discussion above), we also investigated

the potential use of incidence data themselves. The related results and plots are displayed in

Sec H in S1 Text. We observe consistency with the results here presented on prevalence data,

but also some notable differences worth discussing. Firstly, we notice different noise distribu-

tions, diverging from Gaussian, that make the interpretation of the EWS performance more
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challenging. Secondly, we observe a higher correlation between residuals from ARIMA and

other detrending methods, possibly linked to weekly trends being mostly driven by testing

routines and being equally smoothed. Finally, we observe an improved performance for the

skewness over the Y test set, which contrasts with the results of [14], but is more in line with

what suggested in [60]. We speculate that this might be related to the interplay of the approach

to the transition and the noise distribution, but we limit ourselves to report the observation

and to leave additional theoretical and computational analysis to further studies. Overall, such

analysis still stresses that EWS performance is sensitive to the underlying modelling assump-

tions and, if not assessed carefully, could hinder our capability to extend them in uncertain

contexts. In addition, the fact that performances over prevalence or incidence data are slightly

different underline how much the approaches relying on EWS depend on the quantities that

are measured and use for EWS calculation. Hence, from a practical point of view, looking at a

measure or another might make a difference for the monitoring efficacy.

Conclusion

In recognition that real epidemics might behave differently that what is commonly modelled,

we nonetheless conclude that minimal dynamical models have the potential to predict relevant

aspects of complex epidemics. While more detailed and complete multivariate models are

being developed, macro-scale models based on complex systems theory can provide insights

and indicators to detect epidemic re-emergence. On the one hand, our results begin support-

ing the theoretical literature findings and their basic assumptions; on the other, they warn

against naive applications of summary statistics as EWS: if not correctly applied, they could

return possibly misleading spurious signals. In addition, our findings call for future studies on

forecasting techniques based on pattern recognition in different dynamical regimes. For

instance, validated EWS could serve as basis for the feature selection of automated Machine

Learning-based algorithms [18]. The dual synergy of theoretical predictions and empirical

studies will continue to play a role in the field of epidemic control and will likely have a impact

in informing public health decisions.
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