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Abstract

In this article, we track the evolution of fluvial biogeomorphology from the middle of

the 20th century to the present. We consider the emergence of fluvial biogeomorphol-

ogy as an interdisciplinary research area that integrates knowledge drawn primarily

from fluvial geomorphology and plant ecology, but with inputs from hydrology and

landscape ecology. We start by assembling evidence for the emergence of the field of

fluvial biogeomorphology with a keyword search of the Web of Science and a detailed

analysis of papers published in two scientific journals: a geomorphology journal—Earth

Surface Processes and Landforms; a multidisciplinary river science journal—River

Research and Applications. Based on this evidence, we identify three distinct time

periods in the development of fluvial biogeomorphology: the ‘early years’ before

1990; the transitional decade of the 1990s; and the period of rapid expansion and

diversification in themes, methods and investigation scales since 2000. Because the lit-

erature is vast, we can only summarize developments in each of these time periods,

but we refer to recent in-depth reviews and conceptual perspectives on relevant

topics. Thus, rather than a full and deep review, we present an annotated bibliographic

overview of the development of fluvial biogeomorphology, whereby the text describes

broad trends but is supported by tables of citations that can deliver greater detail. We

end with a brief consideration of likely future developments.
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1 | INTRODUCING FLUVIAL
BIOGEOMORPHOLOGY

Until the middle of the 20th century, research on the vegetation and

geomorphology of river corridors developed largely independently.

Geomorphologists focused on the landforms, overall morphology

and integrated style of river-floodplains, with vegetation simply being

a feature of areas of negligible physical disturbance. Thus, the middle

decades of the 20th century saw increasing geomorphological

research on river flows and sediment transport processes and how

these processes constructed river channel systems of different char-

acter supporting different landform assemblages in different environ-

mental settings. In particular, numerous research papers by Lane,

Leopold, Maddock, Miller, Wolman and many others during the 1950s

led to completely new perspectives on the processes and forms of flu-

vial systems (summarized by Leopold et al., 1964). This research was

then extended and developed in new directions by Schumm and col-

leagues during the 1960s (summarized by Schumm, 1977). Of
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particular importance to the present review was the recognition that

multiple physical styles of river exist, reflecting variations in valley gra-

dient, river flow magnitude and frequency, sediment calibre and sup-

ply; and displaying different levels of stability and dynamics

(summarized by Church, 2006) and that such variations in river mor-

phodynamics drive floodplain morphodynamics and the construction

of different styles of floodplain (summarized by Nanson &

Croke, 1992). Furthermore, researchers were recognizing the impor-

tance of river size and the fact that individual channel roughness ele-

ments have an increasing impact on river channel morphodynamics as

river channels become smaller (summarized by Church, 1992).

Egerton (2013) reviewed the development of the discipline of

plant ecology in detail. He revealed that Warming (1895), Clements

(1907) and Drude (1913) produced early textbooks that referred to

plant ecology and the early to middle decades of the 20th century

saw the contributions of Tansley (1923, 1939), Lindeman (1942), and

Odum (1953) in developing the concept of an ecosystem as the fun-

damental underpinning of the discipline. Given the enormous spatial

and temporal variability in the physical environment in and around

river systems, it is hardly surprising that plant ecologists adopted a

strong ecological approach to understanding river corridor vegetation

from the middle decades of the 20th century.

In this article, we specifically consider ‘fluvial biogeomorphology’
as a distinct sub-discipline of fluvial geomorphology that is built on the

‘historical’ research in geomorphology and plant ecology described

above. In other words, we focus specifically on ‘fluvial (plant) biogeo-
morphology’. We aim to describe the development trajectory of the

sub-discipline since the middle of the 20th century from early, mainly

physically based, fluvial geomorphological research at the interface

between hydrological and sediment-related processes through the

gradual incorporation of plant-related processes (Figure 1).

To achieve this aim, we first consider evidence for the emergence

of the sub-discipline of fluvial biogeomorphology revealed by

searching the published literature (Section 2). We then track this

emergence through three time periods: before 1990 (Section 3),

through the 1990s (Section 4), and during the first two decades of the

21st century (Section 5). We end with our thoughts on possible future

developments (Section 6).

The relevant literature is vast and there are many recent reviews

of different aspects of fluvial biogeomorphology research. Therefore,

we do not attempt a comprehensive review but rather an annotated

overview focusing on plants. To achieve this, we provide tables that

cite selected review, conceptually integrative, and fundamental

research papers to support a commentary on broad research trends

and how these have evolved over the three selected time periods.

2 | EVIDENCE FOR THE EMERGENCE OF A
SUB-DISCIPLINE

Based on our personal experience, we believe that the sub-discipline

of fluvial biogeomorphology has gradually emerged over at least the

last 50 years, but that it has only become the focus of widespread

research, using an increasingly diverse set of research tools, since the

beginning of the 21st century. This section reports on literature

searches that aimed to check our pre-conceptions.

2.1 | Web of Science

The Web of Science (WoS, https://www-webofscience-com) provides

a near-comprehensive database of published literature, especially of

research papers published in international journals. Many terms have

been used to categorize research at the interface of geomorphology

and ecology (Wheaton et al., 2011), which makes literature searches

challenging. We repeated the search conducted by Coombes (2016)

F IGURE 1 The context for fluvial
biogeomorphology focusing on
vegetation. The arrow indicates the
evolutionary trajectory of fluvial
biogeomorphology from fluvial
geomorphology (interactions among water
and sediments, particularly within river
channels and corridors) to gradually
incorporate vegetation responses and

effects. [Color figure can be viewed at
wileyonlinelibrary.com]
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for his review of biogeomorphology, which used four search terms:

biogeomorph*, ecogeomorph*, zoogeomorph*, phytogeomorph*.

Using these terms, we identified a total of 856 publications within the

WoS database, with biogeomorph* being by far the most commonly

used. We also found a notable uplift in the number of publications

from the beginning of the 21st century, especially from 2005

(Figure 2). While this search of WoS sets the scene for the present

review, the number of identified publications was small. In addition,

defining acceptable combinations of additional key words to reveal

the trajectory of fluvial biogeomorphology proved challenging, so we

adopted an alternative approach.

2.2 | Earth Surface Processes and Landforms and
River Research and Applications

We selected two scientific journals that we expected to include rele-

vant articles but from different scientific perspectives. Earth Surface

Processes and Landforms (ESPL) is a geomorphology journal that pro-

vides an obvious place to track the evolution of a geomorphology

sub-discipline. River Research and Applications (RRA) publishes papers

on all aspects of river science and so has the potential to identify the

trajectory of all sciences in areas relevant to fluvial biogeomorphol-

ogy. We looked at every paper (excluding editorials, book reviews,

newsletters, and announcements) published in these journals from

their first issues in 1976 (ESPL) and 1987 (RRA) to the end of 2022,

identifying those that in the view of one author (AMG) addressed

research that was relevant to fluvial biogeomorphology. The small

number of papers focusing on animals were excluded, so our analysis

entirely reflects research involving plants as the ‘bio’ element in

biogeomorphology, with animals as an occasional additional element.

We identified all articles where vegetation was a central/key compo-

nent in the research, either controlling or responding to fluvial and

sub-surface hydrological processes (impacts of vegetation on inter-

ception and infiltration were excluded). We also identified articles

where aspects of physical habitat and/or physical processes were

considered in relation to the presence/impact of vegetation. Although

the focus was on the river channel, margins and floodplain, articles on

hillslopes were included where they explored relationships between

vegetation and subsurface hydrology or rill-gulley flows. Such an anal-

ysis is clearly subject to some personal bias but a systematic approach

was adopted that considered the title, keywords and abstract of every

publication and, where these were insufficiently informative, the

whole paper. This approach allowed publications that had content of

notable relevance to fluvial biogeomorphology to be identified and

classified.

Figure 3a illustrates that 532 relevant publications were identified

from these two journals alone, and that the number of relevant papers

identified in each calendar year has been steadily rising since the

launch date of each journal. The broad biogeomorphological nature of

the reported research is represented in Figure 3b, where brown bars

highlight publications that predominantly focus on the way physical

processes, physical habitats and landforms affect plants and/or wood;

green bars focus on the ways plants and/or wood affect physical pro-

cesses, physical habitats and landform development; and blue bars

emphasize two-way interactions among physical forms and processes

and plants. All bars represent the proportion of the total biogeomor-

phologically relevant papers in each journal that fall within each of

these three categories in each decade. The bars prior to 2000 are

based on small numbers of publications (the numbers are shown

F IGURE 2 Results of a Web of
Science search using four keywords
individually and in combination. The graph
shows the number of publications in each
year. There were no relevant publications
before 1986. The four arrows with dates
indicate the year in which each keyword
was first found (i.e., phytogeomorph*—
1986, biogeomorph*—1990,

ecogeomorph*—1996, zoogeomorph*—
1997). [Color figure can be viewed at
wileyonlinelibrary.com]
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above each bar), so pre-2000 patterns should be treated with caution.

Nevertheless, there is a clear contrast between the geomorphologi-

cally focused papers in ESPL, which emphasize plant effects of physi-

cal forms and processes, and the broader river science papers in RRA,

which emphasize the impacts of physical forms and processes on

plants. Furthermore, papers on two-way interactions only start to

appear in the 1990s in both journals.

Figure 4 presents evidence that the 1990s formed a transitional

decade in fluvial biogeomorphological research. The upper part of

Figure 4 confirms the emergence of papers on two-way interactions

in the 1990s, with the exception of one early paper in ESPL (Keller &

Swanson, 1979). Figure 4 also indicates the time spans in publication

dates encompassed by papers emphasizing particular vegetation types

and characteristics; considering different categories of physical habitat

and physical disturbances; employing different research methods; and

concerned with different time scales and spatial locations or scales.

Publications in both journals show increasing diversity in research

themes, methods, time and space scales through recent decades, but

the geomorphologically focused papers in ESPL show particularly

sharp transitions in the 1990s, illustrating an abrupt increase in the

interest of geomorphologists in the physical role of vegetation. These

trends are reflected in the broader literature on fluvial biogeomor-

phology and provide the structure for the rest of this review, which

considers the ‘early years’ before 1990, the transitional decade of the

F IGURE 3 (a) The total number of publications considered and the number deemed relevant to the subdiscipline of fluvial biogeomorphology
in the journals Earth Surface Processes and Landforms (ESPL, first issue in 1976) and River Research and Applications (RRA, first issue in 1987).

(b) The proportion of the relevant publications in each journal within each decade that emphasized the impact of physical disturbances or habitat
characteristics on plants and/or wood; the impact of plants and/or wood on physical processes and/or landform development; two-way
interactions among physical processes and/or landforms and plants and/or wood (the numbers of publications are inserted above each bar).
[Color figure can be viewed at wileyonlinelibrary.com]
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1990s, and the rapid expansion of research outputs (Figures 2, 3a)

and diversification in themes, methods and scales of research

since 2000.

3 | THE EARLY YEARS

Before 1990 several research themes emerged that provided a foun-

dation for fluvial biogeomorphology. These themes are discussed

below and are listed in Table 1, where reference is made to a more

substantial body of literature than appears in the text.

Much early research was concerned with the physical environ-

mental requirements of plant species and communities or the impacts

of physical processes on plants. This led to the recognition that valley

bottom vegetation was often constrained by subsurface soil moisture

and groundwater dynamics (Table 1, theme 1, e.g., Featherley, 1940;

Graf, 1982; Rutter, 1955) and the magnitude and frequency of flood

inundation (Table 1, theme 2, e.g., Barnes, 1978; Bedinger, 1971;

Leitman et al., 1984). At the same time, some hydrologists and geo-

morphologists were considering the role of plants as indicators of

physical environmental processes, including soil moisture and over-

land flow regimes (Table 1, theme 1, e.g., Gurnell, 1981; Gurnell &

Gregory, 1987), and the elevation and timing of major past flood

events (Table 1, theme 2, e.g., Sigafoos & Sigafoos, 1966).

A logical extension of research on the impacts of hydrological

processes on plants (Table 1, themes 1 and 2) is the recognition that

characteristic plant communities may exist on different river channel

and corridor landforms (Table 1, theme 3). Fluvial landforms exhibit

differing sedimentary structures as well as moisture and inundation

dynamics, that provide specific environmental conditions to support a

vegetation cover with particular species composition, age structure

and following characteristic successional patterns (e.g., Hupp, 1983;

Nanson & Beach, 1977; Osterkamp & Hupp, 1984; Pautou

et al., 1985; Shelford, 1954; Wistendahl, 1958). Furthermore, river

channel changes such as narrowing, induced by shifts in fluvial pro-

cesses, may be indicated by vegetation colonization of channel margin

landforms (e.g., Martin & Johnson, 1987).

Within the field of plant ecology, texts such as Grime et al. (1988)

and Haslam (1978) appeared well before 1990, providing invaluable

semi-quantitative syntheses of the physical habitat preferences of indi-

vidual plant species and their susceptibility to disturbances. Such refer-

ence texts provide a firm foundation for research within themes 1 and 2.

In addition to recognizing vegetation as an indicator of fluvial pro-

cesses and forms, some early research also recognized vegetation as a

control on physical forms and processes. Although not strictly fluvial

form-process research, engineers working on channel-floodplain

hydraulic prediction, design and management started to incorporate

vegetation into their computations (Table 1, theme 4). This hydraulics

research typically treated vegetation as having a fixed temporal effect

and to be spatially invariant (e.g., Cowan, 1956), or to consist of blocks

of given shape, height and density (e.g., Klassen & van der

Zwaard, 1974). It was also typically concerned with assigning

F IGURE 4 The time span (from the first paper to the present) of publications addressing different aspects of physical process-form and plant
(including wood) interactions; vegetation types and characteristics; physical habitat characteristics and disturbances; research methods;
predominant time scale; and space location/scale of the research. In the case of two-way interactions, the red asterisks indicate single,
anomalously early publications (i.e., at least five years in advance of the next publication relevant to this theme). [Color figure can be viewed at
wileyonlinelibrary.com]
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appropriate roughness coefficients to different vegetation cover types

(e.g., Arcement & Schnelder, 1987), although some research also con-

sidered sediment dynamics (e.g., Li & Shen, 1973). This research was

based on combinations of theory, field and flume measurements

(e.g., Kouwen et al., 1969), with some emphasis on vegetation flexibil-

ity as research progressed (e.g., Kouwen et al., 1981).

The impact of large wood on fluvial forms and processes (Table 1,

theme 5) has long attracted interest from geomorphologists. For

example, Lobeck (1939, p. 428), in a chapter on organisms and geo-

morphology, discussed a ‘timber raft’ that completely blocked the

Red River, Louisana, for several centuries, gradually evolving in size

and location and inducing the formation of floodplain lakes. From the

1970s, the physical impacts of large wood in river systems started to

attract significant attention from ecologists as well as geomorpholo-

gists, with much early work emanating from the Pacific Northwest of

the United States. This early research was largely confined to dead

wood retained in steep headwater streams. Using observations on

streams where wood was present or had been removed, research

investigated how log steps increase channel roughness, retain enor-

mous quantities of sediment, dissipate flow energy

(e.g., Beschta, 1979; Heede, 1972; Marston, 1982; Megahan, 1982;

Megahan & Nowlin, 1976; Mosley, 1981; Swanson et al., 1976),

attenuate flood waves (e.g., Gregory et al., 1985), and induce pool, rif-

fle and bar development (e.g., Bilby, 1984; Hogan, 1986;

Macdonald & Keller, 1987). The diversity of geomorphological impacts

of wood was also recognized (e.g., Bisson et al., 1982; Gregory &

Gurnell, 1988; Harmon et al., 1986; Keller et al., 1985; Swanson &

Lienkaemper, 1978). Although most of the research at this time was

concerned with small streams, a number of papers considered how

wood and related physical features changed with stream size (width)

and gradient (e.g., Bilby & Ward, 1989; Keller & Swanson, 1979;

Likens & Bilby, 1982; Sedell et al., 1988; Vannote et al., 1980), with a

notable evaluation of the complex mosaic of wood and fluvial forms

that can develop on large, lowland river-floodplain systems

(e.g., Sedell et al., 1989; Sedell & Froggatt, 1984; Triska, 1984). Some

research also captured two-way interactions between wood and flu-

vial processes. For example, Keller and Swanson (1979) considered

how wood is transferred through lower and higher gradient systems

and how that wood then influences channel form and processes in

distinctive ways. Nanson (1981) described how flood-deposited trees

can form the core of scroll bars that then provide a stable substrate

for tree colonization, sediment trapping and further scroll bar develop-

ment. Kochel et al. (1987) revealed how floodplain trees that had been

undermined and transported during a flood became trapped and

stacked against standing trees, retaining sediment to create new ele-

vated areas above floodplain level that could support tree

colonization.

During this early period, environmental scientists started to con-

sider the aggregate effect of riparian vegetation on fluvial forms and

processes (Table 1, theme 6) focusing on river channel initiation

(e.g., Graf, 1979), size (e.g., Graf, 1978; Murgatroyd & Ternan, 1983;

Zimmerman et al., 1967), recovery and stability (e.g., Gray &

MacDonald, 1989; Kondolf & Curry, 1984, 1986; Wilson, 1973), and

migration (e.g., Smith, 1976). Page and Nanson (1982) provided an

early proposition of two-way interactions between vegetation and flu-

vial forms and processes when they noted that sediment retention by

colonizing trees promoted the development of counter-point bars.

TABLE 1 Selected publications prior to 1990 illustrating early
research relating to several fluvial biogeomorphological research
themes.

Research themes Authors and dates

1. Soil moisture and

groundwater affect

plants

Featherley (1940), Rutter (1955),

Gurnell (1978, 1981), Graf (1982),

Gurnell and Gregory (1987).

2. Flood disturbance

affects plants

Sigafoos (1964), Sigafoos and Sigafoos

(1966), Bedinger (1971, 1978),

Barnes (1978), Williams (1979),

Leitman et al. (1984), Bren and Gibbs

(1986), Streng et al. (1989).

3. Fluvial forms and

processes affect plants

Shelford (1954), Wistendahl (1958),

Gregory (1976), Nanson and Beach

(1977), Hupp (1982, 1983),

Osterkamp and Hupp (1984), Hupp

and Osterkamp (1985), Pautou and

Décamps (1985), Pautou et al.

(1985), Salo et al. (1986), Amoros

et al. (1987), Harris (1987), Martin

and Johnson (1987).

4. Plants affect flow

hydraulics

Fredenhagen and Doll (1954), Cowan

(1956), Li and Shen (1973), Kouwen

and Unny (1973), Klassen and van der

Zwaard (1974), Petryk and Bosmajian

(1975), Kouwen et al. (1981),

Arcement and Schnelder (1987).

5. Wood affects fluvial

processes and forms

Lobeck (1939), Heede (1972), Megahan

and Nowlin (1976), Swanson and

Lienkaemper (1978), Swanson et al.

(1976), Beschta (1979), Keller and

Swanson (1979), Vannote et al.

(1980), Heede (1981, 1985), Mosley

(1981), Nanson (1981), Bisson et al.

(1982), Likens and Bilby (1982),

Marston (1982), Megahan (1982),

Bilby (1984), Sedell and Froggatt

(1984), Triska (1984), Gregory et al.

(1985), Keller et al. (1985), Harmon

et al. (1986), Hogan (1986), Kochel

et al. (1987), MacDonald and Keller

(1987), Gregory and Gurnell (1988),

Sedell et al. (1988), Bilby and Ward

(1989), Sedell et al. (1989).

6. Riparian plants affect

fluvial processes and

forms

Zimmerman et al. (1967), Wilson

(1973), Smith (1976), Graf (1978,

1979), Page and Nanson (1982),

Murgatroyd and Ternan (1983),

Hickin (1984), Kondolf and

Curry (1984, 1986), Gray and

MacDonald (1989).

7. Aquatic plants affect

fluvial processes and

forms

Dawson (1978), Hamill (1983), Dawson

and Robinson (1984), Watson (1987),

Losee and Wetzel (1988), Sand-

Jensen et al. (1989).

Note: Publications are listed in chronological order with respect to each

research theme; underlined publications highlight a notable focus on two-

way interactions.
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Similarly, research started to investigate the aggregate effects of

aquatic vegetation on fluvial forms and processes (Table 1, theme 7)

including the impact of seasonal aquatic plant growth and senescence

on flow resistance and stage-discharge relationships

(e.g., Dawson, 1978; Dawson & Robinson, 1984; Watson, 1987) and

the time of travel of flood waves (e.g., Hamill, 1983). A more detailed,

mechanistic understanding was developed regarding the movement of

water through aquatic vegetation stands (e.g., Losee & Wetzel, 1988),

the deformation of plant canopies by flowing water, and the retention

of sediment as a result of flow velocity reduction within plant stands

(e.g., Sand-Jensen et al., 1989).

In conclusion, early research was wide-ranging but addressed

coarse spatial and temporal scales; was based heavily on field obser-

vations linked to specific, often simple concepts; and also frequently

considered vegetation in a highly simplified way. Nevertheless, some

research considered individual processes, landform types and species,

and in a few cases two-way interactions between plants and fluvial

forms and processes. During this early period, there was one particu-

larly important conceptual contribution to fluvial biogeomorphology

from Hickin (1984). He presented his ideas on the theme ‘vegetation
and river channel dynamics’ and he noted that ‘the physical science

of fluvial geomorphology is flawed because it ignores processes that

are not easily quantifiable and physically or statistically manipulable’
(p. 111). He went on to describe some of these processes and empha-

sized five mechanisms by which vegetation may have a significant

controlling influence on fluvial forms and processes: flow resistance;

bank strength; bar sedimentation; log jam formation; and concave-

bank bench deposition. While many of these mechanisms had been

individually explored before 1990, their integration in Hickin's (1984)

paper was an important influence on subsequent fluvial biogeomor-

phological research.

4 | A TRANSITIONAL DECADE

The 1990s marked a transition during which research reinforced the

themes that had been investigated in earlier decades but also intro-

duced new research directions and was frequently supported by a

range of methodological advances.

The beginning of the decade saw the publication of two edited

books (Thornes, 1990; Viles, 1988) that illustrated how research at

the interface of geomorphology, hydrology and biology was providing

a foundation for the emerging field of biogeomorphology with fluvial

biogeomorphology as a very prominent component. Two symposia

extended this integration; the 26th Binghampton Symposium on ‘Bio-
geomorphology, terrestrial and freshwater’ (Hupp et al., 1995) and

‘Floodplain forests: structure, functioning and management’ (Brown

et al., 1997a), with Hughes et al. (1997) review of ‘Floodplain biogeo-

morphology’ appearing towards the end of the decade.

Many reviews, conceptual models and frameworks were pub-

lished that organized and synthesized earlier research and in some

cases, implicitly or explicitly, indicated new research directions

(Table 2). For example, Maser and Sedell (1994) extended well beyond

the reach and small catchment scale to synthesize and conceptualize

the environmental role of wood through entire river systems into and

across the oceans. Phillips (1995) extended the time scales over which

vegetation–landform interactions could be considered by proposing

some time scale-specific, theoretical research approaches. In relation

to management-relevant space and time scales, Pautou et al. (1997)

proposed space–time units to aid in understanding of patch dynamics

on floodplains. Biggs (1996) formalized a simple way of grouping

aquatic plants (periphyton, bryophytes or macrophytes) to consider

how physical processes, especially flow velocity, might be expected to

control their broad distributions along river systems. Following their

earlier work, Johansson et al. (1996) placed the process of hydrochor-

ous seed dispersal into context by asking the question ‘Do rivers func-

tion as corridors for seed dispersal?’. Lastly, Sand-Jensen (1997) built

upon the concept of organisms that act as ecosystem engineers

(Jones et al., 1994) by considering the role of macrophytes as stream

biological engineers. These are all examples of research contributions

that built on early work to provide important frameworks and direc-

tions through the 1990s into the beginning of the 21st century.

Much research extended pre-existing themes, particularly themes

2, 4, 5, 6 and 7 (see Table, 3 for examples). It revealed greater detail of

the character of wood and plants, fluvial forms, fluvial processes and,

increasingly, interactions among them. It also delivered observations

from a widening range of environmental settings, including arid envi-

ronments and ephemerally flowing water courses (e.g., Jacobson

et al., 1999).

Several new research trends emerged during the 1990s. The

study of interactions among plants and/or wood and fluvial processes

TABLE 2 Selected publications from the 1990s reviewing earlier
research and proposing conceptual frameworks relevant to some of
the pre-1990 research themes listed in Table 1.

Research theme Authors and dates

2. Flood disturbance

affects plants

Bren (1993), Johansson et al. (1996),

Hughes (1997).

3. Fluvial forms and

processes affect plants

Hupp (1990), Higler (1993), Malanson

(1993), Nilsson et al. (1993), Hupp

and Osterkamp (1996), Scott et al.

(1996), Naiman and Décamps (1997),

Pautou et al. (1997), Tabacchi et al.

(1998).

4. Plants affect flow

hydraulics

Gippel (1995).

5. Wood affects fluvial

processes and forms

Gregory (1992), Maser and Sedell

(1994), Fetherston et al. (1995),

Gurnell et al. (1995), Keller and

MacDonald (1995).

6. Riparian plants affect

fluvial processes and

forms

Thorne (1990), Gurnell (1995, 1997),

Gregory et al. (1991), Phillips (1995).

7. Aquatic plants affect

fluvial processes and

forms

Pitlo and Dawson (1990), Biggs (1996),

Sand-Jensen (1997).

Note: Publications are listed in chronological order with respect to each

research theme.
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developed well beyond the confines of predominantly single-thread

streams and headwater rivers to include larger and/or lower gradient

rivers of both single and multi-thread styles (Table 3, theme 9). This

research investigated interactions among wood and/or riparian vege-

tation and distinctive landforms associated with particular river styles

and transitions between styles (e.g., Abbe et al., 1993; Abbe &

Montgomery, 1996; Harwood & Brown, 1993; Piégay &

Gurnell, 1997) as well as river channel dynamics and floodplain con-

nectivity (e.g., Piégay, 1997; Piégay & Bravard, 1997). One

particular focus was how wood and riparian vegetation were linked in

systems where fragments of the riparian tree species could sprout

and help to initiate landforms such as scroll bars (McKenney

et al., 1995) and small (pioneer) islands (Edwards et al., 1999). Some

researchers gained further insights into interactions among plants

and/or wood and fluvial processes from studying rivers recovering

from morphological modifications (Table 3, theme 10) and flow regula-

tion (Table 3, theme 11). Building on the flood pulse concept (Junk

et al., 1989), changes to the flow regime, whether flow reduction, aug-

mentation or changes in the magnitude and frequency of flow

extremes, produced a very fertile area for gaining biogeomorphologi-

cal knowledge. Fluvial process impacts on propagule dispersal, germi-

nation, and growth performance of riparian trees and their

significance for the structure of riparian woodlands and landforms

gained particular attention (e.g., Cooper et al., 1999; Cordes

et al., 1997; Kranjcec et al., 1998; Rood & Mahoney, 1995; Scott

et al., 1997, 1999). This research supported the creation (Mahoney &

Rood, 1998) and subsequent developments of the ‘Recruitment Box’
model that links flow regime characteristics to riparian tree recruit-

ment. A further new research theme considered plant and wood traits

(Table 3, theme 8) focusing on seed and seed bank characteristics and

TABLE 3 Selected publications from the 1990s relevant to some of the pre-1990 research themes listed in Table 1 and some emerging
themes.

Research theme Authors and dates

Expanding knowledge on established research themes (from Table 1)

2. Flood disturbance affects plants Baker (1990), Hughes (1990), Johnson-Gottesfield and Gottesfeld (1990), Bayard and

Schweingruber (1991), Birkeland (1996), Gottesfeld (1996), Cordes et al. (1997), Blanch

et al. (1999), Ferreira and Stohlgren (1999).

4. Plants affect flow hydraulics Gurnell and Midgley (1994), Sand-Jensen and Mebus (1996), Sand-Jensen and Pedersen

(1999).

5. Wood quantities and impacts on fluvial processes

and forms

McDade et al. (1990), Robison and Beschta (1990a, 1990b), Harmon and Hua (1991), Shields

and Smith (1992), Evans et al. (1993), Gregory et al. (1993, 1994), Nakamura and Swanson

(1993), Montgomery et al. (1995), Richmond and Fausch (1995), Thompson (1995),

Hedman et al. (1996), Ruediger and Ward (1996), Beechie and Sibley (1997), Hilderbrand

et al. (1997), Myers and Swanson (1997), Wohl et al. (1997), Gurnell and Sweet (1998),

McHenry et al. (1998), Buffington and Montgomery (1999), Elosegi et al. (1999), Jacobson

et al. (1999).

6. Riparian plants affect fluvial processes and forms Davis and Gregory (1994), Dunaway et al. (1994), Madej et al. (1994), Friedman et al. (1996),

Davies-Colley (1997), Dwyer et al. (1997), Huang and Nanson (1997), Trimble (1997),

Abernethy and Rutherfurd (1998), Burckhardt and Todd (1998), Rowntree and Dollar

(1999).

7. Aquatic plants affect fluvial processes and forms Petticrew and Kalff (1992), López and Garcia (1998), Sand-Jensen (1998).

New research directions

8. Wood and Plant Traits Brewer and Parker (1990), Nielsen and Sand-Jensen (1991), Nilsson et al. (1991b), Rowntree

(1991), Thebaud and Debussche (1991), Reyes et al. (1992), Sand-Jensen and Vindbæk
Madsen (1992), Spencer and Ksander (1992), Johansson and Nilsson (1993), Mallik and

Rasid (1993), Kubitzki and Ziburski (1994), Décamps et al. (1995), Danvind and Nilsson

(1997), Bekker et al. (1998), Bornette et al. (1998), Mahoney and Rood (1998), Bilby et al.

(1999), Friedman and Auble (1999), Greulich and Bornette (1999), Robertson and

Augspurger (1999).

9. Vegetation–fluvial process interactions along low-

gradient, large and multi-thread rivers

Abbe et al. (1993), Harwood and Brown (1993), Pautou and Arens (1994), Marston et al.

(1995), McKenney et al. (1995), Abbe & Montgomery (1996), Brown et al. (1997b), Piégay

(1997), Piégay and Bravard (1997), Van Coller et al. (1997), Wende and Nanson (1998),

Edwards et al. (1999), Kollmann et al. (1999), Tooth and Nanson (1999)

10. Vegetation–fluvial process interactions: Insights
from channel recovery

Simon and Hupp (1990), Hupp and Simon (1991), Shields and Gray (1992).

11. Vegetation–fluvial process interactions: Insights
from flow regulation

Nilsson et al. (1991a), Garcia de Jalon et al. (1994), Johnson (1994, 1997), Rood and

Mahoney (1995), Scott et al. (1997), Dominick and O'Neill (1998), Kranjcec et al. (1998),

Cooper et al. (1999), Scott et al. (1999).

Note: Publications are listed in chronological order with respect to each research theme.
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dispersal processes (Bekker et al., 1998; Danvind & Nilsson, 1997;

Hughes & Cass, 1997; Johansson & Nilsson, 1993; Nilsson et al.

1991b); the growth performance, architecture, strength and flexibility

of the above- and below-ground biomass of different plant species

and growth stages (e.g., Mallik & Rasid, 1993; Nielsen & Sand-

Jensen, 1991); and the susceptibility of different species to environ-

mental disturbances and competition (e.g., Brewer & Parker, 1990;

Décamps et al., 1995; Friedman & Auble, 1999; Greulich &

Bornette, 1999; Robertson & Augspurger, 1999).

The final important characteristic of fluvial biogeomorphology

research in the 1990s was the increasing use of methods that

improved and complemented field measurements. For example,

methods for quantifying wood in field surveys were improved

(e.g., Beschta & Robison, 1990; Ringvall & Stahl, 1999; Thevenet

et al., 1998). Field experiments (i.e., manipulations of the field environ-

ment, e.g., Assani & Petit, 1995; Brueske & Barrett, 1994; Crowl &

Covich, 1990; Dudley et al., 1998; Greulich & Bornette, 1999; Smith

et al., 1993; Wilcock et al., 1999) and laboratory experiments, includ-

ing flume and mesocosm studies (e.g., Braudrick et al., 1997; Gippel

et al., 1996; Hughes et al., 1997; Wu et al., 1999; Young, 1991), were

conducted to test hypotheses developed from theory and field obser-

vations. Researchers increasingly used historical maps and aerial

images to consider information covering longer time periods and

larger areas than was otherwise possible (e.g., Johnson et al., 1995;

Marston et al., 1995). Following the launch of the first Landsat satel-

lite in 1972, the 1990s saw increasing use of multi-spectral data sets

obtained from satellite platforms (e.g., Kalliola et al., 1992; McCarthy

et al., 1993; Mertes et al., 1995), although the typically coarse spatial

resolution of the available data and difficulties in linking ground mea-

surements to spectral signatures limited the nature and reliability of

obtained outputs (Mertes, 2002). Researchers also developed new

process-based models that emphasized mechanisms affecting the

nature and functioning of plants and wood in and around rivers,

including further advances in modelling impacts on flow resistance

and channel conveyance (e.g., Auble et al., 1994; Bragg &

Kershner, 1997; Darby, 1999; Kirkby, 1995; Mahoney & Rood, 1998;

Stromberg et al., 1993; Van Sickle & Gregory, 1990).

5 | EXPANSION AND DIVERSIFICATION:
THE MAKING OF A SUB-DISCIPLINE

Since the turn of the century, the discipline of biogeomorphology has

grown rapidly and the breadth and complexity of research have

increased. The new research directions that emerged during the

1990s have expanded, subdivided and become increasingly inte-

grated, making a simple development of the pre-2000 themes inap-

propriate. Research on the quantities and geomorphological impacts

of large (dead) wood alone (Table 3, themes 5 and 8) continues to

attract a lot of research attention. At the same time, research on living

(riparian and aquatic) plants has developed particularly rapidly. Indeed,

the impact of floods and other disturbances on living plants, the

impacts of living plants on fluvial processes and forms, and the various

feedbacks and interactions (Table 3, themes 2, 4, 6, 7, 8, 9, 10, 11) are

now the core focus in fluvial biogeomorphology. Within this core

focus, there is an increasing emphasis on wood and plant traits

(Table 3, theme 8) with ‘living wood’ (entire uprooted trees and wood

fragments that can sprout) providing a crucial biogeomorphological

link between wood and plants in their roles as physical ecosystem

engineers (Gurnell, 2014). In part, these research developments can

be attributed to insights gained from the analysis of new spatial data

sets and the application of innovative field and laboratory methods.

Therefore, after briefly summarizing some broad research trends (5.1),

this section is organized into three further subsections, two of which

provide integrative overviews of research involving large (dead) wood

(5.2) and riparian and aquatic plants (5.3), while a final

section summarizes advances in the techniques and data sources used

to support research in fluvial biogeomorphology (5.4).

5.1 | Broad research trends

Advances in biogeomorphology have been addressed in several

reviews. For example, Naylor et al. (2002), Dietrich and Perron (2006),

Stallins (2006), Haussmann (2011), Osterkamp et al. (2012), Coombes

(2016), Viles (2020) and Rice (2021) all provide reviews from different

perspectives, with Rice (2021) specifically focusing on the role of ani-

mals. Furthermore, three particular perspectives have been empha-

sized: space and time scales and how to link them (e.g., Larsen

et al., 2021; Wainwright et al., 2011; Wheaton et al., 2011); the fun-

damental importance of disturbances (e.g., Kent et al., 2001; Rice

et al., 2012; Viles et al., 2008); and coupling and feedbacks among

biotic and abiotic processes and forms with a specific focus on physi-

cal ecosystem engineering by organisms (e.g., Allen et al., 2014;

Collins et al., 2004; Corenblit et al., 2010, 2011; D'Odorico

et al., 2010; Jones, 2012; Jones et al., 2010; Murray et al., 2008;

Phillips, 2016a, 2016b; Reinhardt et al., 2010).

Research in fluvial biogeomorphology has incorporated these

three perspectives and has been informed increasingly by the disci-

plines of landscape ecology and hydrology in addition to fluvial geo-

morphology and ecology. For example, the flood pulse concept, which

captured the ecological importance of a river's flow regime (Junk

et al., 1989), has been expanded to incorporate the broader river land-

scape through considerations of lateral as well as longitudinal connec-

tivity; spatio-temporal variability in connectivity driven by flow pulses

of all magnitudes; and their consequences for habitat turnover, het-

erogeneity and biodiversity (e.g., Junk & Wantzen, 2004; Tockner

et al., 2000). More broadly, spatio-temporal changes in river landscape

processes (hydrological, chemical, geomorphological, biological) and

habitats/landforms have become the foundation for river environ-

ment research in general (e.g., Amoros & Bornette, 2002; Gurnell

et al., 2016a; Naiman et al., 2005; Parsons & Thoms, 2007; Stanford

et al., 2005; Thorp et al., 2006; Ward et al., 2002a, 2002b) and fluvial

biogeomorphology in particular.
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5.2 | Large wood

Numerous recent papers have reviewed and conceptualized the fluvial

biogeomorphological role of large wood (Table 4). Furthermore, an

edited book (Gregory et al., 2003) and three journal special issues

(Gurnell, 2007a; Picco et al., 2017; Wohl & Iroumé, 2021) entitled

‘Wood in World Rivers’ have been published since 2000. Wood

research remains quite heavily focused on streams and small rivers in

forested mountainous areas of the US. However, since 2000, signifi-

cant bodies of work have been undertaken on lower gradient, larger

river systems, of differing geomorphological style and subject to var-

ied river corridor land cover and management. Furthermore, the

TABLE 4 Selected publications on the fluvial biogeomorphological role of large (dead) wood research in the 21st Century.

Perspective Authors and dates

Overviews and integrating concepts

Hassan et al., (2005a, 2005b); Wohl and Jaeger, (2009); Seo et al., (2010); Collins et al., (2012); Erskine et al., (2012);

Wohl, (2013, 2017, 2020); Comiti et al., (2016); Ruiz-Villenueva et al., (2016b); Kramer and Wohl, (2017); Wohl et

al., (2017, 2019b); Wohl and Scott, (2017); Shumilova et al., (2019); Gurnell and Bertoldi, (2022a); Swanson et al.,

(2021).

Wood quantities and dynamics

Assessments of wood

quantities

Gurnell et al. (2000a, 2000b), Hering et al. (2000), Rutherfurd et al. (2000), Diez et al. (2001), Deng et al. (2002), De

Waal (2002), MacNally et al. (2002), Meleason et al. (2005), Wyżga and Zawiejska (2005), Chen et al. (2006),

Comiti et al. (2006), Daniels (2006), Young et al. (2006), Morris et al. (2007), Pfeil et al. (2007), Czarnomski et al.

(2008), Lassettre et al. (2008), Nowakowski and Wohl (2008), Angradi et al. (2009), Cadol et al. (2009), Warren

et al. (2009), Cadol and Wohl (2010), Moulin et al. (2011), Wohl (2011), Wohl and Cadol (2011), Wohl et al. (2011,

2012, 2018a, 2018b), Chen et al. (2013), Costigan and Daniels (2013), Beckman and Wohl (2014), Wohl and

Beckman (2014), Costigan et al. (2015), Jackson and Wohl (2015), Kim et al. (2015), Hough-Snee et al. (2016),

Kitchingman et al. (2016), Lininger et al. (2017), Mao et al. (2017), Galia et al. (2018a, 2018b, 2020), Martin et al.

(2018), Matheson and Thoms (2018), Rossetti de Paula et al. (2020), Picco et al. (2021), Guiney and Lininger (2022),

Gurnell et al. (2022), Pavlowsky et al. (2023).

Wood accumulation types

and patterns

Gurnell et al. (2000a, 2000b), Abbe and Montgomery (2003), Kaczka (2003), Wallerstein and Thorne (2004), Zelt and

Wohl (2004), Pettit et al. (2005), Dunkerley (2014), Boivin et al. (2015, 2017a), Wyżga et al. (2015), Dixon (2016),

Gurnell et al. (2022), Wohl (2022).

Wood mobility Van der Nat et al. (2003), Pettit et al. (2005), Warren and Kraft (2008), Wohl and Goode (2008), Curran (2010),

Fremier et al. (2010), Bertoldi et al. (2013), Chen et al. (2013), King et al. (2013), Dixon and Sear (2014), Iroumé

et al. (2015, 2018, 2020), Ruiz-Villanueva et al. (2016c, 2016d, 2016e), Boivin et al., (2017b), Haga et al. (2017),

Wyżga et al. (2017), Wohl et al. (2019a), Iskin and Wohl (2021), Picco et al. (2021), Guiney and Lininger (2022),

Hortobágyi et al. (2024).

Wood budgets and budget

components

Johnson et al. (2000), Hyatt and Naiman (2001), Martin and Benda (2001), Ott et al. (2002), Dahlstrom et al. (2005),

Sobota et al. (2006), Arsenault et al. (2007), Elosegi et al. (2007), Latterell and Naiman (2007), Czarnomski et al.

(2008), Jones and Daniels (2008), Seo et al. (2008, 2015), Seo and Nakamura (2009), Merten et al. (2013), Pettit

et al. (2013), Wohl and Ogden (2013), Benda and Bigelow (2014), Lucia et al. (2015), Dethier et al. (2016), Hassan

et al. (2016), Picco et al. (2016), Ruiz-Villanueva et al. (2014c), Boivin et al. (2017a, 2017b), Galia et al. (2017),

Kramer et al. (2017), Piégay et al. (2017), Senter et al. (2017), Steeb et al. (2017), Tonon et al. (2017, 2018), Lucia

et al. (2018), Stella et al. (2021).

Interactions among wood and fluvial processes

Flow patterns and sediment

storage

Daniels and Rhoads (2003, 2004, 2007), Hassan and Woodsmith (2004), Manners et al. (2007), Cadol and Wohl

(2011), Short et al. (2015), Martin et al. (2016), Pfeiffer and Wohl (2018), Hinshaw et al. (2020), Ader et al. (2021),

Grabowski and Wohl (2021), Livers and Wohl (2021).

Headwater (and mountain)

rivers

Massong and Montgomery (2000), Rot et al. (2000), Baillie and Davies (2002), Hart (2002), Keim et al. (2002), Curran

and Wohl (2003), Faustini and Jones (2003), Gomi et al. (2003), Jeffries et al. (2003), Kail (2003), Lancaster et al.

(2003), May and Gresswell (2003), Webb and Erskine (2003, 2005), Dahlstrom and Nilsson (2004), Dufour et al.

(2005), Kreutzweiser et al. (2005), Lancaster and Grant (2006), Andreoli et al. (2007), Cordova et al. (2007), Comiti

et al. (2008), Mao et al. (2008), Oswald and Wohl (2008), Bendix and Cowell (2010), Sear et al. (2010), Ryan et al.

(2014), Scott et al. (2014), Seixas et al. (2020), Welling et al. (2021), Danhoff and Huckins (2022), Gurnell and Hill

(2022).

Floodplain rivers Brooks and Brierley (2002), Collins et al. (2002), Hughes and Thoms (2002), Brooks et al. (2003), Montgomery and

Abbe (2006), O'Connor et al. (2003), Klaar et al. (2011), Collins et al. (2012), Phillips (2012).

Linking wood to trees

Díez et al. (2002), Tabacchi and Planty-Tabacchi (2003), Marx and Walters (2008), Freschet et al. (2012), Collins et al.

(2012), Orman et al. (2016), Ruiz-Villanueva et al. (2016a, 2016b), Iroumé et al. (2017), Kahl et al. (2017).

Note: Publications are listed in chronological order with respect to each perspective.
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geographical range of wood research continues to expand with pub-

lished research results emanating from Central and South America,

Asia, Australasia and Europe and to a lesser extent from Africa.

Although research papers on large wood frequently address several

different research perspectives, this overview considers work that is

largely centred on (i) wood quantities and dynamics; (ii) interactions

among wood and fluvial processes and forms; (iii) linking wood to

trees.

5.2.1 | Wood quantities and dynamics

Assessments of wood quantities

Researchers continue to provide information on the quantities of

wood stored in and around river systems (Table 4). In forested sys-

tems, wood quantities vary with biogeographical setting (e.g., Lininger

et al., 2017; Wohl et al., 2017), the age and species composition of

the forest (e.g., Beckman & Wohl, 2014; Elosegi et al., 2007;

Gurnell & Bertoldi, 2022a; Morris et al., 2007), the nature and recency

of forest management (e.g., Gurnell & Hill, 2022; Mao et al., 2017;

Nowakowski & Wohl, 2008), and the spatio-temporal distributions

and severity of physical (wind, fire, extreme precipitation, landslides

and floods) and biological (diseases, infestations) disturbances

(e.g., Arsenault et al., 2007; Costigan et al., 2015; Dethier et al., 2016;

Guiney & Lininger, 2022; Iskin & Wohl, 2021; King et al., 2013;

Pavlowsky et al., 2023; Vaz et al., 2015; Wohl, 2022). The general

trend of decreasing wood retention per unit channel area as river

channel dimensions increase along forested systems has been con-

firmed (e.g., Kim et al., 2015; Wohl & Cadol, 2011; Wohl &

Jaeger, 2009), but notable differences in wood storage have been

identified among rivers of different gradient and geomorphological

style (e.g., Daniels, 2006; Galia et al., 2018b, 2020; Gurnell

et al., 2000a, 2000b, 2002; Lassettre et al., 2008; Martin et al., 2018;

Moulin et al., 2011; Pettit et al., 2005; Wyżga & Zawiejska, 2005;

Wyżga et al., 2017). In-channel wood storage is affected by local

obstructions such as boulders, living trees, roots, fallen trees and

wood jams and the presence of bank and bed irregularities

(Dunkerley, 2014; Gurnell, 2003; Pettit et al., 2005), but as channels

increase in size, such local irregularities decrease in relative impor-

tance and channel planform and cross-sectional characteristics

increasingly dominate wood retention (Abbe & Montgomery, 2003).

Wood storage within the river corridor also varies with valley

confinement, and thus the presence/absence, size, morphology and

dynamics of any river margin or floodplain. Wood storage quantities

and patterns on floodplains reflect the mix of local wood production;

wood delivery from the river channel and valley side processes

(e.g., Lancaster & Grant, 2006; Reeves et al., 2003); and the degree to

which wood from these sources mixes and interacts

(e.g., Wohl, 2020). Furthermore, large volumes of wood can be

retained within floodplains for long periods following incorporation

into floodplain sediments (e.g., Arsenault et al., 2007; Brooks &

Brierley, 2002; Hyatt & Naiman, 2001).

Although most research has been concerned with lightly managed

forested catchments or river corridors, the effects of other land cover

types and any management interventions that modify land cover or

reduce channel morphological complexity have been shown to mark-

edly reduce wood storage (e.g., Brooks et al., 2003; Scott &

Wohl, 2018).

Wood accumulation types and patterns

An important aspect of wood storage is whether wood is retained as

individual pieces or within accumulations or jams. Some accumula-

tions store enormous quantities of wood, such as the wood rafts that

can develop on large complex river systems (e.g., Boivin

et al., 2015, 2017a). The number of wood accumulations or jams is

often recorded as an indicator of wood storage, and a variety of wood

jam classifications have been devised to indicate likely hydraulic

impacts. Following the simple classification of jams in small

low-gradient streams proposed by Gregory et al. (1985, 1993), which

discriminates jams according to whether they completely cross the

channel and their relative flow resistance, several new classifications

have emerged since 2000. Wallerstein and Thorne (2004) and Dixon

(2016) have proposed slightly more complex hydraulically based clas-

sifications for relatively small single-thread rivers. In contrast, Abbe

et al. (1993) and Abbe and Montgomery (1996, 2003) have classified

wood jam types that may form along morphologically complex moun-

tain rivers from log steps in steep confined headwaters to rafts in

lower gradient unconfined meandering and wandering reaches. These

classifications contribute to summarizing wood jam numbers as a

component of wood storage but also inferring the likely impacts of

wood jams on fluvial processes and forms. Table 4 provides examples

of assessments of wood storage and styles of wood accumulation on

headwater and mountain streams (e.g., Gurnell et al., 2022;

Kaczka, 2003; Wohl, 2022; Wyżga et al., 2015) and lower gradient,

downstream reaches of varying geomorphological style (e.g., Boivin

et al., 2017a; Lassettre et al., 2008; Pettit et al., 2005).

Wood mobility

A third important property of river wood is its mobility. Many research

studies have monitored mobility by resurveying the locations of wood

pieces and jams and any changes in jam types. This often involves res-

urveying specific reaches or transects and/or labelling wood pieces

with numbered tags to track changes in the quantity of stored wood

or the changing position of wood pieces (e.g., Boivin et al., 2017b;

Chen et al., 2013; Gurnell et al., 2022; Pettit et al., 2005; Picco

et al., 2021; Warren & Kraft, 2008). Recently, the use of GPS to relo-

cate and record wood at specific sites (Curran, 2010; Ravazzolo

et al., 2015; Tonon et al., 2017; Van der Nat et al., 2003); radio-

tracking and monitoring of individual wood pieces or aerial units using

repeat vertical or oblique images (Bertoldi et al., 2013; Kramer

et al., 2017; Schenk et al., 2014; Smikrud & Prakash, 2006); video

monitoring of moving wood (MacVicar & Piégay, 2012; Zhang

et al., 2021); and frequent repeat measurements of wood trapped in

reservoirs (Moulin & Piégay, 2004) have combined to allow more
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detailed appraisals (e.g., MacVicar et al., 2009). Wood mobility

increases as the ratio of wood piece size to channel size decreases

and as the frequency of retention structures (boulders, standing trees,

roots, bed and bank irregularities) per unit channel area decreases.

Indeed, wood accumulations are important irregularities that reduce

wood mobility as wood pieces become snagged and incorporated into

jams and then eventually break free from them. Lastly, as previously

noted, floodplains can store wood for prolonged periods

(e.g., Brooks & Brierley, 2002; Guiney & Lininger, 2022), significantly

reducing overall wood mobility.

Wood budgets and budget components

Wood quantity and mobility are central to understanding the wood

regime and budget of a river system (Wohl et al., 2019b). Evaluation

of a wood budget for a river reach or entire catchment for any specific

time period is challenging but crucial for understanding the key con-

trols on wood inputs, storage and outputs through river reaches or

entire catchments (Benda & Sias, 2003). Many researchers have

attempted wood budget evaluations using a combination of direct

measurements and indirect estimates of budget components

(e.g., Boivin et al., 2017a; Hassan et al., 2016; Martin & Benda, 2001;

Tonon et al., 2018). More frequent has been research on specific bud-

get input and output components. Wood inputs to rivers have been

observed or estimated for tree fall, bank erosion, debris flow and land-

slide processes (e.g., Dethier et al., 2016; Lancaster et al., 2003; Lucia

et al., 2018; Picco et al., 2016; Ruiz-Villanueva et al., 2014c; Sobota

et al., 2006; Stella et al., 2021). Observations of wood trapping within

reservoirs have been used in combination with other information to

very successfully undertake spatial and temporal analyses of the out-

put component of catchment wood budgets and to estimate major

controls (e.g., Senter et al., 2017; Seo et al., 2008, 2015). A final

important influence on wood budgets is the wood properties. Wood

density is important for wood mobility and varies with species and

degree of decomposition (Brown, 1997; Ruiz-Villanueva et al., 2016a).

Small differences in wood density may affect wood mobility and the

stability of wood pieces and accumulations (Tabacchi & Planty-

Tabacchi, 2003). Where wood is denser than water, wood behaviour

is transformed. Wood decomposition reduces wood density, can

completely remove wood pieces from the wood budget, and

can cause wood to break into smaller pieces and thus become more

mobile. Decomposition is affected by wood species and their interac-

tions with decomposer communities (Díez et al., 2002; Freschet

et al., 2012; Kahl et al., 2017) according to wood piece size and resi-

dence time (Iroumé et al., 2017).

5.2.2 | Interactions among wood and fluvial forms
and processes

Flow patterns and sediment storage

Wood pieces and wood accumulations interrupt flow patterns and

disrupt sediment movements. Wood can pond back water, attenuate

river flows (Ader et al., 2021; Hinshaw et al., 2020) and induce

complex local flow patterns (Daniels & Rhoads, 2003, 2004, 2007;

Manners et al., 2007). These changes in flow drive changes in sedi-

ment erosion, mobilization and storage around the wood

(e.g., Hassan & Woodsmith, 2004). In general, increasing quantities of

in-channel or floodplain wood lead to increased sediment retention

and attenuation of downstream sediment movements. Most field

observations have been concerned with in-channel rather than flood-

plain wood, so the following comments largely refer to the former.

Headwater (and mountain) rivers

The size and frequency of in-channel wood pieces or accumulations

are a crucial control of flow hydraulics and sediment dynamics in

headwater streams (Ader et al., 2021; Welling et al., 2021). Short et al.

(2015) attributed attenuation in the dispersal of a post-fire sediment

pulse to the formation of in-channel wood jams. Instream wood was

the most important driver of instream storage of fine sediment and

particulate organic matter. Livers and Wohl (2021) found that

channel-spanning wood jams stored more organic sediment than non-

channel-spanning jams. Headwater streams receive wood from tree

fall and hillslope processes and then redistribute the wood to form

various wood features. Thus, a typical downstream sequence com-

mences with randomly distributed, individual wood pieces (whole

trees, branches, trunks, root wads) where the stream is not competent

to move them. This is followed by cross-channel pieces and jams as

wood pieces become mobile but are typically longer than the channel

width. Lastly, increasing proportions of wood pieces and jams do not

span the channel as wood piece sizes become shorter than the

increasing channel width. As a consequence, Pfeiffer and Wohl (2018)

found that the largest volumes of wood-associated coarse sediment

are stored in intermediate-sized channels. These spatial patterns can

be observed along all headwater channels but there are subtle differ-

ences in their geomorphological impact with changes in channel gradi-

ent and valley confinement (e.g., Abbe & Montgomery, 2003;

Gurnell & Hill, 2022; Rot et al., 2000).

In steep mountain headwaters, sudden extreme inputs of wood

and sediment from, for example, glacier meltwater outbursts

(Oswald & Wohl, 2008) and debris flows (Benda et al., 2003;

Hart, 2002; Lancaster et al., 2003; Lancaster & Grant, 2006; May &

Gresswell, 2003) can result in major local disruptions in sediment and

wood supply (Massong & Montgomery, 2000; Montgomery

et al., 2003) and modifications to the valley bottom. These include the

development of valley-spanning deposits of wood and boulders; ele-

vated, overbank wood and boulder deposits; and vast in-channel and

valley bottom wood accumulations. Furthermore, mobilized wood

pieces in steep headwaters are often retained by boulders and rock

outcrops enhancing step-pool development (Andreoli et al., 2007;

Comiti et al., 2008; Curran & Wohl, 2003; Faustini & Jones, 2003;

Mao et al., 2008; Scott et al., 2014; Seixas et al., 2020), inducing

increases in step frequency (Gomi et al., 2003), and thus increases in

the presence of step-step and step-pool channels.

In lower gradient headwater channels, bank erosion and tree fall

are the main wood input mechanisms and trees become the main con-

trols on the retention of mobile wood (i.e., by tree roots, standing
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trees, fallen trees, very large wood pieces, Gurnell, 2003; Hawley &

MacMannis, 2019). All wood can induce geomorphological responses,

but accumulations on river channel beds, especially when the wood

spans the entire channel width, induce a wide range of responses

including the creation of upstream (dammed), lateral (forced) and

downstream (plunge) pools, riffles, mid-channel and side bars,

and complex patterns of bank scour, bed sediment sorting and bed-

margin aggradation (Cordova et al., 2007; Gurnell & Hill, 2022;

Kail, 2003; Webb & Erskine, 2005). In lower gradient, less confined

reaches of steep headwater streams and more generally along low-

gradient, unconfined, headwater streams, in-channel wood accumula-

tions can induce channel migration, overbank flows and the develop-

ment of floodplain geomorphological features (Wohl, 2011) such as

chutes and cutoffs (Webb & Erskine, 2003), networks of perennially

and ephemerally flowing side channels (Sear et al., 2010), and complex

sedimentation patterns (Jeffries et al., 2003).

Floodplain rivers

Research on the geomorphological impacts of predominantly dead

wood in lower gradient, floodplain rivers illustrates how wood accu-

mulations that do not span the channel can have highly variable geo-

morphological effects (Abbe & Montgomery, 2003; Gurnell

et al., 2002). In large single-thread channels, wood tends to accumu-

late along the channel margins, often preferentially around bends. Lin-

ear wood accumulations may accumulate on point bars along inner

banks, initiating scroll bar development, or within the riparian wood-

land on outer bank tops, deflecting overbank flows and inducing scour

and ridge formation. More compact wood accumulations may form

around individual floodplain trees inducing the formation of fine

sediment lenses in the lee of affected trees, or at the entry to chute

channels, inducing plunge pool formation and chute siltation. Along

multi-thread braided and bedrock systems, wood accumulates around

obstacles such as bars, bedrock irregularities or living trees growing

on the river bed, inducing local deposition of fine sediment and, on

braided systems, scour pool development (Gurnell et al., 2001;

Parsons et al., 2006; Pettit et al., 2005; Pettit & Naiman, 2006). In

more stable, anastomosing systems, log jams can span individual chan-

nels, inducing avulsions and channel switching (e.g., Phillips, 2012).

However, as rivers become larger, it is the interaction between wood

and trees that increasingly governs geomorphological effects, rather

than the impact of dead wood alone. The newest directions in dead

wood research since 2000 have focused on such wood-tree

interactions.

5.2.3 | Linking wood and plants

At the scale of individual wood pieces or accumulations, wood can

retain plant propagules to support vegetation regeneration (Pettit

et al., 2005; Pettit & Naiman, 2006). Tree seedlings can survive and

establish on decaying wood (Marx & Walters, 2008; Orman

et al., 2016; Zielonka, 2006), eventually contributing to a range of flu-

vial geomorphological features if the wood is located in the river

channel or on its margins. Fine sediment retained in and around wood

jams often incorporates diverse propagule banks (Osei et al., 2015a),

whose germination can lead to the development of in-channel plant

cover (Francis et al., 2008); further sediment retention; the develop-

ment of vegetated bars and benches; and eventually channel migra-

tion (Osei et al., 2015b). Furthermore, wood pieces from some tree

species can sprout (e.g., Opperman et al., 2008), providing a very inti-

mate link between wood and trees that influences wood behaviour

and induces and accelerates landform development. These processes

are explored in greater detail in Section 5.3.

At a larger spatial scale, as illustrated by research on the Queets

River, Washington, US, dead wood contributes to vegetation succes-

sion (Naiman et al., 2010) and can drive a complete cycle of landform

development and forest dynamics. Very large wood pieces and accu-

mulations within channels and channel margins influence channel pat-

terns and landform development, including the development of

elevated landforms across the valley bottom (Abbe &

Montgomery, 2003; O'Connor et al., 2003; Van Pelt et al., 2006). In

particular, major wood accumulations can become incorporated into

the floodplain to form ‘hard spots’ (Montgomery & Abbe, 2006) that

are extremely stable and so support the long-term development of

forest patches. When these mature forest patches are eventually

eroded, they contribute very large wood pieces to the river, sustaining

a closely coupled ‘large wood cycle’ (Collins et al., 2012). Although

this example refers to the dynamics of large dead wood, similar pro-

cesses are observed in rivers whose wood may sprout. These

processes are explored in Section 5.3.

5.3 | Riparian and aquatic plants

5.3.1 | Integrative concepts and frameworks

Recognition of the importance of sprouting wood for fluvial biogeo-

morphology has been a key theme since 2000 and has led to the

development of several integrative concepts and frameworks.

Working on the gravel bed, braided Tagliamento River, Italy,

Edwards et al. (1999) considered the ecological importance of islands

as the product of the interaction between the fluvial regime and the

dominant plants, the Salicaceae. Gurnell et al. (2001, 2002, 2005) then

focused on the biogeomorphological role of the Salicaceae on the

same river. They showed how the protection of riparian tree seedlings

by wood was fundamental to initiating vegetation establishment on

gravel bars. However, they showed that sprouting wood gave seed-

lings the greatest early protection and accelerated fine sediment

retention. Indeed, sprouting wood was key to the aggradation and

reinforcement of small (pioneer) islands supporting a diverse vegeta-

tion cover and complex mosaic of surrounding pool and bar habitats.

This island model (Gurnell et al., 2001) has subsequently been refined

in three ways. First, Gurnell and Petts (2006) identified areas where

the aggregate physical conditions are most likely to promote pioneer

island development, coalescence into established islands, and attach-

ment to the floodplain. Second, Gurnell and Bertoldi (2020) expanded
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the original model to incorporate the dependence of the growth per-

formance of pioneer woody vegetation on moisture availability and

the dependence of vegetation survival and establishment upon ‘Win-

dows of Opportunity’ (sensu Balke et al., 2011, 2014) between flow

disturbances. Third, Bertoldi and Gurnell (2020) illustrated how differ-

ent pioneer woody plant species can provide complementary roles in

driving island development within spatio-temporal windows of estab-

lishment opportunities.

Corenblit et al. (2007b) proposed the integrative ‘fluvial biogeo-
morphic succession’ concept. This includes four temporal stages of

reciprocal interactions among woody plants and fluvial processes:

geomorphic, pioneer, biogeomorphic, and ecologic stages. These rep-

resent the changing balance between plants and fluvial processes as

plants establish and become increasingly influential and physical pro-

cesses less influential. Several subsequent papers illustrate and

develop the concept in diverse biogeographical settings

(e.g., Corenblit et al., 2009, 2011, 2015a). The fluvial biogeomorphic

succession has also been incorporated into an ‘evolutionary biogeo-

morphology’ that considers the evolution of organisms, ecosystem

structure and function, and landform organization at the Earth's sur-

face over very long timescales (e.g., Corenblit et al., 2021, 2015b;

Steiger & Corenblit, 2012).

Since 2000, research related to the above integrative concepts

has highlighted many aspects of plant–fluvial process interactions in

varied biogeographical settings. Research on contemporary and recent

interactions includes an innovative model of neotropical carbon

pumping (Salerno et al., 2023); regional investigations of different bio-

geomorphological interactions (e.g., Bätz et al., 2015, 2016; Belletti

et al., 2015; Räpple et al., 2017, Stromberg et al., 2010a); and at-a-site

considerations of the combined role of several plant species

(e.g., Allen et al., 2018; Corenblit et al., 2018; Hortobágyi et al., 2018;

Kim & Lee, 2022). Research concerned with extremely long time

periods has also stressed the important role of plants in the develop-

ment of river environments (e.g., Brooks et al., 2003; Davies

et al., 2022; Davies & Gibling, 2010; Gibling & Davies, 2012; Tooth

et al., 2008).

All of this integrative research considers the central role of certain

plant species as physical ecosystem engineers (e.g., Gurnell, 2014)

with a predominant focus on woody riparian plants. However,

non-woody species are also being recognized as physical ecosystem

engineers of river environments, including some aquatic macrophyte

species (e.g., Clarke, 2002; Gurnell et al., 2013; Gurnell &

Bertoldi, 2022b; James et al., 2002; Schoelynck et al., 2012). The com-

bination of aquatic and riparian plants allows plant physical ecosystem

engineering to be considered across a continuum of river geomorpho-

logical styles from anastomosing through stable to active meandering,

wandering and braided river types (e.g., Gurnell et al., 2012, 2016b).

Building on early research by Graf (1978, 1982) on the geomorpholog-

ical transformation of rivers in the south-west of the United States as

a result of invasion by Tamarix spp., physical ecosystem engineering

by many non-native invasive species has also received increasing

attention (e.g., Birken & Cooper, 2006; Caruso et al., 2013a, 2013b;

Colleran et al., 2020; Moody & Schook, 2023). This research not only

considers contemporary biogeomorphological adjustments along river

systems but also prospects for future adjustments as climate changes

(e.g., Corenblit et al., 2014b; Fei et al., 2014; McShane et al., 2015;

Murray et al., 2012; O'Briain et al., 2023; Tickner et al., 2001). Table 5

refers to a wide body of research concerning interactions among

plants and fluvial processes in a changing environment, emphasizing

the impacts of climate change, flow regime change and invasions by

non-native plant species.

5.3.2 | Plant traits and physical environmental
controls

According to Laughlin (2014), ‘plants are multifaceted organisms that

have evolved numerous solutions to the problem of establishing,

growing and reproducing with limited resources’ (p. 187). Laughlin

(2014) lists seven plant organs and whole-plant properties or groups

of traits (and their functional relevance): height (competition for light);

leaves (light interception, gas exchange, transport); stems (transport,

support, defence, storage); roots (absorption, transport, support, stor-

age); flowers (sexual reproduction); seeds (dispersal, dormancy, estab-

lishment); life history (vegetative reproduction, lifespan). In the

context of fluvial biogeomorphogy, the focus needs to be on traits

that enable plants to survive and complete their life cycles within

highly disturbed river environments (e.g., Bywater-Reyes et al., 2022;

Karrenberg et al., 2002; O'Hare et al., 2016; Tabacchi et al., 2019).

Thus researchers have focused on differential responses to inundation

(e.g., McCoy-Sulentic et al., 2017), flood disturbance (e.g., Kyle &

Leishman, 2009), flood sequencing (Fernandez et al., 2021), and plant

scour and burial (e.g., Catford & Jansson, 2014; Xiong et al., 2001). A

recent review by Corenblit et al. (2024) presents a framework for

future research developments in this area.

In this section we consider traits that enable plants to survive and

engineer river environments (Table 5) under five broad themes:

(a) reproductive strategies, propagule viability and dispersal;

(b) propagule deposition-retention and seed banks; (c) propagule

germination-sprouting and early establishment; and key traits of (d) the

above-ground and (e) below-ground biomass of engineer plants.

Reproductive strategies, propagule viability and dispersal

Plants reproduce sexually through the production and germination of

seeds, but many species can also reproduce asexually/vegetatively,

whereby fragments of living plants can sprout to form new plants.

Sexual reproduction introduces genetic diversity while asexual or

clonal reproduction expands the population and can introduce diver-

sity in its physical structure (Rood et al., 2003; Tinscert et al., 2020).

Both of these reproductive strategies are important in river environ-

ments because they provide diversity in the timing of propagule

release, the mechanisms and spatial pattern of dispersal, and the

rapidity with which plants can establish when they are dispersed to

suitable germination/sprouting sites. Building on the biogeomorpholo-

gical assessment of dead wood (Section 5.2), the ability of many ripar-

ian tree species (e.g., the riparian Salicaceae (willows and poplars),
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TABLE 5 Selected publications on the fluvial biogeomorphological role of living plants in the 21st Century.

Perspective Authors and dates

Integrating concepts and frameworks

Millar (2000), Tabacchi et al. (2000), Gurnell et al. (2001, 2005, 2012, 2013, 2016b), Tickner et al. (2001),

Clarke (2002), Gurnell and Petts (2002, 2006), James et al. (2002), Brooks et al. (2003), Steiger et al.

(2005), Corenblit et al. (2007a, 2007b, 2008, 2009, 2010, 2014a, 2014b, 2015a, 2015b, 2018, 2021),

Gurnell (2007b, 2014), Huang and Nanson (2007), Bornette et al. (2008), Tooth et al. (2008), Corenblit &

Steiger, 2009, Davies and Gibling (2009, 2010), Osterkamp and Hupp (2010), Stromberg et al. (2010b),

Gibling and Davies (2012), Schoelynck et al. (2012), Steiger and Corenblit (2012), Stoffel and Wilford

(2012), Curran and Hession (2013), Polvi and Wohl (2013), Fei et al. (2014), Moggridge and Higgitt

(2014), Bätz et al. (2015), Belletti et al. (2015), Vesipa et al. (2015), Hupp et al. (2016), Kim and Kupfer

(2016), Räpple et al. (2017), Allen et al. (2018), Hortobágyi et al. (2018), Politti et al. (2018), Polvi and

Sarneel (2018), Castro and Thorne (2019), Jerin and Phillips (2020), Bendix and Stella (2022), Bertoldi &

Gurnell (2020), Gurnell and Bertoldi (2020, 2022b), Davies et al. (2022), Kim and Lee (2022), Merritt

(2022), O'Briain et al. (2023), Salerno et al. (2023).

Plant traits and physical environmental controls

Reproductive strategies, propagule

viability and dispersal

Andersson et al. (2000), Guilloy-Froget et al. (2002), Boedeltje et al. (2003, 2004), Karrenberg and Suter

(2003), Rood et al. (2003), Combroux and Bornette (2004), Riis and Sand-Jensen (2006), Stella et al.

(2006), Gurnell (2007b), Nilsson et al. (2010), Mouw et al. (2013), Sarneel (2013), Saumel and Kowarik

(2013), Kehr et al. (2014), Sarneel et al. (2014a, 2019), González et al. (2016), Fraaije et al. (2017),

Shumilova et al. (2019), Tinscert et al. (2020), Mazal et al. (2021), Fryirs and Carthey (2022).

Propagule deposition-retention and

seed banks

Combroux et al. (2001), Goodson et al. (2001, 2002, 2003), Holzel and Otte (2001), Pettit and Froend

(2001), Merritt and Wohl (2002), Nilsson et al. (2002), Tabacchi et al. (2005), Gurnell et al. (2006a,

2006b, 2007, 2008), Leyer (2006), Polzin and Rood (2006), Vogt et al. (2006, 2007), Engström et al.

(2009), Chambert and James (2009), Moggridge et al. (2009), Stromberg et al. (2009), Moggridge and

Gurnell (2010), Riis and Baattrup-Pedersen (2011), Baattrup-Pedersen et al. (2013), Yoshikawa et al.

(2013), O'Donnell et al. (2014, 2015a, 2015b), Corenblit et al. (2016), Dawson et al. (2017), Pereira et al.

(2021).

Propagule germination-sprouting and

early establishment

Barrat-Segretain and Bornette (2000), Amlin and Rood (2001, 2002), Kalischuk et al. (2001), Barsoum

(2002), Dixon et al. (2002), Dixon (2003), Francis et al. (2005, 2006), Woods and Cooper (2005), Francis

and Gurnell (2006), Leyer (2006), Stenvall et al. (2006), Capon (2007), Francis (2007), Moggridge and

Gurnell (2009), Nakai et al. (2009), Predick et al. (2009), González et al. (2010), Lowe et al. (2010),

Sarneel et al. (2014b), Riis et al. (2014), Wintenberger et al. (2017), Bigelow et al. (2020).

Above-ground biomass James et al. (2002), Järvelä (2002), Stephan and Gutknecht (2002), Riis and Biggs (2003), Sand-

Jensen (2003, 2008), Bouma et al. (2005), Green (2005), O'Hare et al. (2007), Wilson (2007), Franklin

et al. (2008), Riis et al. (2008), Sand-Jensen and Pedersen (2008), Bociag et al. (2009), Folkard (2009),

Janauer et al. (2010), Bal et al. (2011), Puijalon et al. (2011), Stone et al. (2011), Albayrak et al. (2012),

Miler et al. (2012), Neary et al. (2012), Nepf (2012), Zhu et al. (2012), Västilä and Järvelä (2014),

Manners et al. (2015), Diehl et al. (2017b), Hortobágyi et al. (2017a), Nadal-Sala et al. (2017), Cornacchia

et al. (2018), Butterfield et al. (2020), Zhu and Tsubaki (2022).

Below-ground biomass Abernethy and Rutherfurd (2000, 2001), Toledo and Kauffman (2001), Schenk and Jackson (2002), Simon

and Collison (2002), Karrenberg et al. (2003), Wynn et al. (2004), Gyssels et al. (2005), Kiley & Schneider

(2005), Schutten et al. (2005), De Baets et al. (2007), Dupuy et al. (2007), Snyder and Williams (2007),

Danjon and Reubens (2008), Docker and Hubble (2008), Piotrowski et al. (2008), Pregitzer (2008),

Brassard et al. (2009), Burylo et al. (2009, 2012), McNickle et al. (2009), Tanaka and Yagisawa (2009),

Wang et al. (2009), Wiehle et al. (2009), Guswa (2010), Pollen-Bankhead and Simon (2010), Liffen

et al. (2011, 2013a, 2013b), Pollen-Bankhead et al. (2011), Rood et al. (2011a), Zapater et al., 2013,

Bardgett et al. (2014), Edmaier et al. (2014), Mardhiah et al. (2014), Polvi et al. (2014), Brunner et al.

(2015), Bywater-Reyes et al. (2015), Tron et al. (2015), Vennetier et al. (2015), Zanetti et al. (2015),

Pawlik et al. (2016), Shouse and Phillips (2016), Vannoppen et al. (2016), Bankhead et al. (2017), Hales

and Miniat (2017), Holloway et al. (2017a, 2017b, 2017c), Jablkowski et al. (2017), Gurnell et al. (2018),

Andreoli et al. (2020), Yu et al. (2020), Balcombe et al. (2021), Stamer et al. (2024).

Interactions among plants and fluvial processes and forms within different environmental settings

Dykaar and Wigington (2000), Millar (2000), Tooth (2000), Tooth and Nanson (2000), Rosales et al. (2001),

Friedman and Lee (2002), Gradzinski et al. (2003), Anderson et al. (2004), Griffin and Smith (2004),

Micheli et al. (2004), Rutherfurd and Grove (2004), Sweeney et al. (2004), Tooth and McCarthy (2004a,

2004b), Allmendinger et al. (2005), Cooperman and Brewer (2005), Beechie et al. (2006), Gurnell et al.

(2006c), Pettit and Naiman (2006), Pettit et al. (2006), Robertson (2006), Rodrigues et al. (2007),

Dunkerley (2008), McBride et al. (2008), Rosales et al. (2008), Zanoni et al. (2008), Atger et al. (2009),

Erskine et al. (2009), Jansen and Nanson (2010), Bertoldi et al. (2011b), Charron et al. (2011), Parker

et al. (2011), Pietsch and Nanson (2011), Rood et al. (2011b), Horn et al. (2012), Marchetti et al. (2013),

(Continues)
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Karrenberg et al., 2003) to sprout when uprooted and dispersed is

fundamental to their survival and ability to act as physical engineers

of river systems (Gurnell, 2014; Gurnell et al., 2001, 2005).

The biogeomorphological relevance of sexual reproduction along

river corridors is well illustrated by the riparian Salicaceae. These pio-

neer woody species require moist, unvegetated riverine sediments for

successful germination/sprouting (Guilloy-Froget et al., 2002;

Karrenberg et al., 2003) and so their seed release period is attuned to

the annual flow regime, particularly periods of flow recession during

late spring to early summer that gradually expose moist, bare riverine

sediments. While this broad pattern is encapsulated in Mahoney and

Rood's (1998) ‘Recruitment Box’ model, research since 2000 has

revealed increasing species-specific information. All riparian Salica-

ceae species produce enormous quantities of small light seeds that

can be dispersed by wind or water, but different species flower and

release seeds at different times and their seed release extends over

different time periods. These species exhibit trade-offs between seed

mass, the number of seeds produced, the length of the seed release

period, and the length of the period over which the seeds remain via-

ble (e.g., González et al., 2016; Karrenberg & Suter, 2003). These

traits minimize the chances of hybridization while maximizing the

opportunity for some viable seeds to reach suitable sites

(i.e., ‘seedling safe sites’, Polzin & Rood, 2006) to successfully germi-

nate, survive disturbances and reach maturity. Asexual reproduction

complements sexual reproduction, since it can occur in any season,

take advantage of any flow pulses for dispersal, and, if the propagules

are dispersed to suitable sites and remain viable, can lead to sprouting

and the establishment of new plants. Asexual reproduction is an

important strategy for aquatic (e.g., Boedeltje et al., 2003;

Combroux & Bornette, 2004; Riis & Sand-Jensen, 2006) as well as

riparian engineer species.

Although there are numerous mechanisms that can disperse sex-

ual and asexual propagules from the parent plant, the two key mecha-

nisms within river corridors are wind (anemochory) and water

(hydrochory). While anemochory can disperse small light seeds over

long distances, hydrochory is more likely to transfer propagules of

engineer species to suitable germination/sprouting sites. Hydrochory

often follows anemochory as a secondary dispersal mechanism. For

either of these mechanisms, analogies can be drawn with the trans-

port of sediment particles (Gurnell, 2007b; Yoshikawa et al., 2013)

whereby propagules from different species can adopt different dis-

persal pathways according to their size, shape and density

(e.g., Boedeltje et al., 2003; Carthey et al., 2016; Nilsson et al., 2002;

Sarneel et al., 2014a; Saumel & Kowarik, 2013).

Propagule deposition-retention and seed banks

Following dispersal, propagules are deposited. If they have only a

short period of viability, their fate depends on the suitability of the

depositional site for germination/sprouting or on rapid re-mobilization

and transfer to a more suitable site. However, many riparian and

aquatic plant species produce propagules that remain viable for sev-

eral months to a year or more (Fenner & Thompson, 2005), allowing

them to accumulate and form seed/propagule banks at depositional

sites (Goodson et al., 2001; Riis & Baattrup-Pedersen, 2011). There is

increasing evidence that the hydrodynamic properties of the propa-

gules influence the composition of propagule banks located at differ-

ent elevations within the river channel and riparian zone

(e.g., Goodson et al., 2002; Gurnell et al., 2006a, 2008) and in associa-

tion with different depositional-morphological environments

(Combroux et al., 2001; Corenblit et al., 2016; Pereira et al., 2021). In

a further parallel with sediment dynamics, propagule banks incorpo-

rating numerous riparian species accumulate in sheltered sites on the

TABLE 5 (Continued)

Perspective Authors and dates

Miku�s et al. (2013, 2019), Montero and Latrubesse (2013), Perona et al. (2014), Slocombe and Davis

(2014), Wintenberger et al. (2015), Zen et al. (2017), Gregory et al. (2019), Gurnell et al. (2019), Hawley

and MacMannis (2019), Jerin (2019, 2021), Milan et al. (2020).

Interactions among plants and fluvial processes and forms in a changing environment

Merritt and Cooper (2000), Piégay et al. (2000), Pearce and Smith (2001), Pettit et al. (2001), Steiger et al.

(2001), Stromberg (2001a, 2001b), Liébault and Piégay (2002), Nilsson and Svedmark (2002), Amlin and

Rood (2003), Beschta (2003), Samuelson and Rood (2004), Auble et al. (2005), Lite and Stromberg

(2005), Pataki et al. (2005), Stromberg et al. (2005, 2007, 2010a), Beschta and Ripple (2006), Birken and

Cooper (2006), Cooper et al. (2006), Webb and Leake (2006), Ahna et al. (2007), Alvarez-Uria and

Korner (2007), Braatne et al. (2007), DeWine and Cooper (2007), Rood et al. (2007a, 2007b, 2008),

Engström et al. (2009), Stallins et al. (2010), Cunningham et al. (2011), Dean and Schmidt (2011), Greet

et al. (2011, 2012, 2013), Guilloy et al. (2011), Hall et al. (2011), Cooper and Andersen (2012), González

et al. (2012), Murray et al. (2012), Rivaes et al. (2013), Kominoski et al. (2013), Meier et al. (2013), Stella

et al. (2013), Wilcox and Shafroth (2013), Garssen et al. (2014, 2015), Manners et al. (2014), Reynolds

et al. (2014), Hough-Snee et al. (2015), Lawson et al. (2015), Lind and Nilsson (2015), McShane et al.

(2015), Duquette et al. (2016), Foard et al. (2016), Gurnell and Grabowski (2016), Perkins et al. (2016),

Stromberg and Merritt (2016), Thapa et al. (2016), Čuda et al. (2017), Van Looy and Piffady (2017),

Martínez-Fernández et al. (2018), Colleran et al. (2020), Dong (2022), Matte et al. (2022), Viles and

Coombes (2022), Butterfield et al. (2023), Moody and Schook (2023), O'Briain et al. (2023), Wieting

et al. (2023).

Note: Publications are listed in chronological order with respect to each perspective.
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river bed (Gurnell et al., 2007), providing temporary storage for long-

lived propagules until flows mobilize and transfer them to more suit-

able germination sites. Sediment dynamics and calibre appear to com-

bine with propagule longevity to produce different subsurface,

vertical, viable propagule profiles (e.g., O'Donnell et al., 2014, 2015b).

Propagule germination-sprouting and early establishment

Successful germination or sprouting and early growth performance

depend on species responses to environmental conditions. In addition

to field observations (e.g., Kalischuk et al., 2001; Leyer, 2006), field

and laboratory experiments have illustrated varying survival and

growth responses of seedlings and cuttings of different species to site

elevation (depth to groundwater), inundation regime (e.g., Amlin &

Rood, 2001), rate of water table decline (e.g., Francis et al., 2005;

González et al., 2010), substrate calibre (e.g., Francis & Gurnell, 2006;

Woods & Cooper, 2005) and site exposure/shelter (Moggridge &

Gurnell, 2009). Overall, asexual propagules tend to grow more quickly,

allowing them to better resist disturbance and survive

(Barsoum, 2002) and their survival and growth performance is

affected by the size (internal resources) of the propagule

(e.g., Francis, 2007). Experiments with aquatic plant fragments also

suggest that the type of fragment and season of dispersal affect their

development (Barrat-Segretain & Bornette, 2000). Such experiments

not only illustrate the range of conditions within which a species can

germinate/sprout and survive, but also the ways in which the young

plants adapt their above- and below-ground growth performance and

architecture within this range. Furthermore, the changing above-

and below-ground biomass of different plant species as they grow

also display adaptations that support the survival of plants in dis-

turbed riverine environments and their ability to act as physical

engineers.

Above-ground biomass

The above-ground biomass of riparian and aquatic engineer species

varies in height, architecture and flexibility according to species, plant

age and history. The flexibility of the above-ground biomass of woody

riparian plants tends to decrease with plant age, whereas for aquatic

plants there are small seasonal variations in flexibility, but the main

variations occur among species. Puijalon et al. (2011) recognized a

trade-off among aquatic plant species according to whether they are

flexible and adjust their form to minimize the forces they encounter

or they are relatively rigid with a high resistance to breakage. During

inundation, any flow-induced re-configuration of flexible vegetation

changes its flow resistance, altering the likelihood of plant uprooting,

but also altering the shear stresses imposed on the river bed below

and around the plants and thus the likelihood of sediment deposition

or scour. As a result of differences in their flexibility and

re-configuration potential, aquatic plant species typically occupying

particular areas of a river channel according to local hydraulic condi-

tions (e.g., Janauer et al., 2010; Riis & Biggs, 2003). Beyond the scale

of an individual plant or plant patch, groups of plant patches typically

display spatial patterns that optimize flow velocity, turbulence and

drag on individual patches (Cornacchia et al., 2018). Flume

experiments have investigated the hydraulic and sedimentation

effects of these plant traits in the context of riparian (e.g., Manners

et al., 2015; Stone et al., 2011; Västilä & Järvelä, 2014; Zhu &

Tsubaki, 2022) and aquatic species (e.g., Miler et al., 2012;

Nepf, 2012; Zhu et al., 2012). Flow-plant interactions vary from leaf

and plant, through patch to reach scales (e.g., Folkard, 2009;

Green, 2005) driving different scales and distributions of sediment

deposition and scour.

Below-ground biomass

The above-ground biomass of a plant can only interact with flows of

water and sediment if the plant resists uprooting and survives sedi-

ment deposition and erosion events. Plant survival depends heavily

on the growth performance, architecture, strength and overall resis-

tance to uprooting of its below-ground biomass. From a broad biogeo-

morphological perspective, riparian root biomass varies with

vegetation composition, season and hydrological regime (Kiley &

Schneider, 2005); the structural type of riparian vegetation (Wynn

et al., 2004); and channel geometry, particularly depth (Toledo &

Kauffman, 2001). The root architecture and strength of woody ripar-

ian plants have the most profound effect on biogeomorphological sed-

iment retention and landform development along river margins and

exposed areas of the river bed (e.g., bars, islands). Tree root architec-

ture is enormously variable (see reviews by Danjon & Reubens, 2008;

Pregitzer, 2008; Schenk & Jackson, 2002) with root systems incorpo-

rating a mix of coarser, perennial roots that anchor trees (Burylo

et al., 2009) and finer, more ephemeral roots that forage for resources

(Comas et al., 2013; McNickle et al., 2009). The resulting root archi-

tecture varies according to tree species and environmental conditions

(Brassard et al., 2009). The relative influence of species and environ-

mental conditions changes with increasing environmental distur-

bances. Tree root systems become particularly complex within

dynamic river corridors, where they provide anchorage and forage for

resources in continuously changing environmental conditions. Ripar-

ian tree roots display species-specific traits but also strong responses

to moisture conditions (Guswa, 2010; Rood, Bigelow, & Hall, 2011a),

soil and sediment type (Zanetti et al., 2015) and disturbance pressures

(e.g., Hortobágyi et al., 2017a; Stamer et al., 2024). For example, Hol-

loway et al. (2017a) found statistically significant changes in coarse

and fine root density and root-area ratio for a single species (Populus

nigra) according to sediment calibre, moisture content and depth.

Because many riparian tree species, including the Salicaceae, repro-

duce vegetatively from fragments, these species can also produce net-

works of adventitious roots and new stems by suckering. These

processes give rise to highly complex underground structures that

evolve as the plants experience flood stresses and sediment deposi-

tion. Furthermore, entire stands of genetically identical individuals

(clones) often develop as a result of vegetative reproduction, and their

roots are susceptible to grafting and thus developing even more com-

plex root structures (Holloway et al., 2017a, 2017b). Additional

below-ground structures that influence the stability and erosion resis-

tance of sediments around root systems are mycorrhizae, which

encourage soil aggregation (Mardhiah et al., 2014; Piotrowski
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et al., 2008). Overall, root strength and architecture combine to rein-

force aggrading landforms and protect landforms against fluvial ero-

sion (e.g., Abernethy & Rutherfurd, 2000, 2001; Docker &

Hubble, 2008; Simon & Collison, 2002; Vannoppen et al., 2016; Yu

et al., 2020).

The below-ground biomass of aquatic plants is also very impor-

tant from a biogeomorphological perspective. Aquatic plants display

strong seasonal changes in above-ground biomass, in many cases los-

ing all foliage in winter but then showing a seasonal pattern of growth

in spring and summer followed by senescence in autumn. This sea-

sonal pattern is accompanied by changes in below-ground biomass

such that the below-ground organs penetrate and stabilize any sedi-

ments that accumulate around the plants. A comprehensive study of

the emergent species, Sparganium erectum (branched bur-reed; Liffen

et al., 2011, 2013a, 2013b) revealed seasonal patterns in above-

ground biomass (quantity, height, stem diameter, stem density) and

below-ground biomass (quantity, depth profile, mix of roots and rhi-

zomes). These seasonal patterns were reflected in changes in plant

uprooting resistance, and leaf and rhizome strength. In particular, dur-

ing the winter when no foliage was present to protect any summer-

deposited sediments, living roots also disappeared but rhizomes

remained, penetrating and binding together the exposed upper layers

(20 to 50 cm depth) of the bed sediments. It is likely that other aquatic

plants, especially emergents, show a similar pattern and drive reach-

scale flow velocity and fine sediment retention patterns (Gurnell

et al., 2006c), eventually leading to reach-scale landform development

and terrestrialization (Gurnell & Bertoldi, 2022b).

5.3.3 | Interactions among plants and fluvial
processes and forms within different environmental
settings

Interactions among plants and fluvial processes are widely recognized

at the landform scale. There are general associations between roots

(e.g., Pollen-Bankhead & Simon, 2010) and above-ground biomass

(e.g., Malkinson & Wittenberg, 2007) and bank stability. Trees, in par-

ticular, have noticeable effects on bank form including the presence

of undercutting and buttressing (e.g., Pizzuto et al., 2010;

Rutherfurd & Grove, 2004) and on channel dimensions (e.g., McBride

et al., 2008). In headwater streams, tree roots can span the channel

bed, affecting the longitudinal channel profile by acting as grade con-

trol structures that retain sediments, create steps, and induce in-

channel habitats such as pools (e.g., Hawley & MacMannis, 2019). In

larger river channels, following Gurnell et al. (2001, 2005), trees have

been shown to play a key role in the development and maintenance

of vegetated bars and islands in diverse river environments

(e.g., Miku�s et al., 2019; Rodrigues et al., 2007; Rood, Goater,

et al., 2011b; Wintenberger et al., 2015).

At reach and landscape scales, vegetation interacts with fluvial

processes in many different ways.

In ephemerally flowing streams, Friedman and Lee (2002)

observed cycles of sudden channel widening during flash floods and

then gradual narrowing between floods in streams located in Colo-

rado, US. The inter-flood narrowing phase is accelerated by vegeta-

tion colonization, especially by Salicaceae spp.. Research in Australia

has revealed engineering of anabranching systems by woody shrubs

(Tooth & Nanson, 2000). The shrubs drive ridge development in the

channel bed through lee-side sediment accretion. Complex ana-

branching patterns evolve as these ridges lengthen, interact, coalesce

and funnel flows and transported sediments.

Bed rock rivers can also show characteristic plant-related land-

forms. In a large bedrock channel of the Sabie River, South Africa, Pet-

tit et al. (2006) and Pettit and Naiman (2006) observed numerous

wood piles following a major flood. Most were retained by living,

standing or root-secured, toppled trees. The piles retained flood-

transported sediment and seeds, forming pioneer landforms around

which vegetated alluvial mounds evolved and contributed to an

increasingly multi-thread bedrock macrochannel. In an anabranching

mixed bedrock-alluvial reach of the Orange River, South Africa, Tooth

and McCarthy (2004a) observed the development of stable alluvial

islands between flowing channels whose positions reflected the pat-

tern of joints, fractures and foliations in the bedrock. Thus, the posi-

tion of the islands was controlled by physical factors but riparian

vegetation played an important role in island survival and growth.

Milan et al. (2020) investigated a bedrock-influenced, anastomosing

reach of the Sabie River, South Africa, and demonstrated how topo-

graphic lows in the bedrock can become topographic highs as sedi-

ments retained by vegetation produce bedrock-cored islands in the

later stages of sediment accumulation. Jerin and Phillips (2020)

described ‘biogeomorphic keystone’ species in a small incised bedrock

system in Kentucky, US. They noted three species-specific biogeo-

morphological impacts: biogeomorphological pool formation; root-

bank-associated bioprotection; and avulsion island development, also

linked to bioprotection. The pools develop within areas of root-

induced channel bed weathering by American sycamore. American

sycamore and chinquapin pine developed root banks that prevented

bank erosion. The same tree species created bioprotected stable

patches that formed the core of avulsion-cut islands.

Braided river systems can exhibit a variety of vegetated patches

but only those supported by erosion-resistant species, particularly

riparian tree species, develop into significant island landforms in these

highly disturbed systems. A key characteristic of these vegetated

landforms is that they are far from permanent, but because they can

form quite rapidly, they are a characteristic feature of the habitat

mosaic of many braided systems. For example, Zanoni et al. (2008)

observed two scales of change on a braided reach of the Tagliamento

River, Italy over two centuries. The first was the changing width of

the braid channel and the second was the continual appearance and

disappearance of islands. While the ratio of channel area to island area

remained the same, dissection and building islands appeared in differ-

ent proportions through sediment retention by trees and the incorpo-

ration of parts of the forested floodplain by avulsions. Islands typically

survived for a maximum of ca. 20 to 25 years, and avulsions and

attachment of islands to the floodplain drove channel width adjust-

ments. Changes in flow energy can affect the extent and nature of
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vegetated landforms within braided systems. For example, periods

of several years without major floods on the Tagliamento River, Italy

have seen the establishment of strips of tree seedlings along the mar-

gins of low flow channels, which progressively trap and retain fine

sediments to initiate ridged landforms similar to levées (Bertoldi &

Gurnell, 2020). This ridge-forming process plus the coalescence of

ridges and islands is likely to be important as vegetation contributes

to channel planform transitions from braided to wandering or

meandering patterns. On the Platte River, Nebraska, US, where flow

regulation has progressively reduced the energy and frequency of

physical disturbances, accelerated vegetation colonization of bars has

driven the development of islands and the transformation of the riv-

er's planform from a dynamic braided system to a stable anabranching

system (Horn et al., 2012; Johnson, 1997). Griffin and Smith (2004)

describe even stronger and opposite dynamics during the transforma-

tion of a single-thread river, located in Colorado, US, into a braided

system by an extreme flood. The flood destabilized the floodplain by

removing its shrub cover, causing ‘floodplain unravelling’ and the

establishment of a braided channel.

Meandering systems also illustrate the biogeomorphological

impacts of riparian vegetation. Vegetation frequently controls rates of

both outer (cut) bank retreat and inner bank deposition (Allmendinger

et al., 2005; Parker et al., 2011) but it also affects bank forms. The cut

bank can display vertical and undercut profiles depending on rooting

depth to bank height ratios. The inner bank can display scroll bars

formed by sediment deposition around ridges of deposited, often

sprouting, trees (Zen et al., 2017), or benches stabilized by trees

(Erskine et al., 2009).

Heavily vegetated anabranching (anastomosing) systems are an

extremely low-energy river type that develops on poorly drained

floodplains. For example, Gradzinski et al. (2003) comment that the

impact of vegetation on the anastomosing upper Narew River in

Poland is overwhelming. Here in the long term, vegetation has built an

erosion-resistant peat layer that stabilizes channel banks, while in the

shorter term, aquatic plants trap bed material, aggrading the channel

bed to produce channel blockages and induce avulsions that create

new channels. Tooth and McCarthy (2004b) describe the changing

role of marginal sedges and grasses rooted in peat underlain by

unconsolidated sediment in the wetlands of the Okavango Delta,

Botswana. As water leaks into the margins from the river channels,

discharge decreases downstream and splits into numerous distributary

channels. The upstream channels actively meander and migrate by

scouring the basal sediments and undermining the marginal vegeta-

tion. Downstream, the distributaries form an anastomosing system of

straight stable channels where the vegetated banks resist erosion by

the decreasing flows and so prevent bank scour and thalweg

meandering.

The above brief descriptions of the biogeomorphological role of

vegetation along a gradient of river types of decreasing flow energy

have been integrated into conceptual diagrams and illustrative graphs

by several researchers. These attempt to link engineer plants to land-

forms within river environments of different energy and planform.

Examples include Millar (2000), Beechie et al. (2006), Gurnell

et al. (2012, 2016b).

Finally, in all of the above cases where plants actively interact

with fluvial processes, it is important to recognize temporal hysteresis

in those interactions. Plants create landforms that can only be

removed by greater disturbances than those that contribute to their

formation. The longer the landforms persist and evolve, the greater

the disturbance required for landform removal. Therefore, landform

construction and destruction are both driven by vegetation interac-

tions with fluvial disturbances and they follow hysteretic sequences

regardless of landform type, river type setting or any transitions

between river types.

5.4 | Advancing techniques

In Section 5.3, reference was made to new techniques where they

were relevant to the discussion. This section considers new tech-

niques that have emerged since 2000 in a more integrated way and,

as in previous sections, we support the text overview with tables cit-

ing a more extensive body of research. We focus on physical experi-

ments (supported by Table 6), mathematical models (supported by

Table 7), and remote sensing.

5.4.1 | Physical experiments

Plants and plant analogues have been used in physical

experiments for many decades. In hydraulic experiments, vegetation

has often been reproduced by artificial elements, ranging from rigid

cylinders to flexible plastic strips (see Vargas-Luna et al., 2016 for a

review). The use of artificial elements often matches the idealized

conditions of laboratory experiments, and better ensures their repro-

ducibility and detailed control of all relevant parameters. Artificial sur-

rogates can also overcome scaling issues by allowing the selection of

specific dimensions and biomechanical properties that represent drag,

elastic, and buoyant forces (Sukhodolov et al., 2022).

In the late 1990s and early 2000s, researchers started to use real

plants to better reproduce the effect of vegetation on the flow field

(e.g., Järvelä, 2002), but also to study other effects related to sedi-

ment transport dynamics and the additional cohesion provided by

roots (Gran & Paola, 2001). Increased recognition of vegetation as

one of the three relevant components of a fluvial system, together

with the growth of the field of ecohydraulics (Rice et al., 2010), stimu-

lated the development of new experiments with real or surrogate veg-

etation that combined river hydraulics, fluvial geomorphology and

stream ecology. This promoted specific studies aimed at exploring

how to use vegetation in laboratory experiments, along with scaling

issues and infrastructural needs (see Thomas et al., 2014). Growing

conditions of different plant species, as a function of temperature,

light and substrate, were also explored to support an informed choice

of species depending on the objectives of the experiments and the
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prototype landscape (Clarke, 2014; Jiang et al., 2009; Lokhorst

et al., 2019; Vettori & Rice, 2020).

Although more complex, the use of real plants and, where possi-

ble, field experiments are crucial. This is because experimental simpli-

fications, especially the use of artificial elements with exactly the

same shape and characteristics and regular patterns, can bias out-

comes by altering the natural physical processes involved in interac-

tions between vegetation and the flow field (Statzner et al., 2006;

Tinoco et al., 2020).

Interactions between flow and vegetation

The introduction of new concepts in fluvial biogeomorphology in the

1990s and early 2000s promoted numerous physical experiments

investigating vegetation-flow-morphology interactions in a controlled

environment. Several experiments focused on the direct effect of vege-

tation on the flow field and sediment flux (Table 6). Although static

(rigid), often cylindrical dowels were still frequently used (Vargas-Luna

et al., 2016), researchers started to reproduce vegetation with more

complex shapes or to use living plants to better understand the role of

stem flexibility and the different effects of leaves and branches

(e.g., Aberle & Järvelä, 2013). In the last decade, laboratory experiments

have also been used to investigate the effect of the flow field on vege-

tation by inducing re-configuration of leaves and branches (e.g.,

Albayrak et al., 2012). In addition to roughness, flume experiments have

also investigated how vegetation can alter sediment transport flux by

decreasing the shear stress acting on the bed, intercepting transported

particles, and therefore affecting both bedload and suspended load

(e.g., Baptist et al., 2007 and Vargas-Luna et al., 2015 for review).

Experiments have demonstrated that vegetation not only strongly

affects the mean velocity but also the vertical velocity profile and tur-

bulence characteristics. For example, Nepf (2012) reviewed several

experimental studies aimed at accurately describing mean and

TABLE 6 Selected publications on physical experiments that reproduce fluvial biogeomorphological interactions in the 21st Century.

Topic Authors and dates

Use of vegetation in laboratory experiments

Jiang et al. (2009), Rice et al. (2010), Clarke (2014), Thomas et al. (2014), Vargas-Luna et al. (2016), Łoboda
et al. (2018), Lokhorst et al. (2019), Vettori and Nikora (2020), Vettori and Rice (2020), Sukhodolov et al.

(2022).

Living vegetation

Vegetation effect on the flow

field

Fathi-Maghadam and Kouwen (1997), Nepf (1999), Kouwen and Fathi-Moghadam (2000), Nepf and Vivoni

(2000), Ghisalberti and Nepf (2002, 2006), Järvelä (2002), Armanini et al. (2005), Baptist et al. (2007),

McBride et al. (2007), Nepf and Ghisalberti (2008), Wilson et al. (2008), Albayrak et al. (2012), Siniscalchi

et al. (2012), Sukhodolov and Sukhodolova (2012), Sukhodolova and Sukhodolov (2012), Aberle and Järvelä

(2013), Cameron et al. (2013), Luhar and Nepf (2013), Neary et al. (2012), Nikora et al. (2013), Västilä et al.

(2013), Västilä and Järvelä (2014), Tinoco et al. (2015), Vargas-Luna et al. (2015), Kitsikoudis et al. (2016),

Chembolu et al. (2019), Shi et al. (2023).

Vegetation effect on sediment flux López and Garcia (1998), Jordanova and James (2003), Baptist et al. (2007), Nepf and Ghisalberti (2008),

Kothyari et al. (2009), Zong and Nepf (2010, 2011), Neary et al. (2012), Yager and Schmeeckle (2013),

Tinoco and Coco (2014, 2016), Le Bouteiller and Venditti (2015), Vargas-Luna et al. (2015), Armanini and

Cavedon (2019), Licci et al. (2019), Bonilla-Porras et al. (2021), Liu et al. (2021), Zhao and Nepf (2021), Xu

et al. (2022).

Vegetation re-configuration Statzner et al. (2006), O'Hare et al. (2007), Luhar and Nepf (2011), Albayrak et al. (2012), Miler et al. (2012),

Siniscalchi and Nikora (2012, 2013), Cameron et al. (2013), Albayrak et al. (2014), Vettori and Nikora (2018).

Vegetation growing conditions Francis et al. (2005), Francis and Gurnell (2006), González et al. (2010), Perona et al. (2012), Crouzy et al.

(2013), Kui et al. (2014), Pasquale et al. (2014), Gorla et al. (2015), Manners et al. (2015), Kui and Stella

(2016), Wang et al. (2016), Diehl et al. (2017b), Fraaije et al. (2017), Kui et al. (2019), Javernick and Bertoldi

(2019), Díaz-Alba et al. (2023).

Vegetation resistance to uprooting Karrenberg et al. (2003), Edmaier et al. (2011, 2015), Burylo et al. (2012), Pasquale et al. (2012), Crouzy et al.

(2014), Bywater-Reyes et al. (2015), Bankhead et al. (2017), Khanal and Fox (2017), Bau' et al. (2019),

Calvani et al. (2019), Andreoli et al. (2020), Bau' and Perona (2020), Piqué et al. (2020).

Vegetation effects on river

morphology

Gran and Paola (2001), Jang and Shimizu (2007), Tal and Paola (2007, 2010), Braudrick et al. (2009), Van Dijk

et al. (2013), Le Bouteiller and Venditti (2014), Bertoldi et al. (2015), Lightbody et al. (2019), Vargas-Luna

et al. (2019), Mao et al. (2020), Weisscher et al. (2020), Fernandez et al. (2021), Kyuka et al. (2021),

Bywater-Reyes et al. (2022), Calvani et al. (2023), Li et al. (2023), Song et al. (2023).

Large wood

Large wood entrainment and

transport mechanisms

Braudrick and Grant (2000), Bocchiola et al. (2006, 2008), Crosato et al. (2013), Davidson et al. (2015),

Spreitzer et al. (2019a, 2019b, 2020a, 2020b), Friedrich et al. (2022).

Large wood and local river habitat Mutz et al. (2007), Bocchiola (2011), Gallisdorfer et al. (2014), Davidson & Eaton (2013), Schalko et al. (2021).

Large wood and river morphology Braudrick and Grant (2001), Welber et al. (2013), Bertoldi et al. (2014b, 2015), Mao et al. (2020), Ravazzolo

et al. (2022).

Note: Publications are listed in chronological order with respect to each topic.
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turbulent flow, and mass transport, in the presence of both sub-

merged (i.e., with most of the biomass close to the bed) or emergent

aquatic vegetation, mainly reproduced using rigid cylindrical elements.

The formation of canopy-scale vortices strongly affects the flow

within and downstream of a vegetated patch, inducing oscillations

and re-configuration of the vegetation and specific patterns of sedi-

ment deposition (e.g., Zong & Nepf, 2011).

Vegetation growth and resistance to uprooting

Understanding interactions between vegetation and river morphology

also requires investigation of the ability of plants to colonize, grow

and develop sufficient resistance to withstand the action of flow and

sediment transport during flood events. Field experiments

(e.g., Francis & Gurnell, 2006; Pasquale et al., 2014) and greenhouse

experiments (e.g., Francis et al., 2005; González et al., 2010; Gorla

et al., 2015) employing cuttings have explored the growth perfor-

mance and resistance to hydric stress of different riparian tree species

growing on substrates of different calibre (for a review for Salix spp.,

see Díaz-Alba et al., 2023). Mortality is mainly caused by flood distur-

bance and associated impacts on the bed, including scour (Pasquale

et al., 2014) and burial (Kui & Stella, 2016). Flood disturbance acts as

a selective mechanism that eliminates weaker plants while allowing

the more resistant individuals or species to continue to grow, with a

positive feedback that can lead to a bimodal spatial vegetation distri-

bution (Perona et al., 2012; Wang et al., 2016).

Several experiments have compared the effects and responses of

native (e.g., Salix spp.) and invasive species (e.g., Tamarix spp.) as a

function of flow and sediment supply variations (e.g., Kui et al., 2014).

Understanding these interactions can be used to design environmen-

tal flows that can help control plant invasions (Kui et al., 2019).

TABLE 7 Selected publications on mathematical modelling of fluvial biogeomorphological interactions in the 21st Century.

Topic Authors and dates

Vegetation colonization

Recruitment models Mahoney and Rood (1998), Douhovnikoff et al. (2005), Dixon and Turner (2006), Burke et al. (2009), Balke et al. (2011,

2014), Benjankar et al. (2014, 2020), Asaeda et al. (2015), Morrison and Stone (2015), Caponi et al. (2019), Gilbert &

Wilcox (2021), Tranmer et al. (2023), Serlet et al. (2024).

Succession models Benjankar et al. (2011, 2012, 2016), Egger et al. (2012, 2015, 2017), García-Arias et al. (2013, 2014), Rivaes et al. (2013,

2014, 2015, 2017), Politti et al. (2014), García-Arias and Francés (2016), Diehl et al. (2017a, 2018), Muñoz-Mas et al.

(2017), Sanjaya and Asaeda (2017), Ochs et al. (2019).

Regime models

Millar (2000, 2005), Eaton (2006), Eaton and Giles (2009), Eaton et al. (2010), Miyamoto and Kimura (2016), Davidson

and Eaton (2018), Zen and Perona (2020).

Stochastic analytical models

Vegetation

distribution

Camporeale and Ridolfi (2006, 2007), Perona et al. (2009a, 2009b), Tealdi et al. (2011, 2013), Crouzy and Perona (2012),

Crouzy et al. (2013), Vesipa et al. (2015, 2016), Perona and Crouzy (2018), Latella et al. (2020).

Ecomorphodynamic

equations

Perona et al. (2014), Bärenbold et al. (2016), Crouzy et al. (2016), Bertagni et al. (2018), Calvani et al. (2022a, 2022b),

Carbonari et al. (2022).

Root profile Laio et al. (2006), Schwarz and Cohen (2012), Tron et al. (2014, 2015), Perona and Crouzy (2018), Bau' et al. (2021),

Perona et al. (2022).

Bank related processes

Bank reinforcement Pollen and Simon (2005), Rinaldi et al. (2008), Luppi et al. (2009), Pollen-Bankhead and Simon (2009, 2010), Thomas and

Pollen-Bankhead (2010), Pollen-Bankhead et al. (2011), Simon et al. (2011), Polvi et al. (2014).

Meander evolution Perucca et al. (2006, 2007), Camporeale and Ridolfi (2010), Motta et al. (2012), Eke et al. (2014), Schuurman et al. (2016),

Zen et al. (2016).

Numerical models

Murray and Paola (2003), Hooke et al. (2005), Wu et al. (2005), Coulthard et al. (2007), Crosato and Saleh (2011), Li and

Millar (2011), Nicholas (2013), Nicholas et al. (2013), Bertoldi et al. (2014a), Gran et al. (2015), van Oorschot

et al. (2016, 2017, 2022), Guan and Liang (2017), Bywater-Reyes et al. (2018, 2022), Caponi and Siviglia (2018),

Lokhorst et al. (2018), Martínez-Fernández et al. (2018), Caponi et al. (2020, 2023), Jourdain et al. (2020), Toda et al.

(2020), Li et al. (2022), Scamardo et al. (2022), Stecca et al. (2022), Zhu and Tsubaki (2022).

Large wood

Large wood

recruitment

Downs and Simon (2001), Welty et al. (2002), Benda and Sias (2003), Mazzorana et al. (2009, 2011), Eaton et al. (2012),

Kasprak et al. (2012), Rigon et al. (2012), Ruiz-Villanueva et al. (2014b), Steeb et al. (2017, 2023), Cislaghi et al. (2018),

Zischg et al. (2018), Gasser et al. (2019), Stella et al. (2021).

Large wood transport Ruiz-Villanueva et al. (2014a, 2014b, 2016c, 2016e, 2020), Hassan et al. (2016), Kang and Kimura (2018), Persi

et al. (2018, 2020, 2021), Kang et al. (2020)

Note: Publications are listed in chronological order with respect to each topic.
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The mechanism of uprooting, as the main cause of vegetation

damage, has also attracted research that has quantified root anchoring

forces as a function of species, root length, root architecture and sedi-

ment properties (e.g., Edmaier et al., 2011; Karrenberg et al., 2003).

Recent observations indicate that, in most cases, vegetation can be

uprooted only in association with local scour (e.g., Bankhead

et al., 2017; Bywater-Reyes et al., 2015).

Vegetation effects on river morphology

Living plants have been used in laboratory experiments to reproduce

the stabilizing effect of roots on deposited sediments and evaluate

the role of plants as ecosystem engineers capable of changing the

equilibrium morphology of a river reach. In a pioneering experiment,

Gran and Paola (2001) used alfalfa in a physical model of a braided

network to show that vegetation strongly reduces bank erosion and

lateral migration, forcing flow into a smaller number of anabranches.

Further experiments (e.g., Braudrick et al., 2009; Tal & Paola, 2007,

2010) confirmed that the added cohesion conferred by vegetation is

an important ingredient in the development and maintenance of

single-thread, meandering rivers. In addition, the reduction of sedi-

ment flux induced by the presence of vegetation determines a mor-

phological adaptation of the system, with an increased bed slope

inside the vegetated patch (Le Bouteiller & Venditti, 2014).

In these early experiments, vegetation was generally seeded uni-

formly across the channel area. Further experiments investigated the

effect of different dispersal mechanisms (water vs. wind) and different

vegetation colonization locations (bars vs. floodplain) (e.g., Van Dijk

et al., 2013; Vargas-Luna et al., 2019). Recently, more attention has

been devoted to the interaction between the flow and a developing

vegetation cover that can increase its resistance and modify its effects

on morphological processes (Fernandez et al., 2021; Kyuka

et al., 2021).

Large wood

In addition to living plants or plant analogues, wood has also been

the focus of much experimental work. This follows the pioneering

work of Braudrick et al. (1997), who reproduced wood transport in

a laboratory flume and defined three possible transport regimes

(uncongested, semi-congested, and congested) as a function of the

probability of interactions between logs. Since 2000, researchers

have developed physical experiments to better understand the

mechanisms of wood transport and interactions with river hydraulics

and geomorphology. We identify three main lines of research rele-

vant to fluvial biogeomorphology: large wood entrainment and

transport mechanisms; large wood and local river habitat; large

wood and river morphodynamics. We do not address interactions

between large wood and hydraulic structures. For details on this

topic, we refer the reader to the recent review by Friedrich

et al. (2022).

Large wood entrainment and transport mechanisms

Threshold flow conditions for log entrainment have highlighted the

primary roles of log density and diameter, but also the relevance of

the presence of a root wad, the orientation of the log relative to the

flow, and the local acceleration of the flow field (Bocchiola

et al., 2006; Braudrick & Grant, 2000; Crosato et al., 2013; Davidson

et al., 2015). Recently, Spreitzer et al. (2019a) used smart sensors

installed in wood dowels to accurately survey entrainment, movement

and impacts of wood in their laboratory experiments. Their methods

open new opportunities to reconstruct rolling and flow alignment pro-

cesses as well as interactions with channel boundaries and other logs.

Large wood and local river habitat

A contribution to understanding the relationship between large wood

and the broader fluvial environment has come from experiments that

investigate the effect of deposited wood on river habitat. Scaled

experiments have evaluated and improved the design of restoration

actions involving the introduction of wood (Gallisdorfer et al., 2014;

Mutz et al., 2007; Schalko et al., 2021). Experiments have also investi-

gated reach-scale changes in river morphology under moving bed con-

ditions, mostly induced by decreased sediment transport and

increased sediment storage (Davidson & Eaton, 2013). Decreased

flow velocity induced by large wood accumulations is likely to deter-

mine fine sediment deposition, which may also incorporate a seed

bank and subsequently habitat for seed germination as observed in

the field by Osei et al. (2015a, 2015b).

Large wood and river morphology

In rivers large enough to allow large wood to be transported down-

stream by the flow, log travel distance has been quantified as a func-

tion of the ratio of log length and diameter to channel width and

depth (Braudrick & Grant, 2001; Welber et al., 2013). Experiments on

dynamic braided rivers have shown that there is a strong link between

large wood dynamics and morphological changes, determining a high

dispersion of logs on the bar surfaces. However, when living vegeta-

tion is added to the experiments, bar stabilization induced by the addi-

tional cohesion provided by roots, limits the temporal variability of

the flow and promotes wood deposition in specific locations (Bertoldi

et al., 2015; Mao et al., 2020). In narrower rivers, large wood is more

likely to form large jams that can have a significant impact on local

scour and geomorphic change, with the presence of root wads

enhancing the magnitude and stability of the accumulations

(Ravazzolo et al., 2022).

5.4.2 | Mathematical modelling

Progress in understanding the physical processes and the mutual

interactions and feedbacks between flow, sediment and vegetation

has motivated the development of an increasing number of mathe-

matical models, which are then used to predict the future evolution of

a river system or to assess the main controls of external parameters

(Table 7). Most models consider one specific process. However, it is

becoming more common to integrate multiple mechanisms and feed-

backs among the physical and biological components of the modelled

system. These models show that many processes and patterns arise

from interactions but are not present when only individual compo-

nents are considered (Kleinhans, 2023). Extended reviews of riparian

908 GURNELL and BERTOLDI

 15351467, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.4271 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



vegetation modelling have been conducted by Camporeale et al.

(2013), Solari et al. (2016), and Vesipa et al. (2017), particularly

emphasizing flow variability.

Recruitment models

The first and still most widely used model for predicting vegetation

recruitment is the Recruitment Box model (Mahoney & Rood, 1998).

This considers seed dispersal and moisture availability as the primary

controls on vegetation recruitment in a system with a well-defined

hydrological regime and the occurrence of a late spring (snowmelt)

flood during which seeds of most of the Salicaceae family are

released. The model has been further developed and improved to

account for different plant species, reproductive mechanisms, and

flow conditions (e.g., Benjankar et al., 2014; Dixon & Turner, 2006;

Douhovnikoff et al., 2005). Recent applications have coupled the

model with an hydraulic model to estimate bed shear stress, to evalu-

ate and guide the restoration of native vegetation (Benjankar

et al., 2020).

A different approach was developed for tidal environments by

Balke et al. (2011, 2014), who considered the timescale required for

seeds to germinate, develop sufficient resistance (i.e., a sufficiently

long root system) to withstand inundation and uprooting by flood

drag, and develop greater resistance to withstand sediment transport

and erosion. The time available between major disturbances is

referred to as a Window of Opportunity. The model has been success-

fully applied to riparian systems in a temperate climate where rain-

driven floods occur at different times during the growing season, and

where bar surfaces are rarely too far from groundwater to prevent

seedling recruitment (Caponi et al., 2019; Serlet et al., 2024).

Colonization and succession models

Recruitment models have been extended to include vegetation estab-

lishment and potential ecological succession in order to predict the

long-term evolution of the fluvial landscape. Benjankar et al. (2011)

developed the spatially detailed CASiMiR-vegetation model, that sim-

ulates vegetation dynamics with an annual time step. Vegetation

cover is classified in successional stages (from bare soil to mature veg-

etation) and different types of vegetation are considered (riparian

trees, reeds, wetland communities). Succession or retrogression of

vegetation depends on local values of disturbance-related parameters

(especially shear stress and inundation duration) and on crossing of

specific thresholds. The model has been extensively applied to differ-

ent bioclimatic environments and hydrological alterations and has

been improved by adding further processes, such as groundwater

availability and evapotranspiration (García-Arias & Francés, 2016).

Although these models include potential vegetation removal by flood-

ing, they do not account for morphological adaptation of the reach

and thus feedbacks between vegetation establishment and

sediment flux.

Reach-scale vegetation effects on channel width and pattern (regime

models)

Since 2000, riparian vegetation has been considered as one of the

main parameters in regime models, predicting reach-scale channel

width and morphological pattern based on an estimate of formative

discharge, longitudinal slope and grain size. Millar (2000) introduced a

parameter (bank friction angle) to account for additional bank cohe-

sion from vegetation. The model resulted in a better discrimination

between braiding, meandering and wandering planform styles. Simi-

larly, Millar (2005) proposed a model to compute regime channel

dimensions and planform style using a relative bank strength coeffi-

cient to parameterize the effect of riparian vegetation. The bank sta-

bility model and width estimator were improved by Eaton (2006) by

dividing the bank into an upper vertical part and a lower slope of

cohesionless material, leading to a novel channel pattern estimator

(Eaton et al., 2010), which demonstrated that vegetation is a neces-

sary ingredient, along with flow strength and sediment size, in a

three-variable problem. Recently, Davidson and Eaton (2018)

extended the previous models by adding a stochastic module and con-

sidering a distribution of floods instead of a single “formative”
discharge.

Stochastic analytical models of vegetation distribution

In the last 20 years, analytical models have often been used as an effi-

cient tool to account for the stochasticity of flow and to explore

changes in the solution in the parameter space. Riparian vegetation is

strongly dependent on the hydrologic regime, both in terms of water

availability and flood disturbance, and the non-linear and threshold-

driven interactions suggest that the sequence and timing of floods

play a crucial role. Camporeale and Ridolfi (2006) proposed the first

model including the probabilistic structure of the river flow time series

to investigate the distribution of vegetation biomass along a generic

river cross section. Water stage fluctuations affect vegetation

depending on the vegetation's elevation, and thus its distance from

the groundwater table and its exposure to flooding. Different vegeta-

tion types (i.e., different values of growth rate and resistance) as well

as different hydrologic regimes can be easily compared and can pro-

duce different statistically stable states or a bimodal distribution with

alternating phases of unvegetated bed and high biomass

(Camporeale & Ridolfi, 2007). A similar approach has been used to

explore several aspects of the interactions between vegetation and

flow, such as hydrologic alterations, competition between species,

vegetation recovery time after large floods, vegetation removal by

floods and the process of uprooting (e.g., Tealdi et al., 2011, 2013;

Vesipa et al., 2016). A direct feedback of vegetation on bed morphol-

ogy was introduced by Vesipa et al. (2015) where the presence of

vegetation induces sediment deposition and thus increases bed eleva-

tion and flood protection. The positive feedback leads to an increase

in vegetation biomass, especially when flood disturbance is high.

Over the last decade, analytical models have been developed

based on the theoretical framework proposed by Perona et al. (2014),

where ‘ecomorphodynamic equations’ for mass (water and sediment)

and momentum conservation are coupled with a vegetation biomass

equation that accounts for both vegetation growth and erosion. This

framework has been used to determine the existence of stable solu-

tions and the formation of spatial patterns. Bertagni et al. (2018)

coupled the ecomorphodynamic equations with a stochastic descrip-

tion of flood occurrence in one of the first models to couple sediment
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and vegetation dynamics with unsteady flow conditions. Model

results showed that flow variability reduces vegetation growth and

promotes bare bed conditions.

Increasing attention on plant roots as one of the main controls on

biogeomorphological feedbacks is reflected in recent models that

address the vertical distribution of roots of phreatophytic plants as a

function of (random) fluctuations in groundwater level (Tron

et al., 2014, 2015). Quantifying root architecture is a crucial step

towards better modelling the interaction between vegetation and river

morphology, as root length is the main control on vegetation uprooting.

Recently, Perona et al. (2022) developed the root distribution model,

linking the vertical root distribution model of Tron et al. (2014) with a

model of the lateral and fine root distribution (Schwarz & Cohen, 2012)

and a model of the vertical distribution driven by rainfall infiltration

(Laio et al., 2006). In this way, the new model provides 3D root archi-

tecture and fine root biomass as a function of both groundwater level

fluctuations and rainfall infiltration.

Modelling bank erosion and meander evolution

Pollen and Simon (2005) and Pollen-Bankhead and Simon (2010) mod-

elled the effect of roots on sediment cohesion and bank erosion by

considering progressive root failure within a fibre bundle approach.

Bank erosion is a particularly crucial component in modelling the evo-

lution of meandering rivers. In most long-term theoretical analyses,

the bank migration rate is simply computed as a linear function of the

near-bank excess velocity. However, in the last decade, further pro-

cesses have been included, such as the presence of horizontal soil

layers with different properties, and also different vegetation-related

processes controlling outer bank erosion and inner bank deposition

(e.g., Eke et al., 2014). 1D and 2D numerical models have been used

by Schuurman et al. (2016) to explore the role of bar-floodplain con-

version as a control on meander dynamics. By coupling a dynamic

vegetation model such as that of Camporeale and Ridolfi (2006) with

a meander evolution model, Perucca et al. (2006, 2007) investigated

their mutual feedbacks and showed how riparian vegetation signifi-

cantly alters meander shape and its temporal evolution.

Modelling morphological evolution

Since 2000, vegetation has been incorporated into hydraulic and mor-

phological models with increasing numbers of processes and feed-

backs, witnessing expanding understanding of the importance of

vegetation. Plants have been reproduced from a simple addition to

roughness to a full coupling of vegetation recruitment and growth as a

function of environmental conditions. The first model to add the effect

of vegetation on sediment cohesion, and thus on overall

sediment transport flux and bank erosion, was the cellular model of

Murray and Paola (2003), which showed how the addition of this sim-

ple feedback was sufficient to change river morphology from multi-

thread to single-thread. Other cellular models included the effect of

vegetation coupled with soil moisture and water availability (Hooke

et al., 2005) and in terms of root reinforcement (Coulthard et al., 2007).

In numerical models that solve the shallow water and sediment

balance equations, vegetation was initially included as a fixed element

that locally increased roughness and modified turbulence patterns,

thus affecting bedload and suspended sediment transport (e.g., Li &

Millar, 2011). In the 2010s, models started to include vegetation

dynamics, initially as a simple colonization of exposed surfaces

(e.g., Crosato & Saleh, 2011; Nicholas, 2013). This (over) simplified

approach was useful to highlight the impact of vegetation on the

long-term river planform style.

More recently, models have incorporated more dynamic vegeta-

tion processes, allowing vegetation to grow as a function of environ-

mental conditions such as water availability and flood damage

(Bertoldi et al., 2014a). Such models can also incorporate a more

detailed representation of root growth and vertical distribution

(as proposed by Tron et al., 2014), reproducing in a physically sound

way the process of uprooting associated with local scour (Caponi &

Siviglia, 2018). In other cases, a dynamic vegetation module has been

coupled to a morphodynamic code (Delft3D) to include several eco-

logical processes and feedbacks describing vegetation colonization,

growth and removal by floods or adverse environmental conditions

(van Oorschot et al., 2016). Several models have been developed in

the last 10 years (see Table 7) and have proved to be valid tools to

explore the relevance of different processes and conditions, with the

potential to guide future field and laboratory scale research.

Today, these models are not only developed and used by scien-

tists, but are also increasingly available to river managers (e.g., Caponi

et al., 2023), providing further evidence of the widespread recognition

of the relevance of biogeomorphological feedbacks.

Modelling large wood

Recognition that large wood was a relevant component of a fluvial

system led to the development of mathematical tools to predict (i) the

potential wood supply from hill slopes and river banks, and (ii) the fate

of transported wood.

Quantitative estimation of wood supply to the river network and

assessment of potential sources of recruitment remain challenging

tasks (see Steeb et al., 2023 for a recent review). Initial models mainly

considered recruitment processes from riparian areas along the river

network (tree mortality, windthrow and bank erosion) and provided a

potential supply through empirical equations. Advances in GIS soft-

ware allowed the implementation of spatially distributed models with

mapping of recruitment areas from digital elevation models and forest

cover, including landslides and debris flows (Benda & Sias, 2003) and

the connectivity of source areas to the river network (Ruiz-Villanueva

et al., 2014c). The most commonly used models in practical applica-

tions are GIS-based models that predict potential source areas and

associated wood volumes based on empirical relationships derived

from field observations (Steeb et al., 2017).

Transport and deposition of recruited wood along the river net-

work have been modelled in combination with 1D or 2D computational

fluid dynamics models. The first coupled model simulating log entrain-

ment and transport was proposed by Ruiz-Villanueva et al. (2014a,

2014b). The model couples an Eulerian approach to solve the shallow

water equations with a Lagrangian approach to reproduce the trajec-

tory of each log. The model has been used to investigate different con-

trols on wood transport, such as different river morphologies (Ruiz-

Villanueva et al., 2016c) and the effect of unsteady flow conditions
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(Ruiz-Villanueva et al., 2020). Similar models have recently been pro-

posed by Persi et al. (2018) and Kang and Kimura (2018), which also

consider the presence of root wads and include bedload transport and

morphological changes (Kang et al., 2020).

5.4.3 | Remote sensing

There have been huge advances in remote sensing techniques over the

last two decades. New sources of high-resolution, multi-dimensional

data have emerged across a wide range of spatial scales and multiple

timescales (for recent reviews see Piégay et al., 2020; Tomsett &

Leyland, 2019). These new monitoring techniques, together with the

computational ability to process large datasets, are transforming river

science (Marcus & Fonstad, 2010) and are increasingly being employed

operationally by river managers (Huylenbroeck et al., 2020). They are

turning fluvial geomorphology from a data-poor discipline to a data-rich

predictive science (Reichstein et al., 2019) and are also revolutionizing

the monitoring of riparian vegetation and large wood by exploiting the

many advantages of remote sensing in terms of spatial coverage, survey

frequency, and reduced cost and effort in the field (e.g., Rusnák

et al., 2022). Thus, remote sensing is adding new dimensions to

research in fluvial biogeomorphology by not only allowing analyses

across large areas and extended time scales but by supporting the test-

ing and development of conceptual models with data that would be

unattainable from fieldwork alone. As a result, remote sensing is being

used to monitor and analyse biogeomorphological features at a range

of spatial scales, from individual plants to entire regions.

Remote sensing at the individual plant scale

Detailed measurements of individual plants have been made possible

by the development of terrestrial laser scanners (TLS) that provide

dense point clouds from which to characterize the complex vertical

structure of riparian vegetation and its effects on roughness

(Antonarakis et al., 2009, 2010), sediment deposition induced by

coherent flow structures (Bywater-Reyes et al., 2017), and also plant

movements recorded by video imagery (Boothroyd et al., 2017). Very

high spatial resolution imagery (with a ground resolution <0.1 m)

acquired from unmanned aerial vehicles (UAVs) have been success-

fully used to map floodplain vegetation (Dunford et al., 2009) and to

classify riparian species and their health (Michez et al., 2016). Large

wood jams in gravel bed rivers have been mapped by TLS (Tonon

et al., 2014) and recently UAVs and Structure-from-Motion photo-

grammetry (SfM) have been used to map and quantify the volume and

porosity of individual large wood jams (Spreitzer et al., 2019b, 2022).

Remote sensing at the reach scale

Reach-scale survey has benefited most from advances in UAVs and

digital photogrammetry, which have allowed fast, accurate and rela-

tively inexpensive monitoring, including reconstruction of 3D topogra-

phy and vegetation canopy structure (Westoby et al., 2012). Several

studies have used aerial imagery, with images dating back nearly

100 years, but the costs associated with undertaking these surveys

mean that they are rarely acquired for a specific research application

and the temporal frequency of images is usually limited. However,

technological advances and the ease of use of UAVs have led to their

application for data gathering specifically for research purposes. Dun-

ford et al. (2009) reported one of the first applications of UAV for

riparian vegetation mapping. More recently, Hervouet et al. (2011)

used annual high-resolution surveys to investigate vegetation recruit-

ment processes along braided river reaches in the French Alps and

then to extend the results to the regional scale using satellite imagery.

Annual images acquired by UAVs were also used by Räpple et al.

(2017) to investigate the drivers of vegetation establishment and

growth along the Drôme River (France).

Flynn and Chapra (2014) and Husson et al. (2014) demonstrated

the potential of UAV monitoring and RGB imagery for mapping sub-

merged aquatic vegetation. Photographic surveys can also include

infrared cameras, which improve vegetation detection and provide

accurate classification of river landscape cover and temporal change

(Milani et al., 2018).

UAV surveys and photogrammetric reconstruction of surface

topography by SfM have been used to quantify the reach-scale vol-

ume of deposited large wood, including individual logs and jams

(MacVicar et al., 2009; Pavlowsky et al., 2023; Sanhueza et al., 2019).

The ability to obtain accurate 3D models of the riverbed and riparian

trees was exploited by Hortobágyi et al. (2017b) to investigate bio-

geomorphological feedbacks. They combined aerial, UAV and ground-

based imagery to perform cross-scale studies from a single plant to

reach scale.

Lidar is a further source of 3D data that can support many bio-

geomorphological investigations. Lidar can support monitoring of

riparian vegetation, providing spatially accurate data on both tree

height and vegetation density (Hutton & Brazier, 2012). For example,

Forzieri et al. (2011) used a combination of airborne Lidar and multi-

spectral satellite data to produce maps of riverbed roughness esti-

mated from the reconstruction of individual plant characteristics.

Abalharth et al. (2015) and Atha and Dietrich (2016) assessed the

potential of Lidar data to map the presence and volume of large wood

deposits. Bertoldi et al. (2013) integrated Lidar, aerial imagery and

field data to study large wood deposits and their relationship to

nearby bank erosion. The combination of digital elevation models and

canopy height models derived from Lidar surveys with aerial imagery

has supported several biogeomorphological investigations. For exam-

ple, Bertoldi et al. (2011b), Picco et al. (2015) and Lallias-Tacon et al.

(2017) have investigated the dynamics of vegetated islands and flood-

plains along multi-thread rivers, and Michez et al. (2017) mapped over

12,000 km of rivers by merging canopy height models obtained by

digital photogrammetry and Lidar, proving the benefits of this tech-

nique for regional analysis.

Fast moving processes, such as the transport of large wood dur-

ing flood events, require a different type of monitoring, and video

recordings have become quite widely used in the last decade. MacVi-

car and Piégay (2012) proposed a video monitoring system that

proved efficient in quantifying the number and volume of logs trans-

ported during floods and showed that the amount of transported

wood is significantly larger during the rising limb of floods (see also

Ghaffarian et al., 2020). The occurrence of wood-laden flows and

GURNELL and BERTOLDI 911

 15351467, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.4271 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



characterization of the amount of wood, from clear wood to hyper-

congested flows, have also been monitored using video (Ruiz-

Villanueva et al., 2018), showing the relevance of data sources that

were not intended for scientific application but are readily available as

a result of the widespread use of smartphones.

Remote sensing at extended reach to landscape scales

Remote sensing offers dramatic advantages in surveying large areas

by providing spatially continuous and consistent data.

Over extended reaches, data from different sources have been

used to map river macro-units, ranging from the simple separation of

water, bare sediment and vegetation to the identification of different

physical habitats and vegetation successional stages. Lidar surveys

have been combined with multispectral (CASI) data (Geerling

et al., 2007; Straatsma & Baptist, 2008) or RGB and near-infrared

imagery (Demarchi et al., 2016; Kutz et al., 2022) to obtain high-

resolution and accurate mesohabitat mapping of the river environ-

ment and floodplain vegetation. Recently, deep learning methods have

been used to calibrate an automatic classifier of RGB images

(Carbonneau et al., 2020b), demonstrating the potential to develop a

generalized, open source classifier for high-resolution RGB imagery,

acquired from aerial or UAV surveys, that can produce accurate

results and greatly reduce operator effort.

Larger (e.g., landscape scale) areas can be easily monitored using

satellite data. In the last two decades, technological advances have

yielded data sets down to metre or sub-metre spatial resolution with

up to daily revisit times. Data from satellite sensors with different

characteristics are available to match research objectives. The long

temporal coverage, now reaching 40 years, and free availability of

Landsat data have been exploited for long-term catchment scale anal-

ysis (Henshaw et al., 2013; Peixoto et al., 2009; Salerno et al., 2022),

and were combined with UAV imagery by Morgan et al. (2021). Land-

sat data have been recently used to investigate carbon export driven

by morphological dynamics of tropical rivers (Salerno et al., 2023).

Detailed analysis of extended reaches can exploit higher spatial reso-

lution data sets from commercial satellites such as ASTER (Bertoldi

et al., 2011a), QuickBird, and SPOT-5 (Johansen et al., 2007, 2010),

which have been used to map vegetation dynamics and successional

stages. Recent advances in computational power and data manage-

ment tools have provided the opportunity to automatically classify

freely available datasets, such as the 10 m resolution multispectral

data from the ESA Sentinel-2 satellite. For example, Carbonneau et al.

(2020a) developed a convolutional neural network classifier, trained

using UAV imagery, that mapped water, sediment and vegetation clas-

ses with an accuracy greater than 95%. Cloud-based computing plat-

forms such as Google Earth Engine are a further tool to help

researchers deal with big geospatial data sets (Boothroyd et al., 2021).

6 | THE FUTURE?

This ‘annotated bibliographic review’ has illustrated the gradual evo-

lution of fluvial biogeomorphology from its early beginnings in the

mid-20th century to its enormous expansion during the first two

decades of the 21st century. Based on recent developments, we end

with some suggestions for likely areas of major future research

expansion.

i. Above all, we see recent developments as a firm foundation for

team research involving geomorphologists, ecologists and hydrol-

ogists in integrated projects that combine observations from the

field, laboratory and remotely sensed sources. In particular, care-

fully designed field and laboratory experiments paralleled and

informed by mathematical modelling techniques are likely to

form a sound foundation for future multidisciplinary or interdisci-

plinary developments.

ii. As remote sensing and proximate monitoring techniques (includ-

ing smart sensors) yield increasingly large and diverse data sets

with unprecedented spatial and temporal resolution, more

sophisticated data handling and analysis methods will be needed

to process such ‘big data’
iii. The context of environmental change is already a rapidly

expanding area (as illustrated by the citations in Table 5) but

so far most of this research has considered changing flow

regimes (especially as a consequence of direct water abstrac-

tions and flow regulation by dams) and the biogeomorphologi-

cal effects of alien plant invasions. While both of these may

reflect environmental changes, this topic needs fuller, deeper

and more integrated examination, especially focusing on likely

fluvial biogeomorphological responses to projected changes in

climate.

iv. Despite its considerable breadth, this review has not consid-

ered river management to any significant degree because our

focus has been on the development of the scientific

subdiscipline—fluvial (plant) biogeomorphology. However, it is

important to stress that over the last 40 years the emphasis

and priorities of river managers have progressively shifted from

controlling river channel forms and processes to restoring and

supporting natural forms and processes. This reflects a desire

to develop nature-based solutions to managing risks such as

flooding while at the same time supporting healthy, naturally

functioning, biodiverse river systems. If this shift is to be truly

successful, managers need guidelines and tools that go beyond

a consideration of flow, sediment transport and channel mor-

phodynamics to include the critical role of vegetation. The sci-

ence reviewed here is central to developing guidelines and

tools to support sustainable river management approaches and

practices.
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Kalogianni, E. (2020). Drivers of variability in large wood loads along

the fluvial continuum of a Mediterranean intermittent river. Earth Sur-

face Processes and Landforms, 45(9), 2048–2062.
Galia, T., Ruiz-Villanueva, V., Tichavsky, R., Silhan, K., Horacek, M., &

Stoffel, M. (2018a). Characteristics and abundance of large and small

instream wood in a Carpathian mixed-forest headwater basin. Forest

Ecology and Management, 424, 468–482.
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