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RELAXATION AND OPTIMAL FINITENESS DOMAIN

FOR DEGENERATE QUADRATIC FUNCTIONALS.

ONE-DIMENSIONAL CASE

Virginia De Cicco1,* and Francesco Serra Cassano2

Abstract. The aim of this paper is the study, in the one-dimensional case, of the relaxation of a
quadratic functional admitting a very degenerate weight w, which may not satisfy both the doubling
condition and the classical Poincaré inequality. The main result deals with the relaxation on the greatest
ambient space L0(Ω) of measurable functions endowed with the topology of convergence in measure
w̃ dx. Here w̃ is an auxiliary weight fitting the degenerations of the original weight w. Also the relaxation
w.r.t. the L2(Ω, w̃)-convergence is studied. The crucial tool of the proof is a Poincaré type inequality,
involving the weights w and w̃, on the greatest finiteness domain Dw of the relaxed functionals.
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1. Introduction

This paper is devoted to the study in the one-dimensional framework of the integral representation of a
functional obtained by relaxation of a quadratic weighted functional admitting a degenerate weight w. The
main difficulty is that we do not require on w any additional assumption, as the doubling or Muckenhoupt
condition (see Defs. 2.7 and 2.8 below). We recall that, as proven in [1], in one dimension, the measures
satisfying the doubling condition and the Poincaré inequality are precisely the Muckenhoupt A2-weights. One
of the main goals of the paper is to single out an appropriate ambient topological space containing the widest
expected finiteness domain Dw of the relaxed functional (see (1.4)). Typically, this study has been carried out
by prescribing a priori the ambient space.

More precisely, let us consider

FX(u) =


∫
Ω

|∇u|2 w dx if u ∈ C1(Ω)

+∞ if u ∈ X \ C1(Ω),
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where Ω is an open bounded subset of Rn and X is an appropriate topological space composed of measurable
functions. Let F := sc−(X)− FX : X → [0,+∞] denote the relaxed functional (or lower semicontinuous enve-
lope) of F w.r.t. the topology of X. Here w is a degenerate weight, i.e. we assume only that it is a nonnegative
L1
loc function, without any assumption on the function 1

w . It is well-known that, if w is a Muckenhoupt weight
in the A2 class (this implies that 1

w belongs to L1), then X = L2(Ω, w) and the relaxed functional is finite in
the Sobolev weighted space W 1,2(Ω, w) (for its definition see Sect. 2) and it admits the following form

FX(u) =


∫
Ω

|∇u|2 w dx if u ∈ W 1,2(Ω, w)

+∞ if u ∈ L2(Ω, w) \W 1,2(Ω, w).

If w is degenerate, the study of this relaxation problem is very complicated since it is unknown a priori what
is the optimal natural ambient space where the finiteness domain

dom(FX) = {u ∈ X : FX(u) < +∞}

is contained. As well, a Meyers–Serrin type theorem needs in the weighted Sobolev space W 1,2(Ω, w), that is,
whether C1(Ω) ∩W 1,2(Ω, w) is dense in W 1,2(Ω, w) (see [2]). Otherwise a Lavrentiev phenomenon may occur.
The first space X considered in literature was the space L2(Ω) (see [3–6]). In particular a characterization of the
relaxed functional w.r.t. the L2(Ω) convergence is studied in [3]. Moreover, in [7–10] the variational convergence
of functionals of this type is considered. See also [11] (and the references therein) for the relation with the
non-occurrence of the Lavrentiev phenomenon.

On the other hand, another natural ambient space is the space L2(Ω, w) firstly studied in the framework of
the theory of Dirichlet forms (see [12]).

Recently, the theory of Sobolev spaces in metric measure spaces, initially developed in [13], has been extended
to more general situations (see e.g. [14–22] and the references therein).

In all these theories, crucial tools are the doubling condition and the Poincaré inequality. We observe that
we will consider very degenerate weights w, which may not satisfy these assumptions (see Rem. 4.12 and 5.2
below). Notice that our approach is different from the previous ones where the ambient space X is a priori
fixed. For a comparison with these previous results see Section 2.

Our investigation is confined to the relaxation of degenerate quadratic functionals in the simplest one-
dimensional case, but with very general degenerations w. We are going to show that the space L2(Ω) and
L2(Ω, w) are not always the appropriate ambient spaces for the relaxation of a quadratic functional with general
degeneration w.

We consider a weight w : R → R satisfying

w ≥ 0 a.e., w ∈ L1
loc(R). (1.1)

Let Ω = (a, b) be a bounded open interval. Let IΩ,w denote the set

IΩ,w :=
{
x ∈ Ω :∃ ϵ > 0 such that

1

w
∈ L1 ((x− ϵ, x+ ϵ))

}
. (1.2)

The set IΩ,w is the biggest open set in Ω such that 1
w is locally summable. Without loss of generality we can

assume that there exist two countable sets {ai}, {bi} such that a ≤ ai < bi ≤ b, the intervals (ai, bi) are disjoint
and

IΩ,w =

Nw⋃
i=1

(ai, bi), (1.3)

with Nw ∈ N ∪ {+∞}.
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Definition 1.1. (i) If IΩ,w = ∅, we put Nw := 0.
(ii) If 1 ≤ Nw < ∞ we say that w is finitely degenerate in Ω.
(iii) If Nw = ∞ we say that w is not finitely degenerate in Ω.

Let

Dw :=
{
u : Ω → R : u (Lebesgue) measurable,

u ∈ W 1,1
loc (IΩ,w),

∫
IΩ,w

|u′|2 w dx < +∞
}
.

(1.4)

The class Dw turns out to be the possible widest finiteness domain candidate for the relaxed functional FX as
soon as the convergence in X provides a mild pointwise convergence in IΩ,w (see Lem. 4.5).

It is well-known (see Thms. 3.1 and 3.3) that when X = L2(Ω)

dom(FX) = Dw ∩ L2(Ω).

On the other hand, it is easy to see that, for suitable w

Dw ⊈ L2(Ω)

(see Rem. 5.3 below). Meanwhile, the same argument can be applied to the space L2(Ω, w). This amounts that
both L2(Ω) and L2(Ω, w) are not the appropriate spaces containing Dw.

The aim of our paper is to identify two ambient spaces which contain Dw and to provide a representation
of the relaxed functional FX in those spaces. The first ambient space is the greatest one X = (L0(Ω), dm) or
(L0(Ω), d

m̃
), where

L0(Ω) :=
{
u : Ω → R : u is (Lebesgue) measurable

}
, (1.5)

m and m̃ are the measures on Ω

m = w dx and m̃ = w̃ dx, (1.6)

dm and d
m̃
are the distances defined according to (4.21) with µ = m and µ = m̃, respectively, which induce the

convergence in measure (see (4.20) below). Here w̃ is an auxiliary new weight, associated to w, which fits the
degeneration of w (see (4.8) for its definition) and it is is equal to 0 at the points where 1

w is not integrable.
Then we deal with the relaxation on the ambient spaces X = (L0(Ω), dm) and (L0(Ω), d

m̃
) and we study the

lower semicontinuous envelopes w.r.t. the convergences in measure m and m̃, that is

F̂ j = sc−(dm)− F j
X , F̃ j = sc−(d

m̃
)− F j

X j = 1, 2, 3, 4, (1.7)

where F j , j = 1, 2, 3, 4 are defined in (3.1)–(3.4), and their finiteness domains

D̂j := {u ∈ L0(Ω) : F̂ j(u) < +∞}, D̃j := {u ∈ L0(Ω) : F̃ j(u) < +∞}.

Our main result (see Thm. 4.18 (i)) states that

D̃2 = Dw
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and the following representation holds

F̃ 2(u) =


∫
IΩ,w

|u′|2 w dx if u ∈ Dw

+∞ if u ∈ L0(Ω) \Dw.

(1.8)

In particular, in the case when w = 0 a.e. in Ω \ IΩ,w, we show that D̂2 = D̃2 = Dw and F̂ 2 = F̃ 2 on L0(Ω) (see

Thm. 4.18 (ii)). We also study the coincidence among the relaxed functionals F̃ j if j = 1, 2, 3, 4 (see Cor. 4.20).
The second ambient space where we study the relaxation is X = L2(Ω, w̃), by considering the relaxed

functionals

F j := sc−(L2(Ω, w̃))− F j
X , j = 1, 2, 3, 4,

and their finiteness domains

Dj := {u ∈ L2(Ω, w̃) : F j(u) < +∞}.

We are able to show that D2 = Dw ∩ L2(Ω, w̃) and F 2 = F̃ 2 on L2(Ω, w̃) (see Thm. 4.21). Note that, if the
weight w is not finitely degenerate, it may happen that Dw ⊈ L2(Ω, w̃) (see Rem. 5.3). However, if w is finitely

degenerate, the same representation as in (1.8) holds for F 2, that is, D2 = Dw and F 2 = F̃ 2 on L2(Ω, w̃) (see

Cor. 4.22). We also study the coincidence among the relaxed functionals F j if j = 1, 2, 3, 4 (see Cor. 4.23).
A crucial tool of the proofs either of Theorems 4.18 and 4.21 is a Poincaré type inequality involving the two

weights w and w̃ (see Thm. 4.11). Recall that, as proven in [23], an Hardy type inequality holds for the pair
(w̃, w) in the Muckenhoupt class, but unfortunately we need a Poincaré type inequality. The classical Poincaré
inequality with the usual rescaling does not work (see Rem. 4.12). Anyway a Poincaré type inequality is true,
but in a different form: for every u ∈ Dw

+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w̃(η) dη ≤
∫ b

a

|u′(y)|2w(y) dy.

which does not seem to yield a Lipschitz approximation as in previous cases (see [24] and [25]).

2. Some previous results

In this section we will recall some previous results, where the relaxation of degenerate integral has been dealt
with.

2.1. Weighted L2 and Sobolev spaces

In order to introduce some definitions, according to the classical definitions of Sobolev spaces, let us fix a
bounded open set Ω ⊂ Rn with Lipschitz boundary and a function w : Rn → R satisfying

w ≥ 0 a.e. in Rn, w ∈ L1
loc(Rn).

If m is a Radon measure on Rn, let us define

L2(Ω, m) := {u : Ω → R : u Borel measurable,

∫
Ω

u2 dm < +∞}
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and

L2(Ω, w) := L2(Ω, m)

with m = wLn. If w = 0, then L2(Ω, w) = {0}, where we mean that for each function u ∈ L2(Ω, w) we have
u(x) = 0 for wLn a.e. x ∈ Ω.

If X = Lp(Ω) (1 ≤ p < ∞), or L2(Ω, w), we define the following type-Sobolev spaces:

W 1(Ω, X,w) =
{
u ∈ W 1,1

loc (Ω) : (u,Du) ∈ X × (L2(Ω, w))n
}
, (2.1)

equipped with the norm

∥u∥X,w,Ω :=
√

∥u∥2X + ∥Du∥2L2(Ω,w);

H1(Ω, X,w) :=the closure of Lip(Ω) in W 1(Ω, X,w)

endowed with the norm ∥ · ∥X,w,Ω,

H̃1(Ω, X,w) :=
{
u ∈ X : ∃(uh)h ⊂ Lip(Ω), v ∈ (L2(Ω))n,

uh → u in X,
√
wDuh → v in (L2(Ω))n

}
.

We observe that

H1(Ω, X,w) ⊆ H̃1(Ω, X,w).

Remark 2.1. Since Ω ⊂ Rn is a bounded open set with Lipschitz boundary, in the definition of H̃1(Ω, X,w),
we may assume that (uh)h ⊂ C1(Ω̄).

An explicit characterization of H̃1(Ω, X,w) can be provided (see [3]).
Let

V ≡ V (Ω, X,w)

denote the closure in X × (L2(Ω))n of the linear subspace{
(u,

√
w∇u) : u ∈ Lip(Ω)

}
⊂ X × (L2(Ω))n,

and let Π1 and Π2 denote, respectively, the projections from X × (L2(Ω))n into X and (L2(Ω))n respectively.
Then it is easy to see that

H̃1(Ω, X,w) = Π1(V (Ω, X,w)).

For u ∈ Π1(V ) let Vu denote the space

Vu :=
{
v ∈ (L2(Ω))n : (u, v) ∈ V

}
.

Remark 2.2. Since Vu = Π2

(
({u} × (L2(Ω))n) ∩ V

)
and since Π2 is an isomorphism from {u}× (L2(Ω))n into

(L2(Ω))n, Vu is a closed affine subspace of (L2(Ω))n for each u ∈ Π1(V ). In particular V0 is a closed subspace
of (L2(Ω))n. For (u, v) ∈ V , we have that Vu = v + V0.
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If u ∈ W 1(Ω, X,w), we denote by Du the usual distributional gradient, that exists by definition (2.1). If w
satisfies the additional property

if (φh)h ⊂ Lip(Ω), ∥φh∥X → 0 and ∥∇φh − v∥L2(Ω,w) → 0 (2.2)

then v = 0 a.e. in Ω,

then, if u ∈ H̃1(Ω, X,w), Vu is a singleton and we are allowed to define the gradient ∇X,wu in the following
way: if (φh)h ⊂ Lip(Ω) satisfies

∥φh − u∥X → 0 and ∥∇φh − v∥L2(Ω,w) → 0

then we set ∇X,wu := v.

Remark 2.3. In general the gradient of a function u ∈ H̃1(Ω, X,w) does not need to be uniquely defined, that
is the space Vu need not be a singleton. An example of this situation is given, for instance, in [26], Section 2.1.

Remark 2.4. An interesting case in which condition (2.2) occurs is when there exist a finite number of
points x1, . . . , xk in Ω such that 1

w ∈ L1
loc(Ω \ {x1, . . . , xk}) (see [26], Sect. 2.1). In this case it is easy to see

that H̃1(Ω, X,w) ⊂ W 1,1
loc (Ω \ {x1, . . . , xk}) and ∇X,wu = Du a.e. in Ω for each u ∈ H̃1(Ω, X,w). It is also

interesting to observe that, even if u ∈ H̃1(Ω, X,w) and it admits a distributional gradient, it may occur that
∇X,wu ̸= Du (see, for instance, [27], Ex. 2.1). This means that, in general, H̃1(Ω, X,w) ̸= H1(Ω, X,w) and that(
W 1(Ω, X,w), ∥ · ∥X,w,Ω

)
need not be complete.

If w satisfies the stronger assumption 1
w ∈ L1(Ω), it is well-known that(

W 1(Ω, X,w), ∥ · ∥X,w,Ω

)
is a Banach space and H̃1(Ω, X,w) = H1(Ω, X,w) ⊆ W 1(Ω, X,w). Moreover it is easy to see that

W 1(Ω, L2(Ω, w), w) ⊂ W 1(Ω, L1(Ω), w) ⊂ W 1,1(Ω).

In this case the agreement H1(Ω, X,w) = W 1(Ω, X,w) turns be out an important issue, which need not be true
(see [27] and [21]).

Another characterization of H̃1(Ω, X,w) by relaxation was provided in [3] in the case X = Lp(Ω).
Let F : X → [0,+∞] denote the functional defined by

F (u) :=


∫
Ω

|∇u|2 w dx if u ∈ Lip(Ω)

+∞ otherwise

and let F : X → [0,+∞] denote the relaxed functional (or lower semicontinuous envelope) of F w.r.t. the
topology of X.

Theorem 2.5. ([3, Them. 1.1]) Let 1 ≤ p < ∞.

(i) H̃1(Ω, Lp(Ω), w) = {u ∈ Lp(Ω) : F (u) < +∞}.
(ii) For u ∈ H̃1(Ω, Lp(Ω), w) and v ∈ Vu, we have

F (u) = min

{∫
Ω

|v|2 dx : v ∈ Vu

}
= min

{∫
Ω

|v + v|2 dx : v ∈ V0

}
.
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Corollary 2.6. We consider the case X = Lp(Ω). Assume that 1
w ∈ L1

loc(Ω \ {x1, . . . , xk}). Then

(i) H̃1(Ω, X,w) ⊂ W 1,1
loc (Ω \ {x1, . . . , xk}) and ∇X,wu = Du a.e. in Ω;

(ii)

F (u) =

∫
Ω

|∇X,wu|2 w dx ∀u ∈ H̃1(Ω, X,w).

Proof. This follows from Theorem 2.5 and previous arguments.

When X = L2(Ω, w), the space H̃1(Ω, X,w) can be also characterized in the setting of metric measure
Sobolev spaces (see, for instance, [13, 15, 16, 22]).

2.2. Dirichlet forms approach

In the setting of Dirichlet forms, property (2.2) can be understood saying that the form a defined by

D(a) := W 1(Ω, L2(Ω, w), w) ⊂ H := L2(Ω, w)

a(u, v) :=

∫
Ω

DuDv w dx u, v ∈ D(a), (2.3)

is closable (see [12], p. 373, [8–10]). We recall some notions on the Dirichlet forms (for the general theory we
refer to [28]). We fix a positive Radon measure µ on Ω, with suppµ = Ω, which is called the “volume” measure
on X. A form a in H is a non-negative definite symmetric bilinear form a(u, v) defined on a linear subspace
D[a], called the domain of a, of the Hilbert space H = L2(X,µ), equipped by the scalar product (u, v). It is
possible to associate with a[u, v] a quadratic functional

F (u) = a(u, u)

for every u ∈ D[a]. A form a is closed in H = L2(X,µ) if its domain D[a] is complete under the intrinsic inner
product a(u, v)+ (u, v). The following characterization holds: a form a is closed in H if and only if the quadratic
functional F (u) is lower semicontinuous on H. Moreover a form a is closable in H = L2(X,µ) if (un) ⊂ D[a],
a(un − um, un − um) → 0, (un, un) → 0, as n,m → +∞, imply a(un, un) → 0, as n → +∞. We have that a
form a is closable in H = L2(X,µ) if and only if the completion of D[a] under the intrinsic inner product
a(u, v) + (u, v) is injected in the space H = L2(X,µ). The closure a(u, v) of a closable form a is a closed form
and it coincides with the relaxed form defined by the relaxed functional F (u), by using the polarization identity

a(u, v) =
1

2
{a(u+ v, u+ v)− a(u, u)− a(v, v)} =

1

2
{F (u+ v)− F (u)− F (v)}.

Its domain is D[a] = {u ∈ H : F (u) < +∞}. A form a in H is Markovian if for every u ∈ D[a] the truncated
function v = inf{sup{u, 0}, 1} belongs to D[a] and a(v, v) ≤ a(u, u). A Dirichlet form in H is a closed Markovian
form in H. In [29] some suitable doubling condition and Poincaré inequality are considered. In this framework,
a very particular case is a weighted Dirichlet form

aw(u, v) =

∫
Ω

DuDv wdx

associated to the integral functional

F (u) =

∫
Ω

|Du|2wdx.
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It satisfies all the previous assumptions if the µ = wLn and w is a Muckenhoupt weight A2 or a weight
w(x) = |detF ′|1−2/n associated with a quasi-conformal transformation F in Rn. Let us recall that, in the
one-dimensional case, the following simple closability criterion was proved by Hamza (see [28], Thm. 3.1.6 and
[30]): the weighted form (2.3) is closable in L2(Ω, w) if and only if the weight w satisfies the following so-called
Hamza’s condition, i.e.

for a.e. x ∈ Ω = (a, b), w(x) > 0 implies that

∃ ϵ > 0 such that

∫ x+ϵ

x−ϵ

1

w(y)
dy < +∞.

(2.4)

Eventually, for the reader’s convenience, we recall the following definitions of doubling and A2-weight.

Definition 2.7. We say that a weight w ∈ L1
loc(Ω) is doubling on Ω if the measure m := w dx is doubling, that

is, there exists a constant C > 0 such that

m(B(x, 2r)) ≤ Cm(B(x, r))

for all x ∈ Ω and r > 0 such that B(x, 2r) ⊆ Ω.

Definition 2.8. We say that a weight w : Rn → [0,+∞[ is in the Muckenhoupt class A2 if w, 1
w ∈ L1

loc(Rn)
and there exists a constant C > 0 such that, for all balls B in Rn, we have(

1

|B|

∫
B

w(x) dx

)(
1

|B|

∫
B

1

w(x)
dx

)
≤ C,

where |B| denotes the Lebesgue measure of B.

3. The one-dimensional case: previous results

Let w is a weight satisfying (1.1). Let Ω = (a, b) be a bounded open interval. We consider the following
functionals defined on a topological space (X, τ), where X will be a suitable space of functions endowed with a
topology τ .

F 1(u) ≡ F 1
X(u) :=


∫ b

a

|u′|2 w dx if u ∈ C1([a, b])

+∞ if u ∈ X \ C1([a, b])

(3.1)

F 2(u) ≡ F 2
X(u) :=


∫ b

a

|u′|2 w dx if u ∈ Lip([a, b])

+∞ if u ∈ X \ Lip([a, b])
(3.2)

F 3(u) ≡ F 3
X(u) :=


∫ b

a

|u′|2 w dx if u ∈ H1((a, b))

+∞ if u ∈ X \H1((a, b))

(3.3)

F 4(u) ≡ F 4
X(u) :=


∫ b

a

|u′|2 w dx if u ∈ AC([a, b]) = W 1,1((a, b))

+∞ if u ∈ X \AC([a, b])

(3.4)

and the corresponding lower semicontinuous envelopes w.r.t. the τ -convergence

F j(u) = sc−(τ)− Fj(u) j = 1, 2, 3, 4.
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To our knowledge, in the one-dimensional case, integral representations for relaxed functionals was already
provided in [5] and then in [3].

Theorem 3.1. ([5], Thm. 5) Let X = H1((a, b)) endowed with the Lp topology with 1 ≤ p ≤ ∞ and assume
also that 0 ≤ w(x) ≤ c for a.e. x ∈ (a, b) and for a suitable constant c > 0. Then

F 3(u) =

∫ b

a

|u′|2 w dx ∀u ∈ H1((a, b)),

where

w(x) = lim
ϵ→0

2ϵ
[ ∫ x+ϵ

x−ϵ

1

w(y)
dy
]−1

.

Let I ≡ IΩ,w denote the set in (1.2).

Remark 3.2. We point out the following two particular cases:
(i) If I = ∅, then 1

w /∈ L1((x− ϵ, x+ ϵ)) for every x ∈ Ω and for every ϵ > 0. In this case w ≡ 0 and F 3(u) = 0

for every u ∈ H1(Ω) and, by (4.40), even F 4(u) = 0 for every u ∈ H1([a, b]).
(ii) If I = (a, b), then 1

w ∈ L1
loc((a, b)); assume also that w satisfies the assumption of Theorem 3.1. We obtain

that w = w a.e. and F 3(u) = F 3(u) for every u ∈ H1([a, b]). Then, sinceH1([a, b]) ⊂ AC([a, b]), as a consequence
of Theorem 3.1,

F 4(u) = F 4(u) for every u ∈ H1([a, b]). (3.5)

We will prove (see Cor. 4.23) that (3.5) holds for each u ∈ AC([a, b]). In this case, we get the coincidence
w = w∗ = w̃.

In the one-dimensional case, the following improvement of Theorems 2.5 and 3.1 holds.

Theorem 3.3. ([3], Thm. 3.1) Let X = Lp(Ω) with 1 ≤ p < ∞, endowed with the Lp- topology.

(i) I is the biggest open set in Ω such that 1
w is locally sommable;

(ii)

H̃1(Ω, Lp(Ω), w) := {u ∈ Lp(Ω) : F
2
(u) < +∞}

=

{
u ∈ Lp(Ω) ∩W 1,1

loc (I) :

∫
I

|u′|2 w dx < +∞
}

= Lp(Ω) ∩Dw;

(iii)

F 2(u) =

∫
I

|u′|2 w dx ∀u ∈ H̃1(Ω, Lp(Ω), w).

Remark 3.4. Theorem 3.3 does not hold in higher dimensions, even though 1
w ∈ L1(Ω). Indeed in [27] it is

has been showed that, if n ≥ 2, there exists a weight w for which 1
w ∈ L1(Ω) and H̃1(Ω, X,w) = H1(Ω, X,w) ⊊

W 1(Ω, X,w) ⊂ W 1,1(Ω).



10 V. D. CICCO AND F. S. CASSANO

4. New result in the one-dimensional case

4.1. Structure of the weight and optimal finiteness domain

The set IΩ,w defined in (1.2) is the biggest open set in (a, b) such that 1
w is locally sommable. Then it is

well-known, being IΩ,w an open set of the real line, IΩ,w can be decomposed in the union of its open connected
components, that is there exist a family of disjoint bounded open intervals (ai, bi) i = 1, . . . , Nw, with Nw finite,
i.e. Nw ∈ N, or Nw = ∞, such that

IΩ,w =

Nw⋃
i=1

(ai, bi). (4.1)

Notice also that the decomposition in (4.1) is unique and Nw is also uniquely defined. Moreover

1

w
∈ L1

loc(IΩ,w).

Let us stress the following simple characterization of weights satisfying Hamza’s condition (2.4).

Proposition 4.1. Let w be a weight on Ω. Then the following are equivalent:

(i) w satisfies Hamza’s condition (2.4);
(ii) w = 0 a.e. in Ω \ IΩ,w.

Moreover, if w is lower semicontinuous a.e. in Ω \ IΩ,w or Riemann integrable in Ω, then (ii) is satisfied.

Proof. The implication (i) (⇒) (ii) is immediate. Let us show the opposite implication. It is sufficient to show
that

w(x) > 0 for a.e. x ∈ IΩ,w. (4.2)

By contradiction, assume there is a set E ⊂ IΩ,w with |E| > 0 and w(x) = 0 for each x ∈ E. Then, there exists
a point x0 ∈ E of density 1, that is

lim
r→0

|E ∩ (x0 − r, x0 + r)|
2r

= 1. (4.3)

By (4.3), it follows that, there exists a small r0 > 0, such that for each r ∈ (0, r0),

∞ =

∫
E∩(x0−r,x0+r)

dx

w
≤
∫
(x0−r,x0+r)

dx

w
.

Thus a contradiction, since x0 ∈ IΩ,w and (4.2) follows. Assume now w is lower semicontinuous at x ∈ Ω \ IΩ,w,
and let prove that w(x) = 0. Indeed, by contradiction, if we assume that w(x) > 0, since

lim inf
y→x

w(y) ≥ w(x),

then there exists ϵ > 0 such that for every y ∈]x− ϵ, x+ ϵ[

w(y) >
w(x)

2
=: m.
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This implies that

∫ x+ϵ

x−ϵ

1

w(y)
dy <

2ϵ

m
< ∞

and this is a contradiction. Moreover, if w is Riemann integrabile in Ω = (a, b), it is well-known that is continuous
a.e. in x ∈ (a, b), then w(x) = 0 a.e. in Ω \ IΩ,w.

Remark 4.2. Note that a weight w in Ω may not satisfy the condition (ii) of Proposition 4.1, even though it
is finitely degenerate. Indeed, there exist weights w in (0, 1) with IΩ,w = ∅ and w(x) > 0 a.e. in (0, 1) (see, for
instance, [5], p. 212 or [26], p. 92). Note that, if we extend such a weight as 1 in (−1, 0], we obtain a finitely
degenerate weight in (−1, 1) which do not satisfy the condition (ii) of Proposition 4.1.

Remark 4.3. For each finite measure µ in Ω, if Nw = ∞, then limi→+∞ µ((ai, bi)) = 0. Indeed, in this case,∑+∞
i=1 µ((ai, bi)) ≤ µ((a, b)) < +∞.

If IΩ,w ̸= ∅ , let Dw denote the class defined in (1.4).
If IΩ,w = ∅ let us define Dw := {0}.

Remark 4.4. We note that, if 1
w ∈ L1(Ω), then, obviously, w is finitely degenerate in Ω with Nw = 1. In this

case

Dw = {u ∈ AC([a, b]) :

∫ b

a

|u′|2 w dx < +∞}

(since IΩ,w = Ω = (a, b) and AC([a, b]) = W 1,1((a, b))).

Theorems 3.1 and 3.3 (see also Rem. 3.2) suggest that Dw contains the finiteness domain of a relaxed
functional, when X = L2(Ω, µ) and µ is a finite Borel measure on Ω with its support sptµ containing IΩ,w. The
lemma below confirms this suggestion.

Lemma 4.5 (Optimal finiteness domain). Let (uh)h ⊂ AC([a, b]) such that

(a) sup
h∈N

∫
IΩ,w

|u′
h|2w dx < +∞,

(b) for every i = 1, . . . , Nw there exists ci such that ai < ci < bi and there exist finite the following limits

lim
h→+∞

uh(ci) = di ∈ R.

Then there exists a subsequence (uhk
) and a function u : IΩ,w → R such that

(i) lim
k→+∞

uhk
(x) = u(x) for every x ∈ IΩ,w,

(ii) u ∈ Dw,

(iii)

∫
IΩ,w

|u′|2 w dx ≤ lim inf
k→+∞

∫
IΩ,w

|u′
hk
|2 w dx.

Proof. Let us note that, by assumption (b), IΩ,w ̸= ∅. By (a), there exist a subsequence (uhk
)k of (uh)h, and a

function v ∈ L2(IΩ,w, w) such that

u′
hk

→ v weakly in L2(IΩ,w, w) as k → ∞. (4.4)
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Moreover, since 1
w ∈ L1

loc(IΩ,w) we have that

L2
loc(IΩ,w, w) ⊂ L1

loc(IΩ,w). (4.5)

In particular, from (4.4) and (4.5), we get that v ∈ L1
loc(IΩ,w) and

∫ β

α

u′
hk

dx →
∫ β

α

v dx as k → ∞, (4.6)

for each [α, β] ⊂ IΩ,w. Let us consider u : Ω → R defined in the following way: firstly for every i = 1, . . . , Nw

ui(x) :=

 0 if x ∈ Ω \ (ai, bi)

di +

∫ x

ci

v(y)dy if ai < x < bi.

Then we define

u(x) =

Nw∑
i=1

ui(x)χ(ai,bi)(x).

By definition,

u ∈ W 1,1
loc (IΩ,w) and u′ = v a.e. in IΩ,w.

For every i = 1, . . . , Nw,

uhk
(x) = uhk

(ci) +

∫ x

ci

u′
hk
(y)dy if ai < x < bi.

By (b) and (4.6), taking the limit as k → ∞ in the previous equality, condition (i) follows. Condition (ii) is
immediate by the definition of u. Eventually, by (4.4) and the lower semicontinuity of the norm w.r.t. the weak
convergence, (iii) is achieved.



RELAXATION AND OPTIMAL FINITENESS DOMAIN FOR DEGENERATE QUADRATIC FUNCTIONALS 13

4.2. Auxiliary weights

Let w : Ω = (a, b) → [0,∞) be a weight, that is a function satisfying (1.1) and (4.1). Let w̃, w∗ : Ω → [0,+∞[
be defined as

w∗(x) :=



lim
x→a+

i

(∫ ai+bi
2

x

1

w(y)
dy

)−1

if x = ai(∫ ai+bi
2

x
1

w(y) dy

)−1

if ai < x ≤ 3ai+bi
4(∫ ai+3bi

4
3ai+bi

4

1
w(y) dy

)−1

if 3ai+bi
4 ≤ x ≤ ai+3bi

4(∫ x
ai+bi

2

1
w(y) dy

)−1

if ai+3bi
4 ≤ x < bi

lim
x→b−i

(∫ x

ai+bi
2

1

w(y)
dy

)−1

if x = bi

0 if x ∈ Ω \ IΩ,w,

(4.7)

and

w̃(x) := min{w(x), w∗(x), 1} (4.8)

if x ∈ (a, b) is a Lebesgue’s point of w at x and 0 otherwise. Let us collect some properties of functions w∗ and
w̃ in the following proposition, whose proof is elementary taking the definitions into account.

Proposition 4.6 (Properties of w∗ and w̃).

(i) If 1
w is not locally summable in Ω, i.e. IΩ,w = ∅, then w∗ = w̃ ≡ 0.

(ii) w̃ ∈ L∞(Ω) and

L2(Ω, w∗) ∪ L2(Ω, w) ∪ L2(Ω) ⊂ L2(Ω, w̃). (4.9)

Moreover the inclusion of each space L2(Ω, µ) (µ = w∗ dx,w dx, dx) in L2(Ω, w̃) is continuous. In
particular, the measure m̃ = w̃ dx is finite in Ω.

(iii) For each i = 1, . . . , Nw, w
∗ is constant in [ 3ai+bi

4 , ai+3bi
4 ], increasing in [ai,

3ai+bi
4 ], decreasing in [ai+3bi

4 , bi]
and absolutely continuous in each interval. In particular, it holds that

0 < w∗(x) ≤ sup
y∈(ai,bi)

w∗(y) < ∞ ∀x ∈ (ai, bi),

inf
x∈[α,β]

w∗(x) > 0 for each x ∈ [α, β], ai < α < β < bi,

and w∗(ai) = 0 (respectively w∗(bi) = 0) if and only if 1
w /∈ L1(ai,

ai+bi
2 ) (respectively 1

w /∈ L1(ai+bi
2 , bi)).

Moreover

(w∗)′ =
(w∗)

2

w
a.e. in

(
ai,

3ai + bi
4

)
∪
(
ai + 3bi

4
, bi

)
.
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(iv) If 1
w ∈ L1(Ω), then there exists a constant c > 0 such that

0 <
1

c
≤ w∗(x) ≤ c a.e. x ∈ Ω.

(v) If w is finitely degenerate in Ω, i.e. (4.1) holds with 1 ≤ Nw < ∞, then there exists a constant c > 0 such
that

0 ≤ w∗(x) ≤ c a.e. x ∈ Ω.

In particular, the measure m
∗ := w∗dx is finite in Ω.

(vi) If w is not finitely degenerate in Ω, i.e. (4.1) holds with Nw = ∞, then w∗ ∈ L∞
loc(IΩ,w). In particular,

the measure m
∗ = w∗dx is σ-finite in Ω.

Example 4.7. If w is not finitely degenerate in Ω, then it can occur that w∗ /∈ L1(Ω) as we will show later.
On the contrary, w̃ ∈ L∞(Ω) and the associated space L2(Ω, w̃) contains the main spaces of regular functions
we will deal with, as AC, Lip, H1 and C1. Notice also that w̃ turns out to be a weight according to (1.1). Let
us consider the following example. Let (ai, bi), i : 1, . . . ,∞, be a sequence of disjoint open intervals in (0, 1) and
(mi)i be a sequence of positive real numbers to be fixed later. Let w : (0, 1) → [0,∞[ defined as follows

w(x) :=


mi(x− ai)

α if ai ≤ x ≤ ai+bi
2

mi(bi − x)α if ai+bi
2 ≤ x ≤ bi

0 outside,

where α > 0, α ̸= 1. It is immediate to see that w is not finitely degenerate if α > 1, i.e. Nw = ∞, and
IΩ,w = ∪+∞

i=1 (ai, bi). Let us fix ai ≤ x ≤ 3ai+bi
4 , then, by definition of w∗ we have

w∗(x) =
(α− 1)mi(x− ai)

α−1

1−
( 2(x−ai)

bi−ai

)α−1 .

Now, since

0 ≤ 2(x− ai)

bi − ai
≤ 1

2
,

then

(α− 1)mi(x− ai)
α−1 ≤ w∗(x) ≤ (α− 1)mi(x− ai)

α−1

1−
(
1
2

)α−1 ,

that is

w∗(x)=̃mi(x− ai)
α−1, ai ≤ x ≤ 3ai + bi

4
.

It is easy to see that

∫ 3ai+bi
4

ai

w∗(x) dx=̃mi(bi − ai)
α
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then, if we choose the sequence mi such that

+∞∑
i=1

mi(bi − ai)
α = +∞,

we can conclude that w∗ /∈ L1(Ω).

Remark 4.8. We note that w∗ is Lipschitz continuous in interval [c, d] ⊂ (ai,
3ai+bi

4 ) where it is nondecreasing
and for every x ∈ [c, d]

|(w∗)′| ≤ (w∗(d))
2

w(c)
.

The same condition holds for every [c, d] ⊂ (ai+3bi
4 , bi) where w is nonincreasing.

4.3. Poincaré-type inequalities

Firstly, we prove some preliminary lemmas.

Proposition 4.9. We fix u ∈ Dw and i = 1, . . . , Nw. For every η, x such that ai < η ≤ x ≤ ai+bi
2 we have:

|u(x)− u(η)|
√
w∗(η) ≤

(∫ x

η

|u′(y)|2w(y) dy
) 1

2

; (4.10)

|u(η)|2w∗(η) ≤ 2|u(x)|2w∗(η) + 2

∫ x

ai

|u′(y)|2w(y) dy. (4.11)

For every η, x such that ai+bi
2 ≤ x ≤ η < bi we have:

|u(x)− u(η)|
√
w∗(η) ≤

(∫ η

x

|u′(y)|2w(y) dy
) 1

2

; (4.12)

|u(η)|2w∗(η) ≤ 2|u(x)|2w∗(η) + 2

∫ bi

x

|u′(y)|2w(y) dy. (4.13)

Proof. Since u ∈ ACloc(ai, bi), for every x ∈]ai, ai+bi
2 ] such that ai < η ≤ x ≤ ai+bi

2 we have

|u(x)− u(η)| =
∣∣∣∣∫ x

η

u′(y) dy

∣∣∣∣ ≤ (∫ x

η

|u′(y)|2w(y) dy
) 1

2
(∫ x

η

1

w
(y) dy

) 1
2

≤
(∫ x

η

|u′(y)|2w(y) dy
) 1

2

(∫ ai+bi
2

η

1

w
(y) dy

) 1
2

.

(4.14)
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Observe now that, if ai < η ≤ min{ 3ai+bi
4 , x}, then (4.10) follows by (4.14) and the definition of w∗; if 3ai+bi

4 ≤
η ≤ x ≤ ai+bi

2 , since

(∫ ai+bi
2

η

1

w
(y) dy

) 1
2

≤ 1√
w∗(η)

,

(4.10) still follows by (4.14) and the definition of w∗. Then, since

|u(η)|2 ≤ 2|u(x)|2 + 2|u(η)− u(x)|2,

by (4.10), (4.11) follows. Similarly, (4.12) and (4.13) can be obtained.
By Proposition 4.9, we can study the behaviour of functions in Dw near the end points ai, bi, i = 1, . . . , Nw.

Corollary 4.10. Let u ∈ Dw and fix i = 1, . . . , Nw.

(i) |u(η)|2w∗(η) ≤ 2

∣∣∣∣u(ai + bi
2

)∣∣∣∣2 w∗(bi) + 2

∫ bi

ai

|u′(y)|2w(y) dy, for each η ∈ (ai, bi). In particular u ∈

L2((ai, bi), w
∗) and in the finitely degenerate case u ∈ L2(Ω, w∗).

(ii) If

∫ ai+bi
2

ai

1

w
dx = +∞ (respectively if

∫ bi

ai+bi
2

1

w
dx = +∞) there exists lim

x→a+
i

u2 w∗ = 0

(respectively limx→b−i
u2 w∗ = 0).

(iii) If

∫ ai+bi
2

ai

1

w
dx < ∞ (respectively if

∫ bi

ai+bi
2

1

w
dx < ∞), then

u ∈ AC
([

ai,
ai + bi

2

])
(respectively u ∈ AC

([ai + bi
2

, bi
])

.

Proof. (i) From (4.11) and (4.13) with x = ai+bi
2 , we get that desired inequality.

(ii) Let ai < η ≤ x ≤ ai+bi
2 . By the hypothesis

∫ ai+bi
2

ai

1

w
dx = +∞ and by definition of w∗, we have

limη→a+
i
w∗(η) = 0. For fixed x ∈ (ai,

ai+bi
2 ) by (4.11) we have the following inequality

lim sup
η→a+

i

|u(η)|2w∗(η) ≤ 2

∫ x

ai

|u′(y)|2w dy.

Taking the lim as x → a+i in the previous inequality, we get that

lim
η→a+

i

|u(η)|2w∗(η) = 0.

Respectively, if we assume

∫ bi

ai+bi
2

1

w
dx = +∞, we have

lim
η→b−i

|u(η)|2w∗(η) = 0.
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(iii) Since u ∈ AC([ai + δ, ai+bi
2 ]), for each δ > 0, in order to prove u ∈ AC

([
ai,

ai+bi
2

])
it is sufficient to prove

that there exists the following limit

lim
η→a+

i

u(η) ∈ R. (4.15)

Observe now that

u′ ∈ L1

(
ai,

ai + bi
2

)
, (4.16)

since

u′ = u′√w
1√
w

and u′√w, 1√
w
∈ L2(ai,

ai+bi
2 ).

Now, by the fundamental theorem of Calculus for every η ∈ (ai,
ai+bi

2 ]

u(η) = u
(ai + bi

2

)
−
∫ ai+bi

2

η

u′(x)dx. (4.17)

Thus, by (4.16) and (4.17), (4.15) follows. The other case is analogous.

Theorem 4.11 (Poincaré type inequality on Dw). The following Poincaré type inequality holds: for every
u ∈ Dw

+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w̃(η) dη ≤
+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) dη

≤
∫
IΩ,w

|u′(y)|2w(y) dy.
(4.18)

Proof. The first inequality

+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w̃(η) dη ≤
+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) dη

immediately follows since w̃ ≤ w∗ on Ω. Let us show the second inequality. In (4.10) we take x = ai+bi
2 , then

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) ≤
∫ ai+bi

2

ai

|u′(y)|2w(y) dy.

By integrating w.r.t. to η we obtain

∫ ai+bi
2

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) dη ≤ bi − ai
2

∫ ai+bi
2

ai

|u′(y)|2w(y) dy.
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Similarly we have

∫ bi

ai+bi
2

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) dη ≤ bi − ai
2

∫ bi

ai+bi
2

|u′(y)|2w(y) dy.

Therefore ∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) dη ≤ (bi − ai)

∫ bi

ai

|u′(y)|2w(y) dy.

Hence

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w∗(η) dη ≤
∫ bi

ai

|u′(y)|2w(y) dy.

The conclusion follows since u ∈ Dw and so

+∞∑
i=1

∫ bi

ai

|u′(y)|2w(y) dy ≤
∫
IΩ,w

|u′(y)|2w(y) dy < +∞.

Remark 4.12. Notice that, if w(x) = |x|, Ω = (−1, 1), then the doubling property holds for the measure
m = w dx, but the Poincaré inequality does hold. Indeed there is an interesting characterization in [1] which
provides that the Poincaré inequality holds if and only if w belongs to the Muckenhoupt class A2, and it is well
known that w is not in A2.

4.4. Convergence in measure

We will consider two types of ambient spaces for the relaxation: the space L0(Ω) endowed with the topology
induced from the convergence in measure and the space L2(Ω, w̃).

Note that the measure m and m̃ in (1.6) are always finite on Ω , while m∗ is finite if w is a finitely degenerate and
σ-finite in the general case (see Prop. 4.6). We are going to study the absolute continuity relationships bewteen
m and m̃. It is easy to see that, in the general case m may not be absolutely continuous w.r.t. m̃, even though
w is finitely degenerate (see Rem. 4.2). However if w satisfies Hamza’s condition (2.4), then m is absolutely
continuous w.r.t. m̃. The reverse relationship always turns out to be true.

Theorem 4.13. (i) m̃ ≪ m in Ω;
(ii) if w = 0 a.e. in Ω \ IΩ,w, then m ≪ m̃ in Ω.

Proof. (i) It is immediate since, by definition of w̃ (see (4.8)), m̃ ≤ m on the class of measurable sets in Ω.
(ii) Let us show that m ≪ m̃ in Ω. Let E ⊂ Ω be mesaurable such m̃(E) = 0. Then we can decompose E as

E = (E ∩ (Ω \ IΩ,w)) ∪ (E ∩ IΩ,w) = E1 ∪ E2.

In particular, it follows that

m̃(E2) :=

∫
E2

w̃ dx = 0. (4.19)
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From (4.2) and Proposition 4.6 (iii), it follows that w(x) > 0 and w∗(x) > 0, for a.e. x ∈ IΩ,w, respectively.
Thus w̃(x) > 0, for a.e. x ∈ IΩ,w and, by (4.19), we get |E2| = 0, as well m(E2) = 0. Therefore, since w = 0
a.e. in Ω \ IΩ,w,

m(E) = m(E1 ∪ E2) = m(E1) + m(E2) = 0,

and we are done.

Let L0(Ω) be the space defined in (1.5). Given a measure µ on Lebesgue measurable sets of Ω, we identify, as
usual, two function u, v ∈ L0(Ω) such that u = v µ-a.e. in Ω. A natural convergence on L0(Ω) is the convergence
in measure µ. Let us recall that a sequence of functions (uh)h ⊂ L0(Ω) is said to converge in measure µ to a
function u ∈ L0(Ω), written u = µ− limh→∞ uh if

lim
h→∞

µ ({x ∈ Ω : |uh(x)− u(x)| > ϵ}) = 0 for each ϵ > 0. (4.20)

Let us collect in the following theorem some main properties of the convergence in measure we will need later.

Theorem 4.14. Let (uh)h and u be in L0(Ω), and let µ be a measure on the σ-algebra of Lebesgue measurable
subsets of Ω.

(i) If µ is finite and uh → u µ-a.e. in Ω as h → ∞, then u = µ− limh→∞ uh.
(ii) If u = µ− limh→∞ uh, there is a subsequence (uhk

)k such that uhk
→ u µ-a.e. in Ω as k → ∞.

(iii) If (uh)h and u are in Lp(Ω, µ), with 1 ≤ p ≤ ∞, and limh→∞ ∥uh − u∥Lp(Ω,µ) = 0, then u = µ −
limh→∞ uh.

(iv) Suppose that µ is finite and let

dµ(u, v) :=

∫
Ω

|u− v|
1 + |u− v|

dµ if u, v ∈ L0(Ω). (4.21)

Then dµ is a metric on L0(Ω) and

lim
h→+∞

dµ(uh, u) = 0 ⇐⇒ u = µ− lim
h→∞

uh

Proof. See, for instance: (i) [31], Proposition 3.1.1; (ii) [31], Proposition 3.1.2; (iii) [31], Proposition 3.1.4; (iv)
[31], Chapter 3, Section 2, Exercise 5.

Let us now study the relationships between the convergence in measure m and m̃, as well as if they imply, up
to a subsequence, the pointwise convergence in some points of IΩ,w.

Proposition 4.15. Let (uh)h and u be in L0(Ω).

(i) Assume that u = m− limh→∞ uh ( or u = m̃− limh→∞ uh ). Then there exists a subsequence (uhk
)k and a

sequence of points (ci)i such that

ci ∈ (ai, bi) and lim
k→∞

uhk
(ci) = u(ci) for every i.

(ii) Assume that u = m− limh→∞ uh. Then it also holds that u = m̃− limh→∞ uh.
(iii) Assume w = 0 a.e. in Ω \ IΩ,w and u = m̃− limh→∞ uh. Then it also holds that u = m− limh→∞ uh.
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Proof. (i) Suppose first that u = m − limh→∞ uh. Then, from Theorem 4.14 (ii) with µ = m, there exists a
subsequence (uhk

)k and a m-null set Z ⊂ Ω such that

lim
k→∞

uhk
(x) = u(x) ∀x ∈ Ω \ Z. (4.22)

By contradiction, if (ai, bi) ⊂ Z for some i, then m((ai, bi)) = 0. This would imply that (ai, bi) ⊂ Ω \ IΩ,w and
then a contradiction. Thus

(ai, bi) \ Z ̸= ∅ for each i = 1, 2, . . . , (4.23)

and we get the desired conclusion. Suppose now that u = m̃ − limh→∞ uh. Then, still from Theorem 4.14 (ii)
with µ = m̃, there is now m̃- null set Z ⊂ Ω such that (4.22) holds. From Proposition 4.6 (ii), m̃((ai, bi)) > 0 for
each i. Therefore (4.23) holds. Thus we still get the desired conclusion.
(ii) From Theorem 4.13 (i), and since m̃ is finite in Ω, by applying the Radon–Nikodym Theorem, there exists
f ∈ L1(Ω, m) = L1(Ω, w) such that

m̃(E) =

∫
E

f dm for each measurable set E ⊂ Ω. (4.24)

For given ϵ > 0 let

Eh := {x ∈ Ω : |u(x)− uh(x)| > ϵ} ,

then, since limh→∞ m(Eh) = 0, by (4.24) and the absolute continuity of the integral, we also get that
limh→∞ m̃(Eh) = 0.
(iii) From Theorem 4.13 (ii), and since m̃ is finite in Ω, by applying the Radon–Nikodym Theorem, there exists
g : Ω → [0,∞] such that

m(E) =

∫
E

g dm̃ for each measurable set E ⊂ Ω. (4.25)

Since m(Ω) < ∞, by (4.25), it follows that g ∈ L1(Ω, m̃) = L1(Ω, w̃). Then, arguing as in (ii), we get the desired
conclusion.

Remark 4.16. Note that, by assuming only that the weight w is finitely degenerate, the convergence in measure
m̃ = w̃ dx does not imply the one in measure m = w dx. For instance, let w : Ω = (−1, 1) → [0,∞] be the weight

in Remark 4.2, uh :=

{
1 in (−1, 0]

h in (0, 1)
(h = 1, 2, . . . ) and u :=

{
1 in (−1, 0]

0 in (0, 1)
. Then, it is easy to see that

u = m̃− limh→∞ uh, but the sequence (uh)h cannot converge to u w.r.t. the convergence in measure m.

Remark 4.17. Note that each Lp(Ω, µ), with 1 ≤ p ≤ ∞, can be meant as a subspace of L0(Ω). Indeed, if
u : Ω → R̄ is a function in Lp(Ω, µ) and Zu := {x ∈ Ω : |u(x)| = ∞}, then |Zu| = 0. If ũ : Ω → R is defined as

ũ(x) :=

{
u(x) if x ∈ Ω \ Zu

0 if x ∈ Zu

, then ũ ∈ L0(Ω). Moreover, if µ is finite, the map

(Lp(Ω, µ), ∥ · ∥Lp(Ω,µ)) ∋ u 7→ ũ ∈ (L0(Ω), dµ)

is also continuous, by Theorem 4.14 (iii) and (iv).
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4.5. Relaxation results

First we consider X = (L0(Ω), d
m̃
) and (L0(Ω), dm) and the lower semicontinuous envelopes in (1.7).

Theorem 4.18. Let w be a weight satisfying (1.1).

(i) Then

D̃2 = Dw (4.26)

and the representation (1.8) holds for the relaxed functional F̃ 2.
(ii) If w = 0 a.e. in Ω \ IΩ,w, then

F̃ 2 = F̂ 2 on L0(Ω).

Proof. (i) Firstly, we note that if IΩ,w = ∅, then w̃ ≡ 0. This implies that (L0(Ω), d
m̃
) = {0}, D̃j = {0} and

F̃ j(u) = 0 for each u ∈ L0(Ω) j= 1, 2, 3, 4. Let us show (1.8). By Proposition 4.15 (i) and Lemma 4.5 , it

follows that D̃2 ⊆ Dw and, by Proposition 4.9, we have that and for every u ∈ D̃2

u ∈ W 1,1
loc (IΩ,w) ∩ L2(IΩ,w, w

∗), u2w∗ ∈ L∞(IΩ,w).

Let us first show that for every u ∈ L0(Ω) ∫
IΩ,w

|u′|2 w dx ≤ F̃ 2(u).

Without loss of generality we can assume that F̃ 2(u) < +∞. Therefore there exists a sequence (uh) ⊂ Dw such
that limh→∞ d

m̃
(uh, u) = 0 and

F̃ 2(u) = lim
h→+∞

F 2(uh) = lim
h→+∞

∫
Ω

|u′
h|2 w dx.

Again, we can apply Proposition 4.15 (i) and Lemma 4.5 and, up to a subsequence, we get∫
IΩ,w

|u′|2 w dx ≤ lim inf
h→+∞

∫
Ω

|u′
h|2 w dx = lim

h→+∞

∫
Ω

|u′
h|2 w dx = F̃ 2(u)

In order to complete the proof we have to prove that

F̃ 2(u) ≤
∫
IΩ,w

|u′|2 w dx ∀u ∈ Dw (4.27)

and so Dw ⊆ D̃2. Let us first prove that

F̃ 2(u) ≤
∫
IΩ,w

|u′|2 w dx ∀u ∈ Dw ∩ L2(Ω). (4.28)

By Theorem 3.3, for each u ∈ Dw ∩ L2(Ω), there exists (uh)h ⊂ Lip(Ω) such that

uh → u in L2(Ω) as h → ∞, (4.29)
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and

lim
h→∞

F 2(uh) =

∫
IΩ,w

|u′|2 w dx. (4.30)

By (4.9) and (4.29), it follows that

uh → u in L2(Ω, w̃) as h → ∞. (4.31)

Moreover, from Theorem 4.14 (iii) with µ = w̃ dx, (4.31) implies that

u = m̃− lim
h→∞

uh. (4.32)

Thus, by (4.30), (4.32) and the definition of F̃ 2,

F̃ 2(u) ≤ lim inf
h→∞

F 2(uh) = lim
h→∞

F 2(uh) =

∫
IΩ,w

|u′|2 w dx,

and (4.28) follows. It is sufficient in order to complete the proof that, for each u ∈ Dw, there exists (ũh)h ⊂
Dw ∩ L2(Ω) such that

u = m̃− lim
h→∞

ũh, (4.33)

and

ũ′
h → u′ in L2(IΩ,w, w) as h → ∞. (4.34)

Indeed, from (4.28), (4.33) and (4.34) and the semicontinuity of F̃ 2, it will follow that

F̃ 2(u) ≤ lim inf
h→∞

F̃ 2(ũh) ≤ lim
h→∞

∫
IΩ,w

|ũ′
h|2 w dx =

∫
IΩ,w

|u′|2 w dx,

and we will get (4.27). Eventually let us show (4.34) and assume that Nw = ∞. The case Nw < ∞ follows
by slight changes. Since u′ ∈ L2(IΩ,w, w), by a classical result of measure theory, there exists a sequence of
functions (vh)h ⊂ C0

c (IΩ,w) ⊂ L2(IΩ,w, w) such that

∥vh − u′∥2L2(IΩ,w,w) =

+∞∑
i=1

∫ bi

ai

|vh − u′|2 w dx → 0 as h → +∞. (4.35)

Let us define, for given h ∈ N, ũ(i)
h : (ai, bi) → R, i = 1, 2, . . . , h as

ũ
(i)
h (x) := u

(
ai + bi

2

)
−
∫ ai+bi

2

x

vh(y) dy, x ∈ (ai, bi). (4.36)

and ũh : (a, b) → R as

ũh :=

h∑
i=1

ũ
(i)
h χ(ai,bi). (4.37)
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Observe that ũ
(i)
h ∈ C1([ai, bi]) for i = 1, . . . , h, (ũh)h ⊂ Dw ∩ C1(IΩ,w) ∩ L2(Ω) and

ũh

(
ai + bi

2

)
= u

(
ai + bi

2

)
for each i = 1, . . . , h,

ũ′
h = vh in ∪h

i=1 (ai, bi) and ũ′
h = 0 in ∪∞

i=h+1 (ai, bi). (4.38)

Thus, (4.34) follows. By Poincaré type inequality (4.18) with ũh − u instead of u and since ũh

(
ai+bi

2

)
=

u
(
ai+bi

2

)
, we have, for each ϵ > 0,

m̃ ({x ∈ Ω : |ũh − u| ≥ ϵ}) ≤ 1

ϵ2

∫
Ω

|ũh − u|2 w̃ dx

=
1

ϵ2

+∞∑
i=1

∫ bi

ai

|ũh − u|2 w̃ dx

≤b− a

ϵ2

+∞∑
i=1

−
∫ bi

ai

|ũh − u|2 w̃ dx

≤ b− a

ϵ2

∫
IΩ,w

|ũ′
h − u′|2 w dx

=
b− a

ϵ2

(
h∑

i=1

∫ bi

ai

|vh − u′|2 w dx+

∞∑
i=h+1

∫ bi

ai

|u′|2 w dx

)

≤ b− a

ϵ2

(∫
IΩ,w

|vh − u′|2 w dx+

∞∑
i=h+1

∫ bi

ai

|u′|2 w dx

)
.

(4.39)

Since u′ ∈ L2(IΩ,w),

lim
h→∞

∞∑
i=h+1

∫ bi

ai

|u′|2 w dx = 0

as h → ∞ in (4.39), by (4.35), (4.36) and (4.38), (4.33) follows and we are done.
(ii) From Proposition 4.15 (ii) and (iii), the coincidence

F̃ 2 = F̂ 2 on L0(Ω)

immediately follows.

Remark 4.19. Under the assumptions of Theorem 4.18 (i), we do not know whether F̃ 2 = F̂ 2 on L0(Ω).

Indeed, from Proposition 4.15 (ii), it follows that F̃ 2 ≤ F̂ 2 on L0(Ω), but the coincidence is not clear since the
convergences w.r.t. measure m = w dx and m̃ = w̃ dx in Ω are no longer equivalent (see Rem. 4.16).

Corollary 4.20. Let w be a weight satisfying (1.1). For every u ∈ L0(Ω) we have

F̃ 1(u) = F̃ 2(u) = F̃ 3(u) = F̃ 4(u),

where F̃ j(u), j = 1, 2, 3, 4 are the functionals in (1.7).
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Proof. Since

F 4(u) ≤ F 3(u) ≤ F 2(u) ≤ F 1(u) for each u ∈ L0(Ω), (4.40)

the inequalities

F̃ 4(u) ≤ F̃ 3(u) ≤ F̃ 2(u) ≤ F̃ 1(u) for each u ∈ L0(Ω) (4.41)

are trivial. Moreover, arguing as in the proof of Theorem 4.18, it follows that

D̃j ⊆ Dw and

∫
IΩ,w

|u′|2 w dx ≤ F̃ j(u) for each u ∈ D̃j , j = 1, 2, 3, 4. (4.42)

Let us begin to prove that

F̃ 2(u) = F̃ 3(u) = F̃ 4(u) for each u ∈ L0(Ω). (4.43)

By (4.26), (4.41) and (4.42) it follows that Dj = Dw for each j = 2, 3, 4 and (4.43) follows. To conclude the
proof we are going to show that the following inequality

F̃ 1(u) ≤ F̃ 2(u) for each u ∈ L0(Ω).

It suffices to apply the classical argument of approximation by convolution. We fix u ∈ L0(Ω) and we can assume

that F̃ 2(u) < +∞; then there exists a sequence (uh)h ⊂ Lip([a, b]) such that uh → u in L0(Ω) and

F̃ 2(u) = lim
h→+∞

∫ b

a

|u′
h|2 w dx < +∞.

Let us extend uh to the whole R by defining uh(x) = uh(a) if x ≤ a and uh(x) = uh(b) if x ≥ b. Let us consider
uh,ϵ := uh ∗ ρϵ, where ρϵ is a classical family of mollifiers on R. Then, from the classical properties of the
approximation by convolution, for given ϵ > 0, (uh,ϵ)h ⊂ C∞(R), uh,ϵ → uh uniformly on [a, b], as ϵ → 0, for a
given h, u′

h,ϵ = u′
h ∗ ρϵ and u′

h,ϵ → u′
h in Lp(Ω) for every p ∈ [1,∞). Moreover

|u′
h ∗ ρϵ|(x) ≤ ∥u′

h∥L∞(Ω), x ∈ Ω

for every ϵ > 0. This implies that

F 1(uh,ϵ) =

∫ b

a

|u′
h,ϵ|2 w dx →

∫ b

a

|u′
h|2 w dx, as ϵ → 0.

Therefore

F̃ 1(uh) ≤ lim
ϵ→0+

F 1(uh,ϵ) =

∫ b

a

|u′
h|2 w dx.

Hence, we obtain

F̃ 1(u) ≤ lim inf
h→+∞

F̃ 1(uh) ≤ lim inf
h→+∞

∫ b

a

|u′
h|2 w dx = F̃ 2(u).
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Now we consider the relaxation w.r.t. the L2(Ω, w̃)-topology, which is stronger than the convergence in
measure m̃. By using the same strategy of the proof of Theorem 4.18, we show the two relaxed functionals
coincide. Indeed, let X = L2(Ω, w̃) were w̃ is the weight in (4.8) and the lower semicontinuous envelopes w.r.t.
L2(w̃)-convergence, that is

F j(u) = sc−(L2(w̃))− F j
X(u) j = 1, 2, 3, 4 (4.44)

and let

Dj = {u ∈ L2(Ω, w̃) : F j(u) < +∞}.

We recall that, if IΩ,w = ∅, then w∗ ≡ 0 (see Prop. 4.6 (i)) and so w̃ ≡ 0, too. This implies that L2(Ω, w̃) = {0},
Dj = {0} and F j(u) = 0, j= 1, 2, 3, 4.

Theorem 4.21. Let w be a weight satisfying (1.1). Then

D2 = Dw ∩ L2(Ω, w̃)

and the following representation holds for the relaxed functional

F 2(u) =


∫
IΩ,w

|u′|2 w dx if u ∈ Dw ∩ L2(Ω, w̃)

+∞ if u ∈ L2(Ω, w̃) \Dw.

In particular

F̃ 2 = F 2 on Dw ∩ L2(Ω, w̃).

Proof. It is immediate that

F̃ 2 ≤ F 2 on L2(Ω, w̃).

In order to complete the proof we have only to prove that

F 2(u) ≤
∫
IΩ,w

|u′|2 w dx ∀u ∈ Dw. (4.45)

Let us first prove that

F 2(u) ≤
∫
IΩ,w

|u′|2 w dx ∀u ∈ Dw ∩ L2(Ω). (4.46)

As in the proof of Theorem 4.18, by Theorem 3.3, for each u ∈ Dw ∩ L2(Ω), there exists (uh)h ⊂ Lip(Ω) such
that (4.31) and (4.30) hold. Thus, by (4.31) and the definition of F 2,

F 2(u) ≤ lim inf
h→∞

F 2(uh) = lim
h→∞

F 2(uh) =

∫
IΩ,w

|u′|2 w dx,
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and (4.46) follows. It is sufficient in order to complete the proof that, for each u ∈ Dw ∩ L2(Ω, w̃), there exists
(ũh)h ⊂ Dw ∩ L2(Ω) such that

ũh → u in L2(Ω, w̃), (4.47)

and

ũ′
h → u′ in L2(IΩ,w, w) as h → ∞. (4.48)

Indeed, from (4.46), (4.48) and the semicontinuity of F 2, it will follow that

F 2(u) ≤ lim inf
h→∞

F 2(ũh) ≤ lim
h→∞

∫
IΩ,w

|ũ′
h|2 w dx =

∫
IΩ,w

|u′|2 w dx,

and we will get (4.45). Observe now that (4.47) and (4.48) can be proved by using the same sequence (ũh)h in
(4.37). Indeed (4.34) immediately implies (4.48). Arguing as in (4.39), we get∫

Ω

|ũh − u|2 w̃ dx

≤ (b− a)

(∫
IΩ,w

|vh − u′|2 w dx+

∞∑
i=h+1

∫ bi

ai

|u′|2 w dx

)
.

(4.49)

Since u′ ∈ L2(IΩ,w),

lim
h→∞

∞∑
i=h+1

∫ bi

ai

|u′|2 w dx = 0.

Therefore, by (4.48) and (4.49), (4.47) follows.

If w is finitely degenerate, by Corollary 4.10 (i),

Dw ⊂ L2(Ω, w∗) ⊂ L2(Ω, w̃).

Thus, as an immediate consequence of Theorem 4.21, we get the characterization of relaxed functional F 2 for
finitely degenerate weights.

Corollary 4.22. Let w be a finitely degenerate weight. Then

D2 = Dw

and the following representation holds for the relaxed functional

F 2(u) =


∫
IΩ,w

|u′|2 w dx if u ∈ Dw

+∞ if u ∈ L2(Ω, w̃) \Dw.

In particular

F̃ 2 = F 2 on Dw.
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Corollary 4.23. Let w be a weight satisfying (1.1). For every u ∈ L2(Ω, w̃) we have

F 1(u) = F 2(u) = F 3(u) = F 4(u),

where F j(u), j = 1, 2, 3, 4 are the functional in (4.44).

Proof. The proof can be carried out as the one of Corollary 4.20 by replacing the role of the convergence in
measure m̃ with the one in L2(Ω, w̃) and the domain Dw with Dw ∩ L2(Ω, w̃).

5. Comparison between different Lebesgue weighted spaces

In this section we will present some examples in order to compare the different Lebesgue weighted spaces
L2(Ω, w) and L2(Ω, w∗). Moreover we will show that space Dw may not be contained in L2(Ω, w) and in
L2(Ω, w∗).

Example 5.1. We are going to study here the inclusion relationships between L2(Ω, w∗) and L2(Ω, w) by means
of the behaviour of weight w. In particular we will prove they are independent. Namely we will show that all
three cases

L2(Ω, w∗) = L2(Ω, w), (5.1)

L2(Ω, w∗) ⊊ L2(Ω, w), (5.2)

L2(Ω, w∗) ⊋ L2(Ω, w), (5.3)

can occur, even though w is finitely degenerate and w = 0 a.e. in Ω \ IΩ,w. The same relationships holds by
considering the corresponding spaces L2

loc. Moreover we will see below that

L2(Ω, w∗) ̸⊆ L2(Ω, w) (5.4)

and

L2(Ω, w) ̸⊆ L2(Ω, w∗). (5.5)

We will first consider the simple situation when the weight w is finitely degenerate with Nw = 1. More
precisely, let Ω = (a, b) = (0, 1), w : (0, 1) → (0,∞), w ∈ L1((0, 1)) and 1

w ∈ L1((δ, 1)) for each δ ∈ (0, 1). Under
these assumptions, according to our notation, IΩ,w = (a, b) = (a1, b1) = (0, 1) and the weight w∗ : (0, 1) → (0,∞)
in (4.7) satisfies the following properties:

0 < inf
[1/2,1)

w∗(x) ≤ sup
[1/2,1)

w∗(x) < ∞, (5.6)

w∗ ∈ C0((0, 1/2]) and ∃ lim
x→0+

w∗(x) ∈ [0,∞). (5.7)

(i) Assume that

lim
x→0+

w∗(x) ∈ (0,∞). (5.8)
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Observe that (5.8) is equivalent to require that

1

w
∈ L1((0, 1)). (5.9)

Then, from (5.6), (5.7) and (5.8), we can infer that

0 < inf
x∈(0,1)

w∗(x) ≤ sup
x∈(0,1)

w∗(x) < ∞,

and thus

L2(Ω, w∗) = L2(Ω). (5.10)

By choosing w(x) = xα with α ∈ (−1, 1), (5.8) is satisfied, since (5.9) holds. Therefore, by (5.10), we can
conclude that, if α ∈ (0, 1), since w(x) < 1 for each x ∈ (0, 1),

L2(Ω, w∗) = L2(Ω) ⊊ L2(Ω, w);

if α = 0, since w(x) = 1 for each x ∈ (0, 1),

L2(Ω, w∗) = L2(Ω) = L2(Ω, w);

if α ∈ (−1, 0), since w(x) > 1 for each x ∈ (0, 1),

L2(Ω, w∗) = L2(Ω) ⊋ L2(Ω, w).

Therefore cases (5.1), (5.2) and (5.3) can occur.

(ii) Assume that

lim
x→0+

w∗(x) = 0. (5.11)

Observe that (5.11) is equivalent to require that

1

w
/∈ L1((0, 1)).

In particular, it holds true that

lim sup
x→0+

w(x) = 0 and lim
x→0+

∫ 1/2

x

1

w
(y) dy = ∞.

Assume now that

lim sup
x→0+

(
w(x)

∫ 1/2

x

1

w
(y) dy

)
< ∞. (5.12)
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Notice that (5.12) trivially holds if w : (0, 1/2) → (0,∞) is nondecreasing. From (5.12) and (5.6), we have that
there is positive constant C such that

w(x) ≤ C w∗(x) ∀x ∈ (0, 1),

which in turn implies (5.1) or (5.2).
The more interesting case is when (5.12) does not hold. For instance, when the weight w oscillates as x → 0+

and it is the case we are going to deal with. More precisely , let us denote

I1h :=

(
1

h+ 1
,
1

2

(
1

h+ 1
+

1

h

)]
, I2h :=

(
1

2

(
1

h+ 1
+

1

h

)
,
1

h

]
,

I1 := ∪∞
h=1I

1
h, I2 := ∪∞

h=1I
2
h

and

Ih := I1h ∪ I2h =

(
1

h+ 1
,
1

h

]
.

Let us define

w(x) := xγ χI1(x) + x3 χI2(x)

= xγ
∞∑
h=1

χI1
h
(x) + x3

∞∑
h=1

χI2
h
(x) x ∈ (0, 1)

(5.13)

where 0 ≤ γ < 1 and χA denotes the characteristic function of a set A. Notice that

1

w(x)
=

1

xγ

∞∑
h=1

χI1
h
(x) +

1

x3

∞∑
h=1

χI2
h
(x) x ∈ (0, 1). (5.14)

In this example, IΩ,w = (0, 1) and so Nw = 1, then it is finitely degenerate. Notice that 1
w is locally summable

in (0, 1).
Let us prove that there exists a positive constant c1 > 0 such that

1

c1
x2 ≤ w∗(x) ≤ c1 x

2 ∀x ∈ (0, 1/4). (5.15)

From (5.13) and (5.15) it follows that the weights w and w∗ are not comparable.
According to (4.7), by (5.14), if x ∈ (0, 1/2),

1

w∗(x)
=

∫ 1

x

1

w(y)
dy

=

∞∑
h=1

∫
I1
h∩[x,1]

y−γ dy +

∞∑
h=1

∫
I2
h∩[x,1]

y−3 dy

= v1(x) + v2(x).

(5.16)



30 V. D. CICCO AND F. S. CASSANO

We are now going to estimate functions vi (i = 1, 2), from above and below. The estimate as far as v1 is
concerned is quite trivial. Indeed

0 ≤ v1(x) =

∞∑
h=1

∫
I1
h∩[x,1]

y−γ dy ≤
∞∑
h=1

∫
Ih∩[x,1]

y−γ dy

=

∫ 1

x

y−γ dy ≤
∫ 1

0

y−γ dy ≤ 1 ∀x ∈ (0, 1/2).

(5.17)

Notice now that, if N(x) denotes the integer part of 1/x with x ∈ (0, 1/2), then

v2(x) =

∞∑
h=1

∫
I2
h∩[x,1]

y−3 dy =

N(x)−1∑
h=1

∫
I2
h

y−3 dy +

∫
IN(x)∩[x,1]

y−3 dy. (5.18)

From (5.18), since for 1 ≤ h ≤ N(x)− 1 we have

1

2

(
1

h
+

1

h+ 1

)
≥ x,

we can infer that

N(x)−1∑
h=1

∫
I2
h

y−3 dy ≤ v2(x) ≤ 2

∫ 1

x

y−3 dy =
1

x2
− 1 ∀x ∈ (0, 1/2). (5.19)

By a simple calculation, we get

v2(x) ≥
N(x)−1∑
h=1

∫
I2
h

y−3 dy ≥
N(x)−1∑
h=1

h3
∣∣I2h∣∣ = 1

2

N(x)−1∑
h=1

h3

h(h+ 1)

≥ 1

2

N(x)−1∑
h=1

h =
(N(x)− 1)N(x)

4

≥ 1

2

(
1

x
− 2

)(
1

x
− 1

)
∀x ∈ (0, 1/2).

(5.20)

From (5.19) and (5.20), it follows that

1

2

(
1

x
− 2

)(
1

x
− 1

)
≤ v2(x) ≤

1

x2
− 1 ∀x ∈ (0, 1/2). (5.21)

Therefore, by (5.16), (5.17) and (5.21), (5.15) follows. Eventually, by considering the weight w in (5.13), it is
easy to see, because of (5.15), that (5.4) and (5.5) can occur.
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Remark 5.2. The weight (5.13) is not a doubling weight. Indeed, let xh, rh such that B(xh, rh) = ( 12 (
1
h +

1
h+1 ),

1
h ), then rh = 1

4
1

h(h+1) . We obtain that

m(B(xh, rh)) =

∫ 1
h

1
2 (

1
h+ 1

h+1 )

x3 dx =̃C1
1

h5
+ o
( 1

h5

)
.

On the other hand, since (
1

h
,
1

h
+

1

4h(h+ 1)

)
⊆ B(xh, 2rh),

we get

m(B(xh, 2rh)) ≥
∫ 1

h+ 1
4h(h+1)

1
h

xγ dx =̃C2
1

hγ+2
+ o
( 1

hγ+2

)
.

We proceed by contradiction by assuming that m is a doubling measure. Then there exists a constant C such
that

C2
1

hγ+2
+ o
( 1

hγ+2

)
≤ m(B(xh, 2rh)) ≤ Cm(B(xh, rh)) =̃C1

1

h5
+ o
( 1

h5

)
.

Thus we have a contradiction since γ + 2 < 5.

Remark 5.3. If w is finitely degenerate, then, by Corollary 4.10 (i),

Dw ⊆ L2(Ω, w∗) ⊆ L2(Ω, w̃).

If w is not finitely degenerate, then Dw ⊆ L2
loc(IΩ,w, w

∗). We observe that Dw ̸⊆ L2(Ω, µ) for each finite measure
µ on Ω such that IΩ,w ⊂ spt(µ). In fact, let u(x) = λi on (ai, bi) for every i ∈ N; then u ∈ Dw, but u /∈ L2(Ω, µ)
if we choose

λi =
1

µ((ai, bi))
.

Indeed,

∫
Ω

|u2|dµ =

+∞∑
i=1

∫ bi

ai

|u2|dµ =

+∞∑
i=1

1

µ((ai, bi))

does not converge, since µ((ai, bi)) → 0, as i → +∞, by Remark 4.3. In particular, this argument applies to
measure µ = w̃ dx since by (4.2) and Proposition 4.6, IΩ,w ⊂ spt(µ). Thus Dw ̸⊆ L2(Ω, µ) = L2(Ω, w̃), if w is
not finitely degenerate. This also implies that Dw ̸⊆ L2(Ω, w), Dw ̸⊆ L2(Ω, w∗) and Dw ̸⊆ L2(Ω), if w is not
finitely degenerate.
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Probabilità e le loro Applicazioni, and are partially supported by the INdAM–GNAMPA 2018 Project Problemi variazionali degeneri



32 V. D. CICCO AND F. S. CASSANO

e singolari. Part of this work was undertaken while the second author was visiting Sapienza University and SBAI Department in

Rome. He would like to thank these institutions for the support and warm hospitality during the visits.

References

[1] J. Björn, S. Buckley and S. Keith, Admissible measures in one dimension. Proc. Amer. Math. Soc. 134 (2005) 703–705.

[2] V.V. Zhikov, On the density of smooth functions in a weighted Sobolev space, (Russian). Dokl. Akad. Nauk 453 (2013)
247–251; translation in Dokl. Math. 88 (2013) 669–673.

[3] J. Casado-Dı́az, Relaxation of a quadratic functional defined by a nonnegative unbounded matrix. Potential Anal. 11 (1999)

39–76.

[4] N. Fusco and G. Moscariello, L2-Lower semicontinuity of functionals of quadratic type. Ann. Mat. Pura Appl. 129 (1981)
305–326.

[5] P. Marcellini, Some problems of semicontinuity and of Γ-Convergence for integrals of the calculus of variations, in Proceedings

of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, May 8–12, 1978), edited by E. De Giorgi, E.

Magenes and U. Mosco. Pitagora, Bologna (1979) 205–221.

[6] P. Marcellini and C. Sbordone, An approach to the asymptotic behaviour of ellipltic-parabolic operators. J. Math. Pures

Appl. 56 (1977) 157–182.

[7] F. Acanfora, G. Cardone and S. Mortola, On the variational convergence of non-coercive quadratic integral functionals and

semicontinuity problems. NoDEA Nonlinear Differ. Equ. Appl. 10 (2003) 347–373.

[8] J.J. Alibert and P. Seppecher, Closure of the set of diffusion functionals – the one dimensional case. Potential Anal. 28 (2008)
335–356.

[9] M. Briane, Nonlocal effects in two-dimensional conductivity. Arch. Ration. Mech. Anal. 182 (2006) 255–267.

[10] M. Camar-Eddine and P. Seppecher, Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math.

Models Methods Appl. Sci. 12 (2002) 1153–1176.

[11] M. Belloni and G. Buttazzo, A survey on old and recent results about the gap phenomenon in the calculus of variations.
Recent developments in well-posed variational problems. Math. Appl. 331 (1995) 1–27.

[12] U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (2) (1994) 368–421.

[13] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999) 428–517.

[14] L. Ambrosio, M. Colombo and S. Di Marino, Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity

of slope,Variational methods for evolving objects. Adv. Stud. Pure Math. 67 (2015).

[15] L. Ambrosio and R. Ghezzi, Sobolev and bounded variations functions in metric measure spaces, in Geometry, Analysis and

Dynamics on Sub-Riemannian Manifolds, Vol. II. EMS Ser. Lect. Math. Eur. Math. Soc., Zürich (2016) 211–273.
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[27] V. Chiadó Piat and F. Serra Cassano, Some remarks about the density of smooth functions in weighted Sobolev spaces. J.

Convex Anal. 1 (1994) 135–142.



RELAXATION AND OPTIMAL FINITENESS DOMAIN FOR DEGENERATE QUADRATIC FUNCTIONALS 33

[28] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland Math. Library, 23. North-Holland & Kodansha.

Amsterdam (1980).

[29] M. Biroli, U. Mosco, A Saint-Venant principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. 169 (1995)
125–181.

[30] M.M. Hamza, Determination des formes de Dirichlet sur Rn, Thèse 3-eme cycle. Université d’Orsay (1975).
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