Estimation of Large Covariance Matrices and their
Inverses by Graphical Modelling

May 5, 2017

Abstract

This chapter reviews graphical modelling techniques for estimating
large covariance matrices and their inverse. The chapter provides a
selective survey of different models and estimators proposed by the
graphical modelling literature and offers some practical examples where
these methods could be applied in health economics.

1 Introduction

In the last few years, there has been a growing literature, both empirical
and theoretical, on methods for estimating large covariance matrices, and
their inverse, in a context where the number of variables largely exceeds the
number of observations. Under this case, it is well-known that the sam-
ple covariance matrix is singular, and the aggregation of massive amount of
estimation errors can have considerable adverse impacts on the estimation
accuracy (Stein 1956). Estimators of the covariance matrix and its inverse
that are more accurate and well-conditioned than the sample covariance ma-
trix have been proposed in various different areas, ranging from economics
and finance to health, biology, computer science and engineering. In eco-
nomics and finance, a growing literature has been developing econometric
methods for large, cross sectionally correlated panel data, in order to improve
the explanatory and predictive power of conventional models. A variety of
econometrics models have been proposed to capture contemporaneous cor-
relations, such as the spatial autoregressive or the conditional autoregressive
model (see Cressie (1993); Anselin (2010)), and the common factors spec-
ification (Bai 2003). These models have been widely adopted for studying
many empirical problems, ranging from the analysis of the propagation of
consumer’s behaviour across a population, the study of technology diffusion,



the analysis of co-movements of economic and financial time series, and how
linkages between countries explain regional income variations. Moreover,
spatial statistical models have been adopted in public health and epidemi-
ology, for modelling small-area disease incidence and for disease mapping
in order to investigate the spread of a disease and estimate local disease
risk (see Stern and Cressie (2000); Lee, Rushworth, and Sahu (2014) and
Chapter XX of this book).

Methods for estimating large covariance matrices have been proposed by
the statistical and computer science literature and applied in many areas
such as machine learning, biology and medicine. The overall framework for
the methodology is that of graphical modelling, which aims at exploring
the relationships among a set of random variables through their joint distri-
bution. Under this framework, the Gaussian distribution is often assumed
so that the dependence structure is completely determined by the covari-
ance matrix, whereas the conditional dependence structure (the network) is
completely determined by the inverse of the covariance matrix, whose off-
diagonal elements are proportional to partial correlations (Lauritzen 1996).
A number of methods for tackling the challenges of high-dimensional data
have resorted to the use of regularization methods, whereby the model like-
lihood is appropriately penalised in order to achieve sparsity as well as effi-
cient and stable inference. Two seminal papers in the context of graphical
modelling are those of (ADD Banerjee et al 2008), who first introduced pe-
nalised likelihood for Gaussian graphical models, and ADD Friedman et al
(2008), who provided a lasso-based coordinate descent algorithm for effi-
cient estimation. A wide range of extensions and alternative regularisation
techniques have been proposed and applied in many different areas. In ma-
chine learning, they have been adopted for image and vision processing or
magnetic resonance imaging, as well as for speech recognition (Bach et al.,
2012; Mardia (1988)), while in biology and medicine these methods have
been employed to infer the interactions between biological entities, such as
proteins and metabolites, in a biological system under specific conditions
(such as disease and time) from microarray and next-generation sequencing
data (ADD Abegaz and Wit 2013, Vinciotti et al 2016) or for the inference
of brain networks from time-series fMRI data (ADD Cribben and Yu, 2017,
Estimating whole brain dynamics using spectral clustering).

This chapter provides a selective review of recent methods for estimat-
ing large covariances and their inverses using graphical modelling techniques,
from both a theoretical and applied perspective. The outline of the paper
is as follows. Section 2 introduces the notion of Gaussian graphical model,
while Section 3 provides a bridge between graphical models and models



from the spatial econometrics literature. Section 4 reviews the graphical
modelling approach to estimation of large precision matrices, and illustrates
methods for model selection. Section 5 introduces discrete models and re-
views approaches to model and estimate graphical models with discrete vari-
ables. Finally, Section 6 concludes with a discussion of existing and potential
application of these approaches to tackle health economics issues.

2 Gaussian graphical models

Let y;; be the observation on the ¢th cross section unit at time ¢, with
i=1,2,..,N and t = 1,2,...,T, and assume that y; = (y1s, Y2t, -»»» -YnNt) ~
N(ut, ¥), where 3 is a N x N symmetric and positive definite matrix,
independent of ¢, having inverse ® = X!, known as theprecision matrix.
In many applications it is convenient to set the mean of the joint distribution
u = XyfB,where 8 is a k-dimensional vector of unknown parameters, and
Xy = (xhy, Xby, s Xy;) 18 @ N x k matrix of individual-specific, observed
regressors.

One key result in the Gaussian graphical modelling literature is that
there exists a one-to-one correspondence between the joint Gaussian distri-
bution of a vector of random variables and its conditional Gaussian distri-
bution. More specifically, letting yy_(;r) = {yer : £ # j,k}, it is possible
to show that the (i, j)th element of the precision matrix, 6;;, is zero if and
only if yj; is independent of yy; given y,_(;x) (Lauritzen 1996). This result
offers an appealing graphical interpretation of the distribution of y; as a
Gaussian graphical model. In particular, the dependency structure of y;
can be represented by an undirected graph, namely a collection of nodes
and edges, G = (V; E), where V contains the nodes corresponding to the
N variables in y; and F is the set of edges which represent the conditional
dependency relationship between variables. The distribution of a variable
observed in a certain node, given values observed in all other nodes, de-
pends only on the observations in its neighborhood, and estimating 6;;, is
equivalent to estimating whether or not there exists an edge between units
j and k. Thus, estimating parameters and identifying zeros in the concen-
tration matrix are equivalent to parameter estimation and model selection
in the corresponding Gaussian graphical model. We next provide a bridge
between graphical models and the range of models proposed by the spatial
econometrics literature. While the spatial econometrics literature has been
largely immune to the developments in Gaussian graphical modelling, these
methods may be useful for a large number of application in the social and



life sciences.

3 Link with the spatial econometrics approach

Gaussian graphical models are known in the spatial econometrics literature
as Conditional Autoregressive (CAR) models. CAR models represent data
from a given spatial location as a function of data in neighboring locations,
and are often seen as an alternative to the well known simultaneous au-
toregressive (SAR) processes (Whittle 1954). Both CAR and SAR models
represent data from a given spatial location as a function of data in neigh-
boring locations, and are used to study how a particular area is influenced
by neighboring areas. The neighbourhood structure is represented by the
means of the so-called spatial weights matrix, usually assumed to be known
a-priori using information on distance between units, such as the geographic,
economic, policy, or social distance. However, in many cases the network is
not known (or only partly known), so the interest is not only in quantifying
the strength/sign of interactions, but also in the detection of interactions. It
is possible to show that the problem of estimating the spatial weights matrix
in a Conditional Autoregressive (CAR) model is equivalent to a neighbour-
hood selection problem in a graphical model. Under the CAR specification,
y;+ has a Gaussian conditional distribution with conditional mean and vari-
ance given by

N
E(y’bt|y]t7j = 1727 "'7N7j 7é Z) = B/XZ—’_ Z wl] (y]t - /lej) ) i = 1727 "'7N7
=L
(1)

Var (yilyje,j = 1,2,..., N, j #14) = o7 (2)

In (1), wi; belong to a N x N matrix, W, known as spatial weights matrix
such that w; = 0. In a spatial weights matrix the rows and columns cor-
respond to the cross section observations, and the generic element, w;;, can
be interpreted as the strength of potential interaction between units ¢ and j.
W is often written as W™ where W™ is a matrix pre-specified by the user,
while ¢ is an unknown parameter that needs to be estimated, measuring
the amount of spatial dependence in the data. Estimation of §, 8 and o2 is
usually carried by maximum likelihood, exploiting the link existing between
conditional and joint distribution, or by the generalised method of moments
(Cressie 1993). Besag (1974) has shown that (1)-(2) for the conditional



distribution imply the following joint normal distribution of y
yi~ N (X8, (Ly = W) A)), (3)

where A = diag(0%,03, ...,0%), provided that (Iy — W) is invertible and
Y = (Iy — W) ' A is symmetric and positive-definite. It is interesting to
observe that the reverse also holds. Let

ye~ N (ue, X)), (4)

where ¥ is a N x N, positive definite matrix. Then (1)-(2) holds, with (see
Mardia (1988); Meinshausen and Buhlmann (2006))

0;;
i = =72, 5
i Osi (5)
Var (yilyj,j = 1,2,..,n,j #1i) = 0;1.1. (6)

It follows that the problem of estimating w;; in the CAR model (1)-(2) is
equivalent to determining whether y; and y; are conditionally independent,
i.e., 0;; = 0. The above derivation of the conditional distribution from the
joint distribution of a Gaussian random vector has been widely exploited
by the statistical literature to propose methods for estimating sparse graph-
ical models. However, the spatial econometrics literature has been largely
immune to these developments. From (5)-(6) it is evident that W can be
inferred from 7! and vice-versa. Therefore, using (5) the problem of es-
timating the spatial weights in a CAR model can be seen as the problem of
estimating a sparse covariance (Friedman, Hastie, and Tibshirani 2010), or,
equivalently, a neighbourhood selection problem (see Section 4.1). Hence,
the spatial weights matrix for CAR models can be estimated by using meth-
ods from the Gaussian graphical modelling literature for estimating inverse
covariance matrices.

4 Estimation

Early graphical approaches for estimating large covariance and precision ma-
trices consisted of adopting a stepwise backward-deletion technique, which
starts by removing the least significant edges from a fully connected graph,
and continues removing edges until all remaining edges are significant ac-
cording to some criterion, such as the p-value of a test for vanishing partial
correlations. However, this procedure is computationally infeasible for data



with even a moderate number of variables, and does not correctly take ac-
count of the multiple comparisons involved (Edwards 2000). More recently,
researchers have proposed various regularisation techniques to consistently
estimate large covariance and precision matrices. Some authors have pro-
posed carrying element-wise transformations on the covariance matrix, such
as "banding”, namely replacing all entries outside a band around the main
diagonal by zeros, “tapering”, that is, gradually shrinking the off-diagonal
elements of the sample covariance toward zero, or ”thresholding”, which sets
small estimated elements of the covariance matrix to zero (Bickel and Levina
2008). Recently, there has been a surge of interest in regression-based ap-
proaches to sparse estimation of precision matrices, featuring methods such
as the Least Absolute Shrinkage and Selection Operator (LASSO) techniques
by Tibshirani (1996). These approaches reparameterise the precision ma-
trix in a manner that its estimation can be recast as a linear least-squares
regression problem. Among these methods, the column-by-column method
and the Graphical LASSO approaches have been widely applied. These are
reviewed next.

4.1 Column-by-column approach

The column-by-column approach exploits a regression interpretation of the
entries of the precision matrix, that stems from the one-to-one relationship
between the joint normal distribution and the conditional distribution (see
Section 3). Starting from this result, this approach considers the regression
equation:

N
Yit = Z YijYjt + Eit-
J=Li#i
As also explained in Section 3 (see, in particular, equations (1)-(2)) the
regression coefficients of y; on y_;; are given by v;; = —6;;/6, for j =

1,2,...,N — 1. It follows that the (i,7)th entry of the precision matrix
is, up to a scalar, the regression coefficients of y;; on y_;; in the multiple
regression of variable y;; on the rest. On the basis of this result, Meinshausen
and Buhlmann (2006) propose to select edges for each node in the graph by
regressing the variable observed on one node on that observed on all other
nodes, using Li-penalized regression. In particular, for each node, y;, the
regression parameters against all other nodes y_;; are found by solving, for
i=1,2,...,N,

% = argminfllye — fy-il3 + Ml 1] (7)



with A being a tuning parameter. The larger the value of A, the stronger
the constraint on the «;; coefficients.

Once 7; is obtained, we get the neighborhood edges by reading out the
nonzero coefficients of 7;. Under a number of regularity conditions, and
sparsity of the precision matrix, Meinshausen and Buhlmann (2006) have
showed that the above problem can recover the true structure of the graph.
However, one problem in the above approach is the absence of symmetry.
In fact, it can happen that 7;; = 0 when predicting y;;, while 7;; # 0 when
predicting y;;, or vice-versa. The final graph estimate is obtained by either
an "and”-type rule, according to which (4,5) ¢ E if 4;; = 75 = 0, or an
7or”-type rule stating that (i,7) ¢ E if 7;; = 0 or 7j; = 0, leading to a
sparser network.

A number of extensions of the above simple approach have been proposed
in the literature. To deal with the lack of symmetry problem, Friedman et al.
(2010) and Peng, Wang, Zhou, and Zhu (2009) propose improved versions of
the Meinshausen and Buhlmann (2006) method that preserve the symmetry
of the estimation problem. Sun and Zhang (2013) suggest to estimate ~; by
solving a scaled version of the LASSO problem (7). This approach has the
advantage that the penalty level for each column is completely determined by
the data via convex minimisation, without the need of using model selection
criteria for determining the tuning parameter, A (see Section 4.3). NOT
SURE ABOUT THIS LAST SENTENCE i NEED TO CHECK.

4.2 Penalised log-likelihood approach

One of the most commonly used techniques for estimating sparse precision
matrices is the penalised maximum likelihood approach, originally advanced
by Li (2001). Motivated by the success of LASSO estimators in the context
of linear regression with a large number of covariates, this approach can
achieve model selection and parameter estimation simultaneously, by induc-
ing sparsity in the precision matrix estimation. This is achieved by adding
to a penalty on the off-diagonal entries of the precision matrix to the usual
log-likelihood function, i.e.

©, = argmin | Tr(X0) — log |©| + E Py, (1951) | (8)
() —
1<)

where 3 is the sample covariance matrix and 0;; is the (i,7)th element of
the precision matrix @, and P, (.) is a penalty function that depends on



a tuning parameter, \;;, which regulates the weights on the correspond-
ing 0;; term. One of the commonly used convex penalty is the L; penalty
(see, among others, Yuan and Lin (2007); Friedman, Hastie, and Tibshi-
rani (2008); Banerjee, El Ghaoui, and d’Aspremont (2008)), leading to the
objective function:

®, = argmin |Tr(£0) —log|©| + A E 1651 | , 9)
()] —
1<)

Banerjee, El Ghaoui, and d’Aspremont (2008) proved that the solution, ) 2
is, by definition, symmetric and for any A > 0 is full rank and invertible. It
is interesting to observe that larger values of A lead to stronger penalisation
and hence sparser graphs, while smaller values of A yield denser graphs.
Friedman, Hastie, and Tibshirani (2010) propose to solve the minimisation
problem in (9) by adopting an iterative procedure whereby at each step the
coordinate descent algorithm proposed by Friedman, Hastie, Hoefling, and
Tibshirani (2007) is applied. The resulting method, known as Graphical
LASSO, is very simple and extremely fast, and has been widely used in
empirical applications thanks also to a number of efficient implementations,
e.g. the R packages glasso and huge.

The method provides a stable estimate of the precision matrix, espe-
cially in high-dimensional problems where the number of variables is far
greater than the number of observations. Theoretical properties of the L;-
penalized maximum likelihood estimator in a large N scenario were derived
by Rothman, Bickel, Levina, and Zhu (2008), who showed that the rate of

convergence to the true precision matrix is O, <\/ [(N+s)/T)InN ) in the

Frobenious norm and O, < (s/T)In N ) in the spectrum norm where s is

the total number of non-zero elements in the precision matrix.

Lam and Fan (2009) also established the so-called sparsistency property
of the penalized likelihood estimator, implying that true zeros are estimated
correctly with probability tending to 1. The authors also prove that the
LASSO penalty produces a bias even in the simple regression setting due
to the linear increase of the penalty on regression coefficients. A number of
authors have proposed remedies to this bias issue. In particular, Shen, Pan,
and Zhu (2012) extended the above penalized maximum likelihood approach
to general non-convex penalties, such as the smoothly clipped absolute de-
viation (SCAD) penalty. Fan and Li (2001) show that the SCAD penalty,
which corresponds to a quadratic spline function, leads to estimators with
desirable statistical properties and has what is called the oracle property,



which means that the estimator performs similarly to the estimator when
the true model is known in advance. Finally, Fan, Feng, and Wu (2009) have
proposed the so-called adaptive LASSO penalty in the context of graphical
models, following the development and successful use of this penalty in the
regression context Zou (2006).

Computational costs The computational cost associated to a coordinate
descendent update in the Friedman, Hastie, and Tibshirani (2008) Graph-
ical LASSO is O(N?). To decrease the computational cost, Hsieh, Sustik,
Dhillon, and Ravikumar (2014) propose an algorithm called QUIC that uses
Newton’s method and employs a quadratic approximation which reaches a
O(N) computational cost. However, when N is very large, this could still be
prohibitive. The last decades have witnessed the dramatic development of
new data acquisition technologies which allow to collect massive amount of
data with relatively low cost. When dealing with huge networks, a number of
authors have proposed to exploit a-priori information on group membership
of observations, or equality constrains, to propose fast, sparse estimation
algorithms. These methods often allow to split a large Graphical LASSO
problem into many, smaller tractable problems. Guo, Levina, Michailidis,
and Zhu (2011) consider an heterogeneous data set where variables, while in-
dependent across groups, have a sparse dependency structure within group.
The corresponding precision matrix has a block diagonal structure, and the
authors propose joint estimation of various blocks by maximising the cor-
responding penalized log-likelihood functions. A similar approach is taken
by Mazumder and Hastie (2012), who propose thresholding estimation of a
sparse inverse covariance that is a block diagonal matrix of connected com-
ponents. Wit and Abbruzzo (2015) impose block equality constraints on
the parameters of an undirected graphical model to reduce the number of
parameters to be estimated. Vinciotti et al. (2016) discuss various forms of
block structures for dynamic networks and propose estimation of the associ-
ated precision matrix under sparsity and equality constraints on parameters
(also known as parameter tying). Parameter tying does not generally reduce
computational costs. However, in some cases, it means that the precision
matrix can be inferred from a matrix/network at a latent lower-dimensional
space ADD OUR PAPER + SEE Chapter XX.

4.3 Model selection

An important issue with the estimation methods reviewed above is the choice
of the regularisation parameter A\, which controls the sparsity pattern of



©. Because each tuning parameter value corresponds to a fitted model,
the choice of the optimal regularisation parameter can be seen as a model
selection problem. The literature has proposed a wide range of techniques
for selecting A\, which can be broadly divided into two groups, depending on
their objective. A first class of methods optimizes the posterior probability of
the model, which involves an integration over the parameters #. Thus, these
methods aims at recovering the true structure of the network. Amongst
these, popular choices are the Bayesian information criterion (BIC) and
the Extended Bayesian Information Criterion (EBIC). Let E be the set of
edges of a candidate graph, and [(¥) be the log-likelihood function of the
associated model. The EBIC for a particular regularisation parameter is
given by (Yuan and Lin,2007):

EBICy = —2I(0) + |E|InT +4|E|AIn N, (10)

where |E| is the number of nonzero elements of the estimated ©. If A = 0,
then the above formula reduces to the conventional BIC, which is well known
to lead to (asymptotically) consistent model selection in a setting where the
number of variables, N, is fixed and the sample size, T, is growing. Foygel
and Drton (2010) establish the consistency of the EBIC, namely, the ability
to select the smallest true graph, in a setting where both N and T grow
to infinity. We refer to Wang, Li, and Tsai (2007) for an investigation of
the use of BIC in the context of penalized likelihood method under a SCAD
penalty.

A further class of methods aims to maximize the prediction power of the
model, namely, by minimizing the Kulback-Leibler divergence between the
estimated © and the true ©. Here the values of © are of importance, more
than the actual structure of the network (i.e. zeros and non-zeros). Popular
choices amongst this class of methods are the Aikaike information crite-
rion (AIC), Cross-Validation (CV), and the Generalized Cross-Validation
(GACV). The AIC is given by:

AIC = —21(¥) + 2 |E|,

and, as in the case of the BIC, it is has been designed for situations where
the dimension N is fixed as T increases.

Cross validation consists of randomly dividing the sample into K sub-
sets of rounghly equals size, n1,no, ..., nx, of which the first K — 1 are used
as the ”training” sets and the last as the ”validation” set. For each value of
the tuning parameter a cross a sequence of values, A1, A, ..., Ap, estimation
of the graph is carried on the K — 1 training sets, and then the negative log-
likelihood is evaluated on the retained validation set. The results are then

10



averaged over all K groups to obtain a single CV score for each A\. Hence, the
optimal parameter is selected as the value of A that minimises the CV score,
achieving the minimal prediction error in the validation sample. The advan-
tage of CV techniques is that they make greater use of the available data, but
the disadvantage is that they are computationally very intensive, although
recent proposals have been put forward for computationally efficient approx-
imations (ADD VUJACIC PAPER). Another disadvantage, however, is that
CV assumes that the training pairs are exchangeable, which is not true in
many real problems, in which there is a structure in the training inputs (for
example, when data refer to points in time or correspond to locations on
a line). Finally, Liu, Roeder, and Wasserman (2010) have shown that CV
tends to overfit in graph estimation. We refer to Wit, van den Heuvel, and
Romeijn (2012) for a discussion on model selection from a model uncertainty
perspective, and a review of existing approaches.

The choice of the tuning parameter is still an open issue and existing
criteria are not completely satisfactory. To handle the challenge of tuning
parameter selection, a number of tuning insensitive estimation techniques
have been proposed. Among these, it is worth citing the approach ad-
vanced by Liu and Wang (2012), known as TIGER, which can be viewed
as a tuning-insensitive extension of the nodewise LASSO method proposed
byMeinshausen and Buhlmann (2006). This method estimates the precision
matrix in a column-by-column fashion using the SQRT-Lasso by Belloni,
Chernozhukov, and Wang (2012), which asymptotically does not depend on
any unknown parameters.

5 Graphical models for limited dependent vari-
ables

5.1 The Ising graphical model

Assume now that y; is a N-dimensional discrete random variable, where
each y;; can only take two values, 0 or 1. These values might for example
represent health outcomes such as death, or 30-days hospital readmission,
or the outcome of political election. Omne important model used for esti-
mating the graph associated with a binary random variable is the Ising
model. Historically, the Ising model was introduced in statistical physics
for describing magnetic interactions and the phase transitions in complex
systems. Recently, it has been used for modeling several phenomena in
social networks, including analysis of political elections (ADD REF), tech-
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nology diffusion (ADD REF), and statistical genomics (ADD REF: Cheng
et al 2014, A Sparse Ising Model with Covariates, Biometrics). Due to both
its importance and difficulty, the problem of structure learning for discrete
graphical models has recently attracted considerable attention. Under the
Ising model, the log-likelihood function associated to the vector of binary
random variable, y;, is

N N
Lyn®) = Oiyie + > Oijyiye — U(O), (11)
i—1 ij—1

where ¥(0®) is a normalisation constant also known as log-partition function,
and 6;; is a canonical parameter measuring the coupling strength between
the random variables y;; and y;;. By convention, 6;; = 0. It is possible
to show that the vertices corresponding to y;; and y;; are unconnected in
the graph if and only if 6;; = 0. The sparse maximum likelihood problem
in this case is to maximize (11) with an added L;-norm penalty on terms
0;;. However, a complication with this approach is that direct estimation
of a regularized likelihood involves calculation of the partition function in
the likelihood, which is computationally intractable in most cases, except
for some simple graph structures like the tree-structured graph. Approx-
imations of the log-partition function have been suggested by Wainwright
and Jordan (2006), and Banerjee, Ghaoui, and d’Aspremont (2008), lead-
ing to approximate sparse maximum likelihood estimate, and by Hoefling
and Tibshirani (2009) and Ravikumar, Wainwright, and Lafferty (2010). In
particular, Ravikumar, Wainwright, and Lafferty (2010) propose a method
based on carrying N nodewise Li-regularized logistic regressions, which per-
forms well for any bounded-degree graph having a number of observations,
T, growing logarithmically in the number of nodes, N. Loh and Wain-
wright (2013) propose a method that is consistent under similar asymptotic
rates, and requires performing node-wise Li-regularized linear regressions
for neighborhood selection. This approach however, is only valid for cer-
tain, simple graph structures.

5.2 Graphical discrete choice models

(need to better summarise)

An approach alternative to the Ising model assumes a discrete choice
model for y;, such as the Probit or Logit specification. In the case of the
Probit model, using the latent response model, assume that y;; is generated
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by tresholding the latent variable y7;:

yi = Bxi+ e, (12)
yir = 1ify; >0, 0 otherwise, (13)

where e;, are Gaussian random errors, and assume that E (e.e}) = X. The
log-likehood of the observed data is:

I(y,9) = In / Fyea (y,y"s ul9) dy*du. (14)

Because of the high dimensional integral present in (14), it is difficult to
maximize [(¢), as well as its penalised version, directly. To deal with the nu-
merical difficulties, methods approximating the likelihood by Gauss-Hermite
quadrature or Monte Carlo integration and then maximizing it by either
Newton-Raphson or Expectation-Maximisation algorithms have been pro-
posed (Breslow and Clayton (1993); Schilling and Bock (2005)). However,
these methods can only be applied in the presence of a limited number of
variables because the number of evaluation points in Gauss-Hermite quadra-
ture increases exponentially with the number of variables. One alternative,
widely used approach for estimating models for correlated binary variables
combines Monte Carlo integration with various Expectation-Maximisation
(EM) algorithms, leading to the so-called Monte Carlo EM algorithm (Ash-
ford and Sowden (1970), Chib and Greenberg (1998), Gueorguieva and
Agresti (2001) and McCulloch (1997)).

QUI INTRODURREI IL MODELLO MIXED MODEL E L’IDEA DI
GROUP-SPECIFIC CONSTRAINS NELLA MATRICE DI COVARIANZA.
Focusing on a mixed Probit model with independent random effects, Mc-
Culloch (1994) proposes Monte Carlo versions of the EM algorithm for ML
estimation based on the Gibbs sampling. This approach has been extended
in various directions. McCulloch (1997) considers a Metropolis-Hastings al-
gorithm at each E-step for ML estimation of generalised linear mixed models.
Chan and Kuk (1997) propose an EM algorithm where the E-step is made
feasible by Gibbs sampling, for ML estimation of a mixed Probit model
with correlated random effects. The authors also suggest to approximate
standard error of estimates by inverting a Monte Carlo estimate of the in-
formation matrix. The proposed approach however is computationally very
intensive, as it requires sampling from a multivariate Truncated Normal
distribution. To deal with this problem, Tan, Tian, and Fang (2007) pro-
pose a non-iterative importance sampling approach to evaluate the first and
the second order moments of a truncated multivariate normal distribution
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associated with the Monte Carlo EM algorithm. Although this method is
faster than direct estimation of the moments, it is still computationally very
demanding for large scale problems. An alternative, direct sampling-based
EM algorithm is advanced by An and Bentler (2012). The authors propose
to draw random samples from the prior, Gaussian distribution of random
effects, which is computationally much easier than from the corresponding
unknown posterior distribution, although at the expenses of a higher Monte
Carlo error. Guo, Levina, Michailidis, and Zhu (2015) propose an EM esti-
mation algorithm for graphical model for ordinal variables based on a con-
ditional independence assumption that simplifies computation considerably
(see also Behrouzi, Johannes, and Wit (2016)).

6 Potential applications in health and health eco-
nomics

(to be done)

There are potentially many real world applications associated with net-
work structure learning. Intuitively, such research can be used to analyze
underlying relationships embedded under complex networks. The variants
of graphical lasso can also be applied to problems where the network is
evolving with the time, such as political election and gene network.

e biology applications.

e Health economics applications: Estimating the number of rivals in
studying competition between health care providers.

Up to today, estimating graphical models in an efficient way is still an
open research problem.
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