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Abstract. We present NuRV, an extension of the NUXMV model checker
for assumption-based LTL runtime verification with partial observabil-
ity and resets. The tool provides some new commands for online/offline
monitoring and code generations into standalone monitor code. Using
the online/offline monitor, LTL properties can be verified incrementally
on finite traces from the system under scrutiny. The code generation cur-
rently supports C, C++, Common Lisp and Java, and is extensible. Fur-
thermore, from the same internal monitor automaton, the monitor can
be generated into SMV modules, whose characteristics can be verified
by Model Checking using NUXMV. We show the architecture, functional-
ities and some use scenarios of NuRV, and we compare the performance
of generated monitor code (in Java) with those generated by a similar
tool, RV-Monitor. We show that, using a benchmark from Dwyer’s LTL
patterns, besides the capacity of generating monitors for long LTL for-
mulae, our Java-based monitors are about 200x faster than RV-Monitor
at generation-time and 2-5x faster at runtime.

1 Introduction

Symbolic Model Checking [16] is a powerful formal verification technique for
proving temporal properties of transition systems (a.k.a. models) represented by
logical formulae. In the case of Linear Temporal Logic (LTL) [15], the properties
can be translated into symbolically represented w-automata, which is then con-
joined with the model and proved by search-based techniques that exhaustively
analyze the infinite traces of the system [7]. Runtime Verification (RV) [10,13] on
the other hand, is a lightweight verification technique for checking if a given prop-
erty is satisfied (or violated) on a finite trace of the system under scrutiny (SUS).
In general, LTL-based RV problems can be resolved by automata-based [1],
rewriting-based [17], or rule-based [11] approaches.

In this paper, we present a new tool called NuRV, an extension of the
NUXMV [4] model checker for LTL-based RV. To the best of our knowledge,
this is the first time that a model checker is directly modified (or extended) into
a runtime monitor (or monitor generator). It is natural to do so, as NUXMV has
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already provided the needed infrastructure, such as a symbolic translation from
LTL to w-automata, an algorithm for computing the “fair states” (those leading
to infinite paths), together with an interface to BDD library [3]| based on CUDD
2.4.1 [18].

For the monitoring algorithm implemented in NuRV (c.f. [6] for more details),
our start point is the automata-based approach [1] based on LTL3, implemented
symbolically. Suppose the monitoring property is ¢, we first run the LTL trans-
lations twice, on ¢ and -y, to get two symbolic automata T, and 1., resp.
Then an input trace u is synchronously simulated on T, and 1., by repeatedly
computing forward images w.r.t. all fair states!. For each input state of u, we
get two sets of belief states, r, and 7. Based on their emptinesses, the monitor
returns one of the following verdicts:

— conclusive true (T), if r, # 0 and -, = (. ¢ is verified for all future inputs;

— conclusive false (L), if r, = 0 and r—, # 0. ¢ is violated for all future inputs;

— inconclusive (?7), if r, # 0 and r—, # 0. In this case, the knowledge of the
monitor is limited by the finiteness of u.

Besides the property ¢, the monitoring algorithm takes in input a model K
of the SUS. This is used to declare the variables in which the properties are
expressed, but more importantly to define some constraints on their temporal
evolution, which represent assumptions on the behavior of the SUS. By con-
sidering only (infinite) traces of K, the above algorithm may give more precise
outputs (turning ? into T /L). This is obtained by using K ®T,, (the synchronous
product of K and T,,) and K ® T-, instead of T,, and T-,, respectively. This
coincides with [12], where the resulting monitor is called to be predictive.

The model is used by NuRV in different novel ways. First of all, there is the
possibility that u ¢ L(K), because the model may be wrong, or it only captures
a partial knowledge of the SUS, or due to unexpected faults. In this case we
have r, = r—, = () in above algorithm, and we naturally let the monitor returns
a fourth verdict called out-of-model (x). This is why we call K an assumption,
and the two verdicts T /L are only conclusive under assumptions, thus renamed
to T#/L12. This extended RV approach may be called assumption-based. In par-
ticular, if one only cares whether the SUS always follows its model, we can use a
dummy LTL property true in above procedure, so that K ®T.,, is always empty,
and the monitor will output either T# or X, indicating whether u € L(K'). This
application coincides with model-based RV [19].

Second, the above monitoring algorithm directly supports partially observable
traces, i.e. variables appeared in the monitoring property are not (always) known
in each state of the input trace. This is because the symbolic forward-image
computations do not require full observability—Iless restrictive inputs result to

! Emerson-Lei algorithm [9] is used here. This corresponds to the NBA-to-NFA con-
versions based on SCC (strongly connected components) detections in [1], while the
forward-image computations determinize NFAs into DFAs on the fly. Thus, NuRV
provides a full implementation of [1].
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coarser belief states. Partial observability becomes more useful under assump-
tions, as an assumption may express a relation between observable and unob-
servable variables of the SUS.

Third, NuRV supports resettable monitors, i.e. it can evaluate an LTL prop-
erty at arbitrary positions of the input trace. This idea was inspired by the
observation that, in r, and 7, all variables (some are generated by the LTL
translations) related to the present and the past have the same values, while all
variables related to the future have opposite values. There is no easy way to dis-
tinguish these two groups of variables. However, by taking r, U r-, we smartly
get a new belief state which represents the history of the system after a run
given by the input trace seen so far. If we restart the monitor algorithm at state
i using this history as the new initial condition of K (also with a reduced version
of initial conditions of T, and T.,), the new monitor is essentially evaluating
[u,i = ¢] for |u] > i, with the underlying assumptions taken into account. This
is again an orthogonal feature, but having an assumption makes resetting of the
monitor more interesting as the assumption evolves to take into consideration
the history of the system.

Furthermore, NuRV can synthesize the symbolic monitors into explicit-state
monitor automata and then generate them into standalone monitor code in vari-
ous programming languages (currently we support C, C+-, Java, and Common
Lisp). Besides, it is possible to dump the monitor automata into SMV mod-
ules, which can be further analyzed in NUXMV for their correctness and other
properties.

The rest of this paper is organized as follows: In Sect. 2 we describe its archi-
tecture and functionalities. Some use case scenarios (as running examples) are
given in Sect. 3. Section4 shows some experimental evaluation results. Finally,
we conclude the paper in Sect. 5 with some directions for future work.

2 Architecture and Functionalities

NuRV implements the Assumption-based Runtime Verification (ABRV) with
partial observability and resets described in [6]. Monitoring properties are
expressed in Propositional Linear Temporal Logic (LTL) [15] with both future
and past temporal operators. For each input state, the monitor outputs one of
four verdicts in By ={T?, 1® 7 x}. As a program, NuRV takes an assumption
(as SMV model), some LTL properties and input traces, and output the verifica-
tion results or some standalone monitor code, according to a batch of commands.
The reader may refer to [6] for the formal definition of the LTL semantics and
the related RV problems.

2.1 Architecture of NuRV

The internal structure of NuRV is shown in Fig.1. The monitor construction
starts from the modular description of a model K (used as assumptions in
ABRV) and a set of LTL properties ¢1, . .., ¢,. The model is used also to declare
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Fig. 1. The internal structure of NuRV

the variables (and their types) in which the LTL properties are expressed, thus
the alphabet of the input words of the monitors. NuRV has inherited NUXMV’s
support of hierarchical models and rich variable types (such as bound integers
and arrays), all input data (models, properties and traces) are flattened and
boolean encoded before going to further steps. The Model Construction compo-
nent generates (from the model) a BDD-based representation of the Finite State
Machine (FSM), which is then used in the monitor construction step, together
with the monitoring property, to produce another BDD-based FSM represent-
ing the symbolic monitor. The resulting monitor can be used in two ways: (1) as
an online/offline monitor running inside NUXMvV, accepting finite traces incre-
mentally, outputting verification results for each input states. (2) as the input
of the Monitor Generator component, resulting into standalone monitor code.
From the end-users’ point of view, NuRV extends NUXMV with the following
new commands:

build_monitor: build the symbolic monitor for a given LTL property;
verify_property: verify a currently loaded trace in the symbolic monitor;
heartbeat: verify one input state in the symbolic monitor (online monitoring);
generate_monitor: generate standalone monitors in a target language.

= W N

The commands build_monitor and verify_property together imple-
mented the offline monitoring algorithm described in [6]. The command
generate_monitor further generates explicit-state monitors in various languages
from the symbolic monitor built by the command build_monitor. These com-
mands must work with other NUXMV commands [2] to be useful.

2.2 Structure of Explicit-State Monitors

The Monitor Generator components internally generate monitor code in two
steps: (1) generating explicit-state monitor automata from the symbolic monitor;
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(2) converting monitor automata into code in specific languages. NuRV can
generate three levels of explicit-state monitors:

L1 The monitor synthesis stops at all conclusive states;
L2 The monitor synthesis explores all states;
L3 The monitor synthesis explores all states and reset states.

A sample explicit-state monitor for LTL property p U q generated by NuRV
is shown in Fig.2. The monitor is generated under the assumption that either
p or ¢ is true in the input. The monitor starts at location 1, and returns ? if
the input is p A =g until it received —p A ¢ which has the output T? (Y). The
L1 monitor has no further transition at locations associated with conclusive
verdicts (T? or L?), since it can be easily proved that ABRV-LTL monitors are
monotonic if the assumption is always respected by the input trace. The L2
monitor contains all locations and transitions, thus it may return x even after
the monitor reached conclusive verdicts. The L3 monitor additionally contains
information for the resets: in case the monitor is reset, the current location
will first jump to the location indicated in the bracket [], of current location,
then goes to next location according to the input state. However, in the above
monitor all reset locations are just the initial location (1), this is mostly because
the assumption is an invariant property and the LTL property does not have
any past operators.

Standalone monitor code are literally translated from these monitor
automata (FSMs). The correctness of monitors in C, for instance, comes indi-
rectly from the correctness of the symbolic algorithm and mode checking on
SMV-based monitors.

Fig. 2. Explicit-state monitors of p U ¢ (assuming p # ¢) (L1-L3)
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2.3 API of Generated Code

NuRV currently supports monitor code generation into five languages: C, C++,
Java, Common Lisp and SMV. The structure of monitor code is simple yet
efficient: it simply mimics the simulations of deterministic FSMs.
The monitor code generated (in C, for example) has the following signature:
int /* [out] (0 = unknown, 1 = true, 2 = false, 3 = out-of-model) */
monitor
(long /* state [in] =*/,

int /* reset [in] (0 = none, 1 = hard, 2 = soft) */,
int* /* current_loc: [in/out] x/);

The function name (monitor here) is given by the user. It takes three param-
eters: (1) state: an encoded long integer representing the current input state of
the trace, (2) reset, an integer representing the possible reset signal, and (3)
current_loc: a pointer of integer holding the internal state of the monitor. It is
caller’s responsibility to allocate an integer and provide the pointer to the mon-
itor (otherwise the function returns —1 indicating invalid locations), and this is
actually the only thing to identify a monitor instance. The sole purpose of the
function is to update *current_loc (the value behind the pointer) according
to state and reset and to return a monitoring output. NuRV supports two
different encodings for state:

1. Static partial observability: state denotes a full assignment of the observ-
ables, encoded in binary bits: 0 for false (L), 1 for true (T);

2. Dynamic partial observability: state denotes a ternary number, whose each
ternary bit represents 3 possible values of an observable variable: 0 for
unknown (7), 1 for true (T) and 2 for false (L).

Note that the symbolic monitoring algorithm can take in general input states
expressed in Boolean formulae (e.g., if the observables are p and ¢, our monitor
may take an input state “p xor ¢”, either p or ¢ is true but not both), but this is
not supported by the generated code.

BDD operations are implemented by the BDD manager. Their performance
strongly depends on the variable ordering used in the BDD construction. This
can be controlled by setting an input_order_file in NUXMV. The input of gen-
erated monitor code requires an encoding of BDDs into long integers according
to this file. This encoding is done from the least to the most significant bit. For
instance, if the observables are p and ¢ with the same order, an binary encod-
ing for the state {p = T,¢ = L} would be (01); = 1, and a ternary encoding
for the same state would be (21); = 7. The design purpose is to make sure
that the comparison of two encoded states can be as fast as possible. The signa-
tures of monitors in other languages are quite similar, except that the parameter
current_loc can be put inside C+-+/Java classes as an member variable, and
each monitor is an instance of the generated monitor class.



388 A. Cimatti et al.

3 Use Case Scenario

Now we briefly demonstrate the process of generating a monitor for LTL prop-
erties g = pUgq and 1 = YpV ¢, assuming p # q. A batch of commands shown

in Fig. 3 does the work (also c.f. Fig. 4 for the contents of two helper files).

The command go builds the
model from the input file
disjoint.smv which defines two
Boolean variables p and ¢, together
with the invariant p # q.

The generated monitors MO.c
and Ml.c (together with their C
headers) are under the full observ-
ability of p and ¢. The variable

set input_file
set input_order_file
go

add_property -1 -p "p U
add_property -1 -p "Y p
build_monitor -n O
build_monitor -n 1
generate_monitor -n 0 -1 3
generate_monitor -n 1 -1 3
quit

"disjoint.smv"
"default.ord"
q"

| q”

_L "¢" -o
_L "¢" -o

Mo
Vel

Fig. 3. The batch commands

ordering is given by the file default.ord, in which each line denotes one variable

in the model.

The simplest way to use the generated monitor, MO for instance, is to declare
an integer and call the monitor function like this: (e.g. when monitoring a C pro-
gram linked with the generated monitor code, p and ¢ may denote two assertions

in the program)

int
out
out

monitor_loc, out;
MO (0bO1 /* p & !'q */,
MO (0b10 /* !p & q */,

There is no need to initialize the
integer monitor_loc as the first MO
call with a value 1 will also do
the monitor initialization. (Actu-
ally it just set monitor_loc to 1,
we may call it a hard reset.) The
first function call returns 0 indicat-
ing ABRV-LTL value ? (unknown);

1 /* hard */,
0 /* none */,

&monitor_loc);
&monitor_loc);

MODULE main

VAR p : boolean; q : boolean;
INVAR p != q

p

q

Fig. 4. disjoint.smv and default.ord

the second call returns 1 indicating T? (conclusive true).

For offline monitoring, there is
no need to call generate_monitor
in above batch command. Sup-
pose a trace u = pppqgqq has
been loaded (by read_trace), the
command verify_property veri-
fies the trace against the symbolic
monitor of ¢y, shown in Fig. 5 (here

MODULE main

VAR p : boolean; q : boolean;
INVAR p !'= q

P

q

Fig. 5. Offline monitoring in NuRV

“—n 0” denotes the first monitor, and 1 denotes the first loaded trace).

It is also possible to verify just one input state by heartbeat (online monitor-
ing). It has a similar interface with verify_property, just the trace ID is replaced
by a single state expressed by a logical formula (as a string), e.g. "p & !q".
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We have done some comparison tests? between NuRV and the latest release of
RV-Monitor [14]. To show the feasibility and effectiveness of RV tools, we tried
to generate LTL monitors from a wide coverage of practical specifications, i.e.
Dwyer’s LTL patterns® [8]. The purpose is to generate the same monitors from
NuRV and RV-Monitor (rvim) and compare their performances and other char-
acteristics. All these patterns are expressed in six Boolean variables (p, g, 7, s,t
and z). RV-Monitor is event-based, i.e. the alphabet is the set of these vari-
ables instead of their power set. This means our monitors can be built under the
assumption that all six variables are disjoint.

Table 1. Eight long formulae from Dwyer’s patterns

ID | Pattern LTL
13 | Trans to p occur at most twice G((gANFr)—
(between ¢ and r) (kp A=) UV ((pA-r)U(r V((-pA
-r) U (r ((P/\ﬁT)U(TV(ﬁPUT))))))))))
14 | Trans to p occur at most twice Gg— (-pA—")U@rV((pA-T)U(rv
(after g until r) (kpA=-T)U(rV ((pA-1)U(rVv
(-pWr)V GP)))))))))
39 | p precedes s,t (after ¢ until r) G(g— (=(sAn (= ) AX(=rU(tA
—r) U (rVp) VG (=(s AXFt))))
43 | p responds to s,t (between g and ) | G ((¢ AFr) — (s AX (-rUt) —
X (~r U (t AFp)) Ur)
44 | p responds to s,t (after g untilr) |G (¢ — (sAX(—rUt) = X (—rU(tA
Fp))U(rvG(sAnX(-rUt) —
X (=rU(tAFp)))))
49 | s,t responds to p (after g untilr) |G (¢g— (p— (-rU(sA—-r A
X (-rU)))U(rVG(({p— (sAXFt)))
53 | s,t without z responds to p G((gAFr)—=(p— (-rU(sA—-rA=zA
(between ¢ and ) X ((-rA=2)Ut))))Ur)
54 | s,t without z responds to p (after ¢ G(q— (p — (-1 U (s A—r A=z A
until ) X((-rA=z)U))U(rvG(p—

(sA—zAX(=2U1)))))

Unfortunately, RV-Monitor (rvm) fails in generating monitors from eight long
formulae (Pattern 13, 14, 39, 43, 44, 49, 53 and 54), shown in Table 1. Also it

2 All test data and materials for reproducing these experiments are available
at https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz.
3 The latest version (55 in total) is available at http://patterns.projects.cs.ksu.edu/

documentation/patterns/Itl.shtml. We call them Pattern 0,1,...,

order.

54 in the same
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does not generate* monitors from all ten safety properties (Pattern 5, 7, 22, 25,
27, 40, 41, 42, 45 and 50). Eventually we got only 37 monitors out of 55 LTL
patterns, and we confirmed that, whenever rvin monitors report violations, our
monitors behave the same. Our 55 monitors were quickly generated in 0.467s
(MacBook Pro with Intel Core i7 2.6 GHz, 4 cores) using a single core, while the
37 rvin monitors were generated in 78.619s on the same machine using multiple
cores.

BRV-Montor  BNURV

Time (ms)

1500 1500

1250 1250

1000 1000

_— [ [ P | . 1 'l -

10 11 12 13 14

Pattern ID

Fig. 6. Performance of generated Java monitors on 107 states.

We observed that rvm monitors does not report further violations once the
first violation happens, and goes into terminal states. To get visible performance
metrics we chose to reset all monitors once a violation is reported. Also, to
prevent extra performance loss in rvm monitors by creating multiple monitor
instances [5], we have used a single trace (stored in a vector) with 107 random
states. For each of the 37 LTL patterns, we recorded the time (in ms) spent by
both monitors (running in the same Java process), the result is shown in Fig. 6.
Our monitors (in Java) have shown a constant-like time complexity (approx.
250ms), i.e. the time needed for processing one input trace is almost the same
for all patterns. This reflects the spirit of automata-based approaches. Rvm
monitors vary from 500 ms to more than 6 s, depending on the number of resets.

5 Conclusions and Future Work
We presented NuRV, a NUXMV extension for Runtime Verification. It supports
assumption-based RV for propositional LTL with both future and past opera-

tors, with the supports of partial observability and resets. It has functionalities

4 The error message is “violation is not a supported state in this logic, 1t1.”.
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for offline and online monitoring, and code generation of the monitors in various
programming languages. The experimental evaluation on standard LTL patterns
shows that NuRV is quite efficient in both generation and running time. In the
future, we plan to participate in the RV competition to broaden the tool compar-
ison and to extend the monitor specification language beyond the propositional
case.

Acknowledgment. We thank the anonymous reviewers for their helpful comments.
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