Check for
Updates

Quality Diversity Evolutionary Learning of Decision Trees

Andrea Ferigo
University of Trento
Trento, Italy
andrea.ferigo@unitn.it

ABSTRACT

Addressing the need for explainable Machine Learning has emerged
as one of the most important research directions in modern Arti-
ficial Intelligence (AI). While the current dominant paradigm in
the field is based on black-box models, typically in the form of
(deep) neural networks, these models lack direct interpretability for
human users, i.e., their outcomes (and, even more so, their inner
working) are opaque and hard to understand. This is hindering the
adoption of Al in safety-critical applications, where high interests
are at stake. In these applications, explainable by design models,
such as decision trees, may be more suitable, as they provide in-
terpretability. Recent works have proposed the hybridization of
decision trees and Reinforcement Learning, to combine the advan-
tages of the two approaches. So far, however, these works have
focused on the optimization of those hybrid models. Here, we apply
MAP-Elites for diversifying hybrid models over a feature space that
captures both the model complexity and its behavioral variability.
We apply our method on two well-known control problems from
the OpenAI Gym library, on which we discuss the “illumination”
patterns projected by MAP-Elites, comparing its results against
existing similar approaches.

CCS CONCEPTS

» Theory of computation — Reinforcement learning; - Com-
puting methodologies — Genetic programming; Hybrid symbolic-
numeric methods;

KEYWORDS

Quality diversity, Explainability, Decision trees, Reinforcement
Learning, Grammatical Evolution

ACM Reference Format:

Andrea Ferigo, Leonardo Lucio Custode, and Giovanni Iacca. 2023. Quality
Diversity Evolutionary Learning of Decision Trees. In The 38th ACM/SIGAPP
Symposium on Applied Computing (SAC °23), March 27-March 31, 2023,
Tallinn, Estonia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3555776.3577591

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °23, March 27-March 31, 2023, Tallinn, Estonia

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9517-5/23/03...$15.00
https://doi.org/10.1145/3555776.3577591

Leonardo Lucio Custode
University of Trento
Trento, Italy
leonardo.custode@unitn.it

425

Giovanni lacca
University of Trento
Trento, Italy
giovanni.iacca@unitn.it

1 INTRODUCTION

As Artificial Intelligence (AI) has become more pervasive in real-
world applications, major concerns have arisen regarding the need
for explanations of its outcomes and, possibly, its inner working
[18]. This need is especially relevant in safety-critical applications,
such as (but not limited to) healthcare, control systems, or financial
regulatory systems, where the opaqueness of modern Al mostly
based on Deep Learning (DL), may pose serious issues. As such,
the field of eXplainable Artificial Intelligence (XAI) has produced
considerable research efforts in the past two decades [1-3, 19].

While there is currently a rather heated debate between those
who believe that, also because of lack of explanations, DL is “hitting
a wall” [27, 28], and those who instead rightly highlight the many
successes of modern DL—especially in Computer Vision and Natural
Language Processing—it is however quite clear that, to some extent,
and especially in some domains, explanations are necessary and
stakeholders do really need them to fully trust AI models [24].

As an alternative to the dominant paradigm of black-box DL-
based models, some researchers have recently advocated the use of
white-box (also called glass-box) models, such as, for instance, de-
cision trees (DTs) and rule-based systems [34], noting that in some
cases they can obtain similar or even better performance [33, 35].
Moreover, while often in black-box models only a posteriori expla-
nations are possible, white-box models are “explainable by design”,
i.e., their transparent structure makes it possible to interpret (and,
possibly, understand) their inner working and thus their outcomes.

Given the importance of interpretability, interpretable Reinforce-
ment Learning (RL) has thus been identified as one of the current
grand challenges in AI [34]. In fact, several modern applications of
Al are modelled as RL problems. For example, deep RL has recently
been used for the magnetic control of tokamak plasmas in a nuclear
fusion plant [11], and for the definition of optimal taxation policies
[51]. These two are, clearly, high-risk domains where the decisions
made by the Al can have serious consequences on people’s lives and,
hence, interpretable models may be more appropriate. However,
the complexity of some real-world problems may be too high to be
captured by simple white-box models. For this reason, a promising
direction in current Al attempts to break the dichotomy between
black-box and glass-box models, by proposing hybrid models [30],
e.g., based on neuro-symbolic Al [17, 37, 42].

While seminal works on hybrid Al date back to the late *90s-early
2000s, see, e.g., the works by Sun et al. [40, 41], or the studies on
Learning Classifier Systems [22], there is nowadays a resurgence of
interest in those models. In this sense, it is worth noting that many
recent successes of DL, such as DeepMind’s MuZero [38] and its
predecessors, are actually based on hybrid models.

Previous research has mainly focused on the optimization of
hybrid models, i.e., the goal of those studies was to find their optimal
configuration to improve performance. Some instances of hybrid

https://doi.org/10.1145/3555776.3577591
https://doi.org/10.1145/3555776.3577591
https://doi.org/10.1145/3555776.3577591
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555776.3577591&domain=pdf&date_stamp=2023-06-07

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

models have been obtained by combining Q-learning [49] with DTs
induced by Genetic Programming, as in [10], or by Grammatical
Evolution (in the following “GE”), as in [7-9]. Another recent work
[21] combined instead behavior trees with RL. However, when one
wants to analyze this kind of models, other features—different from
their performance—can be of interest. For instance, two important
dimensions can be the model complexity, i.e., a (static) measure of
the model’s structure, and its behavioral variability, i.e., a (dynamic)
measure of the model’s capability of showing different behaviors
during the execution of a given task. The first aspect can be relevant
because, in general, simpler models can be easier to interpret [33,
35]. The second aspect can be relevant because a higher behavioral
variability may indicate a better adaptation and a higher robustness
of the model [20].

In this paper, we apply for the first time a quality diversity (QD)
algorithm, namely the Multi-dimensional Archive of Phenotypic
Elites (in the following, MAP-Elites, or just “ME”) [31], to “dis-
entangle” the relation between a hybrid model’s performance, its
complexity, and its behavioral variability. QD is an emergent trend
in Evolutionary Computation that posits that some specific tasks,
especially those that are characterized by deceptive objectives, can
be solved more efficiently by algorithms that explicitly look for a di-
versification of the solutions found during the evolutionary process,
rather than an explicit optimization of a given objective function
[32]. Successful examples of QD algorithms are Novelty Search [25],
and indeed ME. The latter, in particular, has been designed with the
goal of “illuminating” (w.r.t. the objective quality) a given feature
space defined by some specific features of interest: this is the use
of the algorithm that we make here. Originally devised for robotic
applications [6], ME has been successfully applied to various prob-
lems related to games [15, 23], logistics and scheduling [45, 46],
neuroevolution [5], and constrained optimization [14]. Other works
tried to use ME for interactive optimization [44], or to automati-
cally derive rules to describe the relationships between features and
objective quality [47]. In [13], ME has been used for the first time
to analyze programs evolved by means of Genetic Programming
w.r.t. two aspects of program architecture, namely the scope count
(to measure program modularity) and the instruction entropy (to
measure instruction diversity).

Here, we use ME to obtain a diverse collection of interpretable
hybrid models composed of a DT combined with Q-learning on the
leaves. These models are similar to the ones used in previous works
[7-10] that, however, focus on the model optimization and analyze,
a posteriori, the model complexity. In the present work, instead,
we explicitly define as features for ME: 1) a measure of behavioral
variability (i.e., the entropy of the actions taken by the model during
the episode) and 2) a measure of model complexity (i.e., the depth of
the DT). To the best of our knowledge, the only works that addressed
the quest for diversity in RL tasks are the recent papers [50] and [43].
In [50], in particular, authors state that finding diverse solutions to a
same RL problem can improve exploration, transfer, hierarchy, and
robustness of agents. In that work, diversity is explicitly measured
as the distance between the state occupancies of the policies in the
obtained policy set, with agents controlled by actor-critic neural
networks. Here, instead, we implicitly measure diversity in the
aforementioned two-feature space, and we focus on DTs rather than
neural networks. In [43], authors also identify the policy diversity

426

A. Ferigo et al.

as the key for robust RL agents. Similarly to our work, they also use
ME; however, differently from us, they use gradient approximations
and, most importantly, they project the policies onto a feature space
made of domain-specific features (for a simulated locomotion task).
In our case, instead, we consider domain-agnostic features, and
as such our method can be of more general applicability. Despite
these differences, our work shares the same motivation of these two
previous works, i.e., we consider the search for diverse policies as a
way to reach higher robustness. On top of that, we add however the
important consideration about the interpretability of such models.
In this regard, it is important to rule out a possible misconception:
neither diversity nor interpretability are, per se objectives of the
search (after all, we do not know a priori if these aspects are in
conflict or not with the model performance). On the contrary, we
consider them as features, hence the need for disentangling their
relation with respect to the performance, and the use of ME.

We apply the proposed method on two well-known classic con-
trol problems from OpenAI Gym [4], namely Cart Pole and Moun-
tain Car, and compare the results of ME and GE. We show that, by
leveraging the exploration capability of ME, we are able to “illumi-
nate” the relationship between model performance, complexity, and
behavioral variability much more effectively than GE!. Moreover,
our results are comparable with the state-of-the-art.

The rest of the paper is structured as follows. The next section
describes the proposed method. The numerical results are presented
in Section 3. Finally, Section 4 concludes this work.

2 METHOD

As introduced before, we aim to evolve DTs using a combination of
an evolutionary algorithm (EA) and RL. While the EA evolves the
structure of the DT, the RL algorithm optimizes the actions taken
by the leaves, as in [7]. In the following, we describe the individual
encoding, the EAs used to evolve the DTs, the RL technique that
optimizes the action of the leaves, and how we evaluate the DTs,
describing also the tasks performed.

2.1 Individual Encoding

While the two EAs (namely, GE and ME, as described below) used in
this study are different, in both cases we encode the genotype of an
individual (i.e., a candidate solution representing a DT) as a vector
g = (9o, - - ., gsize) With g; € [0, maxValue], where maxValue is an
integer value which must be greater than the number of possible
choices for each production rule. We obtain the relative DT trans-
lating the genotype in the phenotype using an associate grammar
[36]. This translation procedure operates as follows: given [as the
number of possible choices for a given production rule in the gram-
mar, the value ¢ = g; mod [indicates that the c-th value will be
taken as value. Note that we consider only oblique DTs, i.e., DTs
in which each condition tests a linear combination of all the input
variables. In Figure 1 we show an example of such mapping with a
simplified grammar. The example of translation works as follows:

In the remaining of the paper, we refer to the “illumination” concept originally
introduced in [31], where ME is defined as an “illumination” algorithm “because it
illuminates the fitness potential of each area of the feature space, including tradeoffs
between performance and the features of interest”. Here, the features of interest are the
model complexity and its behavioral variability, while the fitness potential refers to
the model performance (on the task at hand) in each area of the defined feature space.

Quality Diversity Evolutionary Learning of Decision Trees

the first rule root always produces an if node, which is composed
of a condition and two actions. The condition rule requires 2 const
nodes. Each const rule selects an integer value between 1 and 10,
hence in this case [= 10. In the example shown in Figure 1 (a), the
first two values of g are 5 and 2, which correspond, respectively, to
the fifth and second element, i.e., 6 and 3. The next 2 values of g,
used for the action rule, are 0 and 8. The action rule can produce a
leaf or an action, hence in this case | = 2. Therefore, the calcula-
tion performed to select the production is i =0 mod 2 and j =8
mod 2: in both cases, the first element of the action production rule
(a leaf) is produced. As both nodes are leaf nodes, no other nodes
are produced and the rest of the genotype is not used. With this
procedure, the genotype is translated into the DT shown in Figure 1
(b). Note that the final action performed by each leaf is not encoded
in the genotype, but is optimized using RL during the task.

Rule Production
Root if
If if Condition then action else action
Condition Z?:igp”ts const - input; < const
Action leaf orif
const [1,10], with step of 1

(a) Schema of the simplified grammar used in the example.

[s]2]o]¢]
g

9 | — False

(b) How a given genotype g (left) is translated into a DT (right).

Figure 1: Illustration of the individual encoding. (a) A simpli-
fied grammar; (b) example of translation of a genotype g into
a DT, using the grammar shown in (a), with maxValue = 10,
and, for simplicity, a single input.

2.2 Evolutionary Algorithms

The first EA we consider is a simple form of GE [36]. The second is
a QD algorithm, ME [31], that aims to find an archive of different
solutions rather than producing a single optimal solution.

For the two EAs, we use the same mutation operator and the
same computational budget, to make a fair comparison.

2.2.1 Grammatical Evolution. Following the basic form of GE [36],
we initially create a population of npop randomly initialized so-
lutions, then until we evaluate a total of totalpop solutions, we
iteratively create nyop new solutions. These are created as follows:

(1) we select npop parents using tournament selection with size k;

(2) we group the solutions in pairs, and, with a probability of pcx,
we apply a crossover operator to each pair generating 2 off-
spring that substitute the parents in the selection process;

(3) each of the npop solutions is mutated with probability ppmy,.

Then, the new solutions are evaluated, and the best np0p solutions
between the previous and the new ones are stored as the population

427

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

for the next generation. After totalpop solutions are evaluated, the
algorithm returns the best solution in the final population. Algo-
rithm 1 shows the structure of the algorithm.

Algorithm 1

procedure GRAMMATICALEVOLUTION

Npop < randomlinit()

fpop < evaluate(npop)

Jeval < |npopl

while f,,q; < totalpop do
newpop < crossover(npop, Pex)
newpop < mutation(newpop)
fnew < evaluate(newpop)
Jeval < Jeval + Inewpop|
Npop, f < tournamentSelection(npop, f, newpop, fnew: k)

return best(npop)

1:
2
3
4
5:
6
7
8
9

10:

2.2.2 MAP-Elites. Multi-dimensional Archive of Phenotypic Elites
[31], commonly known as MAP-Elites, is a QD algorithm that main-
tains an archive of the best solutions that differ w.r.t. a given feature
descriptor. The descriptor is necessary for ME to categorize each so-
lution and, hence, store in the archive different solutions. Note that,
while the descriptor needs to characterize a solution considering
the problem being faced, it should be orthogonal to the solution’s fit-
ness (in fact, if the selected features are highly correlated to fitness,
the illumination pattern would be of little interest).

A descriptor is generally defined as a vector d = (d, ..., dp),
with d; € [minj, max;] and D : S — R" being the function that,
given a solution, returns its descriptor.

The archive is an n-dimensional grid, with each dimension di-
vided in m bins. Thus, to find the coordinates ¢ = (cg,c1,...,¢cn)
of a solution s in the archive, we divide each dimension i of the
descriptor in m equally wide bins, then we take the index of the
bin in which the d; values fall as the ¢; coordinate.

During the evolution, to add a new solution s to the archive, we
calculate the coordinates cg and, if the position in the map is empty,
we insert the solution into the archive. Otherwise, if that position
already contains a solution, we keep the one with the best fitness.

As each dimension is divided into m bins, at the end of the
evolution process the archive can store at most m" solutions. We
populate the map in two steps: the initialization and the iterative
phases. In the initialization phase, we randomly create inityop s0-
lutions and try to insert them into the archive. During the iterative
phase, we repeatedly generate batchy, solutions and try to add them
to the archive, until we generate a total of totalpop solutions (also
including initp,p solutions). We create the new solutions as follows:

(1) we randomly select batch,, solutions from the archive;
(2) we mutate the batchy solutions.

Algorithm 2 shows the structure of the algorithm.

2.2.3 Random Initialization. To initialize ME and GE, we populate
the initial population with random genomes. More specifically, for
each gene we uniformly sample a value in the range [0, maxvalue],
namely, g; ~ U(0, maxValue) V g; € g.

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

2.2.4 Mutation. We perform a uniform random mutation of each
gene of an individual as follows: given the genotype (g) of an in-
dividual, each gene has the same probability to be replaced with a
new random gene with gpeqw € [0, maxValue].

2.2.5 Crossover. To perform crossover between a pair of parents
p1 and p2, we randomly select a point i € [0, size] in the genotype,
split the parent vectors into two parts around the selected point,
and then mix the parts into two new genotypes.

2.2.6 Descriptor. As introduced before, ME stores a solution using
a descriptor that indicates its position in the grid. Here we use two
features to describe a DT. The first is a behavioral characterization
of the DT, while the second represents the DT by its complexity.
To characterize the behavior of a solution, we use the entropy E
of the actions taken by the agent, calculated as follows: be n_actions
the number of possible actions that the individual can perform and
be actions = (ao,...,an_actions) the vector of possible actions.
During the fitness evaluation, we store in actions; how many times
the i-th action is performed by the DT. Then, we calculate the
vector of relative frequencies f = (fo,..., fu_actions) such that
fi = actions; , from which we calculate the entropy E =

;’jmons actions;

Z" actions (fi - logn_actionsfi)- Note that, using as base for the
logarlthm the value n_actions, E takes values in [0, 1]. In this way a
policy that makes always the same action will have an entropy of 0,
while a random policy, where f; = for i € [0,n_actions],
will have an entropy of 1.

The second feature in the descriptor analyzes the structure of
the DT, to characterize the solutions w.r.t. their complexity and,
hence, their interpretability. To this aim, we use the depth of the
DT, calculated after a simplification procedure carried out as in [7].
This procedure simply consists in removing all the nodes that are
not visited during the fitness evaluation. In this way, we produce
a smaller DT pruned of all the nodes (including leaves) that are
not used. Then, we calculate the depth of the simplified version of
the DT. Note that simplifying the DT does not influence the values
of the behavioral feature, as the actions that are pruned do not
contribute to the entropy calculation since their frequency is null.

As mentioned in the introduction, we should stress once again
that the two features defined above are not, per se, objectives. As
for entropy, it is not possible to state a priori if this quantity should
be minimized or maximized. In fact, it may well be that in some spe-
cific tasks a higher behavioral variability is to be preferred, while
in others a less variable behavior may be better. For this reason, we
consider entropy as a feature rather than an explicit objective. Like-
wise, one may in principle aim to explicitly minimize the DT depth,
to favor simpler models. However, it is difficult to state a priori
if the model complexity and its performance are conflicting goals
or not: once again, it could be that in some cases simpler models
actually perform better. For these reasons, using a multi-objective
approach on these two quantities may be misleading, at best, or
not appropriate at all. On the contrary, modeling them as features,
and analyze a posteriori, through the illumination capability of
MAP-Elites, their correlation with performance, appears to be a
more suitable approach.

n_ acttons

428

A. Ferigo et al.

Algorithm 2

1: procedure MAPELITES

2 archive « initArchive(ny;ys)

3 initpop < randomlnit()

4 fpop — evaluate(initpop)

5 descriptorpop < descriptor(initpop)

6 archiveAdd(initpop, fpop, descriptorpop)
7 Seval < linitpopl

8 while f;,q; < totalpop do

9 newpop < archiveGetBatch(batchy,)

10: newpop < mutation(newpop)

11: fnew < evaluate(newpop)

12: descriptorpey < descriptor(newpop)

13: Jeval < Jeval + Inewpop|

14: archiveAdd(newpop, fnew, descriptorpeqy)

return archive

2.3 Reinforcement Learning

To optimize the action of the leaves, we use RL in the form of e-
greedy Q-Learning [49], with a fixed learning rate and a uniform
random initialization.

2.4 Fitness evaluation

The evolved DTs are used to solve control tasks. We test two OpenAl
Gym [4] environments, namely Cart Pole and Mountain Car.

For both tasks, the procedure used to evaluate the DT is the
following: the genotype is translated into the corresponding DT,
then it is evaluated on m independent episodes, where each episode
uses a different seed for the random number generator.

Each episode is simulated until the task is solved or the time
limit is reached. At each timestep, the reward from the environment
is used to update the reinforcement model and it is accumulated
for each episode. Moreover, in the Mountain Car environment, we
normalize the observations in the range [0, 1] using the following
formula: x; = % The bounds used for the normalization
are [—1.2,0.6] and [—0.07,0.07]. We have found indeed that nor-
malization is needed to solve the Mountain Car task, while the Cart
Pole task can be solved without.

When all the episodes have been simulated, the fitness of the
individual is calculated as the average cumulative reward.

2.4.1 Cart Pole. In the Cart Pole task? the agent has to maintain in
equilibrium a pole over a cart. At each timestep, the agent takes as
input 4 pieces of information: the position of the cart x., the velocity
of the cart v, the pole angle 6, and the pole angular velocity w.
The agent can take 2 actions: push the cart to the left or to the
right. The reward is +1 for each timestep; each episode terminates
after 500 timesteps, or if |0 > 12° or if |x;| > 2.4. This task is
solved if the cumulative reward for the agent has an average (on
100 episodes) greater than or equal to 475.

2.4.2 Mountain Car. In the Mountain Car task® the agent has to
move a car up a hill building up momentum thanks to another hill
positioned before the car. The information available to the agent

Zhttps://gym.openai.com/envs/CartPole-v1/
3https://gym.openai.com/envs/MountainCar-vo0/

https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/MountainCar-v0/

Quality Diversity Evolutionary Learning of Decision Trees

at each timestep is: the position along the x-axis of the car (x.),
and its velocity (v¢). At each step, the agent has 3 possible actions:
accelerate to the left, accelerate to the right, or do not accelerate.
The task ends when the car reaches the top of the hill, or after 200
timesteps. Until the car does not reach the top of the hill, the reward
is —1 for each timestep; the task is considered solved if the average
reward on 100 episodes is greater than —110.

3 RESULTS

In this section we present the results obtained by GE and ME on the
two different tasks. We are foremost interested in comparing two
aspects of the two EAs: performance and “illumination” capability.

For both EAs, we performed 5 independent runs to statistically
verify the results. In Table 1 and Table 2 we indicate the parameters
used in the two environments with GE and ME respectively. Note
that on the two tasks we use two different bounds for the entropy.
In Mountain car, we set the bounds in the range [0, 1], since three
actions are possible. In Cart Pole, we instead set them in the range
[0.8,1], as there are only two possible actions, and equilibrium
between them is required to solve the task, i.e., solutions with
lower entropy are quickly discarded. Table 3 describes the oblique
grammar, which is common to all tasks and EAs. Finally, Table 4
shows the parameters used by Q-learning.

As regards the interpretability of the solutions, previous works
[7, 8, 10] evaluate the complexity of the solutions based on the
following factors: the number of symbols, the number of operations,
the number of non-arithmetical operations, and how many times the
non-arithmetical operations are consecutively composed. However,
since in this work we use oblique DTs, the complexity of each node
is the same (as they all evaluate a linear combination of inputs,
see the Condition rule in Table 3). Hence, since total complexity of
our evolved DTs depends only on their depth, we use the latter as
measure of complexity.

As for the “illumination” capability, we limit our analysis on a
qualitative observation of how the two EAs fill the feature space.

Parameter Cart Pole Mountain Car
Mpop 200 200
totalpop 10000 200000
Tournament size 2 2
Pex 0.1 0.1
Pmu 1.0 1.0
Genotype size 100 100
Genotype max value 40000 40000

Table 1: Parameters used for GE.

3.1 CartPole

As introduced before, we compare the results from both a perfor-
mance and a diversity point of view. Figure 2 shows the trends of
the best solutions found during the evolution. Both EAs produce
solutions capable to solve the task in less than 2000 fitness eval-
uations. Of note, ME solves the task faster than GE, in terms of
number of fitness evaluations.

A comparison of the results of our best DT (found across 5
runs) with the state-of-the-art is shown in Table 5. In the table,

429

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

Parameter Cart Pole Mountain Car
Bins for dimension 10 10
Behavioral bounds [0.8,1.0] [0, 1]
Structural bounds [1,10] [1,10]
totalpop 10000 200000
batchy, 20 20
inityop 200 200
Tournament size 2 2
Pex 0 0
P 1.0 1.0
Genotype size 100 100
Genotype max value 40000 40000

Table 2: Parameters used for ME.

Rule Production
Root if
If if Condition then action else action
Condition Z:’:igputs const - input; < const
Action leaforif
const [—1, 1], with step of 0.001

Table 3: Oblique grammar used in both EAs.

Parameter Cart Pole Mountain Car
€ 0.05 0.01
Initialization Uniform € [-1,1] Uniform € [-1,1]
Learning Rate 0.001 0.001
Number of episodes 100 100

Table 4: Parameters used for e-greedy Q-learning.

we can see that our method achieves the maximum score allowed
by the environment, on par with most of the other methods (both
interpretable and non-interpretable).

Concerning the illumination capability of the two EAs, Figure 3
shows the archives at the end of the evolution for ME and GE. Note
that, in the case of GE, we consider all the individuals generated
during the evolutionary process, rather than just the last generation,
and fill the map a posteriori. In the case of ME, instead, the map
is filled during the evolutionary process, by construction of this
algorithm. The results show that, while GE can find solutions that
solve the task, its ability to illuminate the feature space is limited,
as expected: in fact, the algorithm does not allow to find a suffi-
cient number of diverse solutions. On the other hand, ME finds at
least one solution for each possible DT depth and level of entropy.
Figure 4 shows two example DTs that solve the task.

Regarding the behavioral feature, while ME still finds more dif-
ferent and high-performing solutions, both EAs seem to produce
better results when the entropy values are in the range 0.9 — 0.92.
This is probably due to the nature of the task, which requires high
coordination between the two actions (Push Left/Push Right), lead-
ing to a similar frequency for the actions, and, hence, high entropy.

3.2 Mountain Car

As for the Mountain Car task, Figure 5 shows the fitness trend for the
two EAs. As in the previous case, both algorithms can solve the task.
However in this case GE is faster than ME at doing that: the former

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

400

Reward

200

T O
2000 4000 6000 8000

=3

10000

Number of solutions
—— ME —— GE = = = Threshold

Figure 2: Fitness trends on the Cart Pole task with ME and
GE. The dashed line indicates the “solved” threshold.

500

H
\

1]
I

1]

375

250

125

Tree Depth

\
[
I
[
=3

TTT T 171 500

—

375

250

125

Tree Depth

0.8

0.82

0.84 |—
[
[T

0.8
0.82
0.84 |—

0.86 |—
0.88 |—
0.9
0.92
0.94 |~
0.96 |—
0.98
1.0
0.86 |—
0.88 |—
0.9
0.92
094 |—
0.96 |—
0.98
1.0

Entropy Entropy

Figure 3: Maps obtained with ME (top row) and GE (bottom
row) on the Cart Pole task. In the left column the results
in each bin are averaged over 5 runs. Instead, in the right
column each bin shows the maximum fitness over 5 runs.

needs around 110000 fitness evaluations; the latter, instead, finds
the first solution that solves the task after around 130000 fitness
evaluations. In other words, while eventually reaching slightly
better performance, ME requires 10% of the total fitness evaluations
budget more than GE to solve the task.

A comparison of the results of our best DT (found across 5 runs)
with the state-of-the-art is shown in Table 6. While our method
does not achieve the best score in this task, it is important to note
that it is ranked second. However, since these results regard the
best individual on multiple runs, there is no guarantee that these
small differences are statistically significant.

Figure 6 shows the archive at the end of the evolution for the
two EAs. Similar to the Cart Pole case, ME illuminates the feature
space better than GE, covering 97% of bins in all 5 runs. On the
other hand, GE concentrates on a small portion of the feature space.
Overall, we can observe that the two EAs find solutions that solve

premay

premoy

430

A. Ferigo et al.

—0.233x9 — 0.753x1+
—0.842x2 — 0.919x3+ < 0.008

False True
Push Push
Left Right

(a) Example DT evolved with ME.

0.239x(+ 0.171x1+
+0.73x3 + 0.36x3 < —0.059

False True
Push Push
Right Left

(b) Example DT evolved with GE.

Figure 4: Representation of two DTs that solve the Cart Pole
task (after simplification). Both EAs are able to find solutions
that solve the task based on a single condition.

the problem in different areas of the feature space. Regarding the
behavioral feature, while GE DTs present a high entropy level as in
the Cart Pole task, ME produces also DTs that have lower entropy.
Hence, these DTs present behaviors in which at least one action
is less frequent than the others. For the structural feature, we can
observe that, as for the Cart Pole task, GE focuses only on small
DTs (of depth 2 to 4), while ME produces solutions that cover the
entire range of depths [1, 10].

Of note, ME produces also DTs with a depth equal to 1, meaning
that the maximum number of leaves is 2. Hence, the entropy in
this case is limited to a maximum of circa 0.63, corresponding to
the case in which the two actions are executed an equal number of
times (we remember that we calculate the entropy using as the base
for the logarithm the number of actions, see Section 2.2.6). Figure 7
shows a representation of two example DTs.

Table 5: Comparison of our results with state-of-the-art ap-
proaches on the Cart Pole task.

Source Method Score
Meng et al. [29] Policy discrepancy | 500.00
Meng et al. [29] Policy discrepancy | 500.00
Meng et al. [29] Policy discrepancy | 500.00
Silva et al. [39] Differentiable DTs | 388.76
Custode and Iacca [7] | Orthogonal DT 500.00
Ours Oblique DT 500.00

Quality Diversity Evolutionary Learning of Decision Trees

—100

—150

Reward

Y+ Y S S Y
0

100000 150000 200000

Number of solutions
—— ME —— GE = = = Threshold

Figure 5: Fitness trends on the Mountain Car task with ME
and GE. The dashed line indicates the “solved” threshold.

—100

H
T
| 1]

—125

—150

—175

Tree Depth

—200

—100

H
1

—125

—150

—175

Tree Depth

Entropy

Figure 6: Maps obtained with ME (top row) and GE (bottom
row) on the Mountain Car task. In the left column the results
in each bin are averaged over 5 runs. Instead, in the right
column each bin shows the maximum fitness over 5 runs.

4 CONCLUSION

In this paper, we have applied a QD algorithm, namely ME, for
finding a diverse collection of interpretable hybrid models com-
posed of a DT combined with Q-learning on the leaves. We have
tested the method on two tasks from OpenAl Gym library, namely
Cart Pole and Mountain Car, and compared the results of ME with
those obtained by GE. We have then discussed the results of the
two EAs in terms of performance and “illumination” capability,
given a feature space defined by model complexity and behavioral
variability.

Summarizing, we observed that, in both tasks, ME finds solutions
that solve the task, “illuminating” at the same time the feature
space in a more efficient way w.r.t. GE. Moreover, while both EAs
produced models with low complexity, hence good interpretability,
in the Mountain Car task ME found that one action is not necessary
to solve the task.

premay

premay

431

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

[—0.086360 +0.635%] < —0.284]

False True

Accelerate Accelerate

Left

Right

(a) Example DT evolved with ME.

0.749%, + 0.695%
<
0.727

False True

—0.011%) — 0.986x;
<
—0.578

0.47x — 0.689x
<
—0.134

False True False True
Accelerate Do Not Accelerate Accelerate
Right Accelerate Left Right

(b) Example DT evolved with GE.

Figure 7: Representation of two DTs that solve the Mountain
Car task (after simplification). GE finds solutions that use all
the three actions (see Section 2.4.2). Hence, the depth of the
DT is 2, while ME finds also solutions that do not use the Do
Not Accelerate action. Therefore it is possible to produce a
DT with a depth of 1.

In future works, we will extend this study to more recent variants
of ME, such as those proposed in [16, 48], and to more challenging
RL tasks. Moreover, we will investigate the scalability of ME w.r.t.
the number of features used in the descriptor. Another interesting
direction would be to introduce interactions with the user during
the search process, as done in [44].

Table 6: Comparison of our results with state-of-the-art ap-
proaches on the Mountain Car task.

Source Method Score
Zhiqing Xiao* Closed-form policy -102.61
Keavnn® Soft Q Networks [26] -104.58
Harshit Singh® Deep Q Network -108.85
Colin M7 Double Deep Q Network | -107.83
Amit® Tabular SARSA -105.99
Dhebar et al. [12] NLDT (Open-loop) -128.87
Custode & Iacca [7] | Orthogonal DT -101.72
Ours Oblique DT -102.6

“https://github.com/ZhiqingXiao/OpenAIGymSolution
Shttps://github.com/StepNeverStop/RLs
®https://github.com/harshitandro/Deep-Q-Network
https://github.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar
8https://github.com/amitkvikram/rl-agent

https://github.com/ZhiqingXiao/OpenAIGymSolution
https://github.com/StepNeverStop/RLs
https://github.com/harshitandro/Deep-Q-Network
https://github.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar
https://github.com/amitkvikram/rl-agent

SAC ’23, March 27-March 31, 2023, Tallinn, Estonia

REFERENCES

(1]

(2]

3

=

(1]

[12]

[13

[14]

(15

[16

[17

[18]

=
o

[20]

[21

[22]

[23]

[24]

Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: a
survey on explainable artificial intelligence (XAI). IEEE Access 6 (2018), 52138—
52160.

Jaume Bacardit, Alexander E. I. Brownlee, Stefano Cagnoni, Giovanni lacca, John
McCall, and David Walker. 2022. The Intersection of Evolutionary Computation
and Explainable Al In Genetic and Evolutionary Computation Conference Com-
panion. Association for Computing Machinery, New York, NY, USA, 1757-1762.
Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Explain-
able Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and chal-
lenges toward responsible Al Information Fusion 58 (2020), 82-115.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym. arXiv:1606.01540.
Cédric Colas, Vashisht Madhavan, Joost Huizinga, and Jeff Clune. 2020. Scaling
MAP-Elites to deep neuroevolution. In Genetic and Evolutionary Computation
Conference. ACM, New York, NY, USA, 67-75.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature 521, 7553 (2015), 503-507.

Leonardo Lucio Custode and Giovanni Iacca. 2020. Evolutionary learning of
interpretable decision trees. arXiv:2012.07723.

Leonardo Lucio Custode and Giovanni Iacca. 2021. A co-evolutionary approach
to interpretable reinforcement learning in environments with continuous action
spaces. In Symposium Series on Computational Intelligence. IEEE, New York, NY,
USA, 1-8.

Leonardo Lucio Custode and Giovanni Iacca. 2022. Interpretable Al for Policy-
Making in Pandemics. In Genetic and Evolutionary Computation Conference Com-
panion. Association for Computing Machinery, New York, NY, USA, 1763-1769.
Leonardo Lucio Custode and Giovanni Iacca. 2022. Interpretable Pipelines with
Evolutionary Optimized Modules for Reinforcement Learning Tasks with Vi-
sual Inputs. In Genetic and Evolutionary Computation Conference Companion.
Association for Computing Machinery, New York, NY, USA, 224-227.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de Las Casas, et al. 2022. Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature 602, 7897 (2022), 414-419.

Yashesh Dhebar, Kalyanmoy Deb, Subramanya Nageshrao, Ling Zhu, and Dimitar
Filev. 2020. Interpretable-Al Policies using Evolutionary Nonlinear Decision Trees
for Discrete Action Systems. arXiv:2009.09521.

Emily Dolson, Alexander Lalejini, and Charles Ofria. 2019. Exploring genetic
programming systems with MAP-Elites. In Genetic Programming Theory and
Practice. Springer, Cham, 1-16.

Stefano Fioravanzo and Giovanni lacca. 2021. MAP-Elites for Constrained Op-
timization. In Constraint Handling in Metaheuristics and Applications. Springer,
Singapore, 151-173.

Matthew C Fontaine, Scott Lee, Lisa B Soros, Fernando de Mesentier Silva, Julian
Togelius, and Amy K Hoover. 2019. Mapping hearthstone deck spaces through
MAP-Elites with sliding boundaries. In Genetic and Evolutionary Computation
Conference. ACM, New York, NY, USA, 161-169.

Matthew C Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K Hoover.
2020. Covariance matrix adaptation for the rapid illumination of behavior space.
In Genetic and Evolutionary Computation Conference. ACM, New York, NY, USA,
94-102.

Artur d’Avila Garcez and Luis C Lamb. 2020. Neurosymbolic Al: the 3rd Wave.
arXiv:2012.05876.

Julie Gerlings, Arisa Shollo, and Ioanna Constantiou. 2020. Reviewing the need
for explainable artificial intelligence (xAI). arXiv:2012.01007.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2018. A survey of methods for explaining black
box models. ACM computing surveys 51, 5 (2018), 1-42.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a sto-
chastic actor. In International conference on machine learning. PMLR, Stockholm,
Sweden, 1861-1870.

Ahmed Hallawa, Thorsten Born, Anke Schmeink, Guido Dartmann, Arne Peine,
Lukas Martin, Giovanni Iacca, A. E. Eiben, and Gerd Ascheid. 2021. Evo-RL:
Evolutionary-Driven Reinforcement Learning. In Genetic and Evolutionary Com-
putation Conference - Companion. ACM, New York, NY, USA, 153-154.

John H Holland, Lashon B Booker, Marco Colombetti, Marco Dorigo, David E
Goldberg, Stephanie Forrest, Rick L Riolo, Robert E Smith, Pier Luca Lanzi, Wolf-
gang Stolzmann, et al. 1999. What is a learning classifier system?. In International
Workshop on Learning Classifier Systems. Springer, Cham, 3-32.

Ahmed Khalifa, Scott Lee, Andy Nealen, and Julian Togelius. 2018. Talakat: Bullet
hell generation through constrained MAP-Elites. In Genetic and Evolutionary

Computation Conference. ACM, New York, NY, USA, 1047-1054.
Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kastner, Eva

Schmidt, Andreas Sesing, and Kevin Baum. 2021. What do we want from explain-
able artificial intelligence?-A stakeholder perspective on XAl and a conceptual

432

[25]

[26

[31

[32

[33

[34

@
2

[36

(37]

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

[48

[49

[51

A. Ferigo et al.

model guiding interdisciplinary XAI research. Artificial Intelligence 296 (2021),
103473.

Joel Lehman and Kenneth O Stanley. 2011. Novelty search and the problem with
objectives. In Genetic Programming Theory and Practice. Springer, New York, NY,
USA, 37-56.

Jingbin Liu, Xinyang Gu, Shuai Liu, and Dexiang Zhang. 2019. Soft Q-network.
arXiv:1912.10891.

Gary Marcus. 2018. Deep learning: A critical appraisal. arXiv:1801.00631.

Gary Marcus. 2022. Deep learning is hitting a wall. , 03-11 pages. Nautilus.
Wenjia Meng, Qian Zheng, Long Yang, Pengfei Li, and Gang Pan. 2019. Qualitative
measurements of policy discrepancy for return-based deep Q-network. IEEE
transactions on neural networks and learning systems 31, 10 (2019), 4374-4380.
André Meyer-Vitali, Roos Bakker, Michael van Bekkum, M de Boer, G Burghouts,
J van Diggelen,] Dijk, C Grappiolo,] de Greeff, A Huizing, et al. 2019. Hybrid Al
white paper. TNO Reports.

Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv:1504.04909.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. 2016. Quality diversity: A
new frontier for evolutionary computation. Frontiers in Robotics and Al 3 (2016),
40.

Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Machine
Intelligence 1, 5 (2019), 206-215.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and
Chudi Zhong. 2021. Interpretable Machine Learning: Fundamental Principles
and 10 Grand Challenges. arXiv:2103.11251.

Cynthia Rudin and Joanna Radin. 2019. Why Are We Using Black Box Models in
Al When We Don’t Need To? A Lesson From An Explainable AT Competition.
Harvard Data Science Review.

Conor Ryan, JJ Collins, and Michael O Neill. 1998. Grammatical evolution:
Evolving programs for an arbitrary language. In European Conference on Genetic
Programming. Springer, Berlin, Heidelberg, 83-96.

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. 2021.
Neuro-Symbolic Artificial Intelligence Current Trends. arXiv:2105.05330.
Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with
a learned model. Nature 588, 7839 (2020), 604-609.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun
Son. 2020. Optimization Methods for Interpretable Differentiable Decision Trees
Applied to Reinforcement Learning. In International Conference on Artificial
Intelligence and Statistics. PMLR, Palermo, Italy, 1855-1865.

Ron Sun. 1997. Learning, action and consciousness: A hybrid approach toward
modelling consciousness. Neural Networks 10, 7 (1997), 1317-1331.

Ron Sun. 2006. Connectionist Implementationalism and Hybrid Systems. Ency-
clopedia of Cognitive Science.

Zachary Susskind, Bryce Arden, Lizy K John, Patrick Stockton, and Eugene B
John. 2021. Neuro-Symbolic AI: An Emerging Class of AI Workloads and their
Characterization. arXiv:2109.06133.

Bryon Tjanaka, Matthew C Fontaine, Julian Togelius, and Stefanos Nikolaidis.
2022. Approximating gradients for differentiable quality diversity in reinforce-
ment learning. arXiv:2202.03666.

Neil Urquhart, Michael Guckert, and Simon Powers. 2019. Increasing trust in
meta-heuristics by using MAP-elites. In Genetic and Evolutionary Computation
Conference Companion. ACM, New York, NY, USA, 1345-1348.

Neil Urquhart and Emma Hart. 2018. Optimisation and illumination of a real-
world workforce scheduling and routing application (WSRP) via MAP-Elites. In
Parallel Problem Solving from Nature. Springer, Cham, 488-499.

Neil Urquhart, Silke H6hl, and Emma Hart. 2019. An illumination algorithm
approach to solving the micro-depot routing problem. In Genetic and Evolutionary
Computation Conference. ACM, New York, NY, USA, 1347-1355.

Neil Urquhart, Silke Hohl, and Emma Hart. 2021. Automated, Explainable Rule Ex-
traction from MAP-Elites Archives. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar). Springer, Cham, 258-272.
Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret.
2017. Using centroidal Voronoi tessellations to scale up the multidimensional
archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary Com-
putation 22, 4 (2017), 623-630.

Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8,3 (1992), 279-292.

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebas-
tian Flennerhag, Shaobo Hou, and Satinder Singh. 2022. Discovering Poli-
cies with DOMiINO: Diversity Optimization Maintaining Near Optimality.
arXiv:2205.13521.

Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard
Socher. 2022. The AI Economist: Taxation policy design via two-level deep
multiagent reinforcement learning. Science Advances 8, 18 (2022), eabk2607.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

