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ABSTRACT

Wrinkling, creasing, and folding are frequent phenomena encountered in biological and man-made bilayers made by thin films bonded to
thicker and softer substrates often containing fibers. Paradigmatic examples of the latter are the skin, the brain, and arterial walls, for which
wiggly cross sections are detected. Although experimental investigations on corrugation of these and analog bilayers would greatly benefit
from scaling laws for prompt comparison of the wrinkling features, neither are they available nor have systematic approaches yielding to
such laws ever been provided before. This gap is filled in this paper, where a uniaxially compressed bilayer formed by a thin elastic film
bonded on a hyperelastic fiber-reinforced substrate is considered. The force balance at the film–substrate interface is here analytically and
numerically investigated for highly mismatched film–substrates. The onset of wrinkling is then characterized in terms of both the critical
strain and its corresponding wavenumber. Inspired by the asymptotic laws available for neo-Hookean bilayers, the paper then provides a sys-
tematic way to achieve novel scaling laws for the wrinkling features for fiber-reinforced highly mismatched hyperelastic bilayers. Such novel
scaling laws shed light on the key contributions defining the response of the bilayer, as it is characterized by a fiber-induced complex anisot-
ropy. Results are compared with finite element analyses and also with outcomes of both existing linear models and available ad hoc scalings.
Furthermore, the amplitude, the global maximum and minimum of ruga occurring under increasing compression spanning the wrinkling,
period doubling, and folding regimes are also obtained.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0161150

I. INTRODUCTION

Corrugation is a very common geometrical feature in nature.
This is indeed the case for skin, blood vessel walls, the brain, etc. (see,
e.g., Genzer and Groenewold, 2006;Hohlfeld and Mahadevan, 2011;
Budday et al., 2017; and Holland et al., 2020 among many others).

For instance, as pointed out in Nguyen et al. (2020), a wide
number of papers regarding wrinkling, period doubling and qua-
drupling, creasing, and folding in biological systems, including
tissues such as ant’s eyes (see, Fig. 1), have been produced in the
last two decades (see, e.g., Genzer and Groenewold, 2006;Ciarletta
and Ben Amar, 2012;Ben Amar and Jia, 2013;Ciarletta et al., 2014;
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Balbi et al., 2015;Mottahedi and Han, 2016;Goriely, 2017; Alawiye
et al., 2019; 2020; Nath et al., 2020;Chen et al., 2021;Kai et al.,
2022; and Mostafavi Yazdi and Baqersad, 2022 and references cited
therein). Furthermore, important results regarding various thin
man-made mechanical systems exhibiting corrugation have been
largely investigated in parallel (see, e.g., Biot, 1963;Cerda and
Mahadevan, 2003;Pocivavsek et al., 2008; and Cutolo et al., 2020
and references cited therein, among many others).

Most of the investigations mentioned above have dealt with
homogeneous (hyper-) elastic bilayers, perfectly bonded to one
another. Those studies have been performed primarily under either
an applied prestretch or compressive in-plane external tractions.
Occasionally, thermal actions or growth (with reference to biologi-
cal systems) have also been analyzed as a source of possible insta-
bility through corrugation, although not so extensively. For the
given action, the aforementioned literature shows that the enabling
features for wrinkling are (i) the extreme thinness of one of such
layers relative to the thickness of the whole system, and (ii) the mis-
match of the elastic moduli of such layers.

Unlike other phenomena, though, very few scaling laws con-
necting the geometrical features of the exhibited corrugations and
the mechanical properties of the bilayers described above are avail-
able. In particular, in Allen (1969) (Sec. 8.2), a slightly modified
version of the scaling laws (24) and (25), displayed in the sequel,
governing the critical strain and the wavenumber at the onset of
wrinkling, were obtained in a fairly simple and clever way for an
elastic strut bonded to an isotropic elastic core. Such laws have

been revisited in more recent times by Sun et al. (2011), where
those relationships have been obtained (without showing the actual
derivation) as asymptotic expansions of the analytic solutions of
the wrinkling problem for isotropic hyperelastic bilayers. With
regard to a completely different situation, such as free-standing
thin polymeric sheets under tension, a new set of scaling laws has
been provided in Cerda and Mahadevan (2003) and analytically
validated (with a slight change) in Puntel et al. (2011). More
recently, in Goriely and Mihai (2021), generalizations of (24) and
(25) were obtained for bilayers made of liquid crystal elastomers
(with certain given initial orientations of the domains) bonded
with a homogeneous and hyperelastic neo-Hookean material, both
in the case in which the thin layer is neo-Hookean and the sub-
strate is made of the liquid crystal elastomer and vice versa.

Primarily due to the presence of fibers, scaling laws for wrin-
kling occurring in biological tissues are not yet available in the liter-
ature. Nonetheless, an ad hoc equation has been recently provided
in Nguyen et al. (2020) for the critical strain at the onset of the
instability, although it did not come from any mathematical
justification.

Among other issues, the main problem of soft biological
tissues is certainly heterogeneity. This can influence the mechanical
response of the tissue in terms of inhomogeneity of its pointwise
elastic properties and, depending on the shape and functionality of
the tissue, its residual stresses (see, e.g., Taber and Humphrey, 2001
and Hayn et al., 2020, and references cited therein). Nevertheless,
averaging and homogenization methods yielding effective

FIG. 1. An original example of wrinkling in biological tissues is displayed in the images above. Left: a full-scale black-and-white SEM (Hitachi TM 4000 Plus) image of the
ant’s eye is reported. Center: a red-framed zoomed-in area from the left image is blown-up at the center of the figure: at the resolution reported in that frame, radial wrinkles
are visible around each unit forming the eye’s compound. Images are all original and taken by the coauthors of this paper affiliated at the LIMITS Laboratory, within the
University of Napoli “Federico II”. Right: nonlinear FE simulation. The top right of the figure displays the projection onto the X–Z plane of the resulting displacement field
representing the zoom of the blue-framed inset taken from the center of this figure: details simulated at this level of observation reveal a few azimuthal wrinkled crowns
separating the central undisturbed zone from the radial wrinkles observed before at a coarser resolution. The bottom right of the figure displays a 3D image of the vertical
displacement resulting from the FE analysis, thereby reliably reproducing the experimental observation reported above.
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mechanical properties for biological tissues have been developed
over the last two decades (for a more detailed discussion, see, e.g.,
Robertson and Watton, 2013;Cyron et al., 2016; and Braeu et al.,
2017). This leads to overall characterizations of the constitutive
behavior of such complex systems (see, e.g., Humphrey and
Rajagopal, 2002;Gasser et al., 2005; and Bellini et al., 2013 and ref-
erences cited therein) for which the degree of approximation can,
of course, vary significantly (see, e.g., Robertson and Watton, 2013
for a detailed discussion of this aspect). The most utilized approach
for such tissues, with particular regard to arterial walls, is certainly
the one introduced in Holzapfel et al. (2000) (called OGH in the
sequel). Such a constitutive equation has been utilized in Nguyen
et al. (2020) and it will also be employed in the sequel together with
the Standard Reinforcing Model (called SRM in the sequel). The
latter has been studied since the eighties (see, e.g., Kurashige, 1981
and Triantafyllidis and Abeyaratne, 1983), although it was later in
Qiu and Pence (1997) that the impact of such a constitutive law on
the deformation modes exhibited by this material was investigated.
More recently in Melnik et al. (2015) and Sen (2022), the SRM law
has also been exploited in relation to the dispersion of the fibers.

The present paper is the first step toward finding a rigorous pro-
cedure enabling one to systematically find scaling laws for corrugation
starting from the equations governing such a phenomenon. In partic-
ular, the work here is organized as follows. In Sec. II the approach
undertaken in Nguyen et al. (2020) for the study of wrinkling in
bilayers formed by a three-dimensional stiff thin film adhering on top
of an OGH (and then SRM) fiber-reinforced, and much softer and
thicker, substrate is revisited through a simplified approach. Here,
instead of treating the top layer as a three-dimensional solid, a dimen-
sionally reduced formulation [like the plate model in Shield et al.
(1994)] is assumed, and the simplified constitutive SRM law for the
fiber-reinforced substrate is considered.

In Sec. III, a comparison of the outcomes of choosing SRM
instead of the more complex OGH law is performed. Indeed, such
a comparison is produced for the analytic results for both the criti-
cal strain and the wavenumber at the onset of wrinkling coming
from the OGH constitutive law both by considering the top layer as
(i) a three-dimensional solid and (ii) as a plate, and (iii) the SRM
law for such a dimensionally reduced approach.

Furthermore, asymptotic expansions for both the wrinkling
strain and the corresponding wavenumber have been provided for
high-contrast elastic mismatches between the thin layer and the
substrate in the presence of the reinforcing fibers. This starts from
the outcome of the analytic procedure performed to seek the (a)
minimum critical strain with respect to the wavenumber among the
ones solving the eigenvalue problem characterizing the balance of
forces at the interface between film and substrate, and (b) the corre-
sponding wavenumber. The latter is then processed through a suit-
able sequence of Taylor’s expansions yielding (19), a novel scaling
law for the wavenumber itself formed by a product of two terms, a
basal one and an amplifying factor. The former term turns out to
coincide with (25), namely, the asymptotic law for the wavenumber
of a purely neo-Hookean bilayer reported in Sun et al. (2011) and
Cao and Hutchinson (2012). In the cases of either the absence of
the fibers or their perfect randomness, the amplifying factor goes
to one, thereby letting the novel scaling law for the wavenumber
degenerate to (25). There, the wavenumber scales like the cubic

root of the elastic mismatch of the two layers forming the system in
that case. Full novelty is instead in the amplifying factor (26) due
to the presence of load-bearing distributed fibers within the matrix
of the substrate. That factor turns out to scale with the sixth root of
a sum of terms. The latter turns out to be even in the spatial dis-
persion of the fibers (up to the fourth power of that parameter),
and modulated by suitable powers of the modified stiffness ratio
between fibers and matrix (accounting for the volume concentra-
tion of the former), and on the square of the sin of four times the
relative orientation of the fibers themselves. With an analog proce-
dure, the novel scaling law (23) for the critical strain at the onset of
wrinkling is also obtained. Not surprisingly, this retrieves (25) (see
Sun et al., 2011 and Cao and Hutchinson, 2012) for isotropic
neo-Hookean bilayers, either when fibers are absent or whenever
they are randomly distributed. In all of the other cases, the modu-
lating function arising in (23) depends on the presence of the fibers
and it is nothing but the square of the amplifying factor previously
obtained for the wavenumber. In this same section, diagrams
showing the comparisons between the obtained scalings, the ana-
lytic results obtained in the previous section, and numerical results
performed by using ABAQUS for finite element method (FEM)
simulations have been displayed. Such figures relate to results for
high elastic contrast between the top thin layer and the substrate
and given sets of parameters, carefully discussed in Sec. III.

Finally, in Sec. IV, a re-interpretation of the obtained asymp-
totic expansions for both the critical strain and the associated wave-
number is proposed in terms of the resulting properties of the
linearized system about the underformed state obtained in Nguyen
et al. (2020). It is worth recalling that the result of such a lineariza-
tion yields an actual orthotropic material response for the substrate.
This innovative way of looking at the newly derived scaling laws
illustrates how the modulating function mentioned above is essen-
tially related to the orthotropy of the linearized solid. Indeed, the
modulating factor introduced above goes with the sixth root of a
term governed by the ratio of the Young moduli evaluated in the
principal system of the resulting linearized orthotropic medium,
while still depending on the square of the sin of four times the rela-
tive angle between the family of the reinforcing fibers.

II. A SIMPLIFIED MODEL

In Nguyen et al. (2020), an approach to computing the critical
strain for which a thin membrane adhering to a soft substrate expe-
riences wrinkling is presented. In that paper, the computation of
such a strain is performed by considering the system as composed
of two three-dimensional solids and then writing appropriate plane
strain balance equations. However, this approach has the computa-
tional disadvantage of solving a highly non-linear system. In order
to circumvent this drawback, the geometry and the physics of the
problem suggest key simplifying assumptions leading, in a much
simpler way, to almost the same results obtained from the fully
three-dimensional model cited above.

A more efficient approach can be undertaken by focusing the
present analysis on:

(a) bilayers for which the mismatch between the elastic moduli
of the layer and of the substrate is very high (i.e., between
104 and 106);
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(b) the layer being considered as very thin compared to the sub-
strate (which, in mathematical terms, is in fact assumed infi-
nitely deep).

Item (b) allows for considering thin plate behavior for the top
layer, and this inspired many studies on fully isotropic, homoge-
neous, and elastic bilayers already present in the literature (see, e.g.,
Sun et al., 2011 and Cao and Hutchinson, 2012 and references
cited therein). In the present analysis, a thin plate theory to model
the thin film bonded to the fiber-reinforced substrate is adopted.
As previously mentioned, the latter here is modeled through the
OGH constitutive equation. Such a material has a strain energy
that is additively composed of two terms. The first one is due to
the classical neo-Hookean matrix. The second term is due to the
presence of fibers, organized in families, dispersed in the matrix,
and reciprocally oriented with one another at a certain angle 2θ
(Fig. 2). Finally, the total strain energy density of the substrate Ws

is given by the sum of those two contributions, i.e.,

Ws,OGH ¼ Ws,matrix þWs, fibers,

with Ws,matrix ¼ μM(I1 � 3), I1 :¼ tr Cð Þ,

C :¼ FTF, Ws, fibers ¼ k1
2k2

XN
m¼1

exp k2E
2
m

� �� 1
� �

,

(1)

where N is the number of families of fibers in the matrix and F is
the deformation gradient. The term 2μM stands for the shear stiff-
ness of the matrix, k1 is a parameter related to the stiffness of the
fibers and k2 is a non-dimensional parameter determined

experimentally. The term I1 is the first invariant, i.e., the trace of
any of the two Cauchy–Green tensors. The argument of the expo-
nential defined above, besides k2 is given by

Em ¼ κ(I1 � 3)þ (1� 3κ)(I4m � 1),
I4m ¼ lm � (Clm); (2)

where lm ¼ ( cos θ, sin θ, 0)T is the unit vector representing the
mth fibers family with respect to the horizontal axis. It is worth
noting that I4m is the magnitude (squared) of the extension/con-
traction of the fibers.

The outcomes of a dimensionally reduced theory for the top
layer, such as the plate one adopted here, and its interactions with
an OGH infinite layer have not yet been explored in the literature.
Indeed, in the aforementioned recent paper by Nguyen et al.
(2020), both the layer and the OGH substrate were treated as fully
three-dimensional bodies under plane-strain conditions. No matter
the constitutive response of both layers nor how the film is
modeled, the balance of tractions at the interface between film and
substrate governs the configurations of the bilayer.

Here the configurational changes of such an interface are ana-
lyzed through a small-on-large approach, consistent with the exist-
ing literature on compressed bilayers formed by stiff films on non
fiber-reinforced soft substrates (see e.g., Jiang et al., 2007;Cao and
Hutchinson, 2012;Hutchinson, 2013; and Wang et al., 2023 and
references cited therein, among many others). To this aim, follow-
ing (Nguyen et al., 2020), Eq. (4) [see e.g., also Shield et al., 1994,
Eq. (3) for the sole displacement field, and Sun et al., 2011,
Eqs. (2.1)–(2.3)] a sinusoidal perturbation (of amplitude δ � 1) is

FIG. 2. Schematics of the plane strain bilayer system. The substrate is composed by two families of fibers with relative angle 2θ embedded in a neo-Hookean matrix. In
(a) the bilayer is undeformed, with thickness h and length L0. This configuration is assumed to be the reference one, with the material coordinates system X1 � X2, with a
substrate much deeper than the layer (h=H ! 0). In (b) the deformed configuration is shown. There uL is an imposed contractile displacement, ϵL ¼ uL=L0 is the corre-
sponding strain, λ1 ¼ 1þ ϵL is the resulting stretch and, hence, the bilayer’s deformed length is λ1L0. This geometry remains valid for higher values of the stretch
λ1 � λcr1 , where λcr1 is the longitudinal stretch at the onset of wrinkling [see Eq. (13)], spanning the whole wrinkling regime until period-doubling starts (see Fig. 8 in
Sec. III). During deformation the angle between the two families of fibers takes the form θ� ¼ 1=2 cos�1 ((Fl1 � Fl2)=(jFl1jjFl2j)), where lm, m ¼ 1, 2 are defined below
(2). The upper left corner displays a magnification of the reactive tractions arising in the bilayer due to the imposed displacement (the tractions between the layer and the
substrate are not shown to scale relative to one another).
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given to a homogeneous plane-strain, volume-preserving finite
deformation of the substrate induced through a longitudinal short-
ening (imposed in direction 1, as specified below), i.e.,

x1 ¼ λ1X1 � δ αλ21λsin(kX1) eαkX2 ,

x2 ¼ λ2X2 þ δ λcos(kX1) eαkX2 ,

p ¼ p0 þ δ p1cos(kX1) eαkX2 :

(3)

It is worth noting that λ2 ¼ 1=λ1, p is the hydrostatic pressure
needed to maintain incompressibility (namely, the reactive action
needed to keep isochoricity of the substrate), whereas p0, p1, and α
are constants (to be determined through boundary conditions). Of
course, in (3) the pairs (x1, x2) and (X1, X2) give the coordinates of
a generic point in the deformed and in the reference configuration,
respectively. As the wrinkling of the interface occurs, the corruga-
tion will be characterized by a space wavelength λ, or by its corre-
sponding wavenumber k, linked by the relation k ¼ 2π=λ. The
deformation and pressure fields (3) satisfy some basic consider-
ations about the nature of the problem. Along the direction X2, the
perturbation must fade at a great distance from the interface, and
horizontally the motion must be periodic. Moreover, as shown
further, the fields are solutions of the equilibrium of the substrate,
for a suitable choice of α and p1.

The incompressibility condition det F ¼ 1 is satisfied at the
first order, i.e., λ�2

1 @ eu1=@ X1 þ @ eu2=@ X2 ¼ 0 (see e.g., Pence and

Song, 1991 and Yue et al., 1994). This last equation is identically
satisfied by (3) if eui ¼ xi � λiXi (i ¼ 1, 2) is assumed.

Finally, as shown in Fig. 6(e), the bifurcation is characterized
by a sinusoidal profile and, by observing Fig. 8, this extends up to
ten times the strain at the onset of the wrinkling. Tractions acting
on the film coming from the substrate must be evaluated in order
to characterize which superimposed deformations are admissible
for the bilayer. To do this, the first Piola–Kirchhoff stress tensor for
the substrate Ps can be computed as follows:

Ps ¼ @Ws,OGH

@F
� pF�T : (4)

When the wrinkling has not yet occurred, the constant p0 can be
obtained noting that the normal traction at the interface Ps

22(δ ¼ 0)
vanishes. By letting δ ¼ 0 the following expression for p0 is deter-
mined, leading to

p0 ¼ 2μM
λ1

2 þ4k1ek2r
2
r(κ�3κ sin2θþ sin2 θ)

λ1
2 ,

where r¼ κ(λ12�1)
2

λ1
2 þ (3κ�1)(λ12�1)(λ12 sin2 θ�λ1

2þ sin2 θ)

λ1
2 ,

(5)

which, introduced into (3) and then into (4), allows us to write the
equilibrium equations for the substrate

Ps
ij,j ¼ 0, i, j ¼ 1, 2, (6)

where (†),j indicates @(†)=@Xj and the repeated index means sum-
mation. It is worth noting that a full analytic proof of the fact that
(3) is a representation formula for the solution of the boundary
value problem at hand for purely neo-Hookean bilayers (with no
fibers) formed by stiff films on softer substrates could be provided
by generalizing the approaches utilized in Pence and Song (1991),

FIG. 3. Comparison between the critical strain and the non-dimensional wave-
number between the plate model (dots) and the 3D-solid one (solid line) with
respect to the angle θ and for three different values of ρFM . The considered
ratio ρML ¼ 10�5 is in the middle of the range of interest. The diamonds are
the critical strains obtained from the Standard Reinforcing Model (15).

FIG. 4. The amplitude function ζ(ρFM , κ, θ) varying ρFM and θ, assuming κ ¼
0 (perfect alignment). In particular, two projections are shown: the first one,
within the plane ρFM � ζ shows the amplification for a fixed angle, namely
θ ¼ 70�. The second one, in the plane θ � ζ represents the sinusoidal amplifi-
cation by setting ρFM ¼ 8. Note that when the dispersion factor κ approaches
zero the function is an horizontal plane with ζ ¼ 1.
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Qiu and Pence (1997), and Wang et al. (2023) to account for the
presence of the fibers reinforcing the substrate. Of course, unlike
the case of neo-Hookean materials, for fiber-reinforced substrates
the constants α and k characterizing the eigenmodes are expected
to be influenced both by the fiber and by the matrix parameters.

In particular, solving Eq. (6) for the systems under consider-
ation yields four different pairs of solutions (α, p1(α)). Note that
the solution of α is formed by two complex conjugate pairs, which
differ from one another with the sign of their positive part.
Nevertheless, only two of those pairs (α, p1) can be used, more

FIG. 5. Comparison of the critical strain between FEM, the plate model (dots), and the asymptotic expansion (23) (solid line) with respect to the angle θ, ρML ¼ 10�4 and
ρFM ¼ 2, 5, 10.
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FIG. 6. Comparison of the critical dimensionless wavenumber between FEM, the plate model (dots) and the asymptotic expansion (19) (solid line) with respect to the
angle θ, ρML ¼ 10�4 and ρFM ¼ 2, 5, 10 [(a), (c), (d)]. In (b) the wrinkling mode, with normalized amplitude, of a representative set of values is shown. Finally, in (e) the
magnitude of the normalized displacements resulting from the FE analysis is plotted.
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FIG. 7. Comparison of the critical strain and wavenumber for κ ¼ 0, θ ¼ 70� and k2 ¼ 0:8393, as a function of the stiffness mismatch between the matrix and the film
ρML. Note that the plots are on a bi-logarithmic scale.

FIG. 8. Dimensionless amplitude A=λcr for the case ρML ¼ 10�3, ρFM ¼ 2, k2 ¼ 0:8393, κ ¼ 0 and θ ¼ 90�. As the contractile strain increases different patterns
emerge on the surface. Initially, the film is flat but, after reaching the critical strain εcr wrinkling occurs. In such a region, the amplitude turns out to scale like
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε=εcr � 1

p
. In the post-wrinkling regime, period-doubling and creases can be observed.
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precisely the ones that have an α with a strictly non-negative part,
as the perturbation effects must vanish at long distances from the
interface (it is worth noting that going inward deep into the sub-
strate entails negative values for X2, see Fig. 2). After labeling α1

and α2 the values satisfying Eq. (6), the resulting quantities in the
reference configuration are given by a linear combination of the
respective eigenfunctions, i.e.,

ex1 ¼C1x1 α¼α1 þC2x1j jα¼α2
þo(δ2), ex2 ¼C1x2 α¼α1 þC2x2j jα¼α2

þo(δ2),

ep¼C1p
���
α¼α1,p1¼p1(α1)

þC2p
���
α¼α2,p1¼p1(α2)

þo(δ2),

ePs ¼C1Ps
���
α¼α1,p1¼p1(α1)

þC2Ps
���
α¼α2,p1¼p1(α2)

þo(δ2):

(7)

In the case that the stiffness of the fibers approaches zero, it is
worth noting that (5) and (6) give the same results found in Sun
et al. (2011) [note that Q used in Sun et al. (2011) is equal to 2μM],
namely,

p0 ¼ 2μM
λ21

,

α2, p1(α2)ð Þ¼ (1, 0),

α1, p1(α1)ð Þ¼ 1
λ21
, 4πμM (1�λ41)

λ31

� 	
:

(8)

It is worthy of mention that the approach followed by
Eqs. (3)–(8) is analogous to the one introduced in Nguyen et al.
(2020). The assumption (b) introduced above, i.e., the layer is
assumed to be very thin compared to the substrate, is now useful.
In this case it appears reasonable to assume that the layer starts to
wrinkle with a wavelength that is large compared to the thickness
of the upper layer. Henceforth, a plate behavior with a single
bending axis which lies on a semi-infinite space can be assumed
(see, e.g., Shield et al., 1994). Upon utilizing the balance equation
at the interface between the top layer and the substrate (in the
reference configuration) the following expressions are obtained
(see Shield et al., 1994 and Sun et al., 2011):

ELh
1�ν2L

h2
3
@4eu2(X1, 0)

@X4
1

� h
2
@3eu1(X1, 0)

@X3
1

þ εL @2eu2(X1, 0)
@X2

1


 �
þ ePs

22(X1, 0) ¼ 0,

ELh
1�ν2L

@2eu1(X1, 0)
@X2

1
� h

2
@3eu2(X1, 0)

@X3
1


 �
� ePs

12(X1, 0) ¼ 0,

(9)

where

εL ¼ 1� λ1 ¼ PL
1� ν2L

¼ uL

L0
(10)

is the longitudinal strain in the absence of prestretch, PL is the cor-
responding longitudinal stress arising across the layer (Shield et al.,
1994), and EL and νL are the Young modulus and Poisson ratio of
the layer, respectively. Furthermore, ePs

ij and eui ¼ exi � λiXi, (i, j ¼
1, 2) are the stresses exchanged between the substrate and the layer
and the displacements at the interface [hence evaluated at X2 ¼ 0
and obtained from Eq. (7)], respectively.

In order to facilitate the reader, the following notation is uti-
lized in the sequel: M stands for “matrix,” F for “fibers,” and L for
“layer.” In addition, the order reflects the position of the shear
modulus of a given system within the ratio: for example, ρML
means stiffness of the matrix (M) forming the substrate over the
one of the layer (L).

Recalling that λ ¼ 2π=k denotes the spatial wavelength of
periodic wrinkles, and by introducing kh ¼ 2πh=λ, namely, its
corresponding non-dimensional wavenumber, by setting ρFM ¼
k1=μM the ratio between stiffness information about both the
fibers and the matrix, and by noting that ρML ¼ 6μM=EL is the
stiffness ratio between the substrate and the layer, the substitu-
tion of expressions (7) into (9) leads to the following homoge-
neous linear system in the amplitudes C1 and C2 appearing
in (7),

M(kh, λ1, ρFM , ρML, κ, θ, k2, ε
L)

C1

C2

� 	
¼ 0, (11)

where M is the resulting coefficients matrix and the pair C1, C2

characterize the wrinkling eigenmodes. For the sake of brevity,
the explicit form of M is omitted, although available upon
request. Of course, the amplitude modes C1 and C2 are associ-
ated with the values of ε for which a bifurcation of equilibrium
occurs, i.e., such that

εcr
��� det M(kh, λ1, ρFM , ρML, κ, θ, k2, ε

L)
� � ¼ 0

¼) εcr ¼ ε̂(kh,cr , λ
cr
1 , ρFM , ρML, κ, θ, k2),

(12)

where

λcr1 ¼ 1� εcr: (13)

It is worth noting that εL appears only in the first row of M,
hence its determinant is linear, as well. Following the findings of
Pence and Song (1991) and Yue et al. (1994) [see e.g., Fig. 4 in
both papers], and employed later by Sun et al. (2011), among the
possible values satisfying Eq. (12), only the ones corresponding
to the smallest wavenumber are of interest. This leads to writing
the following optimality conditions, namely, the ones governing
both the minimum strain at which the onset of wrinkling occurs
and the corresponding wavenumber,

εcr ¼ ε̂(kh,cr , λcr1 , ρFM , ρML, κ, θ, k2),
@εcr
@kh,cr

¼ 0:

�
(14)

Indeed, in full analogy with (Sun et al., 2011), the conditions
above can be shown to deliver the critical stretch and the corre-
sponding non-dimensional wavenumber at which wrinkling
occurs.

Due to the complexity of the OGH model, it is worthy of
mention that the amount of calculations required to solve (14) sig-
nificantly increases relative to the case of neo-Hookean bilayers.
Hence, a simpler model than OGH would be especially useful if it
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would deliver comparable results to its associated optimality
conditions.

To this end, the OGH constitutive equation here is replaced
by the Standard Reinforcing Model, SRM, mentioned above (for
details see, e.g., Kurashige, 1981;Triantafyllidis and Abeyaratne,
1983; and Qiu and Pence, 1997). The SRM energy density reads as
follows:

W fiber,SRM ¼ γ

2

X2
m¼1

E2
m, (15)

where γ has the dimension of an elastic modulus. Of course, (15)
must be added to the neo-Hookean term, accounting for the
hyperelasticity of the matrix. It should be noted that, as the
parameter k2 approaches zero, the derivative of W fiber,OGH with
respect to the strain invariant Em coincides with the one of
W fiber,SRM when γ ¼ k1 .

Solutions of (14) obtained by utilizing the SRM strain
density energy are shown in Fig. 3. From there, it is manifest that
the critical strains are practically the same by using either consti-
tutive equation, thereby suggesting that the assumption of a
simpler constitutive law, such as the SRM, leads indeed to compa-
rable results. This outcome is related to the independence of SRM
from the parameter k2. As a confirmation of this circumstance,
Nguyen et al. (2020) illustrated that the OGH law does not
depend on k2 in the small strain regime: in the sequel, (see Figs.
3–6) the magnitude of the arising strains are shown to be small
enough.

A comparison between the outcomes of (i) the dimension-
ally reduced model coupled with SRM for the substrate and (ii)
the solid one developed by Nguyen et al. (2020), is shown in
Fig. 3. There, the critical strains and non-dimensional wavenum-
bers are displayed as functions of the angle formed by the two
families of fibers (displayed in Fig. 2) and for different stiffness
ratio ρFM . This has been done by setting, as in Nguyen et al.
(2020), k2 ¼ 0:8393 and κ ¼ 0. Moreover, νL ¼ 0:5 has been
imposed for the incompressibility of the layer and a stiffness
ratio ρML ¼ 10�4 between the matrix and the layer has been
assumed. The diagrams show that the results are essentially the
same as the original model for exceptionally small stiffness
ratios. Furthermore, a symmetric behavior for both the critical
strain and the corresponding wavenumber about θ ¼ 45� is
detected in the assumed range 10�6�10�4 for ρML, for the con-
sidered values of ρFM and κ, namely, the modified stiffness ratio
between fibers and matrix (accounting for the volume concen-
tration of the former) and the spatial dispersion of the fibers
themselves.

III. A NEWASYMPTOTIC LAW FOR FIBER-REINFORCED
BILAYERS

The solution given by the system (14) is not generally available
in a simple form and, for a given set of the model parameters, it is
therefore necessary to solve it numerically. However, it is still possi-
ble to simplify its expression under the following assumptions:

(a) the upper layer is considerably stiffer than the substrate,
namely ρML ¼ 6μM=EL � 10�4;

(b) the fibers ratio ρFM ¼ k1=μM assumes values between 0 and
10. This hypothesis, although it may appear limiting as it
would bring back to what has been already obtained through
the neo-Hookean model, produces reliable results when (a) is
fulfilled;

(c) the critical strain is very small (εcr � 10�3, see e.g., Sun et al.,
2011 in the absence of fibers) and therefore, as εcr ¼ 1� λcr1 ,
λcr1 	 1. Because no prestretch is considered, the eigensolutions
given by (7) are linearized around λcr1 ¼ 1. In this way, the
resulting quantities, namely the critical strain and non-
dimensional wavenumber, will have no dependence on the
stretch;

(d) the critical strain and non-dimensional wavenumber are
approximately constant when k2 changes (at least for
ρML ¼ 10�4), as remarked in the previous section. It is thereby
possible to replace the contribution of fibers given by the OGH
constitutive law (1) with the SRM (15), removing the variable
k2 and the whole exponential part associated to that;

(e) the Poisson ratio of the layer is νL ¼ 1
2.

By analogy with Allen (1969) and Sun et al. (2011), as pointed
out in the previous section, explicit solutions to the optimality
problem are sought. In other words, reliable asymptotic expansions
for (i) the minimum of the critical strain yielding the onset of wrin-
kling and (ii) its corresponding wavenumber are the targets of this
section.

In order to do so, one can start by taking advantage of the
assumption (a), i.e., ρML 	 0. Henceforth, a Taylor expansion of
(@ εcr)=(@ kh,cr) [the second equation appearing in (14)] with
respect to ρML around zero can be considered. Upon equating the
obtained expression to zero, it is not difficult to check that a closed-
form solution of an algebraic third-order equation in kh,cr can be
obtained. The only possible physically admissible root of such an
equation reads as follows:

kh,cr ¼ k̂h,cr(ρML, ρFM , θ, κ) ¼ k̂h,cr(ρML, ρFM , θ, κ)
3


 �1=3

	


g1(ρFM , θ, κ)ρML

�1=3
, (16)

where

g1 ¼
@k3h,cr
@ρML

� 	����
ρML¼0

:

It is worth noting that the zero-order term of the expansion (16)
vanishes. From the physical viewpoint, this can be interpreted as
the substrate becoming extremely soft relative to the thin top
layer, when the matrix-to-film stiffness ratio ρML ! 0. Hence, the
buckling strain of such layer (for a finite depth of one unit
length) of thickness h turns out to be ϵcr � (h=L0)

2, as the wave-
length tends to the physical length of the film. The thinness of
the latter implies h=L0 ! 0, hence both the critical strain and the
corresponding dimensionless wavenumber, kh,cr

��
ρML!0 � h=L0,
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tend to zero. It is worth noting that g1 depends upon
ρFM ¼ k1=μM , relating the stiffness of the fibers, weighted against
their volume concentration, and the shear modulus of the sub-
strate. For low densities of fiber reinforcements ρFM tend to zero.
Therefore, g1 can be replaced by a suitable expansion obtained as
follows:

g1(ρFM , θ, κ) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 (ρFM , θ, κ)

q
	 h10(θ, κ)þ ρFMh11(θ, κ)þ

ρ2FM
2

h12(θ, κ)

� 	1=2

,

(17)

where

h10 ¼ g21

����
ρFM¼0

, h11 ¼ @g21
@ρFM


 �����
ρFM¼0

, h12 ¼ @2g21
@ρ2FM


 �����
ρFM¼0

where h1j(θ, κ), j ¼ 0, 1, 2 are the terms of the expansions. Note
that such expressions are valid only if gi are positive functions for
every value of ρFM and for 0 � θ � π=2. This is reasonable since
the wavenumber is a positive quantity. Finally, carrying out the
computations of the previous expressions, one has

h10 ¼ 9, h11 ¼ 9(1� 3κ)2, h12 ¼ 9 sin2 (4θ)
2

(1� 3κ)4: (18)

Henceforth, the resulting critical (non-dimensional) wavenumber
takes the following form:

kh,cr ¼
ffiffiffiffiffiffiffiffiffiffiffi
3ρML

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þρFM(1�3κ)2þρ2FM sin2 (4θ)

4
(1�3κ)4

6

r
(19)

and, as was previously pointed out, this value is unique.
A corresponding asymptotic expansion for the wrinkling

strain can also be obtained. Indeed, by substituting (19) in the first
equation of (14), and by computing the Taylor expansion of the
resulting expressions up to second order, the following form for εcr
is achieved:

εcr ¼ ε̂cr(ρFM , ρML, θ, κ)
3� �1=3	 t2(ρFM , θ, κ)

ρ2ML
2


 �1=3
, (20)

where

t2 ¼ @2ε3cr
@ρ2ML

� 	����
ρML¼0

:

Similarly to the previous case, the zero-order term in the Taylor
expansion for the argument in (20) is zero and, furthermore, in this
specific case, even the first-order one identically vanishes. In particu-
lar, the zero-order term corresponds to εcr

��
ρML¼0

, which is again con-
sistent with having a compressed free-standing (because ρML ¼ 0
would essentially mean to have a substrate with zero stiffness relative
to the top layer) infinitely thin film with a finite length.

Furthermore, in order to achieve an irreducible representation
for the critical strain, a Taylor expansion of t2 can be provided. By
expanding that with respect to ρFM around 0, the following expres-
sion follows:

t2(ρFM , θ, κ) 	 q20(θ, κ)þ ρFMq21(θ, κ)þ ρ2FM
2 q22(θ, κ), (21)

where

q20 ¼ t22

����
ρFM¼0

, q21 ¼ @t22
@ρFM

� 	����
ρFM¼0

, q22 ¼ @2t22
@ρ2FM

� 	����
ρFM¼0

:

Furthermore, by carrying out the computations for q2i, i ¼ 0, 1, 2,
their values read as follows:

q20 ¼ 9
32

, q21 ¼ 9
32

(1� 3κ)2,

q22 ¼ 9 sin2 (4θ)
64

(1� 3κ)4:

(22)

Upon substituting (22) into (21), and the obtained result into (20),
the following asymptotic expression for the critical strain is delivered:

εcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ρMLð Þ23

q
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρFM(1� 3κ)2 þ sin2 (4θ)

4
(1� 3κ)4

3

r
: (23)

For the sake of consistency, (19) and (23) are explored for the
simpler case of neo-Hookean bilayers. As expected, those expres-
sions reduce to what already found in Sun et al. (2011) and Cao
and Hutchinson (2012) by assuming νL ¼ 1=2, i.e.,

kh,nh ¼
ffiffiffiffiffiffiffiffiffiffi
3ρML

3
p

, (24)

εcr,nh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ρMLð Þ23

q
4

: (25)

It is evident by inspections of (19) and (23) that the presence of the
fibers turns out to significantly influence both the wrinkling strain
and the corresponding wavenumber. Indeed, the asymptotic expres-
sions above involve the following modulating factor:

ζ(ρFM , θ, κ) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρFM(1� 3κ)2 þ ρ2FM sin2 (4θ)

4
(1� 3κ)4

6

r
:

(26)

Henceforth, the quantities mentioned above can be written as

kh,cr ¼ kh,nh ζ(ρFM , κ, θ), (27)

εcr ¼ εcr,nh ζ
2(ρFM , κ, θ), (28)

where ζ(ρFM , κ, θ) (see Fig. 4) is defined by the expressions above
and its square has the meaning of amplitude factors for the
neo-Hookean values of kh and εcr , respectively. It is just as simple
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to verify that the modulating factor is really an amplification func-
tion. This reduces to 1 in both cases in the absence of fibers, as
shown in Fig. 4, and when κ approaches to 1=3. This demonstrates
that in the case of a total dispersion of fibers within the matrix these
give no contribution to the critical dimensionless wavenumber and
strain. Using expressions (27) and (28), and the results achieved in
(14), the plots displayed in Figs. 5–7 for different angles, stiffness
ratio ρML, ρFM and dispersion factors are obtained. It is worth
noting that Eqs. (27) and (28) work particularly well for small ρML
ratios: this can be achieved even for stiff fibers, provided that their
concentration per unit volume is adequately low. Another aspect is
related to the behavior of the curves: for small ρML, the trends of
both critical strain and wavenumber are symmetrical with respect
to π=4.

The same plots display the results coming from the utilized
FEM. The numerical simulations have been performed by means of
the commercial software ABAQUS/Standard (Lic. n. LKO2211177).

The substrate is modeled as a three-dimensional hyperelastic
body under plane strain conditions. In particular, within the plane
of interest, a rectangle of length equal to ten times the wavelength
λ ¼ 2πh=kh [provided by the asymptotic expansion (27)] is consid-
ered. For the sake of computation, the depth of the substrate is
taken as the maximum between one hundred times the thickness of
the top layer and two times the wavelength. This choice essentially
provides a semi-infinite substrate compared to the thin layer, and it
relies on a theoretical justification thanks to Pence and Song (1991)
and Yue et al. (1994) (see the barreling curves reported in such
papers in Fig. 4, same numbering in each paper).

Based on the geometry described above, it is clear that the
smaller the ratio ρML is, the bigger the size of the substrate will be.
Upon utilizing two-dimensional plane strain solid elements, the
thickness of the layer governs the characteristic size of the mesh
(that is to avoid distorted mesh that could lead to numerical ill-
posedness of the governing operator). As a result, the simulations
with small ρML will be penalized from a computational point of
view, due to an extremely high number of nodes.

Therefore, the following choices have been adopted for the
discretization and computational analysis of the system. As pointed
out in Sun et al. (2011), instead of modeling the upper layer on the
basis of a two-dimensional geometry, the thinness of the top layer
relative to its length suggests the use of modified B22 beam ele-
ments, by means of the built-in stringer option in ABAQUS. The
elements just mentioned above are indeed properly modified to
represent the plate behavior of the layer undergoing plane strain
conditions. The latter evidently constrains the lateral contraction/
expansion of each stripe of the top film during wrinkling.
Henceforth, the representative cross section of the thin layer can be
taken with unit height, whereas its base must be set equal to

(1� ν2L)
�1. Regarding the substrate, eight-node, hybrid, plane

strain elements CPE8H are adopted. In order to properly display
the wrinkling mode, the mesh size is calibrated at about λcr=40.

The outcomes of the numerical simulations performed on the
model are in excellent agreement with the analytic ones for
ρML ¼ 10�6, 10�5. Indeed, the error between the analytic and the
computational results is of the order of 10�3. Upon exploring cases
for which ρML ¼ 10�4, such an error rises to 10�2, thereby

suggesting that lowering this discrepancy can be done by modeling
the film itself through the CPE8H elements mentioned above.

Concerning the material properties, while the layer is
described by a classical linear elastic law with Poisson ratio equal to
1=2 (because of incompressibility), for the substrate a custom
UMAT routine to properly simulate the OGH constitutive relation
defined by (1) has been written. This is because the built-in
ABAQUS routine neglects the contribution of the compressed
fibers, deactivating them once they buckle.

Finally, an extended buckling analysis is performed by making
use of an extended number of simulations (actually over 170), due
to the need to cover the whole range of parameters. From Figs. 5–7
it is clear how the outcomes of FEM display a full agreement with
theoretical ones. In particular, Figs. 5 and 6 show the critical strain
and wavenumber with respect to the angle for ρML ¼ 10�4 and dif-
ferent values of mismatch fibers/matrix ρFM . It is worth noting
that, the closer to 1=3 the dispersion is, the flatter the curves are,
approaching to the neo-Hookean case when κ ¼ 1=3 (as well as
when ρFM ¼ 0). Finally, in Fig. 7 the critical quantities are shown
by setting a constant angle θ ¼ 70� and varying the ratio ρML,
assuming a perfect alignment of the fibers. Furthermore, it is note-
worthy that the representation of the critical strain and wavenum-
ber with respect to the stiffness mismatch ρML is susceptible to an
interesting property. In fact, by using a bi-logarithmic scale as in
Fig. 7, it becomes apparent that these quantities arrange along
straight lines with slope 2=3 and 1=3, respectively. For the sake of
completeness, in Fig. 8 the post-buckling phase of a bilayer is
shown. For this case, ρML ¼ 10�3, ρFM ¼ 2, k2 ¼ 0:8393, κ ¼ 0,
and θ ¼ 90� have been assumed. The amplitude has been evaluated
as the absolute value of the deviation from the mean height of the
surface of two representative points, namely, the global maximum
and minimum.

Figure 8 shows that, depending on the contractile strain, the
dimensionless amplitude defined by A=λcr ¼ Akcr=(2π) changes,
and a re-organization of the surface emerges. Indeed, while the
upper surface is initially flat, after the onset of the wrinkling the
amplitude increases, with the current wavelength being kcr=λcr1 . The
field (3) reproduces the kinematics that the bilayer has until the
onset of the period-doubling. Note that in such a region, which
extends up to ten times the wrinkling strain, the amplitude is gov-
erned by the well-known relation A ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε=εcr � 1

p
. This has been

obtained in the absence of fibers, as reported by Chen and
Hutchinson (2004), Huang et al. (2005a), and Mane and Huang
(2022) among others. Moreover, beyond a certain strain, two con-
secutive crests begin to join, and the valley between them flattens
out, causing period-doubling. Finally, by further increasing the
compression the waves move closer, until they make contact with
one another (folding).

IV. APPROXIMATION BASED ON LINEARIZED
ORTHOTROPIC PROPERTIES

In order to explain the trend of the critical strain, an approxi-
mation has been constructed in Nguyen et al. (2020) by treating
the substrate as an orthotropic material. This leads to the derivation
of stiffness moduli and Poisson’s ratios through an appropriate lin-
earization. In this section, it is proved that the scaling laws (27)
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and (28) can actually be rewritten by taking into account the
approximation above, thereby expressing them in terms of stiffness
parameters of the linearized orthotropic substrate.

In a fiber-reinforced material, the principal directions P1 � P2
are identified by the orientation of fibers and by their normal,
which may not coincide with the “natural” reference system X1 �
X2 used to solve the equilibrium problem. Using the expressions
found by Nguyen et al. (2020), the stiffness moduli with respect to
the natural directions result as follows:

EX1 ¼ μM
6þ 8ρFM(1� 3κ)2(1� 3 cos2 θ sin2 θ)

1þ ρFM(1� 3κ)2 sin4 θ
,

EX2 ¼ μM
6þ 8ρFM(1� 3κ)2(1� 3 cos2 θ sin2 θ)

1þ ρFM(1� 3κ)2 cos4 θ
:

(29)

Henceforth, their value in the principal system is obtained by

placing θ ¼ 0, by assuming the axis P1 and X1 aligned, so that

EP1 ¼ EX1 (θ ¼ 0) ¼ μM 6þ 8ρFM(1� 3κ)2
� �

,

EP2 ¼ EX2 (θ ¼ 0) ¼ μM 6þ 8ρFM(1� 3κ)2
� �
1þ ρFM(1� 3κ)2

:
(30)

Noting that their ratio is

EP1
EP2

¼ 1þ ρFM(1� 3κ)2 (31)

it is clear it can be substituted into the amplitude function (27),
obtaining

ζ(ρFM , κ, θ) ¼ ζortho EP1=EP2 , θð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EP1
EP2

þ EP1
EP2

� 1

� 	2sin2 (4θ)
4

6

s
: (32)

FIG. 9. Comparison of the critical strain (a) and dimensionless wavenumber (b) assuming ρML ¼ 10�3, κ ¼ 0 and k2 ¼ 0:8393. Although the curves are slightly asym-
metric for ρFM ¼ 10, it emerges that scaling laws (27) and (28) approximate the exact results better than formulations proposed in Vonach and Rammerstorfer (2000) and
in Nguyen et al. (2020).
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In this way, the scaling laws (27) and (28) can be rewritten as
follows:

korthoh,cr ¼ kh,nh ζortho EP1=EP2 , θð Þ,
εorthocr ¼ εh,nh ζ

2
ortho EP1=EP2 , θð Þ,

(33)

from which one can see how the response depends on the ratio of
the orthotropic stiffness moduli in the principal system and on the
angle that fibers have with respect to the natural one.

By assuming a bilayer with a geometry similar to what is con-
sidered in this paper, though with a linear elastic orthotropic sub-
strate instead of a fiber-reinforced one, Vonach and Rammerstorfer
(2000) obtained scaling laws for such systems. In Eqs. (22) and
(23), such authors provided explicit formulas for the semi-
wavelength and the critical longitudinal load at the onset of wrin-
kling of an isotropic thin plate resting on an elastic foundation. By
adapting these results to write down the actual wavelength and the
critical strain, it follows that

kh,cr ¼ h

ffiffiffiffiffiffiffiffi
ks
2KL

3

s
, (34)

εcr ¼ h2

12
1ffiffiffi
43

p þ ffiffiffi
23

p� 	 ffiffiffiffiffiffi
k2s
K2
L

3

s
, (35)

where KL ¼ EL h3= 12(1� ν2L)
� �

is the bending stiffness of the top
layer, while ks is the substrate stiffness. It is noteworthy that these
relations are particularly similar to the ones valid for isotropic bilay-
ers. Depending on the specific problem under consideration, ks can
assume different forms. For instance, the outcomes of Eqs. (34) and
(35) displayed in Fig. 9, arise by choosing the substrate’s stiffness ks
as in Eq. (21) of Vonach and Rammerstorfer (2000). It must be
mentioned that for the evaluation of such a quantity the linearized
orthotropic moduli obtained in Appendix 2 of Nguyen et al. (2020)
have been used. Furthermore, in Eq. (7) of that same paper, the
authors constructed a scaling law for the critical strain that fits the
results obtained for low substrate/layer mismatches with good agree-
ment. Such an expression is neither based on an asymptotic expan-
sion nor on a rigorous derivation, and it makes use of an ad hoc
elastic module, Es

eff , such that the following relations hold:

εcr ¼ 0:85

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Es
effG

s
xy

E2
L=(1� ν2L)

2
3

s
, with Eseff 	

ffiffiffiffiffiffiffiffiffiffi
EsxE

s
y

p
1� νsxzν

s
zx
: (36)

Finally, unlike Eqs. (22) and (23) by Vonach and Rammerstorfer
(2000) and Eq. (7) by Nguyen et al. (2020), it is worthy of mention
that Fig. 9 shows how scaling laws (27) and (28) derived in this
paper well capture the quasi-symmetric trend of the critical wave-
number and critical strain at the onset of wrinkling. Indeed, the case
ρML ¼ 10�3 portrayed in Fig. 9 presents a slight asymmetry when
ρFM ¼ 10 that is not present whenever ρML � 10�4 and
0 � ρFM � 10.

Therefore, in the range of parameters examined in this present
work, the novel scaling laws (27) and (28) show minor deviations

from the analytical model, and they are definitely much closer to
the exact results compared to the other formulations available in
the literature.

V. CONCLUSIONS

Compressed bilayers made of stiff thin films perfectly bonded
to the top of fiber-reinforced deep soft substrates have been studied
in this paper. To begin with, it has been shown how assuming a
plate behavior for the thin top layer actually allows the reproduc-
tion of similar results to the ones obtained in Nguyen et al. (2020),
where a three-dimensional elastic behavior for the film itself was
adopted. It has then been illustrated that for high stiffness mis-
match ratios between the substrate and the adhering layer, both
models essentially show the same results, although the
dimensional-reduced model naturally entails significantly less com-
putational cost. Upon varying the relative angle between the two
families of fibers, the simulations performed for cases in which the
substrate is much softer than the layer yield a symmetric and sinus-
oidal trend both for the critical strain and for the corresponding
wavenumber.

Although complex theoretical and numerical analyses can be
performed case-by-case, a prompt evaluation of the main wrinkling
features for the bilayers at hand is often needed. This is certainly
the case when it comes to comparing experimental findings with
handy estimates of the topographic features of the corrugation in
such systems. Unfortunately, no tools yet exist owing to the rapid
evaluations mentioned above. To this end, appropriate scaling laws
would certainly fill such a gap. In particular, no rigorously derived
simple relations governing the critical strain and the wavenumber
at the onset of wrinkling had been provided for highly mismatched
hyperelastic fiber-reinforced bilayers before this present work. This
drawback did include biological systems, even in the case of esti-
mating the most basic features of the exhibited corrugated topogra-
phy of organs such as arteries. Although in Nguyen et al. (2020)
several interesting analyses were performed (actually by a team of
researchers involving three of the coauthors of this present paper)
for flat fiber reinforced bilayers, a systematic rationale for mathe-
matically deriving scaling laws for the features highlighted above
was not pursued. Indeed, in such a paper only an ad hoc scaling for
the strain at the onset of wrinkling was provided for specific cases.

The main result of this work relies upon the novel scaling laws
for the critical strain and its corresponding wavenumber character-
izing the initial wrinkling of compressed fiber-reinforced bilayers.
This has been achieved only thanks to the outcomes of the simpli-
fied model developed in this paper. Indeed, close-form solutions to
the bifurcation problem governing the balance of forces at the
interface between the film (treated as a thin plate) and the fiber-
reinforced substrate (modeled as an SRM) enabled one to analyti-
cally find explicit asymptotic expansions owing to the new scalings
mentioned above. Remarkably, either the absence of fibers or their
complete randomness reduce the new scaling laws to the well-
known ones valid for neo-Hookean bilayers (see e.g., Sun et al.,
2011 and Cao and Hutchinson, 2012).

In all the other cases, a modulating factor depending on the
properties of the fibers turns out to govern the newly obtained laws
(see Fig. 4). As expected, for certain fiber orientations and for
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certain fiber-matrix stiffness ratios, this can amplify the (dimen-
sionless) wavenumber up to a factor 1:80 and the corresponding
wrinkling strain of over 3:2. This significant amplification would
then be missing if the novel scaling laws were erroneously replaced
either by existing estimates based on the film and the matrix prop-
erties alone or on the ad hoc relations mentioned above. The analy-
ses in Secs. II–III, among other results, provide detailed
comparisons between the outcomes of the novel scaling laws
against both the results obtained from the dimensionally reduced
analytical approach, and from the FE analyses. These results show
how truly satisfactory the outcomes of the newly obtained scaling
laws are relative to the corresponding analytic and numerical
results. Furthermore, Sec. IV, Fig. 9 displays the discrepancies
between the results coming from fully linear approaches (i.e.,
Vonach and Rammerstorfer, 2000) and the ad hoc relation found
in Nguyen et al. (2020) vs both the novel scalings and the analytic
formulation for certain values of the parameters of the fiber-
reinforced bilayers. Unlike the first two sets of results, Fig. 9 dis-
plays how the last two methods, which have been shown to essen-
tially agree with the outcomes of the FE analyses in the previous
sections, reliably hold throughout the whole range of variability of
the fiber’s angle.

Finally, in Sec. V it has also been shown how material parame-
ters obtained in Nguyen et al. (2020), Appendix 2, providing ortho-
tropic linearized moduli for the substrate can be used to express the
newly obtained scaling laws.

Providing tools like appropriate and rigorously derived scaling
laws is key for the analysis of geometrically complex situations
involving compressed highly mismatched bilayers containing fibers,
with whatever degree of dispersion relative to a main orientation
they have. Indeed, having the availability of scaling laws for the
main features of wrinkling, i.e., the critical strain at its onset and
the associated wavenumber, becomes definitely useful when it comes
to performing a firsthand comparison with experimental measure-
ments even before running computational/analytical analyses.

The strategy undertaken in this paper to obtain such laws is
currently under investigation for low-mismatch fiber-reinforced
bilayers, that are even more amenable for soft biological tissues.
Furthermore, new scaling laws in the presence of possible sources
of inelasticity, such as growth, or even yielding and plasticity of the
top layer in the presence of metallic films may be accounted for
upon generalizing the methodology proposed in this paper to such
situations. In other words, the systematic approach introduced in
this paper to asymptotically expand complex representation formu-
las of the main wrinkling features paves the way for many other
related problems, such as pre-stretch induced corrugation both in
flat and curved fiber-reinforced bilayers, the latter being much
closer to the geometry of the cross sections of wrinkled arteries.
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