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Abstract: In this paper we compare the relative efficiency of different
forecasting methods of space-time series when variables are spatially and
temporally correlated. We consider the case of a space-time series aggregated
into a single time series and the more general instance of a space-time series
aggregated into a coarser spatial partition. We extend in various directions
the outcomes found in the literature by including the consideration of larger
datasets and the treatment of edge effects and of negative spatial correlation.
The outcomes obtained provide operational suggestions on how to choose
between alternative forecasting methods in empirical circumstances.
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1. Introduction

The problem of choosing the best forecasting strategy when dealing with disaggregated time series
has a long tradition in econometrics. Giacomini and Granger (2004) (henceforth GG) faced this
problem in the specific case of forecasting a national aggregate when disaggregated regional series
are available and the individual regional series display spatial correlation. In the quoted paper the
two strategies of aggregating the forecasts and forecasting the aggregate were compared in terms of
asymptotic theoretical results and of small sample Monte Carlo simulations. The general conclusion
of the paper was that “ignoring spatial dependence, and simply aggregating univariate forecasts for
each region, leads to highly inaccurate forecasts®. In particular the authors showed that, if the
variables observed at a regional level satisfy the ‘poolability’ condition (Kohn, 1982), there is a
benefit in forecasting the aggregate variable directly. The authors themselves explicitly recognize
the limits of their analysis by stating that: “the paper relied on many simplifications of the actual
complexity of data measured in space and time and therefore it does not claim to be exhaustive”. In
this paper we wish to extend their findings by removing some of the simplifications assumed in
their study.

First of all GG restricted themselves to the case of positive spatial autocorrelation whereas
here we consider the case in which the regional data can also display negative spatial correlation.
Negative spatial correlation is less frequent than positive spatial correlation in economic analysis at
coarse levels of spatial aggregation (like e.g. countries) where neighbours tend to display similar
values, however they are very common in the case of spatial data observed at a fine level of
disaggregation (like e.g. micro data on single plants or data aggregated at a communal level) where
spatial distributions may be characterized by a chessboard structure due to local competition and
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crowding—out phenomena (see Griffith, 2006; Griffith and Arbia, 2006). Therefore it deserves a
special consideration in examining the problem of aggregated forecasts.

Secondly in their simulations GG considered only very small regular grids of data (the larger
being constituted by a 4-by—4 grid of 16 spatial units) that could be dominated by border (or
“edge”) effects (Griffith, 1983, 1985 and 1988). For this reason not only we consider, in our
experiments, a larger number of sites (up to an 8-by—8 grid of 64 spatial units) which is closer to
the typical dimension of a spatial series in regional economics, but we also include in the analysis a
practical solution to the distortions due to borders when simulating bounded spatial series of data.

Thirdly GG considered the simpler case of aggregating regional series into a single national
series. Here we wish to look at the more general case where data are available on a fine grid (e.g.
counties within regions) and we have the problem of producing a forecast on a coarser grid (e.g.
regions within a country). Our motivating example is based on the need, at a EU level, to produce
forecasts for each member state (the NUTS1 level) and we avail time series of data at a regional
level (the NUTS?2 level); see Andreano and Savio (2005). So our approach is more general in that,
whereas the final aim of GG was that of producing a univariate forecast, ours is to end up with a
multivariate forecast.

The paper is organized as follows. In Section 2 we introduce the statistical framework to
approach formally the problem and present a short account of the STAR (Space-Time
AutoRegressive) class of models of random fields which will constitute the basis of our simulation
study. In Section 3 we present the various alternative forecasting methods considered in the
simulation. Section 4 is devoted to the Monte Carlo simulation design and to the interpretation of
the results related to the univariate forecast (a space—time series collapsed into a single time series).
In order to allow comparison of our results with those of GG we will consider the same forecasting
strategies and the same combinations of the parameters’ values. However, our parametric set will be
larger to allow negative spatial correlation and stronger spatial correlation to enter into discussion.
In Section 5 we will extend our analysis to the case of multivariate forecasting (a space time series
of, say, n regions and T time periods aggregated into a coarser space—time series of kK (k <n)
regions and T time periods). Finally Section 6 is devoted to some concluding remarks and general
comments and to envisage possible future developments in the field.

2. Models of spatio—temporal dependence: the STAR class
The space—time autoregressive (STAR) class of models is a very flexible and popular framework
considered in the literature by Cliff et al. (1975) and Pfeifer and Deutsch (1980); for a review see

Upton and Fingleton (1985). In general terms the STAR models incorporate the spatio—temporal
Markov hypothesis by expressing the value of the variable x at location i and time t (say X; )

conditional upon the past history and the spatial context of the same variable. In the present paper
we will consider, in particular, the following model STAR(1,1):

K
Xit =¢Xit—1 +Zl//”xjt_] +git’i = 1,,k,t =1,...,T [1]
j=1

or, in matrix notation:
X, = +yWx,_ +e,t=1.T [2]

in which dependence is restricted to only the first lag both in time and space. Obviously there is no
theoretical obstacle to extend the analysis to time lags higher then 1. In our case it is convenient to
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restrict ourselves to isotropic models (Arbia, 2006) so that we can assume yy = yW;;, where y is
the single spatial autocorrelation parameter and wj;; is the generic element of a weights’ matrix W
such that w; =1 if location i and location j are neighbours according to a pre—defined criterion and
w; =0 otherwise. If ¥ =0, equation [1] reduces to the purely temporal autoregressive model of

order 1 (AR(1)). When w =0 and ¢ =1 it reduces to a simple random walk. Finally, when ¢ =0, it
reduces to the standard purely Simultaneous spatial Autoregressive model (SAR; Besag, 1974). As
suggested by GG in their experiments, it is more sensible to employ a STAR rather than a simple
SAR model since the final aim is to evaluate the effects of spatial autocorrelation on forecasts
efficiency.

As it is known, when 7 =0 equation [1] represents a (weak—sense) time—stationary process if

the condition ¢ < |1| holds. However, when y # 0, the time—stationarity conditions are much more

complicated. We will simplify the discussion by restricting ourselves to the necessary, although not
sufficient, stationarity condition:

<1. [3]

K
P+ ‘//zwij
i=1

Condition [3] is a natural way of introducing stationarity if we assume standardized weights

K
(so thatZWij =1) as we will do consistently in the rest of the paper. In this case the stationarity
j=1
condition reduces simply to |¢ + 1//| <l1.
Model [2] can be seen as a particular case of a VAR(1) model (see Liitkepohl, 1993, p. 167—
178) and can be expressed as x, = Ax, | +¢,, t=1,...,T with the restriction imposed on the matrix A4
of the autoregressive parameters that 4 = (¢I K + l//W). The interpretation of this restriction is quite

straightforward: the global amount of autocorrelation that is present in a system of equations is
limited by spatial proximity.

3. Definition of the forecasting strategies and of the various simulation scenarios

In this paper we are interested in identifying the best forecasting strategy in cases where we have
data on a n—dimensional time series referred to a certain partition of the space and we need to
produce a forecast for a k—dimensional (k < n) time series referred to k fewer and larger partitions
of the same space. For instance we have data on sub—regional product and we wish to forecast the
temporal evolution of regional GDP. In the present and in the following sections, however, we will
start considering the simpler case in which k =1. This is the case analysed by GG and we will
therefore be able to compare our results with those obtained therein. In Section 5 we will extend our
attention to the more general case where k > 1.

Let us start assuming that the (single) aggregate time series S, (x) derives from the
k

aggregation of k disaggregated series such that S, (x) =Y, = an with {Xit }thl (i=1....k). In this
i=1

case, following GG, a forecast can be obtained by using the following four different strategies:



. Scenario fl. A forecast for Y, is directly obtained by adapting a univariate time series model
to the aggregate series {yt }thl . In practice the forecast is thus obtained by making use of only
the aggregate information. This scenario corresponds to the strategy of forecasting the
aggregate.

. Scenario f2. In this case a forecast for Yy, is obtained by forecasting individually each time

series Xj; (i = 1,...,k) and by aggregating the k forecasts obtained. This scenario corresponds

to the strategy of aggregating the forecast.
. Scenario f3. A vector time—series model (VAR) is fitted to the individual series neglecting any
spatial correlation effects, and a forecast vector is obtained. The forecast for y, is then

obtained by aggregating the individual forecasts for each X;; .
. Scenario f4. A forecast for each X, i =1,...,K, is obtained by employing a STAR model, thus
including explicit consideration of spatial correlation effects, and the forecast for Y, is then

obtained by aggregating the individual forecasts for each X;

Both scenarios fl and {2 do not consider the specificity of the space—time components, while
in both {3 and 4 we exploit all the information available not only on the univariate series, but also
on their dependence structure. In particular, scenario f4 takes spatial dependence explicitly into
account in the forecasting.

In the simulation experiments that will be presented in Sections 4 and 5, we will compare the
accuracy of the various forecasting procedures in terms of the one—step forecast of the value of vy,

conditional on the information available at time t—1 (say Y, ,(1)). In order to evaluate the accuracy

of this forecast we will use the classical forecasting MSE definition provided by:

MSE (., (10)=E[ (v, - v, () |

GG derived a series of large—sample analytical results both in the case of known parameters
and in the case of parameters that are estimated on the basis of empirical data. Such results are the
natural extension of those derived by Liitkepohl (1987) for purely time series to series that display a
certain degree of spatial autocorrelation. The main results are that, when the parameters are
assumed to be known and the poolability condition® is not satisfied, strategy f3 dominates both f1
and 2 (f3>~12 and 3>~ f1) in terms of MSE and is equivalent to strategy f4. Conversely, when the
poolability condition holds, f3 is equivalent to the fl strategy and the previous ranking among
forecasting methods is not valid any more. These results have a limited practical interest in that, in
empirical circumstances, the model’s parameters have to be estimated from data and so they cannot
be considered as known prior to the estimation procedure. In the latter setup the f3 Scenario loses its
optimality characteristics and the ranking among the various forecasting strategies will depend on
the specific data generating process that can be assumed. When the generating mechanism is a
STAR(1,1) model, GG proved that, asymptotically in T:

2 In the specific modelling framework that will be employed in the present study (that is a STAR(1,1) model) the poolability condition implies that

k
ZW”. = v, Vi which is rarely satisfied in practical circumstances. Among the regular spatial schemes that we use in the simulation experiments only

i=1
the 2x2 scheme has associated a W matrix satisfying the poolability condition if we consider the rook’s case definition of neighbours (Cliff and Ord,

1981).
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MSE (9., (1)) =07k +Tlazk2, [4]

with T the sample size and J, (1) the forecast of y, obtained by substituting the ML estimator, say

éT to the true parameter vector 6, in the linear predictor of y, (say Y;_, (1)).
From equation [4] it is evident that the component of MSE depending on the estimation error

(Tlazkz) increases proportionally to the square of the number of regions (k”) whereas the

component that is present also in the case of known parameters (o’k ) increases with k. This
explains intuitively why in the case of estimated parameters, scenario f3 does not dominate the
others any more. In fact, there is a trade—off between a forecast based on disaggregated series where
we have no loss of information (but a very high number of spatial observation), and the loss of
efficiency deriving from an uncontrolled value of k. Having said that, the only possible ranking
between the various scenarios is that both f4 and f1 dominate {3 (f4 > f3 and f1 > {3), but no ranking
is possible between f3 and f4 criteria. Notice that, however, the dominance of fl on f3 holds true
only when the poolability condition is satisfied and depends on the number of spatial observations:
the greater is this number, the greater is the gain in efficiency.

When the poolability condition holds, it is possible to derive the explicit expression of the
process generating the aggregate series Y, also for a finite sample size as we will prove in the

following proposition.

K
Proposition 1. Under the poolability condition, the process of the aggregate S, = Z X;; 1s an AR(1)
i=1

K
with parameter ¢+ v, where v = Zwij 3,
i=1

K

Proof. If the poolability condition holds, the matrix W has equal column sums Zwij =v. Using
i=1

matrix notation, the model is given by:

x, = [¢Ik +tyW]xt_1 +&,. [5]

3 For example, in the case where k =4 the W matrix is given by

0 05 05 0

05 0 0 0.5
W=
05 0 0 05
0 05 05 0

In this case the poolability condition [4] holds with v =1 and the equations of the model are:

v y .
Xip = @X g+ 5 Xppt+ B X3p T éy

y v
Xop =Xy + b X ) Xgpo + g

_ y y .
Xy =PX3y + ) X ) Xgpo1 T €3y

y y
Xyp =Py + 5 Xt 5 X3t Eay

Summing up the four equations we get
Se() = #Sey (X) + WXy + WX FWXs g + WXy + Sy (€)=
=(¢+v)Si, (x)+S(¢),

which is an AR(1) process with parameter ¢+ .



k
Let S z X - Summing up Equations [5] for all regions we obtain:
i=1

Z Xt = ¢Z Xiio1 T ‘//ZZ Wi X 11 + Z &iy
i i i i

St (x) = ¢S, (x) + WZ{ZWU } Xit1+ St (8)
il
S (x) =¢S, (x) +ypvS (x) +S., (8),
which is an AR(1) process with parameter ¢+ v . QED. =

When the poolability condition does not hold, it is easy to verify that the process of the
aggregate S, (x) is, conversely, given by:

( ¢St 1 Zlelt 1+S

with v; = ZWU- . No exact result can be stated in this case. However, as the v;’s get closer to each

other, the process can be approximated by an AR(1) process.

All the previous results are based on quite restrictive assumptions of limited practical
relevance. In order to obtain a more satisfactory ranking among the different prediction methods to
assist the choice in practical circumstances, GG considered a set of small-sample Monte Carlo
experiments whose results will be summarized in the next section. In the next section we will also
extend their results to a wider variety of simulation cases.

4. Univariate aggregate forecasting from a STAR model
4.1 Simulation design

The Monte Carlo experiments reported in this section are based on various realizations of the
STAR(1,1) model presented in Equation [2]. It has been shown in the preceding Section 3 that the
MSE is related both to the time horizon and to the number of regions. For this reason, in addition to
the cases of k =4,6,9,16 regions considered by GG, we also include the cases of a larger number

of regions with k =25,36,49,64 . In this way we can monitor more closely the interaction between

the spatial dimension and the efficiency of the various forecasting procedures. There is also a
second important reason why we will consider a larger number of regions in our simulations, and it
is connected with the problem of “edge effects” (see Griffith, 1988). Edge effects arise from the
different behavior of border regions with respect to the inner regions in terms of the elements of the
W matrix. Such a problem has been addressed in the paper by GG, but no solution has been
proposed to overcome it. Intuitively, the distortion connected with edge effects will tend to
disappear as the number of regions increases, in that the proportion of bordering regions with
respect to the total number of regions becomes more and more negligible. This provides a further
motivation towards large spatial schemes in the present context. In order to quantify the impact of
edge effects, we can consider an indicator defined as
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EE = (# regions discarded )/(# regions discarded + # regions actually used ).

Such an index represents the proportion of information lost by ignoring the edge effects
divided by the total information available. When the system is a (k X k) regular Cartesian grid,

EE =1/ Jk ; if the system is rectangular Cartesian lattice with dimensions (rxc), we have

EE =(r+c)/2c.

Just to give a flavor of the importance of the edge effects, Figure 1 reports the plot of the EE
index with respect to the number of regions. The values of EE range from 0.5 when k =4 to 0.125
when k =64, and show that the impact of edge effects becomes significantly less relevant when k
increases. In our simulations we have exploited the usual solution to edge effects that consists in the
strategy of simulating a larger spatial scheme with respect to the target dimension of cells, to
discard a buffer zone represented by the bordering cells of the scheme and to concentrate the
analysis on the remaining cells (see Griffith, 1988; Ripley, 1981).

0,6

0,5

0,4 1

EE

0,3

0,2

0,1

0 50 100 150

Number of regions

Figure 1: Edge Effect index (EE) plotted against the number of regions.

An important issue in setting the simulation experiments concerns the choice of the numerical
values of the parameters ¢ and y of the STAR(1,1) model considered in Equation [1], connected

respectively with temporal and spatial dependence. We decided to expand in two directions the
range of values considered by GG.
First of all, in addition to the values corresponding to a low (i = 0.1) and to an intermediate

level ( =0.45) of spatial dependence, we also considered a high value (i = 0.8) describing the

case of strong spatial dependence that was not considered in GG. As already discussed in the
preceding section, for the process to be stationary, the condition ¢+ <1 must be satisfied, thus, in

these instances, we could only consider two parameter configurations, namely the pair
(#,w)=(0.1,0.8) and the pair (¢,1)=(0.8,0.1).

Secondly, for the sake of completeness we also introduced the case of negative spatial
correlation that (as argued in the introductory section) can represent an empirically relevant case in
many regional economic applications. The numerical values of the parameters considered in the
simulation are thus the following:

(¢,t//)=(0.1,0.1) (¢,1//)=(0.45,0.1) (¢,1//)=(0.1,0.45)
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(¢,1)=(0.45,0.45) (4,w)=(0.8,0.1) (#,w)=(0.1,0.8)
(¢,w)=(-0.8,-0.1) (,w)=(-0.1,-0.8) (4w )=(-0.45,-0.45).

In the simulations we employ the four forecasting scenarios discussed in the previous Section
2. More in details, as for Scenario fl we aggregate, at each time t (t=1,...,T ), the observed data

X -1 %, Of the k regions. In this way we obtain a single aggregated time series. We then fit an
ARMA(p,q) model to S, and compute the forecasts accordingly. We fit all ARMA(p,q) processes
with p=0,1,...,4, and q=0,1,...,4, and such that 0< p+Q<5, and choose the model that
achieves the smallest BIC value®.

Concerning Scenario f2 we start fitting an ARMA model to each individual regional time
series. Again, the orders of the i-th ARMA model are determined using the BIC criterion. We then
compute the k univariate forecasts, say X ;,,, based on the estimated ARMA model. Finally, we

R k
aggregate the X, to obtain the aggregated forecasts S;,, = Zf(iﬂh (T=200, h=1,...,100; see
i=1
below).
In the third Scenario (f3) we fit a VAR(1) model to the k—variate time series Xx,, obtaining the

maximum likelihood estimate A, and compute the one—step forecast X,,, = ;Ixt; both estimation

and prediction are based on standard VAR methodology (Liitkepohl, 1993).

Finally for Scenario f4 a STAR(1,1) process can also be written as a VAR(1) as in Scenario 3,
but now with the restrictions 4 = ¢gW +y I, .The forecasts are then computed as in the 3 scenario.

In addition to the scenarios f1-f4 we introduced a modification of scenario f3 in order to take
into account the possibility of having a large number of elements of A that are not significantly
different from zero. This issue can be particularly relevant, in the sense that the number of elements
that are non significantly different from zero can be very large for small values of ¢ and/or of .

Thus Scenario f3new consists of fitting a VAR(1) model to the k—variate time series, dropping the
non—significant coefficients, re—estimating the model constraining to zero the non-significant
coefficients and computing the forecast accordingly.

In all five cases the parameters are estimated via Maximum Likelithood. All the models
considered here satisfy the regularity conditions required for the optimality properties of the
estimators.

Having described the setup of the simulation and before presenting the results obtained, let us
now examine into a greater detail the various computational steps involved by the experiments.

The first step consists of simulating 300 time observations from a STAR(1,1) process laid on a
regular square lattice grid. We treat the first T =200 observations as in—sample observations and the
last 100 observations as out—of—sample observations to be used to evaluate the forecast accuracy.

We start simulating k* regions arranged on a \/k_* —by—\/F regular square lattice grid. We then
discard 4(\/k_* —1) cells in the buffer zone in order to account for the edge effects and we

concentrate on the remaining k =k — 4(\/k_* - 1) cells.

In a second step, we use the in—sample data to estimate the parameters of the different models
corresponding to all the forecasting scenarios.

* The Bayesian Information Criterion (BIC) used in scenarios f1 and f2 was introduced by Schwarz (1978) to choose the “best member” of a set of
models. Here, the best model is meant to be the one that maximizes the posterior probability of the model given the data. It can be shown that,
asymptotically, it is the one which minimizes the quantity: BIC= — 2(log maximized likelihood)+(number of parameters)log(T). The rule is similar to
the Akaike Information Criterion, but the penalty for introducing new parameters is greater in BIC. As a consequence, simpler models are more likely
to be selected when using BIC than when using AIC.
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In a third step, for each forecasting scenario, we compute the Mean Squared Error as
1 &z 2 . . :
MSE ZEZ(ST Th— o7 +h) , where the true value S;,, is obtained by aggregating the out—of—
h=1

sample observations X; 1y, .

Finally we repeat B times (B =500) the three preceding steps and compute the average MSE
over all the replications.

From a computational point of view, simulating the STAR(1,1) process is not particularly
heavy. On the other hand, estimation is rather cumbersome. Scenarios fl and {2 require indeed the
computation of Maximum Likelihood estimates of ARMA models. In particular, scenario {2 requires
the estimation of k x14 ARMA models for each replication (14 being the number of different ARMA
models estimated under the condition p=0,1,..,4, q=0,1,...,4 and 0<p+Q<5). Since the

ARMA likelihood has to be maximized numerically, the computational burden is relevant. As for
scenarios 3, f3new and f4, estimators can be obtained in a closed form, but the size of the matrices
involved becomes extremely large as K increases (due to the presence of Kronecker products in the
formulas of the restricted estimators of the VAR parameters). As a consequence the computing time
is not negligible in these cases as well. Notwithstanding the enormous capabilities of the computers
nowadays, the computing time has been demanding. A Pentium 4, 3.00 GHz, 2Gb RAM computer
took a very long time in order to produce the required output.

4.2. Analysis of the simulation results

We will start by considering the average MSE achieved by the five forecasting scenarios for all
parameters’ combination. The results are reported in Figure 2 and in Tables 1 and 2 where the MSE
is expressed as a function of the spatial dimension of the grid considered. In particular, in order to
provide a ranking among the various forecasting methods in terms of their accuracy, Tables 1 and 2
display the percentage of times in which each method performs the best.

The main conclusions that we can draw from this comparison are the following:

(1) The predictions obtained with the STAR model (Scenario f4) are always the most accurate, for
all configurations of temporal and spatial dependence;

(2) The worst performing scenarios are those based on the univariate approach (f2) and on the
unrestricted VAR (f3). There are two more conclusions connected with this point. First, when
the spatial parameter y is large in absolute value, the worst performing scenario tends to be

the univariate approach, whereas in presence of weak spatial dependence the worst results are
obtained with the unrestricted VAR. Second, in all parameter configurations, as the number of
cells k increases, the unrestricted VAR shows the worst performance.

(3) In all parameter configurations and in all scenarios, the average MSE increases with the
spatial dimension. This result is consistent with the findings of GG. There is, however, a
significant exception for the univariate scenario f2. In this case, when the number of regions
increases from 49 to 64, for most parameter configurations the MSE decreases. In the other
cases it increases at a slower rate. In particular, we observe a decrease when the spatial
dependence parameter i is large in absolute value, and a slower increase when i is small in

absolute value.

(4) The results of the negative dependence cases are essentially (i.e., apart from Monte Carlo
variability) identical to the corresponding positive dependence cases when the parameters are
equal in absolute value. In other words, it only matters the absolute value of the temporal and
spatial dependence parameters ¢ and y , not their sign.
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Figure 2: Average MSE over the B= 300 Monte Carlo replications for the various combinations of the parameters ¢ and i , plotted as a function of the number of regions used in
the Monte Carlo experiment.
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N. regions Low spatial coefficient y = 0.1 Intermediate spatial coefficient  =0.45  High spatial coefficient y = 0.8

fl 22 3  finew f4 fl 2 f3 f3new f4 fl 2 3 f3new f4
4 150 132 204 150 364" 238 12 194 136 420 204 0.0 178 174 444"
6 170 110 11.0 134 476" 170 0.6 160 108 556" 88 0.0 130 152  63.0"
Low 9 178 120 11.8 148 436" 156 0.8 138 104 594 50 0.0 124 106 720"
AR 16 182 126 56 110 526 156 00 7.0 6.6 70.8% 110 0.0 6.8 132 69.0
Coefficient 25 208 88 3.0 70 604" 162 14 3.8 24 76.2% 126 0.0 1.6 7.0 78.8"
$=0.1 36 224 110 0.6 62 598% 210 10 04 3.0 746 138 00 08 4.6 80.8™
49 168 86 0.6 4.0 700 188 0.0 04 0.6 802" 158 0.0 0.0 1.8 82.4"
64 204 282 00 04  420° 170 250 0.0 1.0 570% 134 124 02 04 736"
4 172 13.6 152 152 388" 238 04 154 162  442%
6 186 11.6 140 144 414" 164 08 164 122 542°
Intermediate 9 156 102 106 158 478° 136 04 102 108  65.0"
AR 16 158 142 46 108 546" 162 00 70 84 684" -
Coefficient 25 180 116 14 82 60.8° 182 04 28 5.2 734"
¢ =045 36 174 118 08 6.8 632% 262 06 0.6 3.2 69.4*
49 238 120 00 24 618 236 00 04 22 738"
64 286 302 00 04 408" 182 172 00 02 64.4"
4 176 13.0 178 134 382"
6 144 146 144 11.6 450"
High 9 212 108 72 104  504F
AR 16 204 102 34 82 578" L L
Coefficient 25 214 104 12 64 606"
$=038 36 198 92 0.0 20 69.0"
49 196 134 00 06 664"
64 278 272 00 00 450"

Table 1: Proportion of times in which each forecasting method has the lowest MSE in the Monte Carlo simulation, for all positive values of the coefficients ¢ and y. An asterisk
indicates that the forecasting method in the corresponding column is the best the highest number of times, while the underline denotes the worst performing method.
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N.regions  Highnegative spatial coefficient y = —0.8
fl 2 f3 f3new 4

4 244 0.0 158 148 45.0"

6 11.0 0.0 140 134 61.6"
Low 9 3.4 0.0 92 12.2 752"
Negative 16 138 00 54 10.6 70.2*
AR 25 128 00 20 8.2 77.0*
Coefficient 36 150 0.0 1.6 42 792"

49 186 00 04 24 78.6"

64 142 152 00 02 70.4*

N. regions Intermediate negative spatial coefficient y = —0.45

f1 2 3 f3new 4
4 234 16 150 154 44.6*
6 15.8 0.8 126  13.6 57.2"
Intermediate 9 12.6 0.6 8.8 10.4 67.6"
Negative 16 16.2 0.0 6.6 6.6 70.6™
AR 25 18.4 0.4 1.8 5.8 73.6"
Coefficient 36 23.4 0.6 0.8 2.8 72.4*
49 20.0 0.4 0.2 1.8 77.6"
64 15.8 178 0.0 0.6 65.8"

N.regions  Low negative spatial coefficient y =—0.1

f1 2 3 f3new 4
4 204 108 156 124 40.8"
6 156 9.4 11.0 144 49.6"
High 9 160 102 96 13.0 512"
Negative 16 158 114 40 8.0 60.8"
AR 25 194 110 10 74 61.2"
Coefficient 36 162 116 02 3.0 69.0
49 172 98 0.0 1.0 72.0"
64 3.0 254 0.0 0.2 434"

Table 2: Proportion of times in which each forecasting method has the lowest MSE in the Monte Carlo simulation, for
negative values of the coefficients ¢ and y. An asterisk indicates that the forecasting method in the corresponding
column is the best the highest number of times, while the underline denotes the worst performing method.

(5) The percentage of cases in which scenario f4 performs the best increases as the spatial
dependence parameter gets larger. In other words, a correct specification of the model seems
to be more important in presence of strong spatial dependence. This last conclusion emerges
more clearly by inspecting Figure 3, which displays the percentage of times in which Scenario
f4 has the lowest MSE plotted as a function of k for different parameter configurations. The
idea is to use this graph to compare this percentage when y increases, by holding constant

the value of ¢. In particular, Figure 3a displays the results for (¢,1)=(0.1,0.1),
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(4,w)=(0.1,0.45) and (¢,1)=(0.1,0.8), while Figure 3b the results obtained with
(¢,1//)=(0.45,0.1) and (¢,1//)=(0.45,0.45). It can be seen that, in both instances, the

percentage of cases in which 4 outperforms the other methods is larger (for any k fixed) for
larger values of the spatial parameter. For instance when k =64 and ¢=0.1, f4 approach
outperforms the other forecasting methods in the 42% of the cases examined, while the
percentage raises up to 73.6% when y =0.8.

(6) The percentage of cases where f4 outperforms the other methods is not a monotonic function

of the spatial dimension. It increases with the number of regions up to a dimension of k = 49
and then it decreases.

085 ——
—— ¢=0.Ly=0.1
—— ¢=0.1,y=0.45

$=0.1,y=0.8 TN

0.8

0.75-

0.7

0.65-
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o
>
T

0.55

0.45-

0.4

0.35

()
0.75 T T T T
—+— ¢=0.45,=0.1 /+ — ////r
— $=0.45,y=0.45 o _— \
- P
~ 4
0.7 / — \
0.65- / ~ i
0.6 4
[}
j=2]
8
S 0551 R
5]
5]
a
0.5+ -
0.45 4
0.4+ -
0.35 [ I I I I I |
4 6 9 16 25 36 49 64
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Figure 3: Percentage of times that scenario f4 has the lowest MSE, as a function of the number of regions, for (a) ¢=0.1
(b) ¢=0.45 and different values of y .
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In order to measure the improvement in efficiency obtained with model f4 when the spatial
parameter increases, we consider the ratio:

I¢ _ MSE¢9V/1 - MSE¢9V/2
WY ’
: MSE,

where MSE b (i=1,2) is the average MSE, computed over all the iterations, obtained from the

simulation experiment with parameters ¢ and y . Thus, the index measures the rate of variation of
the MSE, for any fixed values of ¢ and k, when w increases. In particular, negative values of the
index correspond to efficiency gains, whereas positive values correspond to efficiency losses.

The results reported in Table 3 display a clear trend from weak (y =0.1) to intermediate
(v =0.45) spatial dependence: for all values of k the MSE decreases, and the rate of decrease is
particularly pronounced for k =25, 36 and 49. The results are less conclusive in the remaining two
setups (third and fourth column of the table), but it is worth noting that, when k = 64, going from a
smaller to a larger value of y always provides more accurate forecasts.

N. regions $=01 $=045

I 0.1;0.45;0.1 I 0.1;0.8;0.45 I 0.45;0.45;0.1
4 —-0.52 1.59 0.03
6 —-0.06 —-0.50 1.52
9 —-0.40 0.29 —-0.99
16 —-0.42 2.30 —-0.02
25 —-0.81 1.01 1.06
36 —-1.64 1.64 —0.03
49 —0.65 0.47 —0.55
64 -0.19 —-0.25 —0.23

Table 3: Values of the index 14, ,, for the numbers of regions considered in the experiment.

Figures 4 and 5 respectively show the estimates of ¢ and y obtained from the STAR(1,1)

model with k =64. The visual inspection suggests that the estimators are consistent and
asymptotically normal, as expected from the maximum likelihood theory.

Finally, it may be of interest to look more closely at the results obtained under the poolability
condition. In Figure 6 we have reported the ARMA orders estimated for the aggregated process
(scenario f1) when k =4 (the only value of k for which poolability holds true) and in Figure 7 we
show the estimate of ¢+ , which has been shown to be the parameter of the AR(1) model for the

aggregate when the poolability condition holds true. From both figures it can be seen that, as
expected, the most frequently identified model is by far the AR(1) model (Figure 6). Moreover, the
estimators appear to be consistent (Figure 7). It should be noted, however, that this does not give
any advantage in terms of prediction accuracy, because the ranking of the forecasting performances
when the poolability condition holds (that is, when k =4), is approximately the same as the one
obtained when this condition is not satisfied.

-14 -



100

50

100

50

$=0.1,y =0.1

0.05 0.1 0.15

=0.45,y =045

0
04 042 044 046 048 05

$=-0.1,y =08

0
-0.16 -0.14 -0.12 -0.1 -0.08 -0.06

100

$=0.1,y =045

0.1

$=-08,y=-0.1

-0.75

100

50

$=0.8,y =0.1
100 ‘
50
0
0.75 0.8 0.85
d=-0.45,y =-0.45
100
50
0
-0.5 -0.48 -0.46 -0.44 042 0.4

$=0.45,y =0.1

0
04 042 044 0.46 048 0.5

Figure 4: Empirical distribution of ¢? for the case of k =64 regions and all combinations of the parameters.
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5. Multivariate aggregate forecasting from a ST4R model

We now turn to consider the problem of aggregating a space—time series of a given spatial
dimension (say n) into a space—time series of smaller dimension (say k <n). The problem has a
very well grounded empirical motivation. For instance in the EU we often have the necessity of
forecasting economic series at a NUTS2 level (regions), but we have in hand data also at a finer
resolution (NUTS3 level or sub-regions). The choice is therefore between the strategy of
forecasting the NUTS3 data and then aggregate them at a NUTS2 level or conversely the opposite
criterion of aggregating the data at the NUTS2 level and then forecast the resulting space—time
series (Andreano and Savio, 2005).

In presenting the simulation results we will consider some modifications of the setup used in
the previous section in order to take into account the peculiarity of the new problem.

First of all we considered the spatial dimension as fixed and restricted ourselves only to the
case of a 16-by—16 regular square lattice grid then aggregated onto an 8—by—8 grid (see Figure 8).
Indeed, k = 64 is the maximum dimension that we are able to handle due to memory limitations.
Furthermore, since we want to observe the spatial correlation properties of the forecasting error on
the aggregated map, looking at smaller dimensions (e.g. an 8—by—8 grid then aggregated into a 4—
by—4 grid) would involve the computation of a spatial correlation index on only 16 spatial
observations and this would be dominated by edge effects and would make a lot less sense.

Secondly, we considered the same combinations of parameters used in Section 4, but we
extended the cases of negative parameters with the introduction of three additional configurations:
the pairs(~0.1,-0.45),(~0.45,-0.1) and(~0.1,-0.1). Such a finer grid was judged unnecessary in

the experiments discussed in the previous section because of the symmetry that we observed
between positive and negative values in terms of the MSE of the forecast.

Thirdly, since now we evaluate the forecasting error of a space—time series, the MSE alone is
not a good measure of accuracy. In fact, when dealing with spatial data, not only a forecast is
accurate when it produces a small MSE, but also when it preserves the spatial characteristics of the
true data. In this second respect we consider accurate a forecast when it displays a spatial
correlation that is similar to the spatial correlation of the original set of data, or, in other words,
when the spatial correlation of the forecast error map is not significantly different from zero.
Indeed, when the map of the forecast errors displays clusters of similar values, entire characteristics
of the true series are cancelled; on the contrary when errors are randomly distributed in space, they
are easier to detect and to be removed e. g. with the use of a spatial filtering (Arbia et al. 1999). We
measure the spatial correlation in the true map, in the forecasted map and in the error map with the
Moran’s | coefficient (Cliff and Ord, 1981) and we refer to the three cases with the symbols
I,,1; and |, respectively.

Finally, all the forecasting scenarios considered in Section 4 are considered again in the
present section, but with some remarkable qualifications. In fact, Scenario fl is no more relevant
because it is intrinsically linked to the univariate forecasting criterion. When dealing with Scenario
f2 we refer to the aggregated 8—by—8 spatial scheme and we fit a univariate ARMA to each series
thus obtaining 64 forecasted values. We then compute the MSE for each of the 64 regions based on
the out—of-sample observations. The Moran’s | coefficient is finally computed at each moment of
time on the true map, on the forecasted map and on their difference (the error map). In the case of
Scenario f3 we proceed in a similar fashion and we produce a forecast based on a 8-by—8
aggregated spatial scheme and with the parameter estimation based on a VAR(1) model. With
respect to Scenario f3new we do not have any difference with respect to section 4: this scenario is
just equivalent to Scenario {3, but with the constraint that the parameters that are not significant are
set to zero in the estimation phase. Finally, as for Scenario f4 the estimation is obtained jointly for
all locations in the spatial scheme based on a STAR(1,1) model which can also be viewed as a
restricted VAR(1). We then proceed as in the other scenarios to compute the error maps and the
associated MSE’s and Moran’s | tests.
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Figure 8: Reference aggregation scheme for the new experiment designs.

Let us start by considering the spatial structure of the error map. As we have already remarked
a desirable feature of the forecast is to reproduce most of the original spatial structure measured in
terms of the Moran’s | coefficient. Hence the difference between the true and the forecasted map
should contain no extra spatial correlation and the null of no spatial correlation should be accepted
in the error map. A first synthesis of the large output obtained is reported in Figure 9. Here we
consider, for each scenario and for each combination of the parameters, the number of cases in the
100 out—of-sample forecasts in which the null of zero spatial correlation is rejected at a significance
level of 5 %. To facilitate the visualization we ordered the parameters’ values in increasing sense
with respect to the spatial parameter y . The values reported in each graph represent the mean of |

Moran’s values.

The analysis of Figure 9 reveals that the percentage of cases leading to rejection of the null
hypothesis is very low in all scenarios and for any combination of the parameters. However it is
always equal to zero in the case of Scenario f4. This means that if we use the STAR modelling
framework the forecasting map presents spatial features that are very similar to those of the original
data and thus the error map has the desirable feature of being spatially uncorrelated.

Table 4 reports, for each parameter combinations and for each scenario, the linear correlation
between Moran’s | of the true map and the Moran’s | computed in the 100 out—of-sample
forecasted maps. A similar table is reported in Table 5 which refers to the linear correlation between
the true map Moran’s | and the error map Moran’s I.

The exam of Table 4 reveals that the highest value of the linear correlation is observed in
Scenario f4. We can therefore conclude that, in this instance, the resulting forecasted spatial
structure is very similar to the original one. Notice that, quite surprisingly, the highest levels of
similarity in all scenarios are achieved in cases of high temporal dependence (¢ = 0.8) or in cases

of intermediate temporal dependence (¢ = 0.45) associated with intermediate spatial dependence.
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Conversely, the lowest level of similarity (correlation close to zero) is observed in cases of low
temporal dependence, when ¢ = 10.1 is associated to low spatial correlation in the true map. Notice
also the symmetry of the results for positive and negative values of the parameters. These results
seem to suggest the dominance of the temporal aspects on the good performances of the forecasting
scenarios when the aim consists in reproducing the spatial structure of the phenomenon.
Comparatively less important appears to be the intensity of the spatial dependence in the original
map under this respect.

Percentage of rejection of the null hypothesis - scenario 2 Percentage of rejection of the null hypothesis - scenario 3

T T
——t— Tredata ——t— Tuedata
= Forecasts A\ Forecasts
0.05 Forecast emors L 0.05 Forecast emors L

I I I I I I I I I I I 001 I I I I I I I I I I I
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Figure 9: Percentage of rejection of the null hypothesis of zero spatial correlation at & = 0.05 confidence level in the

¢,'//}i 5 %#{lf #0,a=0.05 qé,n//}i and
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various scenarios. In the vertical axes we report the quantities » #{l #0,a=0.05
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¢.w} respectively. For each test we considered the z—scores with E(l,)= 7ﬁ and var(l,)= z%
i — W..
ij
P

300
D #{ly #0,0=0.05

i=1

(with 1=t,f,fe).

Moving to commenting Table 5 we notice very low values of the linear correlation between
the true map Moran’s | and the error map Moran’s | in the case of Scenario f4. This seems to
confirm the previous finding of the superiority of Scenario f4 when we look at the spatial properties
of errors, and of the dominance of temporal aspects with respect to spatial characteristics of the
original data. It is particularly evident the inability of Scenario f2 under this respect where we
record high and positive values of the correlation: in cases when the original data are characterized
by high levels of spatial correlation, the error maps still preserves the same feature.

To reinforce these conclusions let us look at Figure 10 which reports the absolute values of
the Moran’s | coefficients in all scenarios and for all combination of parameters, for the true data,
the forecast map and the error map. In the case of Scenario f2 the error map has always a similar
spatial structure with respect to the original map. In the cases of Scenario {3 and f3new we observe
an over—fitting. When the original data are characterised by positive spatial correlation we observe a
negative spatial correlation in the error map especially in the cases of very strong spatial correlation
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(the two extreme cases of w =+0.8). Finally Scenario f4 leads also to an over—fitting, but

constantly on negative values very close to zero in absolute value.

For the computation of the MSE’s characterising each scenario and each parameter
combinations we consider the average of the 100 MSE associated to each of the out—of-sample
forecasting values and we average them over the 300 replications. Figure 11 reports the results
obtained.

Scenario f4 dominates all other strategies in that it consistently achieves the lowest MSE’s in
all combinations of parameters. The advantage of using a forecasting strategy based on the STAR
modelling framework is particularly evident with respect to scenario f2 and f3 and in those
instances dominated by a high temporal correlation where ¢ ==+0.8.

In order to visualize jointly the a—spatial characteristics of errors (measured by the MSE) and
their spatial features (measured by Moran’s | statistics), Figure 12 reports the scatterplot of these
two aspects with reference to the forecasting error maps.

2 3 f3new 4

(-0.1,-0.8)  0.4524 0.5522 0.6921 0.6201
(-0.1,-0.45) 0.0788 —0.0288 0.0418 0.1594
(-0.45,-0.45) 0.2581 0.4965 0.7224  0.8309
(-0.8,-0.1) 0.0896 03320 0.7204 0.9526
Numerical (-0.45,-0.1) 0.1120 0.0879 0.3405  0.4201
value of the  (-0.1,-0.1)  0.0681 —0.0287 -0.0720  0.1212
parameters (0.1, 0.1) 0.0159 —-0.0631 0.0725  0.0624
() (0.45,0.1) 0.0580 0.0735 0.3442  0.4945
(0.8,0.1) 0.1029 0.3037 0.6767 0.9395
(0.1, 0.45) 0.0919 -0.0840 0.0619  0.1982
(0.45,0.45)  0.3618 0.4471 0.7246  0.7585
(0.1,0.8) 0.3865 0.6280 0.7000  0.5979

Table 4: Correlation between the I-Moran values in the true map (1,) and the [-Moran in the forecast map (I, ) for

each combination of the parameters (¢,i) and for each forecasting scenario. The highest values are highlighted in
boldface.

2 3 f3new 4

(-0.1,-0.8)  0.7539 0.1467 04857  0.0688
(-0.1,-0.45) 0.8374 04902  0.7526 -0.0157
(-0.45,-0.45) 0.6547 0.3592  0.5079  0.0406
(-0.8,-0.1)  0.5358 02727 04155 —0.0747
Numerical ~ (-0.45,-0.1) 0.8202 0.4050  0.6364 —0.0702
Value of the  (-0.1,-0.1)  0.8324 0.5821  0.8082  0.0235
parameters (0.1, 0.1) 0.8206 0.5478  0.8258 —0.0332
(v (0.45,0.1)  0.7735 04424  0.6174 —0.0960
(0.8, 0.1) 0.5331 02628 0.3761 -0.0144
(0.1,0.45)  0.8201 0.5443  0.7771 —0.0869
(0.45,0.45)  0.6920 0.3070  0.4968 —0.0131
(0.1,0.8) 0.7086 03192  0.4984 —0.0209

Table 5: Correlation between the I-Moran values in the true map (I, ) and the I-Moran in the error map (1) for each

combination of the parameters (4,y) and for each forecasting scenario.
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Figure 10: Values of Moran’s | coefficient in the true maps, in the forecasted maps and in the error maps, for all
combinations of parameters (¢,) (¢ = temporal parameter, y = spatial parameter) and for each forecasting scenario.

Average MSE in the four scenarios
T T T T T T T T
—+— Univariate
—6— VAR
1100|- RVAR R
- £ -STR
1000 .
900 - -
80|~ R
00|~ R
600 — -
500 - -
400 - -
SN
300 N -
B T~
200 8---68-~--p .. g .- @g---g---Bg---35---6B---0 .
! ! | \ ! ! ! ! ! \ ! !
(-0.1-08) (-01-0.45) (-0.45:045) (08:01) (0.45-0.0) (01-:01) (0101) (04501) (080.1) (01045 (0.45045 (0.108)

Figure 11: MSE of the four forecasting scenarios for all combinations of parameters (¢,l//) (¢ = temporal parameter, ¥

= spatial parameter)

-4 .



Scatterplot of 7, vs. MSE- scenatio 2 Scatterplot of I, vs. MSE- scenatio 3
1200 T T r 700 r r
> t+ . (0.1,08) . (01,0.8)
[m} (0.1,0.45) [m} (0.1,0.45)
< (-045,-0.45) < (-045,0.45)
1000+ + 0801 |4 600+ >+ + ©801) |4
o (0.45,0.1) o (0.45,0.1)
* (01,0.1) * (0.1,01)
P o
800+ > :g ;5[;31)1) Bl 500+ > Eo 8‘0‘.1))
w A (01,045) w A (0.1,0.45)
) o (0.45,0.45) %) o (0.45,0.45)
s = 01,08 s = 0.1,08)
600} o o 400 o o
o %
. <0
400} = 300, o
<40
Oa
200 £ | I I 200 I I I I I I I
-0.02 -0.01 0 0.01 0.02 -0.015 -0.01 -0.005 O 0.005 0.01 0.015 0.02 0.025
lfe lfe
Scatterplot of I, vs. MSE'- scenatio 3new Scatterplot of 7, vs. MSE'- scenatio 4
320 T T r T . 240
> . (0108 . (0.1,08)
m] (0.1,0.45) u] (0.1,:0.45) o
o (-045,0.45) o (-045,-0.45)
300+ + (08-0.1) B 230+ + (0.8:0.1)
[¢] (0.450.1) (0) (0.45,0.1)
* (01,0.1) * (0.1,0.1)
2 (0.1,0.2) 2 0.1,0.1)
280} > paoh A 220¢ b Gson
w A (0.1,0.45) w A (0.1,045)
n ] 045045 | <O n o (0.45,0.45)
= # 0.1,08) = # 0.1,08)
260 - R 210+
®
240} o ® 1 200} s
* [clas X %
220 . . . . . 190 . . . . . . .
-0.02 -0.01 0 0.01 0.02 0.03 0.04 0O 002 004 006 008 01 012 014 016
| |
fe fe

Figure 12: Scatterplot of Moran’s | coefficient on the error map versus the MSE of the same map for each forecasting
scenario.

In this graph, points close to zero in both coordinates represent the ideal instances of forecast
where both the MSE is low and Moran’s | is close to zero.

The visual inspection of this graph generally confirms the marked superiority of the STAR
modelling framework with respect to the other startegies. More in detail, scenario f2 produces
forecasts that are rather accurate in terms of the map structure, but highly inaccurate in terms of the

MSE when (¢,l//) =(—0.8;-0.1) and (¢,l//) =(—0.1;-0.8), that is in cases of strong negative spatial
and temporal correlation. Conversely it produces low MSE’s, but negative spatial and temporal
correlation in the errors in the cases of moderate spatial and temporal parameters, i.e.
(¢,t//) =(—0.45;-0.1);(—0.45;-0.45);(+0.1;+0.45);(+0.45;+0.1) .

A similar result is obtained with scenario f3 and f3new, but with lower absolute MSE’s.
Figure 12 (scenario f4) finally points out that the most accurate forecasts are produced for the
combinations of parameters (¢, )=(=0.8;-0.1);(+0.45;+0.1);(+0.8;+0.1);(+0.8;+0.1) that is in

most cases of low absolute spatial correlation.

6. Summary and final comments

The aim of this paper was to perform a thorough comparison of the relative efficiency of
different methods of forecasting data that are both temporally and spatially correlated. We started
by looking at the situation of a space—time series aggregated into a single time series. This
situation was already examined by GG, but we extended their findings by examining larger
datasets to check the dependence of results on the spatial dimension, by introducing the case of
negative spatial correlation and by explicitly considering the problem of edge effects in the phase
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of simulation. We then moved to evaluate the performances of various forecasting strategies in
cases where we aggregate a fine grid of space—time data into a coarser space—time series.

The first part of the paper generalizes the findings of GG in showing that most of the times
the worst performing methods are the aggregation of univariate forecasts (Scenario f2) and Scenario
f3 (unrestricted VAR). In small and medium-sized spatial schemes scenario f2 presents the worst
performances in the case of strong spatial dependence. For high spatial dimensions, conversely,
scenario f3 always performs the worst. Furthermore, from our simulations we stress the fact that, in
terms of forecasting efficiency, a correct specification of the model is of paramount importance
when the spatial dependence parameter i is high in absolute value. In particular we have shown

that Scenario f4, based on the STAR methodology, guarantees a good improvement of the
forecasting efficiency in terms of the MSE when moving from small to high absolute values of
spatial correlation. However the spatial dimension plays an important role and the percentage of
cases in which Scenario 4 outperforms the other forecasting methods increases with the number of
regions up to a dimension of k = 49 and then it decreases again.

Finally the simulation experiments show clearly that spatial dependence has a relevant impact
on the choice of the forecasting method no matter what is its sign. When spatial dependence is weak
in absolute value, the ranking of the models is mostly related to the number of regions. Conversely
when spatial dependence increases, this ranking is essentially independent of the dimension of the
grid and it is strictly related to the strength of spatial dependence.

In the second part of the paper we moved to consider the more general case of space—time
series from a fine into a coarser disaggregation. For instance, suppose that we have in hand a
space—time series of economic data collected at a given level of spatial disaggregation (e.g. sub—
national regions at the EU level). If the aim is to forecast the series at a national level starting from
this set of information we may employ different strategies similar to those examined before, but
with a remarkable difference. In this case the outcome of the aggregation procedure, in fact, is not
merely a time series of data, but it is a new space—time series. In these conditions a forecasting
strategy has to be judged not only in terms of the standard MSE measure, but also in terms of the
spatial characteristics of the forecasting errors. In fact we expect a good forecasting strategy to be
characterized by a small MSE and also by the ability to reproduce the characteristics of spatial
dependence of the original data. Indeed a forecasting method that provides an accurate estimate in
terms of MSE may well be rejected if it provides forecasting errors that are concentrated in a
systematic way in some definite portions of space thus displaying a positive spatial correlation.
Throughout the paper we employ Moran’s | spatial correlation coefficient to quantify this second,
important, characteristics of forecasting errors.

Under this second respect our simulations show quite clearly that the best strategy both in
terms of the minimum MSE and in terms of the smallest Moran’s | is, in all cases examined, the
STAR modelling (Scenario f4). In fact this strategy dominates all other forecasting procedures in
terms of the MSE, produces the lowest |-Moran of the error map, thus showing its ability to
reconstruct pretty well the original map structure. Indeed the spatial properties of data are better
preserved in the forecasted data in cases of high temporal (positive or negative) correlation
whereas the level of spatial correlation in the true data map appears to be less relevant under this
respect. When the spatial correlation parameter is close to zero in absolute value f4 scenario is able
to produce both low MSE’s and spatial correlation close to zero.

Our conclusions thus extend those obtained by GG to a more general setup: we have shown
that in most empirical cases it is better to forecast a space—time series with a STAR model and then
aggregate the forecast. The paper also highlights how the gain in efficiency is related to the spatial
dimension and to the absolute values of the temporal and spatial coefficient. In this respect the
results reported here can be of help in assisting the choice between the various forecasting
alternatives in empirical circumstances.
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