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Abstract: In this paper we compare the relative efficiency of different 
forecasting methods of space-time series when variables are spatially and 
temporally correlated. We consider the case of a space-time series aggregated 
into a single time series and the more general instance of a space-time series 
aggregated into a coarser spatial partition. We extend in various directions 
the outcomes  found in the literature by including the consideration of larger 
datasets and the treatment of edge effects and of negative spatial correlation. 
The outcomes obtained provide operational suggestions on how to choose 
between alternative forecasting methods in empirical circumstances. 
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1. Introduction 
 
The problem of choosing the best forecasting strategy when dealing with disaggregated time series 
has a long tradition in econometrics. Giacomini and Granger (2004) (henceforth GG) faced this 
problem in the specific case of forecasting a national aggregate when disaggregated regional series 
are available and the individual regional series display spatial correlation. In the quoted paper the 
two strategies of aggregating the forecasts and forecasting the aggregate were compared in terms of 
asymptotic theoretical results and of small sample Monte Carlo simulations. The general conclusion 
of the paper was that “ignoring spatial dependence, and simply aggregating univariate forecasts for 
each region, leads to highly inaccurate forecasts“. In particular the authors showed that, if the 
variables observed at a regional level satisfy the ‘poolability’ condition (Kohn, 1982), there is a 
benefit in forecasting the aggregate variable directly. The authors themselves explicitly recognize 
the limits of their analysis by stating that: “the paper relied on many simplifications of the actual 
complexity of data measured in space and time and therefore it does not claim to be exhaustive”. In 
this paper we wish to extend their findings by removing some of the simplifications assumed in 
their study.  

First of all GG restricted themselves to the case of positive spatial autocorrelation whereas 
here we consider the case in which the regional data can also display negative spatial correlation. 
Negative spatial correlation is less frequent than positive spatial correlation in economic analysis at 
coarse levels of spatial aggregation (like e.g. countries) where neighbours tend to display similar 
values, however they are very common in the case of spatial data observed at a fine level of 
disaggregation (like e.g. micro data on single plants or data aggregated at a communal level) where 
spatial distributions may be characterized by a chessboard structure due to local competition and 

                                                 
1 Corresponding author. Department of the Business, Statistical, Technological and Environmental Sciences, University “G. d’Annunzio” of Chieti-
Pescara, Viale Pindaro, 42, 65127, Pescara, Italy; phone and fax number: 0039 085 4537533; Email address: arbia@unich.it. 
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crowding–out phenomena (see Griffith, 2006; Griffith and Arbia, 2006). Therefore it deserves a 
special consideration in examining the problem of aggregated forecasts. 

Secondly in their simulations GG considered only very small regular grids of data (the larger 
being constituted by a 4–by–4 grid of 16 spatial units) that could be dominated by border (or 
“edge”) effects (Griffith, 1983, 1985 and 1988). For this reason not only we consider, in our 
experiments, a larger number of sites (up to an 8–by–8 grid of 64 spatial units) which is closer to 
the typical dimension of a spatial series in regional economics, but we also include in the analysis a 
practical solution to the distortions due to borders when simulating bounded spatial series of data.  

Thirdly GG considered the simpler case of aggregating regional series into a single national 
series. Here we wish to look at the more general case where data are available on a fine grid (e.g. 
counties within regions) and we have the problem of producing a forecast on a coarser grid (e.g. 
regions within a country). Our motivating example is based on the need, at a EU level, to produce 
forecasts for each member state (the NUTS1 level) and we avail time series of data at a regional 
level (the NUTS2 level); see Andreano and Savio (2005). So our approach is more general in that, 
whereas the final aim of GG was that of producing a univariate forecast, ours is to end up with a 
multivariate forecast. 

The paper is organized as follows. In Section 2 we introduce the statistical framework to 
approach formally the problem and present a short account of the STAR (Space–Time 
AutoRegressive) class of models of random fields which will constitute the basis of our simulation 
study. In Section 3 we present the various alternative forecasting methods considered in the 
simulation. Section 4 is devoted to the Monte Carlo simulation design and to the interpretation of 
the results related to the univariate forecast (a space–time series collapsed into a single time series). 
In order to allow comparison of our results with those of GG we will consider the same forecasting 
strategies and the same combinations of the parameters’ values. However, our parametric set will be 
larger to allow negative spatial correlation and stronger spatial correlation to enter into discussion. 
In Section 5 we will extend our analysis to the case of multivariate forecasting (a space time series 
of, say, n regions and T time periods aggregated into a coarser space–time series of k ( nk < ) 
regions and T time periods). Finally Section 6 is devoted to some concluding remarks and general 
comments and to envisage possible future developments in the field. 
 
 
2. Models of spatio–temporal dependence: the STAR class 
 
The space–time autoregressive (STAR) class of models is a very flexible and popular framework 
considered in the literature by Cliff et al. (1975) and Pfeifer and Deutsch (1980); for a review see 
Upton and Fingleton (1985). In general terms the STAR models incorporate the spatio–temporal 
Markov hypothesis by expressing the value of the variable x at location i and time t (say itx ) 
conditional upon the past history and the spatial context of the same variable. In the present paper 
we will consider, in particular, the following model STAR(1,1): 
 

Ttkixxx it

k

j
jtijitit ,...,1 ;,...,1 ,

1
11 ==++= ∑

=
−− εψφ         [1] 

 
or, in matrix notation: 
 

Tttttt ,...,1 ,11 =++= −− εWxxx ψφ            [2] 
 
in which dependence is restricted to only the first lag both in time and space. Obviously there is no 
theoretical obstacle to extend the analysis to time lags higher then 1. In our case it is convenient to 
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restrict ourselves to isotropic models (Arbia, 2006) so that we can assume ijij wψψ = , where ψ  is 
the single spatial autocorrelation parameter and ijw  is the generic element of a weights’ matrix W 
such that 1=ijw  if location i and location j are neighbours according to a pre–defined criterion and 

0=ijw  otherwise. If 0=ψ , equation [1] reduces to the purely temporal autoregressive model of 
order 1 (AR(1)). When 0=ψ  and 1=φ  it reduces to a simple random walk. Finally, when φ = 0 , it 
reduces to the standard purely Simultaneous spatial Autoregressive model (SAR; Besag, 1974). As 
suggested by GG in their experiments, it is more sensible to employ a STAR rather than a simple 
SAR model since the final aim is to evaluate the effects of spatial autocorrelation on forecasts 
efficiency. 

As it is known, when 0=ψ  equation [1] represents a (weak–sense) time–stationary process if 
the condition 1<φ  holds. However, when 0≠ψ , the time–stationarity conditions are much more 
complicated. We will simplify the discussion by restricting ourselves to the necessary, although not 
sufficient, stationarity condition: 

 

φ + ψ wij
j =1

k

∑ < 1.              [3] 

 
Condition [3] is a natural way of introducing stationarity if we assume standardized weights 

(so that 1
1

=∑
=

k

j
ijw ) as we will do consistently in the rest of the paper. In this case the stationarity 

condition reduces simply to φ + ψ < 1 . 
Model [2] can be seen as a particular case of a VAR(1) model (see Lütkepohl, 1993, p. 167–

178) and can be expressed as 1 ,  1,...,t t t t T−= + =x Ax ε  with the restriction imposed on the matrix A 
of the autoregressive parameters that ( )WIA ψφ += k . The interpretation of this restriction is quite 
straightforward: the global amount of autocorrelation that is present in a system of equations is 
limited by spatial proximity. 
 
 
3. Definition of the forecasting strategies and of the various simulation scenarios 
 
In this paper we are interested in identifying the best forecasting strategy in cases where we have 
data on a n–dimensional time series referred to a certain partition of the space and we need to 
produce a forecast for a k–dimensional ( nk < ) time series referred to k fewer and larger partitions 
of the same space. For instance we have data on sub–regional product and we wish to forecast the 
temporal evolution of regional GDP. In the present and in the following sections, however, we will 
start considering the simpler case in which 1=k . This is the case analysed by GG and we will 
therefore be able to compare our results with those obtained therein. In Section 5 we will extend our 
attention to the more general case where 1>k .  

Let us start assuming that the (single) aggregate time series ( )tS x  derives from the 

aggregation of k disaggregated series such that ( )
1

k

t t it
i

S y x
=

= = ∑x with { }T
titx 1=  ( )1i , ,k= K . In this 

case, following GG, a forecast can be obtained by using the following four different strategies: 
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• Scenario f1. A forecast for ty  is directly obtained by adapting a univariate time series model 

to the aggregate series { }T
tty 1= . In practice the forecast is thus obtained by making use of only 

the aggregate information. This scenario corresponds to the strategy of forecasting the 
aggregate. 

• Scenario f2. In this case a forecast for ty  is obtained by forecasting individually each time 
series itx  ( )ki ,...,1=  and by aggregating the k forecasts obtained. This scenario corresponds 
to the strategy of aggregating the forecast. 

• Scenario f3. A vector time–series model (VAR) is fitted to the individual series neglecting any 
spatial correlation effects, and a forecast vector is obtained. The forecast for ty  is then 
obtained by aggregating the individual forecasts for each itx . 

• Scenario f4. A forecast for each itx , ki ,...,1= , is obtained by employing a STAR model, thus 
including explicit consideration of spatial correlation effects, and the forecast for ty  is then 
obtained by aggregating the individual forecasts for each itx  

 
Both scenarios f1 and f2 do not consider the specificity of the space–time components, while 

in both f3 and f4 we exploit all the information available not only on the univariate series, but also 
on their dependence structure. In particular, scenario f4 takes spatial dependence explicitly into 
account in the forecasting. 

In the simulation experiments that will be presented in Sections 4 and 5, we will compare the 
accuracy of the various forecasting procedures in terms of the one–step forecast of the value of ty  
conditional on the information available at time 1−t  (say ( )11−ty ). In order to evaluate the accuracy 
of this forecast we will use the classical forecasting MSE definition provided by: 
 

MSE yt −1 1( )( )= E yt − yt −1 1( )( )2⎡
⎣

⎤
⎦ . 

 
GG derived a series of large–sample analytical results both in the case of known parameters 

and in the case of parameters that are estimated on the basis of empirical data. Such results are the 
natural extension of those derived by Lütkepohl (1987) for purely time series to series that display a 
certain degree of spatial autocorrelation. The main results are that, when the parameters are 
assumed to be known and the poolability condition2 is not satisfied, strategy f3 dominates both f1 
and f2 (f3f f2 and f3f f1) in terms of MSE and is equivalent to strategy f4. Conversely, when the 
poolability condition holds, f3 is equivalent to the f1 strategy and the previous ranking among 
forecasting methods is not valid any more. These results have a limited practical interest in that, in 
empirical circumstances, the model’s parameters have to be estimated from data and so they cannot 
be considered as known prior to the estimation procedure. In the latter setup the f3 Scenario loses its 
optimality characteristics and the ranking among the various forecasting strategies will depend on 
the specific data generating process that can be assumed. When the generating mechanism is a 
STAR(1,1) model, GG proved that, asymptotically in T: 
 

                                                 
2 In the specific modelling framework that will be employed in the present study (that is a STAR(1,1) model) the poolability condition implies that 

wij = ν
i=1

k

∑ ,  ∀i  which is rarely satisfied in practical circumstances. Among the regular spatial schemes that we use in the simulation experiments only 

the 2×2 scheme has associated a W matrix satisfying the poolability condition if we consider the rook’s case definition of neighbours (Cliff and Ord, 

1981). 
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( )( ) 2 2 2
1

11tˆMSE y k k
T

σ σ− = + ,          [4] 

 
with T the sample size and ( )1ˆ 1−ty  the forecast of ty  obtained by substituting the ML estimator, say 

θ̂T  to the true parameter vector θ0  in the linear predictor of ty  (say ( )11−ty ). 
From equation [4] it is evident that the component of MSE  depending on the estimation error 

( 221 k
T

σ ) increases proportionally to the square of the number of regions ( 2k ) whereas the 

component that is present also in the case of known parameters ( k2σ ) increases with k. This 
explains intuitively why in the case of estimated parameters, scenario f3 does not dominate the 
others any more. In fact, there is a trade–off between a forecast based on disaggregated series where 
we have no loss of information (but a very high number of spatial observation), and the loss of 
efficiency deriving from an uncontrolled value of k. Having said that, the only possible ranking 
between the various scenarios is that both f4 and f1 dominate f3 (f4f f3 and f1f f3), but no ranking 
is possible between f3 and f4 criteria. Notice that, however, the dominance of f1 on f3 holds true 
only when the poolability condition is satisfied and depends on the number of spatial observations: 
the greater is this number, the greater is the gain in efficiency. 

When the poolability condition holds, it is possible to derive the explicit expression of the 
process generating the aggregate series ty  also for a finite sample size as we will prove in the 
following proposition. 

 

Proposition 1. Under the poolability condition, the process of the aggregate 
1

k

t it
i

S x
=

= ∑  is an AR(1) 

with parameter φ ψν+ , where 
1

k

ij
i

wν
=

= ∑ 3. 

Proof. If the poolability condition holds, the matrix W  has equal column sums 
1

k

ij
i

w ν
=

=∑ . Using 

matrix notation, the model is given by: 
 

[ ] 1t k t tφ ψ −= + +x I W x ε .           [5] 

                                                 
3 For example, in the case where 4=k  the W matrix is given by  

0 0.5 0.5 0
0.5 0 0 0.5
0.5 0 0 0.5
0 0.5 0.5 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

W

 

In this case the poolability condition [4] holds with 1=ν  and the equations of the model are: 

1, 1, 1 2, 1 3, 1 1,

2, 2, 1 1, 1 4, 1 2,

3, 3, 1 1, 1 4, 1 3,

4, 4, 1 2, 1 3, 1 4,

2 2

2 2

2 2

2 2

t t t t t

t t t t t

t t t t t

t t t t t

x x x x

x x x x

x x x x

x x x x

ψ ψφ ε

ψ ψφ ε

ψ ψφ ε

ψ ψφ ε

− − −

− − −

− − −

− − −

= + + +

= + + +

= + + +

= + + +

 

Summing up the four equations we get 

( ) ( ) ( )
( ) ( ) ( )

1 1, 1 2, 1 3, 1 4, 1

1 ,
t t t t t t t

t t

S S x x x x S

S S

φ ψ ψ ψ ψ ε

φ ψ ε
− − − − −

−

= + + + + + =

= + +

x x

x

 

which is an AR(1) process with parameter ψφ + . 
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Let ( )
1

k

t it
i

S x
=

= ∑x . Summing up Equations [5] for all regions we obtain: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

, , 1 , 1 ,

1 , 1 1

1 1 1 ,

i t i t ij i t i t
i i i j i

t t ij i t t
i j

t t t t

x x w x

S S w x S

S S S S

φ ψ ε

φ ψ

φ ψν

− −

− − −

− − −

= + +

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
= + +

∑ ∑ ∑∑ ∑

∑ ∑x x ε

x x x ε

 

 
which is an AR(1) process with parameter φ ψν+ .          Q.E.D. ■ 
 

When the poolability condition does not hold, it is easy to verify that the process of the 
aggregate ( )tS x  is, conversely, given by: 

 

( ) ( ) ( )1 , 1
1

x

t t i i t t
i

S S x Sφ ν− −
=

= + +∑x x ε ,  

 

with 
1

k

i ij
i

wν
=

= ∑ . No exact result can be stated in this case. However, as the iν ’s get closer to each 

other, the process can be approximated by an AR(1) process. 
All the previous results are based on quite restrictive assumptions of limited practical 

relevance. In order to obtain a more satisfactory ranking among the different prediction methods to 
assist the choice in practical circumstances, GG considered a set of small–sample Monte Carlo 
experiments whose results will be summarized in the next section. In the next section we will also 
extend their results to a wider variety of simulation cases. 
 
 
4. Univariate aggregate forecasting from a STAR model 
 
4.1 Simulation design 
 
The Monte Carlo experiments reported in this section are based on various realizations of the 
STAR(1,1) model presented in Equation [2]. It has been shown in the preceding Section 3 that the 
MSE is related both to the time horizon and to the number of regions. For this reason, in addition to 
the cases of 4,6,9,16k =  regions considered by GG, we also include the cases of a larger number 
of regions with 25,36,49,64k = . In this way we can monitor more closely the interaction between 
the spatial dimension and the efficiency of the various forecasting procedures. There is also a 
second important reason why we will consider a larger number of regions in our simulations, and it 
is connected with the problem of “edge effects” (see Griffith, 1988). Edge effects arise from the 
different behavior of border regions with respect to the inner regions in terms of the elements of the 
W matrix. Such a problem has been addressed in the paper by GG, but no solution has been 
proposed to overcome it. Intuitively, the distortion connected with edge effects will tend to 
disappear as the number of regions increases, in that the proportion of bordering regions with 
respect to the total number of regions becomes more and more negligible. This provides a further 
motivation towards large spatial schemes in the present context. In order to quantify the impact of 
edge effects, we can consider an indicator defined as 
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( ) ( ).  #    #  # sedactually uregionsdiscardedregionsdiscardedregionsEE +=   

 
Such an index represents the proportion of information lost by ignoring the edge effects 

divided by the total information available. When the system is a ( )k k×  regular Cartesian grid, 

kEE 1= ; if the system is rectangular Cartesian lattice with dimensions ( )r c× , we have 
ccrEE 2)( += .  

Just to give a flavor of the importance of the edge effects, Figure 1 reports the plot of the EE 
index with respect to the number of regions. The values of EE range from 0.5 when 4k =  to 0.125 
when 64k = , and show that the impact of edge effects becomes significantly less relevant when k 
increases. In our simulations we have exploited the usual solution to edge effects that consists in the 
strategy of simulating a larger spatial scheme with respect to the target dimension of cells, to 
discard a buffer zone represented by the bordering cells of the scheme and to concentrate the 
analysis on the remaining cells (see Griffith, 1988; Ripley, 1981). 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 50 100 150

Number of regions

EE

 
Figure 1: Edge Effect index (EE) plotted against the number of regions. 

 
An important issue in setting the simulation experiments concerns the choice of the numerical 

values of the parameters φ  and ψ  of the STAR(1,1) model considered in Equation [1], connected 
respectively with temporal and spatial dependence. We decided to expand in two directions the 
range of values considered by GG. 

First of all, in addition to the values corresponding to a low (ψ = 0.1) and to an intermediate 
level ( ψ = 0.45 ) of spatial dependence, we also considered a high value ( ψ = 0.8 ) describing the 
case of strong spatial dependence that was not considered in GG. As already discussed in the 
preceding section, for the process to be stationary, the condition 1φ ψ+ <  must be satisfied, thus, in 
these instances, we could only consider two parameter configurations, namely the pair 
( ) ( ), 0.1,0.8φ ψ =  and the pair ( ) ( ), 0.8,0.1φ ψ = . 

Secondly, for the sake of completeness we also introduced the case of negative spatial 
correlation that (as argued in the introductory section) can represent an empirically relevant case in 
many regional economic applications. The numerical values of the parameters considered in the 
simulation are thus the following: 

 
( ) ( ), 0.1,0.1φ ψ =   ( ) ( ), 0.45,0.1φ ψ =   ( ) ( ), 0.1,0.45φ ψ =  
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( ) ( ), 0.45,0.45φ ψ =   ( ) ( ), 0.8,0.1φ ψ =   ( ) ( ), 0.1,0.8φ ψ =  

( ) ( ), 0.8, 0.1φ ψ = − −   ( ) ( ), 0.1, 0.8φ ψ = − −   ( ) ( ), 0.45, 0.45φ ψ = − − . 
 
In the simulations we employ the four forecasting scenarios discussed in the previous Section 

2. More in details, as for Scenario f1 we aggregate, at each time t ( 1, ,t T= K ), the observed data 

1t ktx , ,xK  of the k regions. In this way we obtain a single aggregated time series. We then fit an 
ARMA(p,q) model to tS  and compute the forecasts accordingly. We fit all ARMA(p,q) processes 
with 0 1 4p , , ,= K , and 0 1 4q , , ,= K , and such that 0 5p q< + < , and choose the model that 
achieves the smallest BIC value4. 

Concerning Scenario f2 we start fitting an ARMA model to each individual regional time 
series. Again, the orders of the i–th ARMA model are determined using the BIC criterion. We then 
compute the k univariate forecasts, say i ,T hx̂ + , based on the estimated ARMA model. Finally, we 

aggregate the i ,T hx̂ +  to obtain the aggregated forecasts 
1

k

T h i ,T h
i

ˆ ˆS x+ +
=

= ∑  ( 200T = , 1, ,100h = K ; see 

below). 
In the third Scenario (f3) we fit a VAR(1) model to the k–variate time series tx , obtaining the 

maximum likelihood estimate Â , and compute the one–step forecast 1t t
ˆˆ + =x Ax ; both estimation 

and prediction are based on standard VAR methodology (Lütkepohl, 1993). 

Finally for Scenario f4 a STAR(1,1) process can also be written as a VAR(1) as in Scenario f3, 
but now with the restrictions kφ ψ= +A W I .The forecasts are then computed as in the f3 scenario. 

In addition to the scenarios f1–f4 we introduced a modification of scenario f3 in order to take 
into account the possibility of having a large number of elements of A that are not significantly 
different from zero. This issue can be particularly relevant, in the sense that the number of elements 
that are non significantly different from zero can be very large for small values of φ  and/or of ψ . 
Thus Scenario f3new consists of fitting a VAR(1) model to the k–variate time series, dropping the 
non–significant coefficients, re–estimating the model constraining to zero the non–significant 
coefficients and computing the forecast accordingly. 

In all five cases the parameters are estimated via Maximum Likelihood. All the models 
considered here satisfy the regularity conditions required for the optimality properties of the 
estimators. 

Having described the setup of the simulation and before presenting the results obtained, let us 
now examine into a greater detail the various computational steps involved by the experiments. 

The first step consists of simulating 300 time observations from a STAR(1,1) process laid on a 
regular square lattice grid. We treat the first 200T =  observations as in–sample observations and the 
last 100 observations as out–of–sample observations to be used to evaluate the forecast accuracy. 
We start simulating k* regions arranged on a ∗∗ −− kk by  regular square lattice grid. We then 

discard ( )14 −∗k  cells in the buffer zone in order to account for the edge effects and we 

concentrate on the remaining ( )14 −−= ∗∗ kkk  cells.  
In a second step, we use the in–sample data to estimate the parameters of the different models 

corresponding to all the forecasting scenarios. 

                                                 
4 The Bayesian Information Criterion (BIC) used in scenarios f1 and f2 was introduced by Schwarz (1978) to choose the “best member” of a set of 
models. Here, the best model is meant to be the one that maximizes the posterior probability of the model given the data. It can be shown that, 
asymptotically, it is the one which minimizes the quantity: BIC= − 2(log maximized likelihood)+(number of parameters)log(T). The rule is similar to 
the Akaike Information Criterion, but the penalty for introducing new parameters is greater in BIC. As a consequence, simpler models are more likely 
to be selected when using BIC than when using AIC. 
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In a third step, for each forecasting scenario, we compute the Mean Squared Error as 

( )
100 2

1

1 ˆ
100 T h T h

h
MSE S S+ +

=

= −∑ , where the true value T hS +  is obtained by aggregating the out–of–

sample observations ,i T hx + . 
Finally we repeat B times ( 500B = ) the three preceding steps and compute the average MSE 

over all the replications. 
From a computational point of view, simulating the STAR(1,1) process is not particularly 

heavy. On the other hand, estimation is rather cumbersome. Scenarios f1 and f2 require indeed the 
computation of Maximum Likelihood estimates of ARMA models. In particular, scenario f2 requires 
the estimation of 14k ×  ARMA models for each replication (14 being the number of different ARMA 
models estimated under the condition 0 1 4p , , ,= K , 0 1 4q , , ,= K  and 0 5p q< + < ). Since the 
ARMA likelihood has to be maximized numerically, the computational burden is relevant. As for 
scenarios f3, f3new and f4, estimators can be obtained in a closed form, but the size of the matrices 
involved becomes extremely large as k increases (due to the presence of Kronecker products in the 
formulas of the restricted estimators of the VAR parameters). As a consequence the computing time 
is not negligible in these cases as well. Notwithstanding the enormous capabilities of the computers 
nowadays, the computing time has been demanding. A Pentium 4, 3.00 GHz, 2Gb RAM computer 
took a very long time in order to produce the required output.  
 
4.2. Analysis of the simulation results 
 
We will start by considering the average MSE achieved by the five forecasting scenarios for all 
parameters’ combination. The results are reported in Figure 2 and in Tables 1 and 2 where the MSE 
is expressed as a function of the spatial dimension of the grid considered. In particular, in order to 
provide a ranking among the various forecasting methods in terms of their accuracy, Tables 1 and 2 
display the percentage of times in which each method performs the best. 

The main conclusions that we can draw from this comparison are the following: 
 
(1) The predictions obtained with the STAR model (Scenario f4) are always the most accurate, for 

all configurations of temporal and spatial dependence;  
(2) The worst performing scenarios are those based on the univariate approach (f2) and on the 

unrestricted VAR (f3). There are two more conclusions connected with this point. First, when 
the spatial parameter ψ  is large in absolute value, the worst performing scenario tends to be 
the univariate approach, whereas in presence of weak spatial dependence the worst results are 
obtained with the unrestricted VAR. Second, in all parameter configurations, as the number of 
cells k increases, the unrestricted VAR shows the worst performance. 

(3) In all parameter configurations and in all scenarios, the average MSE increases with the 
spatial dimension. This result is consistent with the findings of GG. There is, however, a 
significant exception for the univariate scenario f2. In this case, when the number of regions 
increases from 49 to 64, for most parameter configurations the MSE decreases. In the other 
cases it increases at a slower rate. In particular, we observe a decrease when the spatial 
dependence parameter ψ  is large in absolute value, and a slower increase when ψ  is small in 
absolute value. 

(4) The results of the negative dependence cases are essentially (i.e., apart from Monte Carlo 
variability) identical to the corresponding positive dependence cases when the parameters are 
equal in absolute value. In other words, it only matters the absolute value of the temporal and 
spatial dependence parameters φ  and ψ , not their sign.  
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Figure 2: Average MSE over the B= 300 Monte Carlo replications for the various combinations of the parameters ψφ  and , plotted as a function of the number of regions used in 
the Monte Carlo experiment.
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 N. regions Low spatial coefficient 0.1ψ =  Intermediate spatial coefficient 0.45ψ =  High spatial coefficient 0.8ψ =  

  f1 f2 f3 f3new f4 f1 f2 f3 f3new f4 f1 f2 f3 f3new f4 

 4  15.0  13.2  20.4  15.0  36.4*  23.8  1.2  19.4  13.6  42.0*  20.4  0.0  17.8  17.4  44.4* 
 6  17.0  11.0  11.0  13.4  47.6*  17.0  0.6  16.0  10.8  55.6*  8.8  0.0  13.0  15.2  63.0* 
Low 9  17.8  12.0  11.8  14.8  43.6*  15.6  0.8  13.8  10.4  59.4*  5.0  0.0  12.4  10.6  72.0* 
AR 16  18.2  12.6  5.6  11.0  52.6*  15.6  0.0  7.0  6.6  70.8*  11.0  0.0  6.8  13.2  69.0* 
Coefficient 25  20.8  8.8  3.0  7.0  60.4*  16.2  1.4  3.8  2.4  76.2*  12.6  0.0  1.6  7.0  78.8* 

0.1φ =  36  22.4  11.0  0.6  6.2  59.8*  21.0  1.0  0.4  3.0  74.6*  13.8  0.0  0.8  4.6  80.8* 
 49  16.8  8.6  0.6  4.0  70.0*  18.8  0.0  0.4  0.6  80.2*  15.8  0.0  0.0  1.8  82.4* 
 64  29.4  28.2  0.0  0.4  42.0*  17.0  25.0  0.0  1.0  57.0*  13.4  12.4  0.2  0.4  73.6* 
                 
 4  17.2  13.6  15.2  15.2  38.8*  23.8  0.4  15.4  16.2  44.2*      
 6  18.6  11.6  14.0  14.4  41.4*  16.4  0.8  16.4  12.2  54.2*      
Intermediate 9  15.6  10.2  10.6  15.8  47.8*  13.6  0.4  10.2  10.8  65.0*      
AR 16  15.8  14.2  4.6  10.8  54.6*  16.2  0.0  7.0  8.4  68.4*   _____   
Coefficient 25  18.0  11.6  1.4  8.2  60.8*  18.2  0.4  2.8  5.2  73.4*      

0.45φ =  36  17.4  11.8  0.8  6.8  63.2*  26.2  0.6  0.6  3.2  69.4*      
 49  23.8  12.0  0.0  2.4  61.8*  23.6  0.0  0.4  2.2  73.8*      
 64  28.6  30.2  0.0  0.4  40.8*  18.2  17.2  0.0  0.2  64.4*      
                 
 4  17.6  13.0  17.8  13.4  38.2*           
 6  14.4  14.6  14.4  11.6  45.0*           
High 9  21.2  10.8  7.2  10.4  50.4*           
AR 16  20.4  10.2  3.4  8.2  57.8*   _____     _____   
Coefficient 25  21.4  10.4  1.2  6.4  60.6*           

0.8φ =  36  19.8  9.2  0.0  2.0  69.0*           
 49  19.6  13.4  0.0  0.6  66.4*           
 64  27.8  27.2  0.0  0.0  45.0*           

Table 1: Proportion of times in which each forecasting method has the lowest MSE in the Monte Carlo simulation, for all positive values of the coefficients φ and ψ. An asterisk 
indicates that the forecasting method in the corresponding column is the best the highest number of times, while the underline denotes the worst performing method.  
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 N. regions High negative spatial coefficient 0.8ψ = −  

  f1 f2 f3 f3new f4 

 4  24.4  0.0  15.8  14.8  45.0* 
 6  11.0  0.0  14.0  13.4  61.6* 
Low 9  3.4  0.0  9.2  12.2  75.2* 
Negative 16  13.8  0.0  5.4  10.6  70.2* 
AR 25  12.8  0.0  2.0  8.2  77.0* 
Coefficient 36  15.0  0.0  1.6  4.2  79.2* 
 49  18.6  0.0  0.4  2.4  78.6* 
 64  14.2  15.2  0.0  0.2  70.4* 

 

 N. regions Intermediate negative spatial coefficient 0.45ψ = −

  f1 f2 f3 f3new f4 

 4  23.4  1.6  15.0  15.4  44.6* 
 6  15.8  0.8  12.6  13.6  57.2* 
Intermediate 9  12.6  0.6  8.8  10.4  67.6* 
Negative 16  16.2  0.0  6.6  6.6  70.6* 
AR 25  18.4  0.4  1.8  5.8  73.6* 
Coefficient 36  23.4  0.6  0.8  2.8  72.4* 
 49  20.0  0.4  0.2  1.8  77.6* 
 64  15.8  17.8  0.0  0.6  65.8* 

 

 N. regions Low negative spatial coefficient 0.1ψ = −  

  f1 f2 f3 f3new f4 

 4  20.4  10.8  15.6  12.4  40.8* 
 6  15.6  9.4  11.0  14.4  49.6* 
High 9  16.0  10.2  9.6  13.0  51.2* 
Negative 16  15.8  11.4  4.0  8.0  60.8* 
AR 25  19.4  11.0  1.0  7.4  61.2* 
Coefficient 36  16.2  11.6  0.2  3.0  69.0* 
 49  17.2  9.8  0.0  1.0  72.0* 
 64  31.0  25.4  0.0  0.2  43.4* 

Table 2: Proportion of times in which each forecasting method has the lowest MSE in the Monte Carlo simulation, for 
negative values of the coefficients φ and ψ. An asterisk indicates that the forecasting method in the corresponding 
column is the best the highest number of times, while the underline denotes the worst performing method.  
 
(5) The percentage of cases in which scenario f4 performs the best increases as the spatial 

dependence parameter gets larger. In other words, a correct specification of the model seems 
to be more important in presence of strong spatial dependence. This last conclusion emerges 
more clearly by inspecting Figure 3, which displays the percentage of times in which Scenario 
f4 has the lowest MSE plotted as a function of k for different parameter configurations. The 
idea is to use this graph to compare this percentage when ψ  increases, by holding constant 
the value of φ . In particular, Figure 3a displays the results for ( ) ( ), 0.1,0.1φ ψ = , 
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( ) ( ), 0.1,0.45φ ψ =  and ( ) ( ), 0.1,0.8φ ψ = , while Figure 3b the results obtained with 

( ) ( ), 0.45,0.1φ ψ =  and ( ) ( ), 0.45,0.45φ ψ = . It can be seen that, in both instances, the 
percentage of cases in which f4 outperforms the other methods is larger (for any k fixed) for 
larger values of the spatial parameter. For instance when 64k =  and 0.1φ = , f4 approach 
outperforms the other forecasting methods in the 42% of the cases examined, while the 
percentage raises up to 73.6% when 0.8ψ = . 

(6) The percentage of cases where f4 outperforms the other methods is not a monotonic function 
of the spatial dimension. It increases with the number of regions up to a dimension of k = 49 
and then it decreases. 
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(b) 

Figure 3: Percentage of times that scenario f4 has the lowest MSE, as a function of the number of regions, for (a) φ =0.1 
(b) φ =0.45 and different values of ψ . 
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In order to measure the improvement in efficiency obtained with model f4 when the spatial 
parameter increases, we consider the ratio: 

 
1 2

1 2
2

, ,
, ,

,

MSE MSE
I

MSE
φ ψ φ ψ

φ ψ ψ
φ ψ

−
= , 

 
where 

  
MSEφ ,ψ i

 (i=1,2) is the average MSE, computed over all the iterations, obtained from the 

simulation experiment with parameters φ  and ψ . Thus, the index measures the rate of variation of 
the MSE, for any fixed values of φ  and k, when ψ  increases. In particular, negative values of the 
index correspond to efficiency gains, whereas positive values correspond to efficiency losses. 

The results reported in Table 3 display a clear trend from weak ( 0.1ψ = ) to intermediate 
( 0.45ψ = ) spatial dependence: for all values of k the MSE decreases, and the rate of decrease is 
particularly pronounced for k = 25, 36 and 49. The results are less conclusive in the remaining two 
setups (third and fourth column of the table), but it is worth noting that, when 64k = , going from a 
smaller to a larger value of ψ  always provides more accurate forecasts. 
 

1.0=φ  45.0=φ  
N. regions 

I0.1;0.45;0.1  I0.1;0.8;0.45  I0.45;0.45;0.1  

4 −0.52 1.59 0.03
6 −0.06  −0.50 1.52
9 −0.40  0.29 −0.99
16 −0.42  2.30 −0.02
25 −0.81  1.01 1.06
36 −1.64  1.64 −0.03
49 −0.65  0.47 −0.55
64 −0.19  −0.25 −0.23

Table 3: Values of the index 
21,, ψψφI for the numbers of regions considered in the experiment. 

 
Figures 4 and 5 respectively show the estimates of φ  and ψ  obtained from the STAR(1,1) 

model with 64=k . The visual inspection suggests that the estimators are consistent and 
asymptotically normal, as expected from the maximum likelihood theory. 

Finally, it may be of interest to look more closely at the results obtained under the poolability 
condition. In Figure 6 we have reported the ARMA orders estimated for the aggregated process 
(scenario f1) when 4k =  (the only value of k for which poolability holds true) and in Figure 7 we 
show the estimate of φ ψ+ , which has been shown to be the parameter of the AR(1) model for the 
aggregate when the poolability condition holds true. From both figures it can be seen that, as 
expected, the most frequently identified model is by far the AR(1) model (Figure 6). Moreover, the 
estimators appear to be consistent (Figure 7). It should be noted, however, that this does not give 
any advantage in terms of prediction accuracy, because the ranking of the forecasting performances 
when the poolability condition holds (that is, when 4k = ), is approximately the same as the one 
obtained when this condition is not satisfied. 
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Figure 4: Empirical distribution of φ̂  for the case of 64=k  regions and all combinations of the parameters. 
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Figure 5: Empirical distribution of ψ̂  for the case of 64=k  regions and all combinations of the parameters.
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Figure 6: Joint frequency distributions of the estimated ARMA orders p̂  and q̂  in the f1 (aggregate) approach when the poolability condition holds (i.e., when 4=k ) and all 
combinations of the parameters 
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Figure 7: Empirical distribution of the estimated autoregressive parameter ψφ ˆˆ +  when the poolability condition holds (i.e., when 4=k ) and all combinations of the parameters.
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5. Multivariate aggregate forecasting from a STAR model 
 

We now turn to consider the problem of aggregating a space–time series of a given spatial 
dimension (say n) into a space–time series of smaller dimension (say nk < ). The problem has a 
very well grounded empirical motivation. For instance in the EU we often have the necessity of 
forecasting economic series at a NUTS2 level (regions), but we have in hand data also at a finer 
resolution (NUTS3 level or sub–regions). The choice is therefore between the strategy of 
forecasting the NUTS3 data and then aggregate them at a NUTS2 level or conversely the opposite 
criterion of aggregating the data at the NUTS2 level and then forecast the resulting space–time 
series (Andreano and Savio, 2005). 

In presenting the simulation results we will consider some modifications of the setup used in 
the previous section in order to take into account the peculiarity of the new problem. 

First of all we considered the spatial dimension as fixed and restricted ourselves only to the 
case of a 16–by–16 regular square lattice grid then aggregated onto an 8–by–8 grid (see Figure 8). 
Indeed, k = 64 is the maximum dimension that we are able to handle due to memory limitations. 
Furthermore, since we want to observe the spatial correlation properties of the forecasting error on 
the aggregated map, looking at smaller dimensions (e.g. an 8–by–8 grid then aggregated into a 4–
by–4 grid) would involve the computation of a spatial correlation index on only 16 spatial 
observations and this would be dominated by edge effects and would make a lot less sense. 

Secondly, we considered the same combinations of parameters used in Section 4, but we 
extended the cases of negative parameters with the introduction of three additional configurations: 
the pairs ( )45.0,1.0 −− , ( )1.0,45.0 −−  and ( )1.0,1.0 −− . Such a finer grid was judged unnecessary in 
the experiments discussed in the previous section because of the symmetry that we observed 
between positive and negative values in terms of the MSE of the forecast. 

Thirdly, since now we evaluate the forecasting error of a space–time series, the MSE alone is 
not a good measure of accuracy. In fact, when dealing with spatial data, not only a forecast is 
accurate when it produces a small MSE, but also when it preserves the spatial characteristics of the 
true data. In this second respect we consider accurate a forecast when it displays a spatial 
correlation that is similar to the spatial correlation of the original set of data, or, in other words, 
when the spatial correlation of the forecast error map is not significantly different from zero. 
Indeed, when the map of the forecast errors displays clusters of similar values, entire characteristics 
of the true series are cancelled; on the contrary when errors are randomly distributed in space, they 
are easier to detect and to be removed e. g. with the use of a spatial filtering (Arbia et al. 1999). We 
measure the spatial correlation in the true map, in the forecasted map and in the error map with the 
Moran’s I coefficient (Cliff and Ord, 1981) and we refer to the three cases with the symbols 
It , I f  and I fe , respectively. 

Finally, all the forecasting scenarios considered in Section 4 are considered again in the 
present section, but with some remarkable qualifications. In fact, Scenario f1 is no more relevant 
because it is intrinsically linked to the univariate forecasting criterion. When dealing with Scenario 
f2 we refer to the aggregated 8–by–8 spatial scheme and we fit a univariate ARMA to each series 
thus obtaining 64 forecasted values. We then compute the MSE for each of the 64 regions based on 
the out–of–sample observations. The Moran’s I coefficient is finally computed at each moment of 
time on the true map, on the forecasted map and on their difference (the error map). In the case of 
Scenario f3 we proceed in a similar fashion and we produce a forecast based on a 8–by–8 
aggregated spatial scheme and with the parameter estimation based on a VAR(1) model. With 
respect to Scenario f3new we do not have any difference with respect to section 4: this scenario is 
just equivalent to Scenario f3, but with the constraint that the parameters that are not significant are 
set to zero in the estimation phase. Finally, as for Scenario f4 the estimation is obtained jointly for 
all locations in the spatial scheme based on a STAR(1,1) model which can also be viewed as a 
restricted VAR(1). We then proceed as in the other scenarios to compute the error maps and the 
associated MSE’s and Moran’s I tests.  
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Figure 8: Reference aggregation scheme for the new experiment designs. 
 

Let us start by considering the spatial structure of the error map. As we have already remarked 
a desirable feature of the forecast is to reproduce most of the original spatial structure measured in 
terms of the Moran’s I coefficient. Hence the difference between the true and the forecasted map 
should contain no extra spatial correlation and the null of no spatial correlation should be accepted 
in the error map. A first synthesis of the large output obtained is reported in Figure 9. Here we 
consider, for each scenario and for each combination of the parameters, the number of cases in the 
100 out–of–sample forecasts in which the null of zero spatial correlation is rejected at a significance 
level of 5 %. To facilitate the visualization we ordered the parameters’ values in increasing sense 
with respect to the spatial parameter ψ . The values reported in each graph represent the mean of I 
Moran’s values. 

The analysis of Figure 9 reveals that the percentage of cases leading to rejection of the null 
hypothesis is very low in all scenarios and for any combination of the parameters. However it is 
always equal to zero in the case of Scenario f4. This means that if we use the STAR modelling 
framework the forecasting map presents spatial features that are very similar to those of the original 
data and thus the error map has the desirable feature of being spatially uncorrelated. 

Table 4 reports, for each parameter combinations and for each scenario, the linear correlation 
between Moran’s I of the true map and the Moran’s I computed in the 100 out–of–sample 
forecasted maps. A similar table is reported in Table 5 which refers to the linear correlation between 
the true map Moran’s I and the error map Moran’s I. 

The exam of Table 4 reveals that the highest value of the linear correlation is observed in 
Scenario f4. We can therefore conclude that, in this instance, the resulting forecasted spatial 
structure is very similar to the original one. Notice that, quite surprisingly, the highest levels of 
similarity in all scenarios are achieved in cases of high temporal dependence (φ = 0.8 ) or in cases 
of intermediate temporal dependence (φ = 0.45 ) associated with intermediate spatial dependence. 



- 22 - 

Conversely, the lowest level of similarity (correlation close to zero) is observed in cases of low 
temporal dependence, when φ = ±0.1 is associated to low spatial correlation in the true map. Notice 
also the symmetry of the results for positive and negative values of the parameters. These results 
seem to suggest the dominance of the temporal aspects on the good performances of the forecasting 
scenarios when the aim consists in reproducing the spatial structure of the phenomenon. 
Comparatively less important appears to be the intensity of the spatial dependence in the original 
map under this respect. 
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Figure 9: Percentage of rejection of the null hypothesis of zero spatial correlation at α = 0.05 confidence level in the 
various scenarios. In the vertical axes we report the quantities { }
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(with l = t, f , fe ).  
 
Moving to commenting Table 5 we notice very low values of the linear correlation between 

the true map Moran’s I and the error map Moran’s I in the case of Scenario f4. This seems to 
confirm the previous finding of the superiority of Scenario f4 when we look at the spatial properties 
of errors, and of the dominance of temporal aspects with respect to spatial characteristics of the 
original data. It is particularly evident the inability of Scenario f2 under this respect where we 
record high and positive values of the correlation: in cases when the original data are characterized 
by high levels of spatial correlation, the error maps still preserves the same feature. 

To reinforce these conclusions let us look at Figure 10 which reports the absolute values of 
the Moran’s I coefficients in all scenarios and for all combination of parameters, for the true data, 
the forecast map and the error map. In the case of Scenario f2 the error map has always a similar 
spatial structure with respect to the original map. In the cases of Scenario f3 and f3new we observe 
an over–fitting. When the original data are characterised by positive spatial correlation we observe a 
negative spatial correlation in the error map especially in the cases of very strong spatial correlation 
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(the two extreme cases of ψ = ±0.8 ). Finally Scenario f4 leads also to an over–fitting, but 
constantly on negative values very close to zero in absolute value. 

For the computation of the MSE’s characterising each scenario and each parameter 
combinations we consider the average of the 100 MSE associated to each of the out–of–sample 
forecasting values and we average them over the 300 replications. Figure 11 reports the results 
obtained.  

Scenario f4 dominates all other strategies in that it consistently achieves the lowest MSE’s in 
all combinations of parameters. The advantage of using a forecasting strategy based on the STAR 
modelling framework is particularly evident with respect to scenario f2 and f3 and in those 
instances dominated by a high temporal correlation where 0.8φ = ± . 

In order to visualize jointly the a–spatial characteristics of errors (measured by the MSE) and 
their spatial features (measured by Moran’s I statistics), Figure 12 reports the scatterplot of these 
two aspects with reference to the forecasting error maps. 
 

  f2 f3 f3new f4 

 (–0.1, –0.8) 0.4524 0.5522 0.6921 0.6201
 (–0.1, –0.45) 0.0788 –0.0288 0.0418 0.1594
 (–0.45, –0.45) 0.2581 0.4965 0.7224 0.8309
 (–0.8, –0.1) 0.0896 0.3320 0.7204 0.9526
Numerical (–0.45, –0.1) 0.1120 0.0879 0.3405 0.4201
value of the (–0.1, –0.1) 0.0681 –0.0287 –0.0720 0.1212
parameters (0.1, 0.1) 0.0159 –0.0631 0.0725 0.0624
(φ,ψ) (0.45, 0.1) 0.0580 0.0735 0.3442 0.4945
 (0.8, 0.1) 0.1029 0.3037 0.6767 0.9395
 (0.1, 0.45) 0.0919 –0.0840 0.0619 0.1982
 (0.45, 0.45) 0.3618 0.4471 0.7246 0.7585
 (0.1, 0.8) 0.3865 0.6280 0.7000 0.5979

Table 4: Correlation between the I–Moran values in the true map ( tI ) and the I–Moran in the forecast map ( fI ) for 
each combination of the parameters φ,ψ( )  and for each forecasting scenario. The highest values are highlighted in 
boldface. 
 
 

  f2 f3 f3new f4 

 (–0.1, –0.8) 0.7539 0.1467 0.4857 0.0688
 (–0.1, –0.45) 0.8374 0.4902 0.7526 –0.0157
 (–0.45, –0.45) 0.6547 0.3592 0.5079 0.0406
 (–0.8, –0.1) 0.5358 0.2727 0.4155 –0.0747
Numerical (–0.45, –0.1) 0.8202 0.4050 0.6364 –0.0702
Value of the (–0.1, –0.1) 0.8324 0.5821 0.8082 0.0235
parameters (0.1, 0.1) 0.8206 0.5478 0.8258 –0.0332
(φ,ψ) (0.45, 0.1) 0.7735 0.4424 0.6174 –0.0960
 (0.8, 0.1) 0.5331 0.2628 0.3761 –0.0144
 (0.1, 0.45) 0.8201 0.5443 0.7771 –0.0869
 (0.45, 0.45) 0.6920 0.3070 0.4968 –0.0131
 (0.1, 0.8) 0.7086 0.3192 0.4984 –0.0209

Table 5: Correlation between the I–Moran values in the true map ( tI ) and the I–Moran in the error map  ( feI ) for each 

combination of the parameters φ,ψ( )  and for each forecasting scenario. 
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Figure 10: Values of Moran’s I coefficient in the true maps, in the forecasted maps and in the error maps, for all 
combinations of parameters φ,ψ( )  (φ = temporal parameter, ψ = spatial parameter) and for each forecasting scenario.  
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Figure 11: MSE of the four forecasting scenarios for all combinations of parameters ( ),φ ψ  (φ = temporal parameter, ψ 
= spatial parameter) 
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Figure 12: Scatterplot of Moran’s I coefficient on the error map versus the MSE of the same map for each forecasting 
scenario.  
 

In this graph, points close to zero in both coordinates represent the ideal instances of forecast 
where both the MSE is low and Moran’s I is close to zero.  

The visual inspection of this graph generally confirms the marked superiority of the STAR 
modelling framework with respect to the other startegies. More in detail, scenario f2 produces 
forecasts that are rather accurate in terms of the map structure, but highly inaccurate in terms of the 
MSE when ( ), ( 0.8; 0.1)φ ψ = − −  and ( ), ( 0.1; 0.8)φ ψ = − − , that is in cases of strong negative spatial 
and temporal correlation. Conversely it produces low MSE’s, but negative spatial and temporal 
correlation in the errors in the cases of moderate spatial and temporal parameters, i.e. 
( ), ( 0.45; 0.1);( 0.45; 0.45);( 0.1; 0.45);( 0.45; 0.1)φ ψ = − − − − + + + + . 

A similar result is obtained with scenario f3 and f3new, but with lower absolute MSE’s. 
Figure 12 (scenario f4) finally points out that the most accurate forecasts are produced for the 
combinations of parameters ( ), ( 0.8; 0.1);( 0.45; 0.1);( 0.8; 0.1);( 0.8; 0.1)φ ψ = − − + + + + + +  that is in 
most cases of low absolute spatial correlation. 
 
 
6. Summary and final comments  
 

The aim of this paper was to perform a thorough comparison of the relative efficiency of 
different methods of forecasting data that are both temporally and spatially correlated. We started 
by looking at the situation of a space–time series aggregated into a single time series. This 
situation was already examined by GG, but we extended their findings by examining larger 
datasets to check the dependence of results on the spatial dimension, by introducing the case of 
negative spatial correlation and by explicitly considering the problem of edge effects in the phase 
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of simulation. We then moved to evaluate the performances of various forecasting strategies in 
cases where we aggregate a fine grid of space–time data into a coarser space–time series. 

The first part of the paper generalizes the findings of GG in showing that most of the times 
the worst performing methods are the aggregation of univariate forecasts (Scenario f2) and Scenario 
f3 (unrestricted VAR). In small and medium–sized spatial schemes scenario f2 presents the worst 
performances in the case of strong spatial dependence. For high spatial dimensions, conversely, 
scenario f3 always performs the worst. Furthermore, from our simulations we stress the fact that, in 
terms of forecasting efficiency, a correct specification of the model is of paramount importance 
when the spatial dependence parameter ψ  is high in absolute value. In particular we have shown 
that Scenario f4, based on the STAR methodology, guarantees a good improvement of the 
forecasting efficiency in terms of the MSE when moving from small to high absolute values of 
spatial correlation. However the spatial dimension plays an important role and the percentage of 
cases in which Scenario f4 outperforms the other forecasting methods increases with the number of 
regions up to a dimension of k = 49 and then it decreases again. 

Finally the simulation experiments show clearly that spatial dependence has a relevant impact 
on the choice of the forecasting method no matter what is its sign. When spatial dependence is weak 
in absolute value, the ranking of the models is mostly related to the number of regions. Conversely 
when spatial dependence increases, this ranking is essentially independent of the dimension of the 
grid and it is strictly related to the strength of spatial dependence. 

In the second part of the paper we moved to consider the more general case of space–time 
series from a fine into a coarser disaggregation. For instance, suppose that we have in hand a 
space–time series of economic data collected at a given level of spatial disaggregation (e.g. sub–
national regions at the EU level). If the aim is to forecast the series at a national level starting from 
this set of information we may employ different strategies similar to those examined before, but 
with a remarkable difference. In this case the outcome of the aggregation procedure, in fact, is not 
merely a time series of data, but it is a new space–time series. In these conditions a forecasting 
strategy has to be judged not only in terms of the standard MSE measure, but also in terms of the 
spatial characteristics of the forecasting errors. In fact we expect a good forecasting strategy to be 
characterized by a small MSE and also by the ability to reproduce the characteristics of spatial 
dependence of the original data. Indeed a forecasting method that provides an accurate estimate in 
terms of MSE may well be rejected if it provides forecasting errors that are concentrated in a 
systematic way in some definite portions of space thus displaying a positive spatial correlation. 
Throughout the paper we employ Moran’s I spatial correlation coefficient to quantify this second, 
important, characteristics of forecasting errors. 

Under this second respect our simulations show quite clearly that the best strategy both in 
terms of the minimum MSE and in terms of the smallest Moran’s I is, in all cases examined, the 
STAR modelling (Scenario f4). In fact this strategy dominates all other forecasting procedures in 
terms of the MSE, produces the lowest I–Moran of the error map, thus showing its ability to 
reconstruct pretty well the original map structure. Indeed the spatial properties of data are better 
preserved in the forecasted data in cases of high temporal (positive or negative) correlation 
whereas the level of spatial correlation in the true data map appears to be less relevant under this 
respect. When the spatial correlation parameter is close to zero in absolute value f4 scenario is able 
to produce both low MSE’s and spatial correlation close to zero. 

Our conclusions thus extend those obtained by GG to a more general setup: we have shown 
that in most empirical cases it is better to forecast a space–time series with a STAR model and then 
aggregate the forecast. The paper also highlights how the gain in efficiency is related to the spatial 
dimension and to the absolute values of the temporal and spatial coefficient. In this respect the 
results reported here can be of help in assisting the choice between the various forecasting 
alternatives in empirical circumstances. 
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