

DISI - Via Sommarive 14 - 38123 Povo - Trento (Italy)

http://www.disi.unitn.it

INCLUSION MATCHING

IMPLEMENTATION OF AUTOMATA

MODULO THEORY (AMT)

Fabio Massacci and Ida Siahaan

July 2009

Technical Report # DISI-09-073

Contents

1 Introduction 3
1.1 The Contribution of this Paper . 4

2 Security by Contract in a nutshell 5

3 Automata Modulo Theory 7

4 On-the-fly Language Inclusion Matching 12

5 The Architecture 14

6 Design Decisions 15

7 Experiments on Desktop and on Device 17

A On-the-fly Matching Prototype Class Diagram 21

B On-the-fly Matching Prototype Experiments 22

1

Abstract

The traditional realm of formal methods is the off-line verification of formal
properties of hardware and software. In this technical report we describe a different
approach that uses formal methods (namely the integration of automata modulo
theory with decision procedures) on-the-fly, at the time an application is down-
loaded on a mobile application such as PDA or a smart phone. We also describe its
integration with decision solver based on MathSAT and NuSMV, and the results of
our experiments on matching.

The idea behind security-by-contract is that a mobile application comes equipped
with a signed contract describing the security relevant behavior of the application
and such contract should be matched against the mobile platform policy. Both
are specified as special kinds of automata and the operation is just an on-the-fly
emptiness test over two automata modulo theories where edges are not just finite
states of labels but rather expressions that can capture infinite transitions such as
“connect only to urls starting with https://”.

Keywords Access control · Language-based security · Malicious code · Security
and privacy policies

2

1 Introduction

The paradigm of pervasive services [2] envisions a nomadic user seamlessly and con-
stantly receiving services from other devices and sensors embedded in the environment.
Beside this web-service-like model, a new model is emerging based on the notion of
pervasive client downloads [8]: users download new (and likely untrusted) applications
on their mobile in order to exploit the computational characteristic of the device.

A tourist landing in a large city can download at the airport a navigation application
that can guide her to shopping centers or touristic sights. The application can query
internet sites or bluetooth services to find the optimal routes or discover local services.
Living Search by Microsoft and Navitime by DoCoMo [17] are primitive examples of these
future applications. Peer-to-peer and Web 2.0 collaborative applications share the same
features: Channel4 in the UK allows people to download video on demand if they also
download a P2P servent.

Unfortunately, this business model is not supported by the current security archi-
tecture of Java [12] and .NET [16]:

• mobile code runs only if its origin is trusted (i.e. digitally signed by a trusted
party);

• a pervasive download will likely be from small companies which cannot afford to
obtain a mobile operator’s certification and thus will not run as trusted code;

• then this application should be sandboxed, its interaction with the environment
and the device’s data should be limited;

• yet we made this pervasive download precisely to have lots of (controlled) interac-
tion with the pervasive environment.

As it is now this is both a business opportunity but also a big security threat: Channel 4
naive users with a pay-as-you-go subscription to internet found out at their own expenses
the “surprising” effect of hosting a P2P application for video on demand.

We need a better security model where the mobile code should be run only if it
satisfies a user-defined policy. This is precisely the setting where we can use formal
methods on-the-fly : before downloading the application we just verify that it complies
with the user security policies.

Unfortunately, in the general case this is equivalent to arbitrary software verification
which is not practical for pervasive downloads (remember this has to be done on your
smart phone while you wait). However, the idea behind model-carrying code [21] and
security-by-contract [7] is that code should come accompanied with a ”digest” (a security
model or a security contract) that represents its essential security behavior.

The question raised is how we know that the security claims are actually true on
the code. One possible solution is to use proof carrying code [20] or trust relations and
digital signatures. The PCC approach enables safe execution of code from untrusted
sources. PCC is based on assumption that the code producer should know all the
security policies that are of interest to consumers since the producer sends the safety
proof together with the mobile code. This assumption can be impractical due to various
security policies among different consumers. On the other hand, if we use only trust

3

relationship, i.e. digital signatures on mobile code, then we can only reject or accept the
signature and no semantics attached to the signature. The security-by-contract proposed
in [7] provides semantics to a digital signature, which was not presented beforehand. So
that, when binding together the code and the contract the signer takes liability for
the security claims ([23] describes mobile devices security architecture that supports
integration of proof-carrying code, static verification and run-time monitoring). Then
one only needs to match the contract against the platform security policies. However,
whenever consumer does not trust the contract provided by the code producer then the
overall architecture can take care that the code actually complies with the contract by
run time monitoring(see [8] describes security by contract architecture).

The next question is which is the best formal representation of such contract and
policy. Model carrying code papers [21] suggested finite automata. Unfortunately, finite
state and even Büchi Automata are too simple to express any practical policy: already
the rule “only allows connections to urls starting with https://” would generate an
automaton with infinite transitions when instantiating urls. Languages for security-by-
contract policies [1] are even more expressive.

The formal model considered for capturing contracts and policies is based on the
novel concept of Automata Modulo Theory (AMT). AMT has been introduced in [18],
which extends Büchi Automata (BA) by labeling transitions with expressions belong to
decidable theories. It is suitable for formalizing systems with finitely many states but
infinitely many transitions by leveraging on the power of satisfiability-modulo-theory
(SMT) decision procedures. In this way we can represent the task of matching the con-
tract with the policy as language containment problem between two automata. However,
while [18] provides the theoretical framework, namely the on-the-fly matching algorithm
and the complexity results of the operation, the actual implementation of the algorithm
and the integration with a state-of-the-art theory solver is still left open.

1.1 The Contribution of this Paper

We discuss the overall implementation architecture and the integration issues with a
state of the art decision procedure solver NuSMV [5] integrated with its MathSAT
libraries [4]. Since our goal is to provide this midlet-contract vs platform-policy matching
on-the-fly (during the actual download of the midlet) issues like small memory footprint,
and effective computations play a key role.

To this extent we have decided to implement language inclusion as emptiness test as
an on-the-fly procedure a-la-SPIN with oracle calls to the decision procedures available
in NuSMV. Therefore our design decision AMT makes reasoning about infinite tran-
sitions systems with finite states possible without symbolic manipulation procedures of
zones and regions or finite representation by equivalence classes whose memory intensive
characteristic is not suitable for our application.

The second contribution is a detailed performance analysis of the integration design
alternatives regarding the construction of expressions, the initialization of solver, and
the caching of temporary results by considering both running time and internal metrics
of various available options.

We begin in Section 2 by briefly recap the notion of Security-by-Contract (we refer the
reader to [3] for more details). Next we present AMT and the corresponding automata

4

operations in (Section 3). We also expose some specific issues to be considered in AMT .
Section 5 by discussing the overall implementation architecture and the integration

issues with the procedure solver NuSMV [5] integrated with its MathSAT libraries [4].
Since our goal is to provide this midlet-contract vs platform-policy matching on-the-
fly (during the actual download of the midlet) issues like small memory footprint, and
effective computations play a key role. Section 6 continues with implementation of
language inclusion as emptiness test using an on-the-fly procedure with oracle calls to
the decision procedures available in NuSMV. Therefore our design decision AMT makes
reasoning about infinite transitions systems with finite states possible without symbolic
manipulation procedures of zones and regions or finite representation by equivalence
classes whose memory intensive characteristic is not suitable for our application.

Our prototype was first implemented in Java and was run on a Desktop PC with
operating system Linux. Then, it had also been ported to .NET for actual detailed
profiling, namely for HTC P3600 (3G PDA phone) with ROM 128MB, RAM 64MB,
Samsung r©SC32442A processor 400MHz and operating system Microsoft r©Windows
Mobile r©5.0 with Direct Push technology. Finally, Section 7 presents a detailed per-
formance analysis of the integration design alternatives regarding the construction of
expressions, the initialization of solver, and the caching of temporary results by consid-
ering both running time and internal metrics of various available options.

2 Security by Contract in a nutshell

Security-by-contract (S×C)[7, 3] proposed to augment mobile code with a claim on its
security behavior that can be matched against a mobile platform policy on-the-fly, which
provides semantics for digital signatures on mobile code. In an S×Cframework [7, 3] a
mobile code is augmented with a claim on its security behavior (an application’s contract)
that could be matched against a mobile platform’s policy before downloading.

At development time the mobile code developers are responsible for providing a
description of the security behavior that their code finally provides. Such a code may
undergo a formal certification process by the developer’s own company, the smart card
provider, a mobile phone operator, or any other third party for which the application
has been developed. By using suitable techniques such as static analysis, monitor in-
lining, or general theorem proving, the code is certified to comply with the developer’s
contract. Next, the code and the security claims are sealed together with the evidence
for compliance (either a digital signature or a proof) and shipped as shown on Figure 2.

At deployment time, the target platform follows a workflow as depicted in Figure 1
[3]. This workflow is a modification of S×Cworkflow [3]) by adding optimization step.
First, the correctness of the evidence of a code is checked. Such evidence can be a trusted
signature [25] or a proof that the code satisfies the contract (one can use Proof-Carrying-
Code (PCC) techniques to check it [20]). When there is evidence that a contract is
trustworthy, a platform checks, that the claimed contract is compliant with the policy to
enforce. If it is, then the application can be run without further ado. It is a significant
saving from in-lining a security monitor. In case that at run-time we decide to still
monitor the application, then we add a number of checks into the application so that
any undesired behavior can be immediately stopped or corrected.

5

Figure 1: Workflow in Security-by-Contract

Figure 2: Mobile Code Components with Security-by-Contract

Matching succeeds, if and only if, by executing an application on the platform, every
behavior of the application that satisfies its contract also satisfies the platform’s policy.
If matching fails, but we still want to run the application, then we use either a security
monitor in-lining, or run-time enforcement of the policy (by running the application in
parallel with a reference monitor that intercepts all security relevant actions). However
with a constrained device, where CPU cycles means also battery consumption, we need
to minimize the run-time overheads as much as possible.

A contract is a formal specification of the behavior of an application for relevant
security actions for example Virtual Machine API Calls, Web Messages. By signing

6

the code the developer certifies that the code complies with the stated claims on its
security-relevant behavior. A policy is a formal specification of the acceptable behavior
of applications to be executed on a platform for what concerns relevant security actions.
Thus, a digital signature does not just certify the origin of the code but also bind together
the code with a contract with the main goal to provide a semantics for digital signatures
on mobile code. Therefore, this framework is a step in the transition from trusted code
to trustworthy code.

Technically, a contract is a security automaton in the sense of Schneider [13], and
it specifies an upper bound on the security-relevant behavior of the application: the
sequences of security-relevant events that an application can generate are all in the
language accepted by the security automaton.

A policy(also contract) covers a number of issues such as file access, network con-
nectivity, access to critical resources, or secure storage. A single contract can be seen
as a list of disjoint claims (for instance rules for connections). An example of a rule
for sessions regarding A Personal Information Management (PIM) and connections is
shown in Example 2.1, which can be one of the rules of a contract. Another example is
a rule for method invocation of a Java object as shown in Example 2.2. This example
can be one of the rules of a policy. Both examples describe safety properties, which are
common properties to be verified.

Example 2.1 PIM system on a phone has the ability to manage appointment books,
contact directories, etc., in electronic form. A privacy conscious user may restrict net-
work connectivity by stating a policy rule: “After PIM is opened no connections are al-
lowed”. This contract permits executing the javax.microedition.io.Connector.open()
method only if the javax.microedition.pim.PIM.openPIMList() method was never
called before.

Example 2.2 The policy of an operator may only require that “After PIM was accessed
only secure connections can be opened”. This policy permits executing the
javax.microedition.io.Connector.open(string url) method only if the started con-
nection is a secure one i.e. url starts with “https://”.

We can have a slightly more sophisticated approach using Büchi automata [22] if we
also want to cover liveness properties as shown in the following Example 2.3.

Example 2.3 If the application should use all the permissions it requests then for each
permission p at least one reachable invocation of a method permitted by p must exist in
the code. For example if p is io.Connector.http then a call to method Connector.open()

must exist in the code and the url argument must start with “http”. If p is io.Connector.https
then a call to method Connector.open() must exist in the code and the url argument
must start with “https” and so on for other constraints e.g. permission for sending SMS.

3 Automata Modulo Theory

The security behaviors, provided by the contract and desired by the policy, can be repre-
sented as automata, where transitions corresponds to invocation of APIs as suggested by

7

Erlingsson [9, p.59] and Sekar et al. [21]. Thus, the operation of matching the midlet’s
claim with platform policy can be mapped into classical problems in automata theory.

One possible mechanism to represent matching is language inclusion: given two
automata AutC and AutP representing respectively the formal specification of a contract
and of a policy, we have a match when the execution traces of the midlet described by
AutC are a subset of the acceptable traces for AutP . To check this property we can
complement the automaton of the policy, thus obtaining the set of traces disallowed by
the policy and check its intersection with the traces of the contract. If the intersection
is not empty, any behavior in it corresponds to a security violation.

The other alternative is the notion of simulation: we have a match when every APIs
invoked by AutC can also be invoked by AutP . In other words, every behavior of AutC

is also a behavior of AutP . Simulation is a stronger notion than language inclusion as it
requires that the policy allows the actions of the midlet’s contract in a “step-by-step”
fashion, whereas language inclusion looks at an execution trace as a whole. We pursue
the language inclusion approach in [18] and in this technical report and refer to [19] for
the simulation approach.

While this idea of representing the security-digest as an automaton is almost a decade
old [21, 9], the practical realization has been hindered by a significant technical hurdle:
we cannot use the naive encoding into automata for practical policies. Even the basic
policies in Ex. 2.1 and Ex. 2.2 lead to automata with infinitely many transitions.

Fig.3a represents an automaton for Ex. 2.2. We start from state p0 and stay in this
state while PIM is not accessed (jop). As PIM is accessed, we move to state p1 and stay
in state p1 only if the started connection javax.microedition.io.Connector.open(string url)
method is a secure one (url starts with “https://”) or we keep accessing PIM (jop). If we
start an insecure connection javax.microedition.io.Connector.open(string url), for example
url starts with “http://” or “sms://”, then we enter state ep.

The examples presented are from a Java VM; since we do not consider it useful to
invent our own names for API calls, we use the javax.microedition APIs (even though
verbose) for the notation shown in Fig.3b.

Definition 3.1 (Automaton Modulo Theory (AMT)) An AMT is a tuple A =
〈E, T ,Σ, S, s0,∆, F 〉, where E is a finite set of Σ-formulas in Σ-theory T , S is a finite
set of states, s0 ∈ S is the initial state, ∆ ⊆ S × E × S is a labeled transition relation,
and F ⊆ S is a set of accepting states.

Figure 4 shows two examples of AMT using the signature for EUF with a function
symbol p() representing the protocol type used for the opening of a url. As described in
the cited examples the first automaton forbids the opening of plain http-connections as
soon as the PIM is invoked while the second just restricts connections to be only https.

The transitions in these automata describe with an expression a potentially infinite
set of transitions: the opening of all possible urls starting with https. The automaton
modulo theory is therefore an abstraction for a concrete (but infinite) automaton. The
concrete automaton corresponds to the behavior of the actual system in terms of API
calls, value of resources and the likes.

From a formal perspective, the concrete model of an automaton modulo theory in-
tuitively corresponds to the automaton where each symbolic transition labeled with an

8

(a) An Infinite Automaton of Ex. 2.2

joc(url)
.
= javax.microedition.io.

Connector.open(url)

jop
.
= javax.microedition.pim.

PIM.openPIMList(. . .)

p(url) = type
.
= url.startsWith(type)

(b) Abbreviations for Java APIs

Figure 3: Infinite Transitions Security Policies

¬Joc(url)

c1

Jop

¬Jop

*

c0

ec

Joc(url)

2009-11-07

(a) AMT rule from Example 2.1

(Joc(url) ∧ p(url)=”https”)

p1

Jop

¬Jop

*

p0

ep

Joc(url) ∧ ¬(p(url)=”https”)

Jop

2009-11-07

(b) AMT rule from Example 2.2

Joc(url)
.
= Joc(joc,url)

Jop
.
= Jop(jop,x1, . . . , xn)

p(url) = type
.
= url.startsWith(type)

joc
.
= javax.microedition.io.Connector.open

jop
.
= javax.microedition.pim.PIM.openPIMList

Joc,Jop are predicate symbols representing respectively joc(url),jop(x1, . . . , xn) APIs.

(c) Abbreviations for expressions

Figure 4: AMT Examples

expression is replaced by the set of transitions corresponding to all satisfiable instanti-
ations of the expression. To characterize how an automaton captures the behavior of
programs we need to define the notion of a trace. So, we start with the notion of a
symbolic run which corresponds to the traditional notion of run in automata.

Definition 3.2 (AMT symbolic run) Let A = 〈E, T ,Σ, S, s0,∆, F 〉 be an AMT . A

9

symbolic run of A is a sequence of states alternating with expressions σ = 〈s0e1s1e2s2 . . .〉,
such that:

1. s0 = s0

2. (si, ei+1, si+1) ∈ ∆ and ei+1 is T -satisfiable, that is there is some Σ-structure M a
model of Σ-theory T and there exists some assignment α such that (M, α) |= ei+1.

A finite symbolic run is denoted by 〈s0e1s1e2s2 . . . sn−1ensn〉. An infinite symbolic
run is denoted by 〈s0e1s1e2s2 . . .〉. A finite run is accepting if the last state goes through
some accepting state, that is sn ∈ F . An infinite run is accepting if the automaton goes
through some accepting states infinitely often.

In order to capture the actual system invocations we introduce another type of run
called concrete run which is defined over valuations that represent actual system traces.
A valuation ν consists of interpretations and assignments which are actual system traces.

Definition 3.3 (AMT concrete run) Let A = 〈E, T ,Σ, S, s0,∆, F 〉 be an AMT . A
concrete run of A is a sequence of states alternating with a valuation σC = 〈s0ν1s1ν2s2 . . .〉,
such that:

1. s0 = s0

2. there exists expressions ei+1 ∈ E such that (si, ei+1, si+1) ∈ ∆ and there is some
Σ-structure M a model of Σ-theory T such that (M, αi+1) |= ei+1, where νi+1

represents αi+1 and I(ei+1).

A finite concrete run is denoted by 〈s0ν1s1ν2s2 . . . sn−1νnsn〉. An infinite concrete run
is denoted by 〈s0ν1s1ν2s2 . . .〉. A finite run is accepting if the last state goes through
some accepting state, that is sn ∈ F . An infinite run is accepting if the automaton
goes through some accepting states infinitely often. The trace associated with σC =
〈s0ν1s1ν2s2 . . .〉 is the sequence of valuations in the run. Thus a trace is accepting when
the corresponding run is accepting.

We use definition of run as in [10] which is slightly different from the one we use in [18],
where we use only states.

Example 3.1 An example of an accepting symbolic run of AMT rule from Exam-
ple 2.2 shown in Figure 4b is

c0 Jop(jop,file,permission) c1 Joc(joc,url)∧p(url)=“https′′ c1 Jop(jop,file,permission) c1 Joc(joc,url)∧p(url)=“https′′ ...

that corresponds with a non empty set of accepting concrete runs for example

c0(jop,PIM.CONTACT LIST,PIM.READ WRITE) c1 (joc,“https://www.esse3.unitn.it/′′)

c1(jop,PIM.CONTACT LIST,PIM.READ ONLY) c1 (joc,“https://online.unicreditbanca.it/login.htm′′) ...

10

Remark 3.1 A symbolic run defined in Definition 3.2 is interpreted by a non empty
set of concrete runs in Definition 3.3. This is a nature of our application domain
where security policies define AMT in symbolic level and the system to be enforced has
concrete runs. In other domains where we need the converse, namely to define symbolic
runs from concrete runs, then a symbolic run defined in Definition 3.2 can be considered
as an abstraction of concrete runs by Definition 3.3.

The alphabet of AMT is defined as a set of valuations V that satisfy E. A finite
sequence of alphabet of A is called a finite word or word or trace denoted by w =
〈ν1ν2 . . . νn〉 and the length of w is denoted by |w|. An infinite sequence of alphabet
of A is called an infinite word or infinite trace is denoted by w = 〈ν1ν2 . . .〉. The set
of infinite words recognized by an automaton A, denoted by Lω(A), is the set of all
accepting infinite traces in A. Lω(A) is called the language accepted by A.

The transition relation of A may have many possible transitions for each state and
expression, i.e. A is potentially non-deterministic.

Definition 3.4 (Deterministic AMT) A = 〈E, T ,Σ, S, s0,∆, F 〉 is a deterministic
automaton modulo theory T , if and only if, for every s ∈ S and every s1, s2 ∈ S and
every e1, e2 ∈ E, if (s, e1, s1) ∈ ∆ and (s, e2, s2) ∈ ∆, where s1 6= s2 then the expression
(e1 ∧ e2) is unsatisfiable in the Σ-theory T .

Complementation of AMT AMT automaton can be considered as a Büchi au-
tomaton where infinite transitions are represented as finite transitions. Therefore, for
each deterministic AMT automaton A there exists a (possibly nondeterministic) AMT
that accepts all the words which are not accepted by automaton A. The Ac can be con-
structed in a simple approach as in [24] as follows:

Definition 3.5 (AMT Complementation) Given a deterministic AMT
A = 〈E, T ,Σ, S, s0,∆, F 〉 the complementAMT automaton Ac = 〈E, T ,Σ, Sc, s0c,∆c, F c〉
is:

1. Sc = S × {0} ∪ (S − F)× {1}, s0c = (s0, 0), F c = (S − F)× {1},

2. and for every s ∈ S and e ∈ E

((s, 0), e, s′) ∈ ∆c, s′ =
{
{(t, 0)} (s, e, t) ∈ ∆ and t ∈ F
{(t, 0), (t, 1)} (s, e, t) ∈ ∆ and t /∈ F

((s, 1), e, s′) ∈ ∆c, s′ = {(t, 1)} if (s, e, t) ∈ ∆ and t /∈ F

Intersection of AMT AMT automaton can be considered as a Büchi automaton
where infinite transitions are represented as finite transitions. Therefore, for AMT
automata Aa, Ab, there is an AMT Aab that accepts all the words which are accepted
by both Aa, Ab synchronously. The Aab can be constructed in a simple approach as in
[24] as follows:

Definition 3.6 (AMT Intersection) Let 〈Ea, T a,Σa, Sa, s0a,∆a
T , F a〉 and〈

Eb, T b,Σb, Sb, s0b,∆b
T , F b

〉
be (non) deterministic AMT , the AMT intersection au-

tomaton Aab = 〈E, T ,Σ, S, s0,∆, F 〉 is defined as follows:

11

1. E = Ea ∪ Eb, T = T a ∪ T b, Σ = Σa ∪ Σb,

2. S = Sa × Sb × {1, 2}, s0 =
〈
s0a, s0b, 1

〉
, F = F a × Sb × {1},

3.

∆ =

〈
(sa, sb, x), ea ∧ eb, (ta, tb, y)

〉 ∣∣∣∣∣∣
(sa, ea, ta) ∈ ∆a and
(sb, eb, tb) ∈ ∆b and
DecisionProcedure(ea ∧ eb) = SAT



y =


2 if x = 1 and sa ∈ F a or

if x = 2 and sb 6∈ F b

1 if x = 1 and sa 6∈ F a or
if x = 2 and sb ∈ F b

4 On-the-fly Language Inclusion Matching

In order to do matching between a contract with a security policy, our algorithm takes
as input two automata AutC and AutP representing respectively the formal specification
of a contract and of a policy. A match is obtained when the language accepted by AutC

(the execution traces of the midlet) is a subset of the language accepted by AutP (the
acceptable traces for the policy). The matching problem can be reduced to an emptiness
test: LAutC ⊆ LAutP ⇔ LAutC ∩LAutP = ∅ ⇔ LAutC ∩L

AutP = ∅ ⇔ L
AutC×AutP = ∅. In

other words, there is no behavior of AutC which is disallowed by AutP . If the intersection
is not empty, then any behavior in it corresponds to a counterexample.

Constructing the product automaton explicitly is not practical for mobile devices.
First, this can lead into an automaton too large for the mobile limited memory footprint.
Second, to construct a product automata we need software libraries for the explicit
manipulation and optimizations of symbolic states, which are computationally heavy
and not available on mobile phones. Furthermore, we can exploit the explicit structure
of the contract-policy as a number of separate requirements. Hence, we use on-the-fly
emptiness test (constructing product automaton while searching the automata). The
on-the-fly emptiness test can be lifted from the traditional algorithm by a technique
from Coucubertis et al. [6] while modification of this algorithm from Holzmann et al’s
[14] is considered as state-of-the-art (used in Spin [15]). Gastin et al [11] proposed two
modifications to [6] for finding faster and minimal counterexample.

Remark 4.1 Our algorithm is tailored particularly for contract-policy matching, as
such, it exploits a special property of AMT representing security policies, namely each
automaton has only one non accepting state (the error state). The algorithm can be
generalized by removing all specialized tests, for example on line 8 from Algorithm 1
· · · ∧ sP = errP ∧ . . . can be replaced by accepting states from AutP , and reporting only
availability violation (corresponding to a non-empty automaton). This generic algorithm
corresponds to on-the-fly algorithm for model checking of BA.

12

Algorithm 1 check safety(sC, sP, x) Procedure

Input: state sC, state sP, marker x;
1: map(sC, sP, x) := in current path;
2: for all ((sC, eC, tC) ∈ ∆C) do
3: for all ((sP, eP, tP) ∈ ∆P) do
4: if (DecisionProcedure(eC ∧ eP) = SAT) then
5: y := condition(sC, sP, x, SC, SP)
6: if (map(tC, tP, y) = in current path ∧ ((sC ∈ SC ∧ sP = errP ∧ x = 1) ∨ (tC ∈

SC ∧ tP = errP ∧ y = 1))) then
7: report policy violation;
8: else if (map(tC, tP, y) = in current path ∧ ((sC ∈ SC ∧ sP ∈ (SP\{errP}) ∧ x =

1) ∨ (tC ∈ SC ∧ tP ∈ (SP\{errP}) ∧ y = 1))) then
9: report availability violation;

10: else if (map(tC, tP, y) = safe) then
11: check safety(tC, tP, y);
12: end if
13: end if
14: end for
15: end for
16: if (sC ∈ SC ∧ sP ∈ SP ∧ x = 1) then
17: check availability(sC, sP, x);
18: map(sC, sP, x) := availability checked;
19: else
20: map(sC, sP, x) := safety checked;
21: end if

Algorithm 2 check availability(sC, sP, x) Procedure

Input: state sC, state sP, marker x;
1: for all ((sC, eC, tC) ∈ ∆C) do
2: for all ((sP, eP, tP) ∈ ∆P) do
3: if (DecisionProcedure(eC ∧ eP) = SAT) then
4: y := condition(sC, sP, x, SC, SP)
5: if (map(tC, tP, y) = in current path) then
6: if (tP = errP) then
7: report policy violation;
8: else
9: report availability violation;

10: end if
11: else if (map(tC, tP, y) = safety checked) then
12: map(tC, tP, y) := availability checked

13: check availability(tC, tP, y);
14: end if
15: end if
16: end for
17: end for

13

Complement
Policy

OFF-DEVICE

2010-01-04
Matching
GeneralPicture

NuSMV library

Policy
Automaton

Co-Policy
Automaton

Add
Constraints

Decision Procedure

Solve

Remove
Constraints

Declare variables

Matching algorithm

OnTheFly
emptiness

check

ON-DEVICE

Contract
Automaton

match succeed/fail

Figure 5: Contract-Policy Architecture

5 The Architecture

In this section we describe the conceptual architecture of the prototype that implements
the overall matching algorithm and supports integration with a decision procedure solver
NuSMV [5] integrated with its MathSAT libraries [4]. We provide an overview of how
the prototype is implemented for to show the possible options for integration with the
solver. The contract-matching prototype takes as input a contract and a policy and
checks whether or not the contract matches the policy. The prototype architecture is
depicted in Figure 5. Detailed class diagram is available on Appendix as Figure 8.

Our first observation is that the policy has to be deployed on the device and it
is unlikely to change frequently. The second observation is that, even if applications
(and related contracts) will change frequently and dynamically, the binding between
an application and its contract will considerable be static. If a digital signature or a
proof carrying code is used, the contract has to be shipped with the application. In the
case of Java application, this contract must be essentially included in the JAR file that
represents the application and must be directly accessible to the virtual machine that
is responsible for the matching and the enforcement of the security policy (see [23] for
details).

The prototype consists of two parts, namely on-device and off-device implementa-
tions. During off-device part execution, the contract and policy are transformed into a
suitable internal representation for the on-the-fly algorithm. The policy automaton is
also complemented at this step of the execution. In on-device part of the prototype the
main on-the-fly algorithm runs on the contract and policy input and make calls to the
decision procedure during its execution.

14

Initially, we implemented our prototype in Java platform and subsequently the ar-
chitecture remained the same for the .NET platform. Thus, we are only describing our
architecture in Java platform. The initial algorithm transforms a contract (resp. a pol-
icy) into a Java class, ContractAutomaton.java (resp. PolicyAutomaton.java) that can
be directly manipulated by the actual algorithm responsible for the on-the-fly policy
matching (i.e. emptiness test). If the policy option is specified then the parser also
performs the complementation of the policy. Management of the variables declaration
is discussed later in Section 6.

Since a contract-policy matching algorithm should frequently call the decision pro-
cedure during its execution, we need a design decision for an internal representation of
AMT . We discuss this particular form of AMT in details. First, we associate a num-
ber of variables to every edge, where method is an API call that the policy is supposed
to rule, cond - a guarded command which must be true in order for the method to be
executed, for instance a cond specifies that the url must start with the string “https”.

For further representation simplification, we follow the semantics for security au-
tomata proposed in [1] so that we have a prioritized execution among guards: we go
to the next guard only if the guards before it have all failed. Such information is rep-
resented in otherConds - the other guarded commands that failed before reaching the
current guard otherMethods - an expression consists of all other methods that are not
supposed to rule at the current moment.

Once contract and policy automata are made available to the main system, we
can run the on-the-fly procedure which has been also implemented in Java using only
MIDP libraries to guarantee portability (and we have similarly developed a .NET mobile
implementation in C#).

The next stage is a non-trivial point because we need to interact with a decision
procedure for solving AMT ś expressions which are defined in complex theories for
example boolean expressions and mathematical expressions. We use the solver as a black
box (an oracle) for the general algorithm that gives the answer whether the problem is
satisfiable or not. We have further decided to interface with the solver without using
its internal data structure but rather to interact with the decision procedure by using
strings. While this creates a bit of overhead for parsing, it makes it significantly easier
to replace the solver as needed.

6 Design Decisions

Different design decisions are made in order to decide the best configuration of integrat-
ing automata-based inclusion algorithm with decision procedure as the problem is not
trivial. Every option of the configuration proposed below has different memory impact
and this information and results of such analysis is very important because of the re-
source constraints of mobile device. This restriction is not commonly studied in classical
decision procedure integration papers because the problem of resources is irrelevant.

In integrating matching algorithm with the theory solver we faced a number of design
options:

One vs Many Solver in object oriented languages is by itself an object. We could either
create only one instance of solver, relying on the solver to assert and retract ex-

15

pressions on demand, or create a new instance of the solver every time we call the
decision procedure.

MUTEX SOLVER if an edge in the automaton correspond to a call to a method it is obvi-
ously incompatible with another edge calling a different method. Such constraints
could be directly incorporated into the algorithm without the need to represent
them as boolean mutual exclusion constraints on the boolean variables represent-
ing method invocations. In this case all the method names are declared as mutex
constants at the moment of declaring all variables, then the expression sent to the
solver has the following structure: method = name ∧ cond ∧ otherConds. Hence,
if the method names of two edges are not the same then the DecisionProcedure
returns false.

MUTEX MC allows the on-the-fly algorithm to check whether method names are the
same. The DecisionProcedure is called with parameters: cond ∧ otherConds only
if this check is passed.

PRIORITY MC the semantics for security policy is that guards are evaluated using priority
or hence we can optimize the expressions sent to the decision procedure as lemmas.
Using the lemma, the Expression sent to the DecisionProcedure is minimized and
it has only cond.

CACHING MC Since many edges will be traversed again and again we could save time
by caching the results of the matching. The solver itself has a caching mechanism
that could be equally used (CACHING SOLVER).

While we assumed that all decision could be just taken after considering preliminary
experimental results it turned out that at least for the One vs Many decision this was not
possible. The cause is the management of garbage collection both by the Java virtual
machine and by the libraries of MathSAT/NuSMV which requires only one instance of
solver exists at time in order to interact correctly with the NuSMV library. This leads
to use a static invocation for the solver and set significant constraints on the interaction.

For example, before starting to visit all constraints to the library, all variables used in
expressions must be declared. The NuSMV library has to invoke DeclareNewBooleanVar,
DeclareNewWordVar, DeclareNewStringVar methods for declaration of boolean, integer
and string variables respectively. Only after declaring all the variables from contract
and policy expressions, the on-the-fly algorithm can actually start invoking the decision
procedure in its visit. A consequence of this rule is that with this implementation we
cannot insert edges that introduce new variables because the solver can be called only
after declaring all the variables and adding all the needed constraints.

Therefore, during the visit of the algorithm we must at first upload constraints to
the solver with the AddConstraint method of the NuSMV class and then remove them
with the RemoveConstraint.

The rest design alternatives can be implemented and tested thus giving way to the
six alternative configurations (see Fig. 6d) of the interactions between the solver and
the on-the-fly emptiness check algorithm.

16

Table 1: Problems Suit

Problem Contract Policy SC TC SP TP
P1 size 100 512 contract.pol size 10 1024 policy.pol 2 4 2 4
P2 maxKB512 contract.pol maxKB1024 policy.pol 2 4 2 4
P3 noPushRegistry contract.pol oneConnRegistry policy.pol 2 3 3 9
P4 notCreateRS contract.pol notCreateSharedRS policy.pol 2 4 2 4
P5 pimNoConn contract.pol pimSecConn policy.pol 3 7 3 9
P6 2hard contract.pol 2hard policy.pol 3 7 3 7
P7 http contract.pol https policy.pol 3 7 3 7
P8 3hard contract.pol 3hard policy.pol 3 7 3 7
P100 noSMS contract.pol 100SMS policy.pol 2 4 102 304

SC: Number of States Contract TC: Number of Transitions Contract
SP: Number of States Policy TP: Number of Transitions Policy

(a) Abbreviations

7 Experiments on Desktop and on Device

To understand the best option we collected data on resources used, namely number
of visited states, number of visited transitions, running time for each problem in each
design alternative, and the number of solved problems against time. For sake of example
we list in Table 1 some sample possible combinations of policy-contract (mis)matching
pairs. For instance, the contract pimNoConn contract.pol represents Example 2.1 and
the policy pimSecConn policy.pol corresponds to Example 2.2.

With the exception of the pathological problem P100, which has been designed that
way, most problems have few states and transitions and, as we shall see in the next table
(Table 2 showing performance of ten times run for each problem set and each design
alternative), they also require little time for being assessed.

Notice that the number of states and transitions in the AMT for each contract and
policy in Table 1 is a number of reachable states and transitions. During the running of
matching algorithm there may be the case when the algorithm stops working (producing
”do not match” answer) without reaching all the states of contract and/or policy. And
this case is explicitly shown in P6, P7 and P8 examples in Table 2. That is why we
only present here the number of reachable states in Table 1 and number of visited states
during on-the-fly running in Table 2.

We run our experiments on a Desktop PC (Intel(R) Pentium(R) D CPU 3.40GHz,
3389.442MHz, 1.99GB of RAM, 2048 KB cache size) with operating system Linux ver-
sion 2.6.20-16-generic, Kubuntu 7.04 (Feisty Fawn). Currently, we are also porting the
application to the mobile for actual detailed profiling, namely HTC P3600 (3G PDA
phone) with ROM 128MB, RAM 64MB, Samsung r©SC32442A processor 400MHz and
operating system Microsoft r©Windows Mobile r©5.0 with Direct Push technology.

For the sake of example we present the result obtained for alternative with MUTEX MC

ONE INSTANCE CACHING SOLVER in Table 2. The results for all design alternatives are
mapped into diagram shown in Figure 6a for matching problems and Figure 6c for not
matching problems. Notice that we only provide the cumulative running time that is

17

Table 2: Running Problem Suit 10 Times
MUTEX MC ONE INSTANCE CACHING SOLVER

Problem Desktop Mobile Result
ART (s) CRT (s) SV TV ART (s) CRT (s) SV TV

P1 2.4 2.4 2 6 4.3 4.3 2 6 Match
P2 2.4 4.8 2 6 4.1 8.4 2 6 Match
P3 2.4 7.2 3 11 3.9 12.3 3 11 Match
P4 2.4 9.6 2 6 4.0 16.3 2 6 Match
P5 4.7 14.3 3 11 4.1 20.4 3 11 Match
P6 2.9 2.9 4 4 3.8 3.8 3 6 Not Match
P7 2.8 5.7 5 7 3.8 7.6 2 4 Not Match
P8 2.9 8.6 5 7 3.8 11.4 3 6 Not Match
P100 9.3 9.3 102 307 11.3 11.3 102 307 Match

ART: Average Runtime for 10 runs SV: Number of Visited States
CRT: Cumulative Average Runtime TV: Number of Visited Transitions

(a) Abbreviations

necessary to solve all problems. This is important because our goal is to match (or not
match) all rules in a contract with all corresponding rules in a policy. Thus, the value
of the single problem is not important except for some cases where the average output
might be significantly off due to some off scale rule.

We singled out P100 as a challenging artificial problem because it has a large num-
ber of states compared to the others: essentially this happened because we draw an
automaton modulo theory with 100 states and which traverse from one state to another
by adding 1 to the number of SMS sent.

In this case there is a difference between M1 and M5, namely 9.259 s and 9.117 s resp.,
that is M5 is better around 1.5% than M1. In order to study this in more details, we
generated more unreal problem sets: as P100 with combination of sent SMS none, 1, 10,
and 100 for both contract and policy. The data of the experiment is given on Appendix B.
The generated cases cumulative running time of implementation is propositional to the
number of problems solved (see Figure 6b). In this case the difference among M1 until
M8 is negligible as can be seen from Figure 6b that the results construct almost a line.

All methods seem to perform equally well because the problems are not stressful
enough for the different configurations. This is actually a promising result for the de-
ployment to the resource constrained in mobile device domain. Therefore, we have im-
plemented the same algorithm for the mobile platform HTC P3600 (3G PDA phone). We
run the problem suit of P1-P8 and P100 with MUTEX MC ONE INSTANCE CACHING SOLVER

configuration. Table 2 shows the results on device, where the runtime of every single
problem running is longer than on Desktop PC. This result is obvious due to higher
performance of desktop platform. However, the cumulative time of solved problems is
still manageable for the mobile user to obtain. The algorithm’s runtime will be longer
for the problems that match (the algorithm has to run over all states until the cycle is
found) than for the problems that do not match (the algorithm stops working as soon
as counterexample is found). Note also that the number of visited states and transitions
for the matched problems are the same exactly because of the search all over the states;

18

(a) Match succeeds for real policies (b) Matches among synthetic contracts and policies

(c) Match fails for real policies

M1: MUTEX MC ONE INSTANCE CACHING SOLVER
M2: MUTEX SOLVER ONE INSTANCE CACHING SOLVER
M3: PRIORITY MC ONE INSTANCE CACHING SOLVER
M4: MUTEX MC ONE INSTANCE CACHING MC
M5: MUTEX SOLVER ONE INSTANCE CACHING MC
M6: PRIORITY MC ONE INSTANCE CACHING MC

(d) Abbreviations for Configurations

Figure 6: Cumulative response time of matching algorithm on Desktop PC

(a) Match succeeds (b) Match fails

Figure 7: Cumulative response time of matching algorithm on the Mobile Device

otherwise the counterexample can be found in a different time and it does not depend
on the run. Cumulative time of problems is presented in Fig. 7a for matching and
Figure 7b for not matching.

Current implementation uses PRIORITY MC ONE INSTANCE CACHING MC configuration.
PRIORITY MC is preferred due to the nature of rules in policies which is priority or, also

19

MUTEX SOLVER does not allow empty methods such as ¬mi ∧ ¬mj which is possible in
the matching algorithm. ONE INSTANCE is chosen because of garbage collection problem.
CACHING MC is desired to save calls to solver for the already solved rules.

Acknowledgement

N. Bielova, M. Dalla Torre, and S. Vogl for implementing the matching prototype. M.
Roveri, S. Toneta, and A. Cimatti for the support in the usage of the NuSMV and
MathSAT libraries.
The EU-FP6-IST-STREP-S3MS project for partly supporting this research.

20

A On-the-fly Matching Prototype Class Diagram

Abstract Class

Fields

colorMap : ColorMap

Table_SAT : List<string>

Table_UNSAT : List<string>

Methods

CallNuSMV(SpecificBoolExp a1, SpecificBoolExp a2, string se, Flags flags) : bool

DecisionProcedure(SpecificBoolExp a1, SpecificBoolExp a2, Flags flags) : bool

DeclareEnum(string name) : void

DeclareVariables(AutomatonMTT aut, Flags flags) : void

DFSAlgorithm(AutomatonMTT aut1, AutomatonMTT aut2, Flags flags)

Flags
Class

Fields

match : MATCHINGType

Methods

Flags(EXPR_CONSTRUCTIONType exprConstruction, INITType init, CACHINGType caching)

Flags(EXPR_CONSTRUCTIONType exprConstruction, INITType init, CACHINGType caching, MATCHINGType match)

OnTheFly

DFSAlgorithm

Class

Fields

cVisitedStates : List<string>

cVisitedTransitions : List<string>

newStates : List<string>

newTransitions : List<string>

pVisitedStates : List<string>

pVisitedTransitions : List<string>

Methods

Check_availability(State s1, State s2, int x, Flags flags) : MatchResult

Check_safety(State s1, State s2, int x, Flags flags) : MatchResult

Condition(State s, State t, int x, AutomatonMTT aut1, AutomatonMTT aut2) : int

MakeExpression(Edge edge, Flags flags) : SpecificBoolExp

OnTheFly(AutomatonMTT aut1, AutomatonMTT aut2, Flags flags)

SATExpression
Class

Properties

FirstExpr { get; } : SpecificBoolExp

SecondExpr { get; } : SpecificBoolExp

Methods

SATExpression()

SATExpression(SpecificBoolExp e1, SpecificBoolExp e2)

NuSMV
Class

Fields

swigCMemOwn : bool

Methods

add_constraint(string expr) : bool

clean_constraints() : void

declare_bool_var(string name) : bool

declare_enum_var(string name, int low, int high) : bool

declare_enum_var(string name, string[] vals) : bool

declare_string_var(string name) : bool

declare_sword_var(string name, uint size) : bool

declare_uword_var(string name, uint size) : bool

Dispose() : void

NuSMV()

solve() : SolverResult

AutomatonMTT
Class

Properties

AllStates { get; set; } : List<State>

MethodNames { get; set; } : List<string>

TransitionsMap { get; set; } : Dictionary<State, StateDef>

Methods

AutomatonMTT()

AutomatonMTT(List<State> allStates, State initial, Dictionary<State, StateDef> transitionsMap, List<Edge> alphabet, List<string> methodNames)

DoComplementation() : AutomatonMTT

DoComplementOptimized() : void

SpecificBoolExp

Expression

Class

Fields

boolType : ExpBoolType

compType : CompareIntType

e1 : Expression

e2 : Expression

Methods

DeclareVariables(NuSMV ns) : void

SetNegation(bool isNegated) : SpecificBoolExp

SpecificBoolExp(bool isNegated)

SpecificBoolExp(Expression e1, Expression e2, CompareIntType t, bool isNegated)

SpecificBoolExp(Expression e1, Expression e2, ExpBoolType t, bool isNegated)

SpecificBoolExp(SpecificBoolExp exp)

SpecificBoolExp(SpecificStringExp se, string call, SpecificStringExp arg, bool isNegated)

SpecificBoolExp(string funcName, ParamList parameters)

SpecificBoolExp(string funcName, ParamList parameters, bool isNegated)

SpecificBoolExp(string label)

SpecificBoolExp(string label, bool isNegated)

SpecificBoolExp(string varName, FieldAccessExp expr)

Edge
Class

Methods

Edge()

Edge(SpecificBoolExp method, SpecificBoolExp otherMethods, SpecificBoolExp cond, SpecificBoolExp otherConds)

State
Class

Properties

Fields { get; set; } : Dictionary<string, object>

Marker { get; set; } : int

Number { get; set; } : int

States { get; set; } : List<State>

Methods

State()

State(Dictionary<string, object> fields)

State(List<State> states, Dictionary<string, object> fields)

State(List<State> states, int marker)

CACHINGType
Enum

CACHING_SOLVER

CACHING_MC

EXPR_CONSTRUCTIONType
Enum

MUTEX_SOLVER

MUTEX_MC

PRIORITY_MC

ALL_INSTANCES

INITType
Enum

ONE_INSTANCE

MANY_INSTANCES

IDisposable

ICloneable

aut1 aut2

SATList : List<SATExpression>

ns

Flags

ex

initcaching

Fla

se1 se2

InitState

Alphabet : List<Edge>

Figure 8: On-the-fly Class Diagram

21

B On-the-fly Matching Prototype Experiments

Table 3: Problems Suit
Problem Contract Policy
P100-100 100SMS contract.pol 100SMS policy.pol
P100-10 100SMS contract.pol 100SMS policy.pol
P100-1 100SMS contract.pol 100SMS policy.pol
P100-NO 100SMS contract.pol noSMS policy.pol
P10-100 10SMS contract.pol 100SMS policy.pol
P10-10 10SMS contract.pol 10SMS policy.pol
P10-1 10SMS contract.pol 1SMS policy.pol
P10-NO 10SMS contract.pol noSMS policy.pol
P1-100 1SMS contract.pol 100SMS policy.pol
P1-10 1SMS contract.pol 10SMS policy.pol
P1-1 1SMS contract.pol 1SMS policy.pol
P1-NO 1SMS contract.pol noSMS policy.pol
PNO-100 noSMS contract.pol 100SMS policy.pol
PNO-10 noSMS contract.pol 10SMS policy.pol
PNO-1 noSMS contract.pol 1SMS policy.pol
PNO-NO noSMS contract.pol noSMS policy.pol

Table 4: Average Running Problem Suit 10 Times (s)
Problem M1 M2 M3 M4 M5 M6 Result
P100-100 15.219 15.478 15.19 15.335 15.219 15.187 Match
P100-10 9.468 10.086 9.355 9.372 9.391 9.429 Not Match
P100-1 8.824 8.951 8.91 8.927 8.953 8.871 Not Match
P100-NO 8.83 8.835 8.798 8.716 8.847 8.852 Not Match
P10-100 9.846 9.77 9.831 9.781 9.684 9.818 Match
P10-10 3.847 3.821 3.854 3.797 3.783 3.834 Match
P10-1 3.192 3.12 3.192 3.194 3.189 3.162 Not Match
P10-NO 3.042 3.058 3.065 3.041 3.051 3.042 Not Match
P1-100 9.309 8.714 9.308 9.329 9.187 9.234 Match
P1-10 3.286 3.286 3.271 3.301 3.241 3.275 Match
P1-1 2.444 2.446 2.462 2.432 2.457 2.423 Match
P1-NO 2.573 2.595 2.582 2.571 2.596 2.566 Not Match
PNO-100 9.259 9.16 9.211 9.202 9.117 9.122 Match
PNO-10 3.197 3.16 3.188 3.173 3.155 3.179 Match
PNO-1 2.5 2.502 2.513 2.525 2.523 2.522 Match
PNO-NO 2.427 2.386 2.395 2.38 2.405 2.379 Match

22

References

[1] I. Aktug and K. Naliuka. Conspec - a formal language for policy specification.
In Proc. of the 1st Int. Workshop on Run Time Enforcement for Mobile and Dis-
tributed Systems (REM 2007), Dresden, Germany, 2007.

[2] J. Bacon. Toward pervasive computing. IEEE Pervasive Comp. Magazine, 1(2):84,
2002.

[3] N. Bielova, N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Matching in
security-by-contract for mobile code. J. of Logic and Algebraic Programming,
78:340–358, May-June 2009.

[4] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, P.v. Rossum,
and R. Sebastiani. MathSAT: Tight integration of SAT and mathematical decision
procedures. J. of Autom. Reas., 35(1):265–293, 2005.

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model check-
ing. In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02),
LNCS, pages 359–364. Springer-Verlag, 2002.

[6] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in Syst.
Design, 1(2-3):275–288, 1992.

[7] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-Contract: Toward
a Semantics for Digital Signatures on Mobile Code. In Proc. of the 4th European
PKI Workshop Theory and Practice (EUROPKI’07), page 297. Springer-Verlag,
2007.

[8] N. Dragoni, F. Massacci, C. Schaefer, T. Walter, and E. Vetillard. A security-by-
contracts architecture for pervasive services. In Proc. of the 3rd Int. Workshop on
Security, Privacy and Trust in Pervasive and Ubiquitous Computing. IEEE Press,
2007.

[9] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforce-
ment. PhD thesis, Department of Computer Science, Cornell University, 2004.

[10] K. Etessami, T. Wilke, and R. Schuller. Fair simulation relations, parity games, and
state space reduction for büchi automata. SIAM J. on Comp., 34(5):1159–1175,
2005.

[11] P. Gastin, B. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN.
In Proc. of the 11th Int. SPIN Workshop, volume 2989 of LNCS, pages 92–108.
Springer-Verlag, 2004.

[12] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Platform Security: Architec-
ture, Api Design, and Implementation. Addison-Wesley Professional, 2003.

23

[13] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for en-
forcement mechanisms. ACM Trans. Program. Lang. Syst., 28(1):175–205, 2006.

[14] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
Proc. of the 2nd Int. SPIN Workshop, pages 23–32. American Mathematical Society,
1996.

[15] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2004.

[16] B. LaMacchia and S. Lange. .NET Framework security. Addison Wesley, 2002.

[17] S. Konomi M. Arikawa and K. Ohnishi. Navitime: Supporting pedestrian navigation
in the real world. pages 21–29, 2007.

[18] F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform
security policy using automata modulo theory. In Proc. of the 12th Nordic Workshop
on Secure IT Systems (NordSec’07), 2007.

[19] F. Massacci and I. Siahaan. Simulating midlet’s security claims with automata
modulo theory. In Proc. of the 2008 workshop on Prog. Lang. and analysis for
security, pages 1–9, 2008.

[20] G.C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT
Symp. on Princ. of Prog. Lang., pages 106–119. ACM Press, 1997.

[21] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-
carrying code: a practical approach for safe execution of untrusted applications. In
Proc. of the 19th ACM Symp. on Operating Syst. Princ., pages 15–28. ACM Press,
2003.

[22] C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under
memory-limitation constraints. Inform. and Comp., 206(2-4):158–184, 2007.

[23] D. Vanoverberghe, P. Philippaerts, L. Desmet, W. Joosen, F. Piessens, K. Naliuka,
and F. Massacci. A flexible security architecture to support third-party applications
on mobile devices. In Proc. of the 1st ACM Comp. Sec. Arch. Workshop, 2007.

[24] M. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of the
8th Banff Higher order workshop conference on Logics for concurrency : structure
versus automata, LNCS, pages 238–266. Springer-Verlag, 1996.

[25] B.S. Yee. A sanctuary for mobile agents. In J. Vitek and C.D. Jensen, editors,
Secure Internet Programming, pages 261–273. Springer-Verlag, 1999.

24

