
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.dit.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
A SIMPLE FDTD MODEL TO ASSES THE FEASIBILITY OF HEART BEAT 
DETECTION USING COMMERCIAL UWB COMMUNICATION DEVICES 
 
Carlos Bilich 
www.carlosbilich.com.ar 
 
 
January 4th, 2007 
 
 
Technical Report # DIT-07-033 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 1

A Simple FDTD Model to Asses the Feasibility of Heart Beat Detection using 
commercial UWB communication devices 

 
Carlos G. Bilich 

 
 
 

Abstract. This work studies the propagation and the attenuation suffered by an UWB impulse on its way to the human 
heart traveling through the chest. The latter is modeled as multiple semi-infinite lossy and dispersive media. The 
radiated impulse is a Gaussian monocycle similar to those used in UWB communications. The formulation uses the 
FDTD method to approximate the solution of the Maxwell’s equations. The results show that the chest attenuates the 
impulse approximately 42dB which is significantly lower than the values predicted by previous approximations. This 
would eventually improve the performance and range of UWB vital signs sensing applications. 

 
1   Introduction 
 

In previous works, (i.e Bilich [4],[5],[6] and [10]), the estimation of the attenuation suffered by an UWB impulse as it 
crosses the chest tissues was done in the far field using the well known Friis formula. However, it was then argued that 
was only a coarse approximation, because for the distances and dimensions being considered, only a full wave analysis 
could give more reliable results. This work is a step forward towards this objective. This is the first of a series of projected 
articles in which the Maxwell’s curl equations will be solved directly to study the propagation of the impulse. The 
technique chosen is the Finite Differences Time Domain (FDTD) method of proved efficacy for the solution of similar 
problems in computational electromagnetics. The approach follows the one of Sullivan’s book [1], that starts posing the 
problem in one dimension to further increase the complexity up to three dimensions. Therefore, this article starts 
formulating the problem in one dimension. However, in spite of its simplicity the results obtained are very useful to 
demonstrate the viability of going forward towards this research path and to encourage the effort that would signify going 
for more dimensions. 

Specifically this work uses a one dimensional FDTD simulation to asses the propagation performance in tissues of the 
Gaussian monocycle proposed for UWB communications. This is of particular interest to build devices that can do both: 
communications and sensing with the same UWB transceiver.  

The Friis expression used previously gives the result only for one particular frequency. However, the short duration of 
the impulses considered here makes them inherently ultra wideband. The solution would have required a differential 
formulation of the Friis formula to be later on integrated throughout the whole bandwidth of interest. This approach, 
though, would still have suffered from the fact that it is only valid in the far field. 

By using the FDTD simulation it was possible to confirm the superior performance of the Gaussian monocycle to go 
through the tissues and come back with a significant lower attenuation than what was predicted by the monofrequency 
analysis. This is very important considering the extremely low power envisioned for UWB communications and medical 
monitoring devices as regulated by the FCC [2]. 
 
 
2   One dimensional FDTD formulation 
 
The Maxwell’s curl equations for nonmagnetic source-free regions can be written as: 

EH

HD

×∇−=
∂
∂

×∇=
∂
∂

0

1
µt

t  

where 
D: Electric flux density vector [Coulombs/m2] 
E: Electric field intensity vector [V/m] 
H: Magnetic field intensity vector [A/m] 
µ0: Free space permeability = 4π x 10-7 [H/m] 

in particular:  
)()()( *

0 ωωεεω EDD ⋅⋅== r  
where  

ε0  Free space permittivity = 8.854 x 10-12 [F/m] 
εr

*(ω)  Frequency dependant complex relative dielectric constant 
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ω = 2πf Angular frequency [rad/s] 
f   Frequency [Hz] 

 
To simplify the formulation of the FDTD equations, it is better to express the Maxwell’s equations using normalized 
Gaussian units by substituting [1]: 
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Assuming a plane wave with the electric field oriented in the x direction, the magnetic field oriented in the y direction, and 
traveling in the z direction; in one dimension the equations reduce to: 
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Before taking the finite difference approximation of the above expressions, let’s define an interleaved one dimensional 
FDTD grid as showed in Fig.  1: 
 

 
 

Based on that grid, the central difference approximations for both the temporal and spatial derivatives can be written as: 
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Rearranging them for their implementation as an iterative algorithm: 
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Fig.  1.  FDTD interleaving grid showing the interdependence between the xE~ , xD~ and Hy fields; k is the distance counter 
such that the total simulated distance is z = k·∆z, and n is the time counter such that the total simulated time is t = n·∆t; where 
∆z and ∆t stand for cell size and the time step respectively. 
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To determine the time step ∆t it must be taken into account that an electromagnetic wave propagating in free space cannot 
go faster than the speed of light, thus to propagate a distance of one cell requires a minimum time of ∆t = ∆z/c0. This is just 
the special case of a more general expression known as the “Courant Condition”, which establishes that for n dimensions: 

( )0cnzt ⋅∆≤∆ . For simplicity, the value adopted here is: 
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This condition works also well when the propagation speed v < c0, and thus ∆t < ∆tv = ∆z/(2·v), which assures also good 
accuracy in slower mediums such as the tissues that make up the chest. 
Therefore using expression (3), 
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Rewriting eqs. (2) for their implementation in C computer code gives: 
 

dx[k] = dx[k] – 0.5*( hy[k] – hy[k-1] ); 
hy[k] = hy[k] – 0.5*( ex[k+1] – ex[k] ); 

 
Superscripts n, n+1/2 and n-1/2 are gone because time is implicit in the FDTD method, and the location respect to equal 
sign indicates what is the actual and the previous value. Spatial position, however, is explicit, and in order to use a 
computer array, k+1/2 and k-1/2 have been rounded of to k and k-1 respectively. In the computer program, the space 
interleaving effect, is achieved by shifting the ranges of the for loops that compute dx and hy. 
 
 
3   Determination of the cell size 
 
Experience shows that a good rule of the thumb for the cell size happens to be ∆z = λmin/10. 
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⋅
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For the envisioned system, the value for fmax is given by the FCC limits [2] and it is 10.6 GHz. At this frequency, the 
tissues with the higher εr of the multilayer structure under analysis are the muscle and the heart, with a value εr ≈ 35 [3]. 
Replacing and computing, 

[m]1078.4
35[Hz]106.10

[m/s]103 3
9

8
−×=

⋅×

×
=minλ  

Then, ∆z = λmin/10 ≈ 0.45 [mm] 
 
 
4   Layout of the multilayer structure 
 

Fig.  2 shows the layout of a portion of the human chest near the heart and the source of UWB impulses. The chest is 
modeled as a multilayer structure composed of four semi-infinite layers of lossy and dispersive tissues that precede the 
heart. 

The source is located 15 cm away from the air/skin interface because this was the maximum distance obtained in 
previous approximations of the same problem [4]; [5] and [6]. However, as is, this model do not account for the free space 
loss suffered by the pulse before it hits the air/skin interface. Therefore, the attenuation that will result from the simulation 
can be though as the attenuation due only to the propagation through the chest tissues. 
The total number of cells required to simulate the region of interest is: 

[ ]
[ ] cells4504.444
mm45.0
mm200

size cell
interest of Regioncells#  

 

 
≅===  
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5   One Dimensional Perfectly Matched Layer (PML) 
 

To avoid unpredictable results into the region of interest, it is necessary to avoid the reflections coming from its 
boundaries implementing some kind of absorbing boundary conditions. Ref. [1] mentions several approaches to realize 
them. Here, it is adopted the Perfectly Matched Layer (PML) method, that creates a region neighboring the one of interest, 
in which the fields are heavily attenuated by means of fictitious dielectric and permeabilities constants. The total problem 
space will now be constituted by the region of interest plus the PML regions. 

The idea is that if the impedance between the PML and the region of interest εµη =  remains constant no reflection 
would occur. Also by making both µ and ε complex, one makes the PML region lossy, so the pulse will die out before it 
hits the problem space boundary. 

Moving (1) to the frequency domain and adding the fictitious dielectric constant *
Fε  and the fictitious permeability *

Fµ , 
results: 
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In free space, the normalized units make η0 = 1, so the PML condition imposes: 
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* are two complex quantities of the form: 
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Adopting εF = µF = 1 and σH/µ0 = σD/ε0, the value in Eq. (5a) becomes: 
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If σD(z) increases gradually as it goes into the PML, Eqs. (4) and (5) will cause xD~ and Hy  to be attenuated. Using the 
values (6) together with the previous assumptions one can rewrite (4) and (5) as: 

Fig.  2. Simplified model of the chest composed of 4 semi-infinite layers of lossy and dispersive tissue. The source is thought to 
be at around 15cm from the skin. The total region of interest includes one centimeter more to the right to account for the 
penetration of the wave into the heart.  
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Starting with Eq. (7), before putting it into the FDTD formulation, its left side can be written as: 
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Moving to the time domain and then taking the finite difference approximations one gets the following: 
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Replacing into (7) along with the spatial derivatives one gets: 
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Defining the parameters: 
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To calculate the parameter f and g, instead of varying the conductivities, an auxiliary parameter is used: 
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where the cubic and the PML_ATT_FACTOR are just empirical numbers. For example, Ref. [1] recommends a 
PML_ATT_FACTOR = 0.333, however in this work, it was varied obtaining also good results with higher values such as 
0.8. 
The f and g parameters are then calculated as: 
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Within the region of interest, f and g are set to 1; whereas, throughout the PML, gi2 and fi2 will decrease from 
approximately 1 to (1+PML_ATT_FACTOR)-1 (i.e. from 1 to 0.55 for  PML_ATT_FACTOR = 0.8). The same will happen 
for gi3 and fi3 (i.e. from 1 to 0.11 for  PML_ATT_FACTOR = 0.8). These values assure a smooth transition from the region 
of interest to the PML.  
With the inclusion of a PML of 40 cells at both sides, the total problem space expressed in FDTD cells (one cell = 
0.45mm) is depicted in Fig.  3.  

 
 
Although this PML formulation has been thought for free space, it works very well also for the other media involved in 
this problem, as it will be shown later in the validations. 
 
 
6   Source impulse model 
 

Typically, the envisioned UWB communications devices use pulses with a shape that has the form of some derivative 
of a Gaussian pulse. For the sake of this work, it is followed the approach adopted by Time Domain Corporation, one of 
the pioneers manufacturers of UWB equipment [7]. Time domain declares that their PulsON® technology emit ultra-short 
"Gaussian" monocycles [8]. The literature knows the Gaussian monocycles as the first derivative of a Gaussian pulse. So, 
if a Gaussian pulse has the form: 
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Fig.  4. Gaussian pulse 
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Fig.  3. FDTD cell layout of the simplified model of the chest containg two PML regions to act as absorbing boundaries in order 
to prevent unwanted reflections into the region of interest.  
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the Gaussian monocycle is 
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Using 212 eakp ⋅= as the proportionality constant to make the amplitude = 1, the impulse used as a source becomes: 
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Fig.  5. Gaussian monocycle 

 
The spectrum of this Gaussian monocycle is given by Fourier transforming p(t) 

[ ] ( )23

2
1)()( afefakptpFfP πππ −⋅⋅⋅⋅==  

 
Fig.  6. Frequency spectrum of the Gaussian monocycle 

 
The specifications of the P210 Evaluation Kit mentions that the radiated center frequency is approximately fc = 4.7 GHz, 
therefore: 
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According to Fig.  5, the Gaussian monocycle that will be used for the simulations will have a duration of 4a = 0.2 [ns]. 
Such a pulse, has a 3dB bandwidth ≈ 5.2 GHz (i.e. f1 = 2.2GHz, f2 = 7.4 GHz), which makes it inherently ultra-wide band. 
 
 
7   Validations of the formulation 
 

Before going ahead further in the modeling it will be nice to validate the FDTD formulation made so far against some 
basic analytical solutions to be sure that the developed C program is working as expected. 
 
 
7.1   Verification of the time of flight of the impulse over the multilayer structure when considered lossless. 
 

The most trivial verification is to calculate the theoretical time it takes for the pulse to travel from the source to the 
heart wall and compare it with simulations results. 

Since the frequency dependence of the tissues has not been modeled yet, the constitutive parameters are taken at 4GHz. 
This will make the results only approximate, but good enough to check if the program is working correctly. 

TABLE I shows the time it takes for a 4 GHz wave originated at the source to hit the heart wall when the multilayer 
structure is considered lossless. 
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Considering that in the program the implementation of the pulse is shifted 200 [ps], then the first maximum of the 
pulse should hit the heart wall at: ( ) ][ ps1385220087.1219 ≅−+= at   

By running the simulation it was obtained t ≈ 1397 [ps]. The small difference is due to the interaction of the reflected 
part of the wave that already penetrated the heart wall which briefly delays the arrival of the maximum from the theoretical 
value that, as such, do not consider the reflections. Fig.  7 shows the results of the simulation. 

 
Another value to validate is the total transmission coefficient. The transmission coefficients at 4 GHz as calculated in [4] 
are: T1=0.60; T2=0.50; T3=1.09; T4=1.14; and T5=0.75 respectively for each of the boundaries of Fig.  2. Thus, the total 

transmission coefficient for the multilayer structure is  2796.0
5
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Running the simulation for 1350 [ps] (i.e. long enough to let the impulse penetrate into the heart but short enough to 
minimize the influence of the reflections), and measuring the value of the field near to the boundary one gets: 
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Computing the value of the incident impulse at free space for the same time interval gives:  p(t = 86.66 x 10-12) = 200.4 
x 10-3, so the transmission coefficient of the structure can be approximated as 56.1/200.4 ≈ 0.279, which is also very near 
to the theoretical value considering the approximation. Fig.  7 also shows the propagation of the pulse up to 1350 [ps]. 
 

TABLE I 
TRAVEL TIME OF A 4GHZ WAVE FROM THE SOURCE UNTIL IT HITS THE HEART WALL 

∆z 
Cartilage εr  

at 4GHz [9] Thickness 
[FDTD cells] 

Thickness [mm] 
(1cell=0.45mm) 

∆t=√εr·∆z/c0  
[ps] 

Air (free space) 1.0 337 151.65 505.85 
Fat 5.5 22 9.90 77.45 
Muscle 50.0 30 13.50 318.42 
Cartilage 35.0 26 11.70 230.89 
Lung 20.0 13 5.85 87.27 
TOTAL (one way)       1219.87 
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Fig.  7. Simulation of Gaussian monocycle impinging multiple layers of lossless tissues. At 400 [ps] the pulse is travelling on 
free space. Later on its shape is being altered by the multiple reflections suffered into the multilayer structure. At 1397 [ps] the 
maximun hits the heart wall. 
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7.2   Verification of the intensity impinging the heart wall at 4GHz considering the structure lossy but still non 
dispersive. 
 
The tissues under study present the following conductivities at 4GHz:  

 
Fig.  8 shows the results. As expected the maximum hits the heart wall at approximately 1397 [ps]. The value is: 1.384 x 
10-2.  
Going ahead with the simulation the maximum of the reflection coming back from the heart would reach the source 
antenna after 2782 [ps], with a value of 2.463 x 10-4. Given that the source impulse has unit amplitude this value gives 
directly the round trip attenuation introduced by the lossy multilayer structure. In dB the value is: 20·log 2.463 x 10-4 ≈ -
72.17 dB. This attenuation is very near the 71.79 dB calculated analytically in [10], which validates the result. Fig.  9 
shows the shape of the returning pulse after 2782 [ps] when the maximum hits the source antenna located at position 0 
[cm]. 

 
 

TABLE II 
CONDUCTIVITY OF THE MEDIUM  FOR 4GHZ [9] 

 Media σ [S/m] 
air 0.00 
fat 0.25 
Muscle 3.50 
Cartilage 3.00 
Lung 1.50 
Heart 4.00 
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Fig.  8. Simulation of Gaussian monocycle impinging multiple layers of lossy tissues. At 400 [ps] the pulse is travelling on free 
space where σ = 0. After approximately 1397 [ps], the maximun hits the heart wall after being heavily attenuated by the media.
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8   Modeling multiple layers of frequency-dependent media  
 

So far, the multilayer structure has been modeled as lossy but not considering its frequency dispersion characteristics. 
The dispersion of the tissues is of fundamental interest for the sake of this work because having an UWB impulse source, 
one may well suppose that if its frequency components are attenuated differently, the total attenuation of the whole pulse 
should be less than the value calculated previously, thanks to the contribution of lower frequencies. This in turn will 
improve the range, something that is highly desirable for a contactless sensor such as the one envisioned here. 

Gabriel et al. proposed a 4 Cole-Cole model to represent the frequency dependence of the complex permittivities of the 
tissues [3]: 
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where 
( )ωε *

r : Complex relative permittivity 

∞ε : Permittivity at field frequencies ωτ >> 1 

∞−=∆ εεε sm : Magnitude of the dispersion region 

sε : Permittivity at ωτ << 1 

mτ : Time constant of each relaxation region 

mα : Measure of the broadening of the dispersion 

iσ : Static ionic conductivity 
 
For the tissues under consideration these values are: 
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Fig.  9. Simulation of Gaussian monocycle impinging multiple layers of lossy tissues. After 2782 [ps] the maximun returns to 
the source antenna for detection. The round trip attenuation at 4GHz is approximately 72 dB. 

TABLE III 
CONSTITUTIVE PARAMETERS FOR THE 4 COLE-COLE MODEL OF GABRIEL ET AL.[3] 

Media ε∞ ∆ε1 ∆ε2 ∆ε3 ∆ε4 τ1 [ps] τ2 [ns] τ3 [µs] τ4 [ms] σi α1 α2 α3 α4 
Breast fat 2.5 3 15 5x10-4 2x10-7 17.68 63.66 454.7 13.26 0.01 0.1 0.1 0.1 0 
Muscle 4 50 7000 1.2x10-6 2.5x10-7 7.23 353.68 318.31 2.274 0.2 0.1 0.1 0.1 0 
Cartilage 4 38 2500 1x10-5 4x10-7 13.263 144.686 318.31 15.915 0.15 0.15 0.15 0.1 0 
Lung (inflated) 2.5 18 500 2.5x10-5 4x10-7 7.96 63.66 159.15 7.958 0.03 0.1 0.1 0.2 0 
Heart 4 50 1200 4.5x10-5 2.5x10-7 7.96 159.15 72.34 4.547 0.05 0.1 0.05 0.22 0 
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The Cole-Cole terms proposed by Gabriel et al. makes its FDTD implementation particularly cumbersome. However, 
noticing that the values of mα  are in general << 1, one can consider the distribution parameter 0≅mα  and simplify the 
formulation using 4 Debye terms, resulting in: 
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which, even though is not as accurate as the previous, gives equally satisfactory results and simplifies a lot the formulation 
of the problem. 
Using the electric flux density one can write: 
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Going into the Z domain 
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The following auxiliary parameters are defined: 
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So, Eq. (8) becomes: 
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Solving for ( )zE~ : 
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Going to back to the sampled time domain: ( ) nEz →E~ ; ( ) 11 ~ −− →⋅ nEzz E  where n is the time counter such that the total 
simulated time is t = n·∆t being ∆t the time step. Then,  

∑

∑

=
∞

=

−∆−−

∆⋅∆
+

∆⋅
+

⋅−−

= 4

10

4

1

11

m m

mi

m

n
m

tnn

n

tt

SeID
E

m

τ
ε

ε
σε

τ

 

where 
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The FDTD computer code becomes: 
dx[k] and hy[k] Remain the same 
ex[k] = ga[k] * (dx[k] - ix[k] - del_exp1[k]*sx1[k] - del_exp2[k]*sx2[k] – 
 del_exp3[k]*sx3[k] –  
 del_exp4[k]*sx4[k]); 
ix[k] = ix[k] + gb[k]*ex[k]; 
sx1[k]= del_exp1[k]*sx1[k] + gc1[k]*ex[k]; 
sx2[k]= del_exp2[k]*sx2[k] + gc2[k]*ex[k]; 
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sx3[k]= del_exp3[k]*sx3[k] + gc3[k]*ex[k]; 
sx4[k]= del_exp4[k]*sx4[k] + gc4[k]*ex[k]; 
ga[k] = 1.0/(epsilon[k] + sigma[k]*dt/epsz + delta_epsilon1[k]*dt/tau1[k] + 
 delta_epsilon2[k]*dt/tau2[k] + 
 delta_epsilon3[k]*dt/tau3[k] + 
 delta_epsilon4[k]*dt/tau4[k] ); 
gb[k] = sigma[k]*dt/epsz; 
gc1[k] = delta_epsilon1[k]*dt/tau1[k]; 
gc2[k] = delta_epsilon2[k]*dt/tau2[k]; 
gc3[k] = delta_epsilon3[k]*dt/tau3[k]; 
gc4[k] = delta_epsilon4[k]*dt/tau4[k]; 
del_exp1[k] = exp(-dt/tau1[k]); 
del_exp2[k] = exp(-dt/tau2[k]); 
del_exp3[k] = exp(-dt/tau3[k]); 
del_exp4[k] = exp(-dt/tau4[k]); 

 
 
9   Simulation results 
 
Incorporating the dispersive and lossy formulation into the program and running the simulation, the results are shown in 
Fig.  10. 

 
The impulse hits the heart wall at approximately 1350 [ps] with a value of 3.338 x 10-2. As expected the impulse gets 

less attenuated due to the influence of the lower frequency components which are in turn less attenuated, because the 
conductivity decreases with frequency. On the other hand the impulse travels faster because the higher frequencies 
components of the impulse are in turn traveling faster, because the permittivity of the tissues decreases as the frequency 
increases. 

Fig.  11 shows the reflected impulse after 2500 [ps]. As expected it has widen to nearly 0.5 [ns], however its shape has 
not been distorted too much, which makes it easily detectable with a correlation receiver. The attenuation has also 
improved a lot. Considering the value of the positive maximum (worst case), the round trip attenuation is: 20·log 7.83x10-3 
≈ 42 dB. This huge improvement of nearly 30 dB compared with the previous value computed only at 4 GHz, shows the 
advantage of using UWB impulse sensing instead other monofrequency techniques. 
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Fig.  10. Simulation of Gaussian monocycle impinging multiple layers of lossy tissues and dispersive tissues. After 1350 [ps] hits 
the heart wall. The one way attenuation is approximately 29.5 dB. 
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According to Fig.  11, a sensing system working as a monostatic gated impulse radar positioned at 15 [cm] from the 

chest, would have to transmit the impulse and switch off the transmitter after approximately 0.4 [ns]. Then, it should turn 
on the receiver after 2.5 [ns] for approximately 0.5 [ns], to detect the reflection. Fig.  12, shows in detail the evolution over 
time of cm)0(~ =zEx .  

 
Checking for the feasibility of such a system using the previously mentioned UWB evaluation kit from Time Domain 

Corporation; one gets that the peak transmitted power Ptmax can be approximated as: 
[ ]

[ ] [ ]
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where the data, as taken from its data sheet [7], are: 

Fig.  12. Magnitude of the normalized electric field versus time at the receiving antenna position (0 cm). The different regions 
indicate the reflections received from the different layers of tissue. The scale of the ordinates change between muscle and 
cartilage for a better reading. 
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Fig.  11. Simulation of Gaussian monocycle impinging multiple layers of lossy tissues and dispersive tissues after 2500 [ps]. The 
figure shows the expected widenning of the returning impulse. 
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EIRP: Effective Isotropic Radiated Power = -12.8 dBm 
τ: Gaussian monocycle impulse width 1/fc 
fc: Center frequency (radiated) approx. 4.7 GHz 
PRF: Pulse Repetition Frequency 9.6 MHz. 

The attenuation value as given by the simulation is: 
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where the suffixes r and i indicates reflected and incident power respectively, and S is the power density in W/m2. 
Therefore the reflected power which in this case coincides with the received power1, is: 

[ ] [ ] [ ] [ ]dBm284214dBdBmdBm −=−=+= LPP ir  

Since the receiver sensitivity min
rP for QFTM4 modulation at 600 kbps is approximately -100[dBm] [11], there is still a lot 

of room to stand higher losses and/or increase the sensing distance, hopefully reaching the desirable range of one meter. 
 
 
10   Conclusions 

 
These FDTD simulations results constitute a step forward in the state of the art of vital signs monitoring using UWB 

radar technology. Previous publications predicted the performance either empirically, by using test hardware, or 
analytically by approximating the results using the traditional radar expressions for far field formulation. The former 
lacked insight about the phenomenology of the process and the latter did not account for the UWB characteristics of the 
impulses used. This work confirms the goodness of using UWB impulses to withstand the heavy attenuations introduced 
by the chest tissues compared with a monofrequency approach.  

As a future work remains the modeling in 3D and the study of the scattering characteristics of the heart, that here was 
considered as a semi-infinite media which is not exactly the case because its dimensions are not much higher than λ. 
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