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Abstract
We prove that the space of holomorphic p-forms on the moduli spaceMg,n of stable curves
of genus g with n marked points vanishes for p = 14, 16, 18 unconditionally and also
for p = 20 under a natural assumption in the case g = 3. This result is consistent with the
Langlands program and it is obtained by applying theArbarello–Cornalba inductive approach
to the cohomology of moduli spaces.
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1 Introduction

The moduli space Mg,n parameterizing stable curves of genus g with n marked points is a
projective compactification with a beautiful geometric structure: all its boundary components
are (products of) moduli spaces of the same kind but with smaller invariants. This remarkable
property was employed by Enrico Arbarello and Maurizio Cornalba to perform an elegant
inductive computation of the first few rational cohomology groups of Mg,n . In particular,
in [1] they proved that H1(Mg,n) = H3(Mg,n) = H5(Mg,n) = 0 and established an
inductive approach to reduce the vanishing of odd cohomology (so long as it vanishes, since
it is well known that H11,0(M1,11) �= 0) to a finite number of explicit verifications in low
genus.

A few years later, in [4] Gilberto Bini and the author pointed out that the same inductive
procedure implies also the vanishing of the spaces of holomorphic p-forms H p,0(Mg,n)

for 0 < p < 11. More recently, a renewed interest in the Arbarello-Cornalba method is
witnessed by the papers [3] by Jonas Bergström, Carel Faber, and Sam Payne, where they
compute that H7(Mg,n) = H9(Mg,n) = 0, and [5] by Samir Canning, Hannah Larson,
and Sam Payne, where they prove inductively that the cohomology group Hk(Mg,n) is pure
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Hodge-Tate (hence, in particular, Hk,0(Mg,n) = 0) for any even k ≤ 12. This is consistent
with the Langlands program, predicting that Hk(Mg,n) should be pure Hodge-Tate for all
even k ≤ 20.

Here we move a small step forward along the same path by obtaining the following result:

Theorem 1 We have

H14,0(Mg,n) = H16,0(Mg,n) = H18,0(Mg,n) = 0

for every g and n with 2g − 2 + n > 0.
Furthermore, if H20,0(M3,15) = H20,0(M3,16) = 0 then H20,0(Mg,n) = 0 for every g and
n with 2g − 2 + n > 0.

Once again, the crucial ingredient is a minor variant of the Arbarello-Cornalba inductive
approach (see Lemma 1). Of course, the statement of Theorem 1 arises the following natural
question:

Question 1 Is H20,0(M3,15) = H20,0(M3,16) = 0?

We work over the complex field C.

2 The proofs

Lemma 1 Let 0 < p ≤ 21 and assume h p,0(Mg′,n′) = 0 for every g′, n′ such that p ≥
2g′ − 2 + n′ > 0. Then h p,0(Mg,n) = 0 for every g and n with 2g − 2 + n > 0.

Proof By double induction on g and n. Let d(g, n) = 2g − 2 + n > 0.
If d(g, n) = 1 we have either g = 0 and n = 3, or g = 1 and n = 1, and in both cases

the claim is obvious.
Let now d(g, n) > 1. If p ≥ d(g, n) then the claim holds by assumption, hence let

p < d(g, n). In the long exact sequence of cohomology with compact supports:

. . . → Hk
c (Mg,n) → Hk(Mg,n) → Hk(∂Mg,n) → . . .

we have Hk
c (Mg,n) = 0 for k < d(g, n) by [7]. Since the morphism

Hk(Mg,n) → Hk(∂Mg,n)

is compatible with the Hodge structures (see [1], p. 102), for p < d(g, n) there is an injection

H p,0(Mg,n) ↪→ H p,0(∂Mg,n). (1)

Next we use the fact that each irreducible component of the boundary ∂Mg,n is the
image of a map from Mg−1,n+2 or Mh,m+1 × Mg−h,n−m+1, where 0 ≤ h ≤ g and both
2 h − 2+m + 1 and 2(g− h)− 2+ n−m + 1 are positive. By the analogue of Lemma (2.6)
in [1] and the Hodge-Künneth formula, the map

H p,0(Mg,n) → H p,0(Mg−1,n+2) ⊕
⊕

h,m

H p,0(Mh,m+1 × Mg−h,n−m+1)

= H p,0(Mg−1,n+2) ⊕
⊕

h,m

(H0,0(Mh,m+1) ⊗ H p,0(Mg−h,n−m+1) ⊕
⊕

q≥1

Hq,0(Mh,m+1) ⊗ H p−q,0(Mg−h,n−m+1))
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is injective whenever the map (1) is. The right hand side involves the terms H p,0(Mg−1,n+2)

and H p,0(Mg−h,n−m+1) with either h ≥ 1 or h = 0 and m ≥ 2, hence vanishing by
induction, and products of two terms which have 1 ≤ q ≤ 10, since p ≤ 21. Therefore by
[4], Theorem 1, stating that Hq,0(Mg,n) = 0 for 0 < q < 11, we obtain H p,0(Mg,n) = 0.

	

Remark 1 The assumption of Lemma 1 is not satisfied for every 11 ≤ p ≤ 21: in partic-
ular, as it is well known H11,0(M1,11) �= 0 (see for instance [6], Section 2.3) and also
H17,0(M2,14) �= 0 (see [6], Section 3.5).

Proof of Theorem 1 In order to apply Lemma 1 we have to fix an even integer p with 14 ≤
p ≤ 20 and check that H p,0(Mg′,n′) = 0 for every g′, n′ such that p ≥ 2g′ − 2 + n′ > 0.

If g′ = 0 then all cohomology is tautological (hence algebraic) by [8].
If g′ = 1 then all even cohomology is tautological by [10].
If g′ = 2 then all even cohomology is tautological for n′ < 20 by [11].
If g′ = 3 then Mg′,n′ is unirational (hence H p,0(Mg′,n′) = 0 for every p > 0) for

n′ ≤ 14 by [9], Theorem 7.1 (notice that this range completely covers the case p ≤ 18, while
for p = 20 we need the additional assumption in the statement).

The same Theorem 7.1 in [9] yields the unirationality of Mg′,n′ also for g′ = 4 and
n′ ≤ 15, g′ = 5 and n′ ≤ 12, g′ = 6 and n′ ≤ 15, g′ = 7 and n′ ≤ 11, g′ = 9 and n′ ≤ 8,
g′ = 11 and n′ ≤ 10.

Finally, by [2], Theorem B., Mg′,n′ is unirational for g′ = 8 and n′ ≤ 11 and g′ = 10
and n′ ≤ 3, thus covering the last missing cases. 	
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