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Abstract
The weight, balancedness and nonlinearity are important properties of Boolean 
functions, but they can be difficult to determine in general. In this paper, we study 
how to compute them for two classes of functions where these problems are more 
tractable. In particular, we study functions of degree three and the so-called “split-
ting” functions. The latter are functions that can be written as the sum of two func-
tions defined over disjoint sets of variables. We show how, for splitting functions, 
studying these properties reduces to the study of simpler functions. We provide then 
a procedure to compute the weight of a cubic Boolean function. We show computa-
tionally that, for a cubic Boolean function with limited number of terms, this proce-
dure is on average significantly more efficient than some other methods.
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1 Introduction

Boolean functions are widely studied and they have applications in coding theory, 
cryptography and other fields. In cryptography, the properties of (vectorial) Boolean 
functions play a critical role, particularly when these functions are involved in the 
design of symmetric-key algorithms, such as block ciphers (in S-boxes) and stream 
ciphers (in nonlinear filters and combiners). When designing a cryptosystem, we 
want it to resist most of the known attacks. For this reason, a lot of effort is required 
to find a Boolean function with good cryptographic properties.

Various criteria can be used to measure the ability of Boolean functions to resist 
some cryptanalysis. For instance, balancedness, high nonlinearity and good autocor-
relation properties provide good resistance to linear cryptanalysis and differential 
cryptanalysis [8]. It is not easy to find a function satisfying many such criteria at 
once, but usually we try to achieve a reasonable compromise by focusing on a few 
particular properties. In this paper, we study the weight, balancedness and nonlin-
earity of a particular class of Boolean functions that we call “splitting” functions. 
We study the same properties also for cubic Boolean functions that are not necessar-
ily splitting functions. By “splitting” functions we refer to those Boolean functions 
that can be written as the sum of two Boolean functions defined over disjoint sets of 
variables, that is, f (x1,… , xn) = g(x1,… , xs) + h(xs+1,… , xn).

This paper is organised as follows. Sect.  2 reports some known preliminary 
results. In Sect. 3, we show how the weight of any Boolean function can be related 
to the weights of some other functions with lower dimension. In addition, we prove 
some results on the weight and balancedness of splitting functions, and of a special 
class of cubic Boolean functions. This allows us to present a procedure for com-
puting the weight of a (generic) cubic Boolean function. In Sect. 4, we present an 
inequality which relates the nonlinearity of any Boolean function to the nonlinearity 
of some other functions of lower dimension. Finally, we compute the nonlinearity of 
splitting functions with a given shape.

2  Preliminaries

In this section we report some definitions and results which we use in our work. For 
more details, the reader is referred to [1, 2, 4, 5, 7, 9].

The symbol ℕ denotes the set of natural numbers. Throughout the paper, unless 
otherwise specified, n denotes a positive integer. We denote the field of two elements 
by �  , and the vector space of dimension n over �  , for n ∈ ℕ , by � n . The vectors in � n 
denoted by 0n and 1n are the vectors whose entries are, respectively, all zeros and all 
ones. Given a set A, |A| denotes its size.

A vectorial Boolean function (vBf) is any function F from � n to �m , for some 
positive integers n, m. A Boolean function (Bf) is any function f from � n to �  , for 
some n ≥ 1 . Thus, Boolean functions are vectorial Boolean functions with m = 1 . 
A vBf can be viewed as a concatenation of Bf’s. Indeed, we can write a vBf as 
F = (f1,… , fm) , where the Bf’s f1,… , fm are called the coordinate functions of F.
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In the present paper, we focus on Boolean functions. For n ≥ 1 , we denote by 
Bn the set of all Boolean functions from � n to �  . For 1 ≤ k < n , if f is in Bn and 
depends only on k variables, we denote by f↾� k its restriction to these k variables. 
Clearly, f↾� k is in Bk.

Note Consider 1 ≤ k < n . To simplify the notation, sometimes for a Boolean func-
tion g ∈ Bn we write g(x1,… , xk) to indicate that g depends only on k variables.

We use the algebraic normal form (ANF for short) to represent Bf’s. This rep-
resentation is unique and, given f ∈ Bn , it is the n-variate polynomial representa-
tion over �  given by

where P = {1,… , n} and aI ∈ �  . When aI ≠ 0 , the element 
∏

i∈I xi is called a term 
of f. The algebraic degree or simply degree of f can be defined as the value

We say that f is linear if deg(f ) ≤ 1 and f (0) = 0 , affine if deg(f ) ≤ 1 , quadratic if 
deg(f ) ≤ 2 and cubic if deg(f ) ≤ 3.

Consider f ∈ Bn , for a positive integer n. The Hamming weight of f is given 
by w(f ) = |{x ∈ �

n ∣ f (x) = 1}| , and we say that f is balanced if w(f ) = 2n−1 . 
All non-constant affine functions are balanced. The distance between f and g is 
d(f , g) = w(f + g) and the nonlinearity of f is N(f ) = min�∈An

d(f , �) , where An is 
the set of all affine Boolean functions in n variables.

The Walsh transform of f is the function Wf  from � n to ℤ , defined as

for all a ∈ �
n and where “ ⋅ ” is any inner product in � n . We define F(f ) as

Observe that f is balanced if and only if F(f ) = 0.
The nonlinearity of a Bf f can also be expressed as N(f ) = 2n−1 −

1

2
L(f ) , where 

L(f ) = max
a∈� n

|Wf (a)| . A Bf f on n variables is called bent if N(f ) = 2n−1 − 2
n

2
−1 

(this can only happen for n even). The lowest possible value of L(f ) is 2
n

2 , and the 
bent functions are precisely those that meet this bound with equality. For n odd, a 
Bf f is called semi-bent if N(f ) = 2n−1 − 2

n−1

2 .
Let a ∈ �

n . The first-order derivative, or simply the derivative, of f ∈ Bn in the 
direction of a is defined by

f (x1,… , xn) =
∑
I⊆P

aI

(∏
i∈I

xi

)
,

deg(f ) = max
I ⊆ P

aI ≠ 0

|I|.

Wf (a) =
∑
x∈� n

(−1)f (x)+a⋅x ,

F(f ) = Wf (0) =
∑
x∈� n

(−1)f (x) = 2n − 2w(f ).
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The following result is well known, see for instance [4] Theorem 12.

Theorem  1 A Bf f on n variables is bent if and only if Daf  is balanced for any 
nonzero a ∈ �

n.

Two Bf’s f , g ∈ Bn are said to be affine equivalent if there exists an affine auto-
morphism � ∶ �

n → �
n such that f = g◦� . This relation is denoted by ∼A and we 

write f ∼A g . Observe that ∼A is an equivalence relation. The following results 
are well known, for example they can be derived from Proposition 13 in [4].

Proposition 2 Let f , g ∈ Bn be such that f ∼A g . Then w(f ) = w(g) and so f is bal-
anced if and only if g is balanced.

Remark 3 Since, by Proposition  2, w(f ) = w(g) if f ∼A g , this also implies that 
F(f ) = F(g) as F(f ) = 2n − 2w(f ).

Proposition 4 Let f , g ∈ Bn be such that f ∼A g . Then

Moreover, we have N(f ) = N(g).

Remark 5 Therefore, the nonlinearity, the weight and the balancedness are affine 
invariants. Moreover, we have that the algebraic degree is also an affine invariant.

Next we present a well-known theorem on classification of quadratic Boolean 
functions, see [7] page 438. This representation of quadratic Bf’s is sometimes 
called Dickson form. Indeed, Dickson calculated explicitly the Hamming weight 
of quadratic functions, by showing that any non-affine quadratic Boolean function 
f ∈ Bn is affine equivalent to x1x2 +⋯ + x2k−1x2k + cx2k+1 + d , with c, d ∈ �  and 
2k ≤ n (if c = 1 , then 2k + 1 ≤ n).

Theorem 6 Let f ∈ Bn be quadratic but not affine. Then 

 (i) f ∼A x1x2 +⋯ + x2k−1x2k + x2k+1 with k ≤ ⌊ n−1

2
⌋ , if f is balanced ( w(f ) = 2n−1),

 (ii) f ∼A x1x2 +⋯ + x2k−1x2k + c , with k ≤ ⌊ n

2
⌋ and c ∈ �  , if f is not balanced.

In this second case we have that if c = 0 then w(f ) < 2n−1 , and if c = 1 then 
w(f ) > 2n−1.

The proofs of the next theorem and lemma can be found in [6] page 134.

Theorem  7 Let f be a quadratic Bf denoted as in Theorem  6. Then 
we have Wf (a) ∈ {0,±2n−k} , for a ∈ �

n , and N(f ) = 2n−1 − 2n−k−1 . 

Daf (x) = f (x + a) + f (x).

{|Wf (a)|}a∈� n = {|Wg(a)|}a∈� n .



1 3

On cryptographic properties of cubic and splitting Boolean…

Moreover, if f is not balanced then w(f ) = N(f ) = 2n−1 − 2n−k−1 if c = 0 , and 
w(f ) = 2n −N(f ) = 2n−1 + 2n−k−1 if c = 1.

Remark 8 Note that, for n even and k = n

2
 , f in Theorem 6 is bent. Obviously, this 

cannot happen for balanced functions.

Lemma 9 Two quadratic Bf’s g and h on � n are affine equivalent if and only if 
w(g) = w(h) and N(g) = N(h).

The following result is well known.

Proposition 10 A Bf g(x1,… , xn−1) + xn on n variables is balanced, for any g ∈ Bn−1.

3  On the weight of Boolean functions

In this section we study Boolean functions of a particular form that we call splitting 
functions. Splitting functions can be characterised by means of Boolean functions 
of lower dimensions. By studying properties of these latter functions, we can deter-
mine important properties of the splitting function.

In particular, in this section we classify the weight of splitting functions and the 
weight of Boolean functions of degree three. Moreover, we determine some condi-
tions for the balancedness of these functions.

Definition 11 A Bf f on n variables is a splitting function if

for some positive integer s < n . We recall that with this notation we assume that 
g ∈ Bn depends only on s variables and h ∈ Bn depends only on n − s variables.

Remark 12 If we consider a Boolean function g(x1,… , xs) ∈ Bn , with s < n positive 
integers, then w(g) = 2n−sw(g↾� s) and F(g) = 2n−sF(g↾� s) . Furthermore, g is bal-
anced if and only if g↾� s is balanced and also F(g) = 0 if and only if F(g↾� s) = 0.

We study here the weight and balancedness of splitting Bf’s.

Theorem 13 Let f ∈ Bn be such that f ∼A g(x1,… , xs) + h(xs+1,… , xn) , with s < n . 
Then

Proof Since, by Remark 3, F(f ) is invariant under affine equivalence, we have

f ∼A g(x1,… , xs) + h(xs+1,… , xn)

F(f ) = F(g↾� s)F(h↾� n−s) = 2−nF(g)F(h).
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  ◻

It is immediate from Remark  12 and Theorem  13 that the following corollary 
holds.

Corollary 14 For t ∈ ℕ and 1 ≤ i ≤ t , let Xi ⊂ X = {x1,… , xn} , with |Xi| = ni , be 
such that all Xi are pairwise disjoint. If f (X) =

∑t

i=1
fi(Xi), with fi ∈ Bni

 , then 
F(f ) = 2n−r

∏t

i=1
F(fi↾� ni ) , with r = n1 +⋯ + nt.

Proposition 15 Let f ∈ Bn be such that f ∼A g(x1,… , xs) + h(xs+1,… , xn) , with 
s < n . Then

Proof We have

  ◻

We consider the balancedness of splitting functions.

Corollary 16 Let f ∈ Bn be such that f ∼A g(x1,… , xs) + h(xs+1,… , xn) , with s < n . 
Then f is balanced if and only if at least one among g and h is balanced.

Proof We have that f is balanced if and only if F(f ) = 0 . From Theorem 13, this is 
equivalent to having F(g↾� s) = 0 or F(h↾� n−s) = 0 , corresponding to having either g 
or h balanced.   ◻

Remark 17 Note that from Corollary 16 we can deduce Proposition 10.

In the following proposition we consider splitting functions of a special form. 
This allows us to compute the exact value of their weights.

F(f ) =
∑

(y,x)∈� s×� n−s

(−1)g(y)+h(x) =
∑
y∈� s

(−1)g(y)
∑

x∈� n−s

(−1)h(x)

= F(g↾� s)F(h↾� n−s) = 2−n
(
2n−sF(g↾� s)

)(
2sF(h↾� n−s)

)

= 2−nF(g)F(h).

w(f ) = 2n−sw(g↾� s) + 2sw(h↾� n−s) − 2w(g↾� s)w(h↾� n−s)

= w(g) + w(h) − 21−nw(g)w(h).

w(f ) = 2n−1 −
1

2
F(f ) = 2n−1 −

1

2

(
F(g↾� s)F(h↾� n−s)

)

= 2n−1 −
1

2

[(
2s − 2w(g↾� s)

)(
2n−s − 2w(h↾� n−s)

)]

= 2n−sw(g↾� s) + 2sw(h↾� n−s) − 2w(g↾� s)w(h↾� n−s)

= w(g) + w(h) − 21−nw(g)w(h).
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Proposition 18 Let f ∈ Bn , with deg(f ) = m , be such that

where k ∈ ℕ is such that mk ≤ n . Then

Proof First, let fi =
∏m

j=1
xmi+j so that f ∼A

∑k−1

i=0
fi . Then, by Corollary 14, we have 

F(f ) = 2n−mk
∏k−1

i=0
F(fi↾�m) . For all x ∈ �

m ⧵ {1m} , observe that fi↾�m(x) = 0 , and 
fi↾�m(1m) = 1 , so F(fi↾�m) = 2m − 2 . Thus F(f ) = 2n−mk(2m − 2)k . Hence, we have 
w(f ) = 2n−1 −

1

2
F(f ) = 2n−1 −

1

2
[2n−mk(2m − 2)k] = 2n−1 − 2n−mk−1(2m − 2)k .   ◻

Observe that the function f in Proposition 18 is balanced if and only if m = 1 , that 
is, f is balanced if and only if it is a linear function.

Remark 19 All quadratic Bf’s are splitting functions (deduced from Theo-
rem 6) and those which are not balanced are of the form given in Proposition 18, 
or complements thereof, with m = 2 . So applying Proposition  18, we obtain 
w(f ) = 2n−1 − 2n−k−1 and w(f + 1) = 2n−1 + 2n−k−1 . This result on the weight of 
quadratic Boolean functions is well known.

3.1  The weight computation of twisted products

In this subsection, we study the weight and balancedness of the twisted products of 
Bf’s. We show how the weight of a Bf on n variables can be related to the weights of 
some other functions of lower dimension. For ease of notation, in this subsection we 
consider Boolean functions on n + 1 and n + m variables, for n,m ∈ ℕ.

Any Bf in n + 1 variables can be expressed in the form

for g′, h′ ∈ Bn . Observe that xn+1g′(x1,… , xn) + h′(x1,… , xn) = xn+1(g′ + h′) + (1 + xn+1)h′ . So any Bf f 
in n + 1 variables can be written in the form

for g, h ∈ Bn . Given (3.2), we say that f is the twisted product of g and h. Observe 
that the twisted product is a special case of the form defined by

for some positive integers m, n and Bf’s g and h depending on n variables.

f ∼A

k−1∑
i=0

m∏
j=1

xmi+j,

F(f ) = 2n−mk(2m − 2)k and w(f ) = 2n−1 − 2n−mk−1(2m − 2)k.

(3.1)f ∼A xn+1g
�(x1,… , xn) + h�(x1,… , xn),

(3.2)
f ∼A xn+1g(x1,… , xn) + (1 + xn+1)h(x1,… , xn),

(3.3)f ∼A

(
m∏
j=1

xj

)
g(xm+1,… , xm+n) +

(
1 +

m∏
j=1

xj

)
h(xm+1,… , xm+n),
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Remark 20 Notice that, for any Bf f, there exists a positive integer m such that f can 
be expressed in the form (3.3). In fact, this statement is always satisfied with m = 1.

Next we show that if we know the weights of g and h, then we can obtain the 
weight of f.

Theorem 21 For two positive integers m, n, let f ∈ Bm+n be a Bf of the form (3.3). 
Then 

(a) w(f ) = (2m − 1)w(h↾� n) + w(g↾� n),
(b) f is balanced if and only if F(g↾� n) = −F(h↾� n) ⋅ (2m − 1),
(c) f is balanced if both g and h are balanced,
(d) f is not balanced if one of g and h is balanced and the other is not.

Proof Consider f as in (3.3). 

(a) Any element X ∈ �
m+n can be written as X = (x, y) for x ∈ �

m and y ∈ �
n . Using 

this decomposition, we have 

 Since F(f ) = 2m+n − 2w(f ) , we have 

(b) Recall that f is balanced if and only if F(f ) = 0 . This is satisfied if 
and only if (2m − 1)F(h↾� n) + F(g↾� n) = 0 ,  which is equivalent to 
F(h↾� n) = −F(g↾� n)∕(2m − 1).

(c) Suppose g and h are both balanced. Then F(g↾� n) = F(h↾� n) = 0 . From Eq. (3.4), 
we have that F(f ) = 0 , and so f is balanced.

(d) Without loss of generality, suppose that g is balanced while h not. Then 
F(g↾� n) = 0 and F(h↾� n) ≠ 0 which, by Eq. (3.4), implies that F(f ) ≠ 0 , and so 
f is not balanced.

  ◻

Remark 22 Note that if f from Theorem 21 is balanced, then (2m − 1) ∣ F(g↾� n).

(3.4)

F(f ) =
∑

X∈�m+n

(−1)f (X) =
∑

(x,y)∈�m⧵{1m}×�
n

(−1)h(y) +
∑

(x,y)∈{1m}×�
n

(−1)g(y)

= (2m − 1)
∑
y∈� n

(−1)h(y) +
∑
y∈� n

(−1)g(y) = (2m − 1)F(h↾� n) + F(g↾� n).

w(f ) = 2n+m−1 −
1

2
F(f ) = 2n+m−1 −

1

2

[
(2m − 1)F(h↾� n) + F(g↾� n)

]

= 2n+m−1 −
1

2

[
(2m − 1)(2n − 2w(h↾� n)) + (2n − 2w(g↾� n))

]

= 2n+m−1 −
1

2

[
2n+m − 2m+1w(h↾� n) + 2w(h↾� n) − 2w(g↾� n)

]

= (2m − 1)w(h↾� n) + w(g↾� n).
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Remark 23 If m = 1 in Theorem  21, so that, f = (xn+1)g + (1 + xn+1)h , we 
have w(f ) = w(h↾� n) + w(g↾� n) . Moreover, observe that if g and h are such that 
g = h◦� + 1 , for some affine automorphism � over � n , then f is balanced. Indeed, 
w(f ) = w(h↾� n ) + w(g↾� n ) = w(h↾� n ) + 2n − w(h◦�↾� n ) = w(h↾� n ) + 2n − w(h↾� n ) = 2n.

Finally, we consider the weight of cubic Bf’s. Generally, it is difficult to deter-
mine the weight for Bf’s of degree greater than 2 (problem addressed for example 
in [3]). In the following proposition, we present a result which completely describes 
the weight of a special class of cubic functions. Using Theorem 6 and Remarks  19 
and 23, the proof of Proposition 24 is a direct case-by-case computation. For this 
reason, we omit the proof.

Proposition 24 Let f = xn+1g(x1,… , xn) + (1 + xn+1)h(x1,… , xn) ∈ Bn+1 be cubic 
and such that deg(g), deg(h) ≤ 2 . Set q(x) = x1x2 +⋯ + x2k−1x2k , q̄(x) = q(x) + 1 , 
r(x) = x1x2 +⋯ + x2𝓁−1x2𝓁 and r̄(x) = r(x) + 1 , for some k,� ≤ ⌊ n

2
⌋ . If h or g is bal-

anced, then h ∼A q + x2k+1 or g ∼A r + x2�+1 respectively. If h is not balanced, then 
h ∼A q or h ∼A q̄ ; and if g is not balanced then g ∼A r or g ∼A r̄ . Moreover,

Thanks to Proposition  24, we deduce the following corollary 
which gives a description of all balanced cubic functions of the class 
f = xn+1g(x1,… , xn) + (1 + xn+1)h(x1,… , xn) , with deg(g), deg(h) ≤ 2.

Corollary 25 With the same notation as in Proposition 24, a cubic Bf f is balanced if 
and only if one of the following holds: 

(a) both g and h are balanced,
(b) g ∼A q and h ∼A q,
(c) g ∼A q and h ∼A q.

Corollary 25 can be restated as follows.

w(f ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2n, if both h and g are balanced,

2n−1, if h (resp. g) is bal. quad. and g (resp. h) = 0,

2n + 2n−1, if h (resp. g) is bal. quad. and g (resp. h) = 1,

2n−1 ± 2n−k−1, if h is not bal. quad. and g = 0,

2n + 2n−1 ± 2n−k−1, if h is not bal. quad. and g = 1,

2n−1 ± 2n−�−1, if h = 0 and g is not bal. quad.,

2n + 2n−1 ± 2n−�−1, if h = 1 and g is not bal. quad.,

2n ± 2n−k−1, if h is not bal. quad. and g is bal.,

2n ± 2n−�−1 if h is bal. and g is not bal. quad.,

2n − 2n−k−1 − 2n−�−1, if h ∼A q and g ∼A r,

2n + 2n−k−1 + 2n−�−1, if h ∼A q and g ∼A r,

2n + 2n−k−1 − 2n−�−1, if h ∼A q and g ∼A r,

2n − 2n−k−1 + 2n−�−1, if h ∼A q and g ∼A r.
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Corollary 26 Let f = xn+1g(x1,… , xn) + (1 + xn+1)h(x1,… , xn) , with deg(h), deg(g) ≤ 2 , be a 
cubic Boolean function. Then f is balanced if and only if either both g and h are bal-
anced or g = h◦� + 1 , for some affine automorphism �.

3.2  The weight of cubic Boolean functions

Finally, we consider generic cubic Bf’s, not only those that can be expressed as in 
Proposition 24. In this last part we go back to considering Bf’s on n variables. When 
a Bf f ∈ Bn is expressed in the form (3.1), that is, f = x1g(x2,… , xn) + h(x2,… , xn) , 
we have

Therefore, to determine the weight of f, we can simply compute the weight 
of (g + h)↾� n−1 and of h↾� n−1 . Since we are considering cubic functions, then 
g is quadratic and h can be affine, quadratic or cubic. If h is affine or quadratic, 
then deg(g + h), deg(h) ≤ 2 and the weight of f is already described in Propo-
sition  24. On the other hand, if h is cubic, then g + h is also cubic and Proposi-
tion  24 cannot be directly applied. However, we can recursively repeat the pro-
cess of decomposing f so that its weight is computed as the sum of the weights 
of some affine or quadratic functions. We now show how this can be done. Set 
f = x1g1(x2,… , xn) + h1(x2,… , xn) with deg(h1) = 3 . Then, we can write h1 as 
h1 = x2g2(x3,… , xn) + h2(x3,… , xn) , where deg(g2) ≤ 2 and deg(h2) ≤ 3 . We do 
the same for g1 , hence g1 = x2g

�
2
(x3,… , xn) + h�

2
(x3,… , xn) , where deg(g�

2
) ≤ 1 and 

deg(h�
2
) ≤ 2 . Therefore, g1 + h1 = x2(g2 + g�

2
) + h2 + h�

2
 . Notice that the cubic terms 

of h1 coincide with those of g1 + h1 . So

If the degree of h2 is smaller than 3, the weights of (g1 + h1)↾� n−1 and of h1↾� n−1 are 
described in Proposition  24. Otherwise, we continue with the decomposition of 
the functions, namely h2, g2, h′2, g

′
2
 , e.g. h2 = x3g3(…) + h3(…) , and we recursively 

apply the same approach. Every decomposition step doubles the number of functions 
for which we want to compute the weight. Notice that the variables that determine 
the decomposition of the Bf, namely x1, x2,… in the computations above, should be 
selected in such a way as to minimize the number of recursive steps needed. Our 
choice is to select the variable which occurs most frequently in Term3(hi) , where 
Term3(hi) is the set of all cubic terms of hi . Other choice strategies are possible and 
we do not claim that our strategy is optimal. We leave it as an open problem. To 
simplify the description of the procedure, we call quadratic representation the final 
decomposition of the involved cubic Boolean functions.

We use this idea to build an algorithm that computes the weight of any cubic Bf.

Algorithm 1 Computing the weight of a cubic Boolean function f on n variables: 

(3.5)w(f ) = w((g + h)↾� n−1) + w(h↾� n−1).

w(h1↾� n−1) = w((g2 + h2)↾� n−2) + w(h2↾� n−2),

w((g1 + h1)↾� n−1) = w((g2 + h2 + g�
2
+ h�

2
)↾� n−2) + w((h2 + h�

2
)↾� n−2).
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Input:   (the ANF of) a cubic function f ∈ Bn,
Output:   w(f ),
Step 1:   express f in the form f = xig(x1,… , xi−1, xi+1,… , xn) + h(x1,… , xi−1, xi+1,… , xn) 

where xi occurs most frequently in Term3(f ),
Step 2:   if deg(h) ≤ 2 , compute w(g + h) and w(h) and apply (3.5) to return w(f ),
Step 3:   otherwise, recursively compute the weights of g + h and h by applying 

Step 1 and Step 2

We now briefly discuss the complexity of determining the weight of a cubic 
Boolean function using the above algorithm. Suppose that we are able to obtain a 
function ht of degree at most 2 after t iterations of the decomposition. Therefore, we 
end up with 2t functions of degree at most 2, defined over � n−t , whose weight we 
have to compute. We performed some computational experiments to estimate the 
value of t. In Table 1 we report the average value of t for 200 randomly-generated 
cubic Boolean functions over � n , with n varying from 5 to 100. Since we are only 
interested in the cubic terms of a cubic Bf, to generate it we selected randomly an 
integer r between 1 and the number of possible cubic terms, and then we selected 
r cubic terms at random. The decompositions were performed using the strategy 
described in Algorithm 1.

The values reported in Table  1 are quite accurate. For example, in the case 
n = 100 the minimum value obtained is 44, the maximum 96, the mean is 92.115 
and the variance is 39.222.

In Table  2 we report the results obtained when considering 200 randomly-
selected cubic Boolean functions with more sparse terms, that is, f ∈ Bn cubic with 
at most n2 cubic terms. The functions are generated as described previously, with the 
number of possible cubic terms restricted by 1 ≤ r ≤ n2 . As before, the decomposi-
tions were performed using the strategy described in Algorithm 1. We show in the 

Table 1  Average value t of 
the number of decompositions 
needed to reduce a randomly-
generated cubic Bf in B

n
 into a 

quadratic representation

n t n t n t n t

5 n − 4 30 n − 6 55 n − 7 80 n − 7

10 n − 5 35 n − 6 60 n − 7 85 n − 7

15 n − 6 40 n − 7 65 n − 7 90 n − 7

20 n − 6 45 n − 7 70 n − 7 95 n − 7

25 n − 6 50 n − 7 75 n − 7 100 n − 8

Table 2  Average value t of 
the number of decompositions 
needed to reduce a randomly-
generated cubic Bf in B

n
 (with 

at most n2 cubic terms) into a 
quadratic representation

n t 3/4n n t 3/4n n t 3/4n n t 3/4n

5 2 3 30 19 22 55 40 41 80 61 60
10 5 7 35 23 26 60 43 45 85 65 63
15 8 11 40 27 30 65 48 48 90 70 67
20 12 15 45 31 33 70 50 52 95 74 71
25 16 18 50 35 37 75 57 56 100 77 75
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table that, for the values of n considered, the average number of decompositions 
needed is around 3

4
n.

Similarly to the previous table, the values reported in Table 2 are quite accu-
rate. For example, in the case n = 100 the minimum value obtained is 15, the 
maximum 87, the mean is 77.25 and the variance is 151.4275. We leave it as an 
open problem to investigate the effectiveness of our method for Boolean func-
tions with other restrictions on Term3.

We now study the complexity of determining the weight of a quadratic Bf. 

(a) We consider the following operations to be elementary: bit addition, bit mul-
tiplication, variable multiplications (e.g. x1 ⋅ x2 → x1x2 ). The goal of our final 
estimate will be in terms of elementary operations with the big O notation.

(b) We recall that given a quadratic g ∈ Bk  , we can obtain an aff-
ine equivalent map as in Theorem  6. This result is well known, see 
for instance [4], Subsection  5.2.1. Indeed, if x1x2 is a term of g, then 
g = x1x2 + x1g1(x3,… , xk) + x2g2(x3,… , xk) + g1,2(x3,… , xk)  ,  f o r 
some g1, g2, g1,2 with deg(g1), deg(g2) ≤ 1 and deg(g1,2) ≤ 2 .  Hence 
g = (x1 + g2)(x2 + g1) + g1g2 + g1,2 is affine equivalent to x1x2 + g1g2 + g1,2 . 
Applying this method recursively, in at most k/2 iterations we obtain an affine 
equivalent map as in Theorem 6, and using Remark 19 we compute the weight 
of g. In the following, we will use the word (decomposition) step to refer to one 
of the above iterations.

(c) Now we analyse the r-th decomposition step of (b). In this step, we consider a 
quadratic term in g, namely xixj.

  We consider the representation of g as g = xixj + xigi + xjgj + gi,j.
  Notice that, since we are at the r-th step of the decomposition, gi, gj, gi,j 

depend on at most k − 2r variables and gi, gj have at most k − 2r + 1 terms. 
From the ANF of g we determine gi, gj and gi,j . Indeed, gi,j = g(xi = 0, xj = 0) , 
gi = g(xi = 1, xj = 0) + gi,j and gj = g(xi = 0, xj = 1) + gi,j , where, with abuse of 
notation, g(xi = a, xj = b) indicates that we consider the ANF of g with the substitu-
tions xi = a and xj = b . In the (r + 1)-th step we will consider g ← gigj + gi,j.

(d) We now evaluate the complexity of every computation in the r-th step. The 
cost of computing gi,j is bounded by the cost of performing a full evaluation 
g(a1,… , ak) , which itself is bounded by k2 multiplications and k2 additions. The 
cost for gi, gj is similar, but we have to add k2 additions. So the overall cost of 
computing gi, gj, gi,j is bounded by the cost of performing 8k2 elementary opera-
tions. The multiplication of the two linear polynomials gi and gj costs at most k2 
variable multiplications, since they have at most k − 2r − 1 terms. Therefore the 
computation of the input of the next step (the new g) is bounded by 9k2 elemen-
tary operations.

(e) Hence, from (b) and (d), we conclude that the cost of determining the weight of 
a quadratic Bf in k variables is at most costk = 9k2 ⋅

k

2
=

9

2
k3 ≤ 5k3 elementary 

operations.
(f) Therefore, by considering k = n − t , the complexity of computing the weight of 

a cubic f is at most 2t ⋅ costn−t = 2t ⋅
9

2
(n − t)3 elementary operations.



1 3

On cryptographic properties of cubic and splitting Boolean…

(g) I f  we cons ider  t ≈
3

4
n  (as  we saw in  Table   2)  we have 

2
3

4
n
costn∕4 ≈ O(2

3

4
n(n∕4)3) = O(2

3

4
n
n3).

We now compare the complexity of Algorithm 1 with the complexity of comput-
ing the weight of a Boolean function with some other methods. For a more general 
overview, we also consider methods admitting distinct types of input (Algorithm 1 
takes as input the ANF of a Boolean function). Recall that the truth table of f ∈ Bn 
is Tf = [f (u) ∶ u ∈ �

n] . So, to compute the weight of f we can count how many 1’s 
appear in Tf .

• If for input we have the truth table of f, the cost is at most 2n additions.
• If for input we have some information on the Walsh transform, in particular its 

value in zero, the computation is immediate ( Wf (0) = 2n − 2w(f )).
• If for input we have the ANF of f, either we compute the truth table (the cost is at 

least 2n evaluations), or we can compute the Walsh transform in zero (again the 
cost is 2n evaluations).

Therefore, according to our estimates, given the ANF of a cubic Boolean function 
with a limited number of cubic terms, as described in Table 2, our algorithm is more 
efficient than the other known procedures described.

4  Nonlinearity of Boolean functions

Another important cryptographic property of Boolean functions is the nonlinearity. 
We begin this section by studying this property for a function with terms of the same 
degree but pairwise disjoint sets of variables, as in Proposition 18.

Proposition 27 Let f ∈ Bn , with deg(f ) = m > 1 , be such that

where k is the number of terms and mk ≤ n . Then N(f ) = 2n−1 − 2n−mk−1(2m − 2)k.

Proof Let fi =
∏m

j=1
xmi+j . Then f ∼A

∑k−1

i=0
fi . Let l�(x) = � ⋅ x , where �, x ∈ �

n . 
Observe that f + l� is balanced if l� has some variables which are not in f (see Prop-
osition 10) and in this case, we have Wf (�) = F(f + l�) = 0 . Thus we can assume 
that l�(x) = la(X) = a ⋅ X , with a = (a0,… , ak−1) and X = (y0,… , yk−1) in (�m)k , so 
that all variables in la are also in f. By Corollary 14, we have

f ∼A

k−1∑
t=0

m∏
j=1

xmt+j,
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Recall that N(f ) = 2n−1 −
1

2
max�∈� n |Wf (�)| . Clearly, |Wf (�)| is maximal if all 

|F([gi + lai]↾�m)| are maximal. Now, F([fi + lai]↾�m) = 2m − 2w([fi + lai]↾�m) and it is 
clear that w([fi + lai]↾�m) ∉ {0, 2m} . So, without loss of generality, |F([fi + lai]↾�m)| 
is maximal if ai = 0m since in this case w([fi + lai]↾�m) = w(fi↾�m) = 1 . Thus, |Wf (�)| 
is maximal if, for all i, we have F([fi + lai]↾�m) = F(fi↾�m) = 2m − 2 , implying 
that it is maximal when � = 0n . We have Wf (0n) = 2n−mk(2m − 2)k and therefore 
N(f ) = 2n−1 − 2n−mk−1(2m − 2)k.   ◻

Remark 28 Recall that f ∈ Bn is bent if and only if N(f ) = 2n−1 − 2
n

2
−1 . We deduce 

from Proposition 27 that f is bent if and only if m = 2 and k = n∕2 , for n even, other-
wise 2n−mk−12k(2m−1 − 1)k would be equal to 2

n

2
−1 , for some positive integer k, con-

tradicting the fact that (2m−1 − 1) ∤ 2
n

2
−1 for m > 2.

We study the nonlinearity for a Bf f ∈ Bn+m of the form (3.3).

Theorem  29 Let f be a Bf of the form (3.3), that is, 
f =

(

∏m
j=1 xj

)

g(xm+1,… , xm+n) +
(

1 +
∏m

j=1 xj
)

h(xm+1,… , xm+n). Let � = (a, b) ∈ �m × � n , with a = (a1,… , am) and 
b = (b1,… , bn) . Then 

 (i) f (�) =

⎧

⎪

⎨

⎪

⎩

(2m − 1)h↾�n (b) +g↾�n (b), if a = 0m,

(−1)�a
(

g↾�n (b) −h↾�n (b)
)

, otherwise,  with �a = a1 +⋯ + am;

 (ii) N(f ) ≥ (2m − 1)N(h↾� n) +N(g↾� n).

Proof Set X = (y, x) ∈ �
m × �

n , with y = (x1,… , xm) and x = (xm+1,… , xm+n) . Then

So we have

Wf (�) = F(f + la) = 2n−mk
k−1∏
i=0

F([fi + lai]↾�m).

Wf (�) =
∑

X∈�m+n

(−1)f (X)+�⋅X

=
∑

(y,x)∈�m⧵{1m}×�
n

(−1)h(x)+a⋅y+b⋅x +
∑

(y,x)∈{1m}×�
n

(−1)g(x)+a⋅y+b⋅x

=
∑

(y,x)∈�m×� n

(−1)h(x)+a⋅y+b⋅x −
∑
x∈� n

(−1)h(x)+b⋅x+�a +
∑
x∈� n

(−1)g(x)+b⋅x+�a

=

(∑
y∈�m

(−1)a⋅y

)
Wh↾�n

(b) − (−1)�aWh↾�n
(b) + (−1)�aWg↾�n

(b)

=

{
(2m − 1)Wh↾�n

(b) +Wg↾�n
(b), if a = 0m,

(−1)�a
[
Wg↾�n

(b) −Wh↾�n
(b)

]
, otherwise.
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Therefore, for any � = (a, b) ∈ �
m × �

n , we have

So

  ◻

Remark 30 Since the nonlinearity is invariant under affine equivalence, the second 
condition in Theorem  29 is satisfied also for Boolean functions which are affine 
equivalent to f.

Remark 31 By Theorem 29 with m = 1 , the nonlinearity of

satisfies N(f ) ≥ N(h↾� n) +N(g↾� n).

It is immediate from Theorem 7 and Remark 31 that the following corollary holds.

Corollary 32 Let f be as described in Proposition 24. Then

Corollary  32 suggests a way of constructing Bf’s with high non-linearity. For 
example, following the same notation as in the corollary above with n = 2r + 1 , if 
we consider two quadratic Bf’s in Bn with k = � =

n−1

2
= r , then the non-linearity of 

f ∈ Bn+1 is at least 2n − 2n−r = 2n − 2
n+1

2 .

|Wf (�)| ≤
{

(2m − 1)|Wh↾�n
(b)| + |Wg↾�n

(b)|, if a = 0m,

|Wg↾�n
(b)| + |Wh↾�n

(b)|, otherwise.

|Wf (�)| ≤ (2m − 1)|Wh↾�n
(b)| + |Wg↾�n

(b)|.

N(f ) = 2n+m−1 −
1

2
max

�∈�m×� n
|Wf (�)|

≥ 2n+m−1 −
1

2
max
b∈� n

(
(2m − 1)|Wh↾�n

(b)| + |Wg↾�n
(b)|

)

≥ 2n+m−1 −
1

2
(2m − 1)max

b∈� n
|Wh↾�n

(b)| − 1

2
max
b∈� n

|Wg↾�n
(b)|

= (2m − 1)2n−1 −
1

2
(2m − 1)max

b∈� n
|Wh↾�n

(b)| + 2n−1 −
1

2
max
b∈� n

|Wg↾�n
(b)|

= (2m − 1)N(h↾� n) +N(g↾� n).

f ∼A xn+1g(x1, .., xn) + (1 + xn+1)h(x1,… , xn)

N(f ) ≥

⎧⎪⎨⎪⎩

2n−1 − 2n−k−1, if g is quadratic and h affine,

2n−1 − 2n−�−1, if g is affine and h quadratic,

2n − 2n−k−1 − 2n−�−1, if both g and h are quadratic.
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5  Conclusion

This paper focuses on Boolean functions of particular forms. We studied the class 
of splitting functions and a special class of cubic functions, determining their 
weight, balancedness and nonlinearity. We also studied the weight and nonlinear-
ity of a generic Boolean function by means of the weights and nonlinearities of its 
“decomposition” functions, defined on lower dimensions. We provide a procedure 
for computing the weight of a generic cubic Boolean function. We performed some 
computational analysis on cubic Boolean functions with sparse cubic terms, and we 
showed that in this case our procedure is more efficient than computing it through 
the truth table.
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