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INTRODUCTION

Process-based models help scientists to better under-
stand field and laboratory observations, push theory devel-
opment further and advance fundamental knowledge in
multiple disciplines. This is especially true in aquatic sci-
ences, where the development of such models has been a
prolific endeavour over the last few decades, both in num-
ber and diversity (Trolle et al., 2012; Janssen et al., 2015).
Because these models provide a mechanistic basis for the
interpretation of observed phenomena, they make it possi-
ble to reconstruct the past (hindcasting), helping us to fill
knowledge gaps through simulation and explain the present
conditions of a system as a result of its past evolution (path
dependence). Based on the present, they also enable scien-
tists to estimate the most likely immediate future (forecast-
ing) and even attempt long term predictions.
Once calibrated and validated, process-based models

allow for countless in silico experiments. With the only
limit of available computing power, modellers can run sim-
ulations under numerous system set-ups, initial conditions
and scenarios of one or multiple stressors applied in com-
bination, in varying frequency and intensity over potentially
very long periods. They can also test wide ranges of varia-
tion within the parameter space of the model, a feat that
would be too expensive and impractical with real-life ex-
periments, not to say impossible. By analysing model re-
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sults, they may identify the factors and parameters that ef-
fectively drive the response of a system (those that the
model output is most sensitive to) and through bifurcation
analysis, for instance, they might also discover the exis-
tence of multiple equilibria, some of which could be qual-
itatively different alternative stable states.
An example of such a case is that of shallow lakes,

which have become the archetype of alternative stable
state theory in freshwater ecology. Classic shallow lake
theory explains how these ecosystems may be found in
either a macrophyte-dominated, clear water state, or a
phytoplankton-dominated, turbid water state (Scheffer et
al., 1993). In each of these states, the aforementioned pri-
mary producers stabilise the system through positive feed-
back loops. Rooted macrophytes help to keep the system
in a clear water state by reducing sediment resuspension
and nutrient availability for phytoplankton. Phytoplankton
reinforces the turbid water state by shading rooted macro-
phytes and hampering their development. For low nutrient
concentrations, only the macrophyte-dominated state is
possible, whereas phytoplankton invariably dominates
under eutrophic and hypereutrophic conditions.
In between these two extremes, i.e., within a range of

intermediate nutrient concentrations, both states may be
possible, but due to the aforementioned stabilising mech-
anisms, a perturbation is required for a shift from one sta-
ble state to the other to occur. For instance, the artificial
removal of a significant amount of macrophytes may
force a shift from the clear to the turbid water state
(Kuiper et al., 2017). But because macrophyte-dominated,
clear water shallow lakes support a larger set of ecosystem
services (Janssen et al., 2020), shallow lake ecologists and
managers mainly aim to achieve the opposite. Conse-
quently, a great focus has been given over the years to
finding effective strategies to restore the clear water state
in lakes that have shifted to phytoplankton dominance as
an undesirable consequence of eutrophication worldwide
(Jeppesen et al., 2007; Søndergaard et al., 2017; López
Moreira, et al., 2018). 
Due to the implications for policy and management,

part of this effort has been put into determining the critical
nutrient loading of different types of shallow lakes (Janse
et al., 2010), for which complex shallow lake ecosystem
models have been developed, as is the case of PCLake
(Janse, 1997). In time, multiple studies carried out using
this model have proven the usefulness of highly complex
ecosystem models to provide answers to very relevant
questions, such as how future environmental conditions,
e.g., climate change, might affect shallow lake resilience
and modify critical nutrient loads (Mooij et al., 2007). The
remarkable success of PCLake has motivated further de-
velopments of the model, like the addition of previously
absent ecosystem components (Hölker et al., 2015) and
its expansion into PCLake+ (Janssen et al., 2019), which

allows for the simulation of deep and stratified lakes. This
ever-increasing degree of complexity that keeps improv-
ing PCLake’s capacity to simulate real-world lakes makes
it extremely useful for management-oriented applications.
Yet complexity always comes at a cost, and that is the dif-
ficulty to disentangle the effects of a large number of fac-
tors on a large number of elements and processes. For this
reason, minimal models are still necessary when basic
knowledge about a particular ecological interaction is yet
to be acquired or, for instance, to link species- to ecosys-
tem-level responses (Mooij et al., 2009).
In between these two extremes of the complexity spec-

trum, intermediate or reduced complexity models may be
developed in a custom-tailored fashion, to answer very
specific, novel questions for which a knowledge basis is
still developing and has therefore yet to be incorporated
into well-established, state-of-the-art complex models like
PCLake+, MyLake, ALBM, the coupled GLM-AED2 and
GOTM-WET, the Delft3D suite, among many others, ex-
tensive lists of which can be found in modelling literature
(Janssen et al., 2015; Mooij et al., 2010). These novel
questions could relate, for instance, to the potentially syn-
ergistic, non-linear effects of two or more combined stres-
sors such as climate change (Jackson et al., 2016),
artificial light at night (Gaston et al., 2015), browning
(Senar et al., 2021) and agricultural pollution (Havens et
al., 2011). The aim of a reduced complexity model could
also be to simulate the response of a very particular set-
up that does not necessarily fit the hypotheses and as-
sumptions under which ready-to-use models have been
developed. A very good example of these exceptional
cases is that of mesocosms. These increasingly popular
experimental tools help ecologists investigate foreseeable
future ecological dynamics, serving as a bridge between
simple, laboratory microcosms, and the highly complex
natural systems in which they are ultimately interested
(Stewart et al., 2013).
A challenge arises though when developing these mod-

els of intermediate complexity. That is, to include all (but
only) the elements and processes that are strictly necessary
for observed dynamics to be captured by the model, but
without feeding it too many unverified hypotheses or as-
sumptions about these elements and processes. This leads
to a high degree of uncertainty about model results, even
when they match the observations (which are usually based
on a very limited, unique dataset).
In this paper, we present our views on what aspects

need to be considered to hit the sweet spot of complexity.
We also argue that despite sensible arguments in favour
of increasing model complexity as much as possible
(Hellweger, 2017) and against the development of new
models largely following the concept of others, so as to
not “reinvent the wheel” (Mooij et al., 2010), enough rea-
sons remain to encourage the continued development of
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custom-tailored models of varying degrees of complexity
in the field of freshwater ecology and other aquatic sci-
ences. Finally, we present our vision on why this particu-
lar area is a fertile field for young researchers to gain both
the technical and scientific knowledge required to become
model developers, which would facilitate approaches such
as ensemble modelling, interdisciplinary research and
teamwork, as well as science communication.

A HIERARCHY OF COMPLEXITY FOR A
HIERARCHY OF BIOLOGICAL ORGANISATION
A first thing to keep in mind when developing a new

model is that there is a nested hierarchy to the organisation
of life (Fig. 1). Everything we observe at the ecosystem

scale is the macroscopic expression of processes happen-
ing at a series of progressively smaller ones, all the way
down to the tiniest particles that constitute all matter. For
example, the thermal (random) motion of atoms and mol-
ecules is responsible for the molecular diffusion process,
through which the concentration of substances (e.g., nu-
trients) in a stagnant fluid or laminar flows tends to ho-
mogenise over time (Fick’s second law of diffusion). Still,
in an aquatic ecosystem model, it would be a fool’s errand
to attempt to model the motion of every single atom or
molecule. In practice, this random motion of particles is
parameterised in the form of a background diffusion co-
efficient, as part of a much larger eddy diffusion coeffi-
cient that also accounts for turbulent motion.
Biological processes, however, do not obey such laws,

Fig. 1. Hierarchy of biological organisation and the usual mathematical structure of process-based models focusing on the ecological
levels. The individual (organism) level may be either parameterised or modelled explicitly (as in individual-based population and
community models).
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and hence cannot hope to find a universal description in
the form of simple mathematical expressions. Even our
most cumbersome equations fall short of the task, as the
realm of the living is characterised by randomness, vari-
ation, adaptation and evolution through natural selection.
But as challenging as it may be to reproduce the complex-
ity of life on a computer, we can always think of strategies
to approximate our models to the real world.
When developing equations for processes occurring

at the higher levels, a first step could be to look for inspi-
ration in the equations that describe well-studied
processes happening at the lower ones. A good example
of such an approach would be that of the widely used
Monod equation:

μ = μmax 
S                                                            (eq. 1)

Ks+ S
which describes the growth rate of microorganisms at the
population level (µ) as a function of its maximum value
(µmax), the concentration of the limiting substrate for
growth (S), and a half-velocity constant (KS) (Monod,
1942). This empirical equation is the mathematical equiv-
alent of a theoretical one, the Michaelis-Menten equation,
a model of enzyme kinetics at the biomolecular level
(Johnson and Goody, 2011). In the former, the population
growth rate replaces the biochemical reaction rate of the
latter, with all analogous terms having the same mathe-
matical meaning.
Over the years, as research progresses, it may lead to

a more detailed (and complex), mechanistic description
of a process. In the case of microorganism growth, this
happened when what is commonly known today as the
‘Droop model’ was proposed (Droop, 1983). By introduc-
ing the concepts of cell quota and the uptake rate of a nu-
trient, differentiating between the extra- and the
intracellular concentration of the limiting nutrient, this
model could more accurately describe the growth of mi-
croorganisms, in particular under environmental nutrient
depletion. This is because considering an internal nutrient
‘pool’ allows for the model to sustain further growth even
after external nutrients are fully consumed, a more realis-
tic biological mechanism that the Monod equation cannot
possibly reproduce (Sommer, 1991). 
One might argue that examples like these make a

strong case in favour of updating the biological equations
of our models with the newer and more complex ones
(Hellweger, 2015). In current modelling practice, how-
ever, despite the increased accuracy of more recent math-
ematical formulations of important physiological
processes, simplicity still wins more often than not. But
why is the Monod equation still so widely used in modern
aquatic ecosystem models even though it no longer re-
flects the current state of the art of biological science? A
possible answer is that for most present-day model ap-

plications, updating this equation does not significantly
improve the goodness of fit at the levels of biological or-
ganisation relevant to the research questions being asked.
This relates to the fact that in most ecological models,
the state variables and their governing equations are all
scaled up to the higher levels of biological organisation,
and the processes occurring below the population level
are introduced in the form of model parameters and aux-
iliary variables described by supplementary equations
(Fig. 1).
Even in the most complex lake models, the finest level

of biological representation that is explicitly implemented
is usually that of the ecological role (niche). In PCLake,
for instance, planktivorous fish are implemented as a sin-
gle element even though, among these, in reality, there are
several species, each represented by numerous genetically
and phenotypically different individuals that are either
male or female, at a different stage of their life cycle and
are ultimately the result of their particular life history. But
because ecological roles are enough to address the type
of questions PCLake was designed for (i.e., those related
to lake eutrophication), individual variation becomes
unimportant and such a high level of detail is hence
avoided through ‘bulk’ parameter values that enable the
model to effectively reproduce the average dynamics of
all relevant elements at the ecosystem level. This is, how-
ever, not always the case. When capturing individual dif-
ferences between (groups of) members of the same
species becomes necessary, for instance, to answer spe-
cific questions about their influence on emergent proper-
ties of the system at higher hierarchical levels, complex
agent-based models are the appropriate choice (Van Nes
et al., 2005). 
In between these two extremes is the case when the

research question relates not to the variation among mem-
bers of the same species, but the variation among different
(groups of) species occupying the same niche. For exam-
ple, when investigating the response of the phytoplankton
assemblage (community adaptation) to sudden or gradual
environmental change. To capture this, one would need
to explicitly model at least different phytoplankton func-
tional groups based on certain common characteristics
(green algae, diatoms, cyanobacteria, etc.), or even the in-
dividual species belonging to each of these functional
groups. This is the approach, for instance, of PROTECH
(Reynolds et al., 2001), a model where phytoplankton dy-
namics are not implemented ‘in bulk’, but simulated sep-
arately for each species. This is done based on a growing
library of hydrodynamically and ecologically important
traits (morphology, daily movement, nutrient require-
ments, vulnerability to grazing, nitrogen-fixation capacity,
etc.) of more than a hundred individual genera and/or
species, a feature that has allowed for many applications
in recent years (Elliot, 2021).
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Other examples of models that focus on interspecific
interactions at the community level are ecological network
models, which may be very complex, including different
types of relationships between species in addition to those
of classical food webs (e.g., mutualism between decom-
posers and primary producers, or host-parasitoid relation-
ships) (Fig. 2). These models can grow in complexity to
include dozens of functional nodes (D’Alelio et al., 2016),
or be simplified interpretations of the food web (Wollrab
et al., 2012), depending on what is relevant to the research
question. In this respect, they can also focus exclusively on
the interaction between two species, being as simple as the
Lotka-Volterra predator-prey equations

                                              

(eq. 2)

                                                                               (eq. 3)

where x and y are the numbers of prey and predators, re-
spectively, t is time and the ki are positive real coefficients.
In the case of the planktonic community of an aquatic
ecosystem, these models could very well describe the in-
teractions between zooplankton and phytoplankton. By
adding nutrient dynamics (an extra layer of complexity),
one has what is known as an NPZ model (nutrients N,
phytoplankton P, and zooplankton Z), the most basic rep-

Fig. 2. An ecological network model including three different types of direct interspecific interactions among the decomposers (Di),
primary producers/autotrophs (Pi), mixotrophs (Mi) and consumers/heterotrophs (Ci) of an ecosystem, including a parasitic consumer
(PC) and the human consumer (HC) as top predator of the food web.
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resentation of a pelagic ecosystem (Franks, 2002). The
latter can be further extended to include detritus D, i.e.,
an NPZD model (Edwards, 2001; Duquesne et al., 2021).
Hereafter, we present an example of such a model, sim-
plified from those in Edwards (2001): 

            
                                             (eq. 4) (eq. 5) (eq. 6) (eq. 7)

where the growth of phytoplankton (P) is limited by the
environmental concentration of nutrients (N), formulated
as in the Monod equation (eq. 1) with maximum fractional
growth rate a and uptake half-saturation constant b; and
phytoplankton losses are due to respiration, sinking (at
fractional rates r and s, respectively) and grazing by zoo-
plankton (Z) following a Holling Type III function
(Holling, 1959), where λ is the maximum fractional graz-
ing rate and μ is the concentration of phytoplankton for
which the effective fractional grazing rate is half of the
maximum (i.e., 0.5λ). In this model, the zooplankton pop-
ulation grows as it is fuelled by grazing at a fractional rate
α and decreases due to mortality at a fractional rate γ, with
dead biomass sinking instantly out of the pelagic zone.
Nutrients are replenished through remineralisation of de-
tritus (D), at fractional rate ϕ, and from zooplankton ex-
crements, a part of which is instantly remineralised at
fractional rate β. The concentration of detritus increases as
a result of phytoplankton respiration, zooplankton excre-
tion (faecal pellets generated at fractional rate 1 - α - β);
and decreases due to remineralisation and sinking, the lat-
ter of which occurs at fractional rate ψ. Despite the higher
complexity of eqs. 4-7, we recognise therein the same
basic structure of eqs. 2-3, which may already give rise to
nonlinear dynamics.
By expanding these simple ecosystem models beyond

the pelagic, integrating them with other simple models
that describe the dynamics of the remaining compart-
ments, they can evolve into much more complex models
like PCLake/PCLake+ (Janse, 1997; Janssen et al., 2019).
This is to say that, at every level of biological organisa-
tion, a system can be modelled following different ap-
proaches and at various degrees of complexity (Tab. 1) by
progressively building upon the simple equations that de-
scribe its single elements, integrating them in a way that
emergent properties of higher levels are also captured by
the model.

DIFFERENT MODELS FOR DIFFERENT
TEMPORAL AND SPATIAL SCALES

Research has shown that models that use genetically
fixed traits may not provide reasonable projections for
community adaptation, because organisms can adapt to
modest changes in environmental factors such as temper-
ature or, especially in the case of photosynthetic organ-
isms, irradiance. For phytoplankton, this can even happen
over the time scale of decades (Irwin et al., 2015). Hence,
running a phytoplankton model over long periods under
a moderately increasing temperature and/or decreasing
light availability scenario, with a focus on community
composition, would warrant the implementation of com-
munity acclimation and adaptation mechanisms acting at
the species level, i.e., resulting from genotypic and phe-
notypic variation, neither of which is normally considered
in ready-to-use models (Anderson, 2005). For this reason,
modelling phytoplankton functional groups might be
strictly necessary but not necessarily sufficient to obtain
an accurate prediction of community composition changes
over the long term. In any case, because robust group-spe-
cific parameterisations that can support predictions in a
wide array of spatiotemporal domains are still unavail-
able, complexity should only be increased gradually (Shi-
moda and Arhonditsis, 2016).
Also in this respect, eco-evolutionary dynamics have

been recently cited as one of the challenges at the next
generation of aquatic ecosystem models will need to
tackle (Mooij et al., 2019). This is because evolution and
ecological adaptation mechanisms, e.g., behavioural
changes in response to stress, may happen at overlapping
time scales, and the natural selection of some ecologically
important phenotypes can happen fast enough to impact
the outcome of ecological interactions (Hairston et al.,
2005). Conversely, the integration of slow processes may
also be needed when running simulations over long peri-
ods. For example, in coupled human-freshwater systems,
in addition to human-induced climate change, cultural
change and technological innovation happening at the
time scale of decades may ultimately drive ecosystem tra-
jectories in the long term (Ward et al., 2019).
But in nature, adaptation happens not only over time

but also across geographical gradients such as those re-
lated to climate. In the case of phytoplankton, for instance,
cell size and shape are key traits under selection by the
environment that link to phenotypical differences at the
species level. To avoid the difficulties of modelling single
individuals in models that would only require focusing on
the ecosystem level, trait-based approaches are a suitable
strategy to reduce complexity while retaining realism
(Litchman et al., 2013). Among these, spatially resolved
aggregated trait-based models with adaptive traits (Peeters
and Straile, 2018) could eventually enable modelling life
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Tab. 1. The study of biological organisation levels in an aquatic context and examples of modelling approaches that are suitable to provide
answers to questions relating to each level.

Level of biological           Example/s of discipline/s        Example/s of study object/s        Model example/s                            Reference/s

organisation

Atom                                 Atomic physics                         Random walk of a single              A mechanical model of                   Dürr et al., 1981
                                                                                            atom                                               Brownian motion                            

Molecule                           Molecular physics                     Diffusion of oil molecules             A numerical oil spill transport        Guo et al., 2009
                                                                                            in water                                          model based on an fBm                  
                                                                                                                                                    (fractional Brownian motion)         
                                                                                                                                                    particle tracking algorithm              

Biomolecular complex     Molecular biology                     An enzyme-catalysed                    Michaelis-Menten equation            Johnson et al., 2011
                                                                                            chemical reaction                           of enzyme kinetics                          
                                                                                            Denitrification in lake                    A nitrate-limited denitrification      Messer and Brezonik, 1983
                                                                                            sediments                                       model based on                               
                                                                                                                                                    Michaelis-Menten kinetics              
                                                                                                                                                    and the Arrhenius temperature        
                                                                                                                                                    dependence equation

Organelle                          Plant cell biology                      Photosynthesis within the              Photosynthesis model at the            Bernacchi et al., 2013
                                                                                            chloroplast                                      chloroplast level

Cell                                   Microbiology                            Microbial replication                     Cell quota and nutrient                    Droop, 1983
                                                                                                                                                    uptake rate (Droop model)

Tissue                                Plant histology                          Growth of macrophyte                  SAGA1 model for the growth        Hootsmans, 1994
                                                                                            surfaces                                          of leaves, stems and roots               
                                                                                                                                                    of the macrophyte                           
                                                                                                                                                    Potamogeton pectinatus L.             
                                                                                                                                                    (sago pondweed)                             

Organ                                Fish anatomy and physiology   The liver of a fish                           A model of the fatty acid                 Turchini et al., 2006
                                                                                                                                                    content of the liver of a fish            
                                                                                                                                                    (regression model)                          

Organ system                    Fish anatomy and physiology   The buoyancy regulation               A bioenergetic buoyancy                Strand et al., 2005
                                                                                            of Gadus morhua                           regulation model of fish                  
                                                                                            (Atlantic cod)                                 species that have a swim bladder    

Organism                          Reptile anatomy and                 A specimen of Chelonia mydas     Somatic growth model                    Bjorndal et al., 2000
                                          physiology                                 (green turtle)                                  (statistical model)                            
                                          Invertebrate anatomy and         A specimen of Chironomus           Energy-based life cycle model        Péry et al., 2005
                                          physiology                                 riparius (harlequin fly)

Population                        Population ecology                   The population of a                        Monod equation as part of              Monod, 1942
                                                                                            microorganism                               a logistic growth model                   
                                                                                            The population of                          A spatiotemporal                             Hölker and Breckling, 2005
                                                                                            Rutilus rutilus (common roach)    individual-based fish model

Community                       Community ecology                 The food web of a given lake        Lotka-Volterra equations                 Liu and Chen, 2003
                                                                                            (or part of it)                                   Food web models                            Wollrab et al., 2012
                                                                                                                                                    Ecological network models             D’Alelio et al., 2016
                                                                                                                                                    PROTECH, a phytoplankton          Reynolds et al., 2001;
                                                                                                                                                    community model                           Elliot, 2021
                                                                                                                                                    Individual-based models                 Van Nes et al., 2002
                                                                                                                                                    Trait-based models                          Litchman et al., 2013

Ecosystem                        Ecosystem ecology                   A specific lake and its immediate  NPZ model                                      Franks, 2002
                                                                                            surroundings                                  NPZD model                                   Duquesne et al., 2021
                                                                                                                                                    Vollenweider input-output              Vollenweider, 1968
                                                                                                                                                    eutrophication model                      Janse, 1997
                                                                                                                                                    PCLakePCLake+                            Janssen et al., 2019

Biome                               Biome ecology                          The marine biome                          The Atlantis modelling                    Fulton et al., 2011
                                                                                                                                                    framework for the marine biome    

Biosphere                          Earth Systems Science (ESS)   Earth’s ecosphere                           Madingley model, a Global            Harfoot et al., 2014
                                                                                                                                                    Ecosystem Model (GEM)
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at the highest levels of organisations (the biome and the
biosphere); an ambitious goal that some have already ar-
gued is time to pursue (Purves et al., 2013).

ADJUSTING COMPLEXITY LEVEL TO
CURRENT KNOWLEDGE THROUGH MODEL
CALIBRATION, VALIDATION AND
UNCERTAINTY ANALYSIS

In practice, increasing model complexity does not nec-
essarily improve model performance (Arhonditsis and
Brett, 2004). For this to be the case, a good mechanistic
understanding of the system and the problem under inves-
tigation is a prerequisite. One important reason why sim-
plicity is so appealing in process-based modelling is
precisely that results are more easily understood in terms
of both external forcing and internal mechanisms. Be-
cause the equations of simpler models involve fewer un-
constrained parameters, they may also be more easily
subjected to sensitivity analyses (Arhonditsis and Brett,
2004) or even allow for, e.g., bifurcation analysis (as in
Mooij et al., 2009). Moreover, the more numerous param-
eters of the more complex models require substantially
bigger calibration efforts and pose a higher risk of over-
fitting, which decreases the predictive skill of the model,
i.e., its applicability beyond the calibration dataset. For
this reason, unless extensive datasets are available to sup-
port model optimisation, complexity should only be in-
creased gradually and be accompanied by objective
assessments of model parameterisations (Flynn, 2005). In
addition, the more complex models should always demon-
strate a better performance than the simpler ones they in-
tend to supersede (Anderson, 2005).
As a rule of thumb, if a model that includes additional

elements and processes does not lead to a better fit be-
tween observed and simulated values, a model with fewer
elements and processes should be preferred (a parsimony
principle in modelling akin to ‘Occam’s razor’ in prob-
lem-solving philosophy). Because the latter would nor-
mally involve fewer parameters (and assumptions
regarding their values), the risk of overfitting would be
minimised. But because simplifications of reality also rely
on a series of hypotheses regarding the importance (or
lack thereof) of system elements and processes, the appli-
cation of such a parsimony principle is not as straightfor-
ward in modelling (Hellweger, 2017). In some cases, an
exception should be made in favour of higher complexity
even when the more complex model does not perform any
better (or performs even worse). One such case is when
there is sufficient knowledge about the system to support
the inclusion of additional elements and/or processes be-
cause they are known to be of critical importance.
An example of this is provided by the inclusion of

tube-dwelling invertebrates (chironomids) into the
PCLake model structure (Hölker et al., 2015). This study
highlighted the important water filtration capacity of these
benthic organisms and their role as stabilisers of the clear
water state in shallow lakes. In the former, simpler version
of PCLake, the filtration rate of chironomids was incor-
porated into that of pelagic zooplankton, which had likely
been overestimated in previous applications of the model
(Janse et al., 2010). Studies like this clearly show other
aspects that require attention when designing and imple-
menting a new model (e.g., the need for lower-level
process validation), as well as when adding new elements
or processes to an existing model, which is the need for
recalibration. Without this, uncertainty about chosen pa-
rameter values can be very high, and so the applicability
of the updated model to other case studies cannot be guar-
anteed until it has been extensively re-validated.
In this respect, a good practice that should be encour-

aged is not only to calibrate, but also to validate a model
alongside all of its sub-models, i.e., at all affected levels
of biological organisation (as in Mintram et al., 2020).
With this aim, a framework for the hierarchical assess-
ment of aquatic ecosystem models has been proposed
very recently (Hipsey et al., 2020). Referred to as CSPS
(Concept, State, Process, System), it aims to guide future
validation efforts at all levels of model design and imple-
mentation, starting from the conceptualisation stage (level
0). At this level, an a priori assessment is conducted of
the applicability of the model to the specific case study
and its suitability to answer the research questions over
the range of conditions to be simulated. Additionally, sub-
models are evaluated against the state of the art of relevant
ecological theory. This is followed by the a posteriori as-
sessment of how well available datasets compare with
simulated values of state variables or their derived metrics
(level 1), transfer functions, i.e., mass and energy fluxes,
and process rates (level 2). Finally, an evaluation is carried
out of whether the emergent properties of the model at the
ecosystem level (level 3) that are not necessarily pre-
dictable from its formulation, match those that have been
observed in or theorised for the real system (e.g., if it can
mimic ecological succession or shifts between alternative
stable states). The process is iterative, as failure to validate
the model at any of the higher levels can lead to the re-
consideration of the model at lower ones.
Within the CSPS framework, validation at levels 1 and

2 is largely based on an array of widely used metrics as
well as less commonly applied techniques. Examples of
these metrics are model bias, the Mean Absolute Error
(MAE), the Root Mean Square Error (RMSE), the Nash-
Sutcliffe Efficiency (NSE) and Spearman’s rank correla-
tion coefficient. Additional strategies covered by the
CSPS framework include the comparison of exceedance
probabilities, data transformation methods such as the
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Fast Fourier Transform (FFT) and wavelet analysis and
the application of distribution, cross-correlation and au-
tocorrelation functions. While quantitative approaches
may always be supplemented by qualitative and semi-
quantitative techniques like visual inspection of time se-
ries and contour plots, and the construction of spatial
maps and Taylor diagrams, these become the main source
of validation at level 3. At this level, judgement based on
expert knowledge is fundamental considering that results
will always be affected by a certain degree of uncertainty
that is rarely quantified. 
Although quantifying uncertainty is not a trivial task,

it is a requirement to make models more useful and ap-
pealing in environmental management (Schuwirth et al.,
2019). In light of this, Bayesian inference methods have
been getting more attention in recent years. These allow
not only for a data-driven statistical calibration of model
parameters, which is much more robust than traditional
manual calibration (trial and error) but also for uncertainty
analysis based on the posterior probability distributions
of model outputs. They may also help to select between
models of different complexity through well-established
criteria like the Deviance Information Criterion (DIC), a
generalisation of the Akaike Information Criterion (AIC)
used in statistical model selection. Akin to the AIC, the
DIC provides a measure of predictive error, penalising the
goodness of fit of a model by its degree of complexity
(determined by the number of parameters). Lastly, when
several models exist, none of which can be rejected be-
cause they are equally good for the intended purpose,
Bayesian Model Averaging (BMA) offers a means to as-
sess uncertainty in model selection and facilitate ensemble
modelling approaches (Hoeting et al., 1999).

NEW MODELS FOR NEW PROBLEMS
AND NOVEL QUESTIONS

In principle, more knowledge about a system enables
for more complexity, and more complexity, when justi-
fied, arguably increases the predictive capacity of a model
(Hellweger, 2017). However, fundamental knowledge is
still lacking when it comes to relatively novel environ-
mental stressors. For instance, artificial light at night
(Gaston et al., 2015) challenges the common observation
that biological activity is regulated by diurnal and sea-
sonal cycles, particularly in aquatic systems (Perkin et al.,
2011), and may require a deep rethinking of the funda-
mental assumptions embedded in different models, as it
may act at different spatial and temporal scales and mul-
tiple levels of biological organisation (genotypes, individ-
uals, populations, communities and ecosystems).
Explicitly including novel stressors in a complex ecosys-
tem model is, therefore, not straightforward. Parameter-
ising effects that have only been observed at the highest

biological organisation levels without first gaining a better
understanding of stressor impacts at the lower ones (e.g.,
critical behavioural changes at the individual level, or the
inhibition of ecologically relevant biochemical reactions
at the biomolecular level) would compromise the potential
to extend the model beyond the specific calibration do-
main. The development of models tailored to individual
experiments aiming to improve this knowledge base
would help to gradually increase complexity, laying the
foundation for their future incorporation into the more
complex ecosystem models.
Mesocosm experiments are another example where the

development of custom-tailored models is especially war-
ranted. They are unique systems increasingly being used
in current ecosystem research (Stewart et al., 2013) that in
general do not satisfy the hypotheses of ready-to-use
ecosystem models. Firstly, their very particular geometries
may introduce artefacts that require special consideration
and an explicit treatment within a model. Examples of
these are the growth of periphyton on the walls of the
mesocosms (Chen et al., 1997), shielding from wind and
differential shading related to the presence of these walls
and other surrounding structures. Secondly, the reduced
scale of mesocosms in comparison with natural systems
may invalidate the standard calibration of readily available
models, because large-scale processes are inhibited in
these intermediate environments (e.g., the role of seiches
on vertical diffusion), while other processes may be in-
duced (e.g., convective motions near the lateral boundaries
due to temperature gradients between the interior and the
exterior of the mesocosm). In flow-through mesocosms,
the experimental scale has also been shown to result in al-
tered temperature patterns and hydraulic conductivity, as
well as changes in water quality parameters (e.g., altered
oxygen dynamics related to lower turbulence resulting
from the reduced fetch, with consequences for phosphorus
dynamics) (Ahn and Mitsch, 2002). 
In addition to geometry and scale, a third reason why

custom-tailored models are more suitable to accompany
mesocosms experiments is that they normally address
questions for which scientific understanding is only start-
ing to develop. An example of this is the combined effects
of multiple stressors. These effects are very challenging
to capture with present models because not only can they
be additive but also synergistic or antagonistic (Radinger
et al., 2016; Jackson et al., 2016). In other words, they
may affect the elements of a system not only directly, but
also through indirect, cascading effects that have likely
not been deemed important or even thought of when de-
signing these models. Other questions that current aquatic
ecosystem models are generally not able to address are
those related to the toxicity of both naturally occurring
chemicals such as allelopathic substances, and those of
human origin such as pesticides and other micro-pollu-
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tants (hormones, antibiotics, microplastics, etc.) (Pal et
al., 2016; Fischer et al., 2016).
Lastly, one needs to be aware that complex models

might also fail in capturing potentially important feed-
backs, especially the ones that biological and ecological
processes may have on the hydro-thermodynamics of the
water body. Examples of these feedbacks have been high-
lighted by several studies, such as the effect of changing
colour (e.g., due to browning) and turbidity of water on
the thermal stratification of the water column (Persson
and Jones, 2008; Rinke et al., 2010), the analogous effect
of developing macrophytes (Herb and Stefan, 2004) or
even the role of planktonic events in determining the mix-
ing regime of some lakes (Shatwell et al., 2016). Recent
efforts have addressed the need for two-way communica-
tion (full coupling) between biogeochemical and hydro-
dynamic models that would enable them to capture some
of these well-known feedbacks. For instance, through
modern frameworks such as FABM (Bruggeman and
Bolding, 2014), water quality and ecosystem models (e.g.,
AED or PCLake), can be linked to a hydrodynamic model
(e.g., GOTM or GLM) to simulate both spatial and tem-
poral changes in the light extinction coefficient (Hu et al.,
2016; Hipsey et al., 2019). Still, other less-known or still
poorly understood feedbacks have yet to find an imple-
mentation on widely used models, like the influence of
phytoplankton exopolymeric substances on the rheologi-
cal properties of the aquatic medium (Jenkinson and Sun,
2011; Jenkinson et al., 2015).

TRAINING A NEW GENERATION
OF MODELLERS

It is our impression that the development of new models
has been somewhat discouraged in recent years. The risk
of having too many models with the same features and with
insufficient effort in optimisation has been presented as a
challenge to overcome within the aquatic ecosystem mod-
elling community (Mooij et al., 2010). Although reasonable
arguments are offered as to why this should be avoided
(e.g., that it would be more efficient to just use existing
models rather than always creating new ones), we believe
it is also true that training a new generation of model de-
velopers (and not only model users) is of great value, as
there are no better ways to learn new skills than to “learn
by doing” and especially “learn by failing” (Tawfik et al.,
2015). Supporting this belief is that the need to turn aquatic
ecosystem modelling into a community effort has already
been well established (Trolle et al., 2012; Janssen et al.,
2015), possibly through frameworks like the one offered
by the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP, www.isimip.org). In this respect, young modellers
have proven to be particularly keen on networking, suc-

cessfully overcoming recent challenges through, e.g., vir-
tual summits (Meyer and Zwart, 2020). Other clear exam-
ples of this are groups such as the “Young Modellers in
Ecology” (YoMos, www.yomos.org) and the “Aquatic
Ecosystem MOdelling Network – Junior” (AEMON-J,
https://github.com/aemon-j). Among the latter, ensemble
modelling has been gaining popularity (Moore et al., 2021).
This approach has been deemed ‘superior’ to the use of a
single model, not only because the mean of all models can
be a better fit to observed dynamics, but because ensemble
modelling allows for a more effective quantification and
communication of uncertainty (Trolle et al., 2014). 
To facilitate this, however, the modelling community

should worry about increasing its ranks. It has been ar-
gued that the number of aquatic ecosystem modellers is
already too low at present and that they are even rapidly
going extinct in some disciplines like water quality engi-
neering (Hellweger, 2017). It is perhaps this scarcity of
trained modellers relative to other freshwater disciplines
one of the main reasons why biological and ecological ex-
periments are usually designed without the input of a sci-
entist with modelling expertise: there are only so many
modellers out there that it is practically impossible to al-
ways involve at least one. This disconnection between bi-
ologists and modellers has been harshly criticised, as it
leads to a lot of wasted effort (Flynn, 2005): so much data
has been produced over many years that are of little value
for modelling, without measuring critical parameters that
would allow for the development and application of a
model (e.g., measuring only total chlorophyll without col-
lecting any data about carbon, nitrogen and phosphorus
biomass). To correct this imbalance, models should be
well established as a standard tool to gain knowledge in
biological and ecological research, alongside statistical
and laboratory-based molecular methods.
To achieve this, young researchers need to feel that it

makes sense to invest time and effort in acquiring the
basic knowledge and building the necessary skill set to
become a model developer. This includes a range of math-
ematical methods for the discretisation of differential
equations, the implementation of numerical methods to
approximate their solutions, assessing numerical stability,
to perform the calibration of model parameters, carry out
sensitivity and uncertainty analysis, not to mention the
necessary computer programming skills. And because the
most effective strategy to learn something new is by sim-
ply doing it (and failing at it), we believe there is no better
way to foster the new generation of model developers than
to encourage them to develop, implement and run their
own models. This will require the active contribution of
educators, who should be convinced that curricula (also
in ecology programmes) can profit from introductory
modelling courses. Stimulating the curiosity of students
and providing them with the conceptual and practical
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tools to use and possibly develop models will increase the
general awareness that models cannot be used as black
boxes. Furthermore, advanced courses, international sum-
mer schools, workshops and virtual communities will be
needed to promote cultural growth and the spirit of col-
laboration among modellers, as well as to facilitate the
crucial issue of maintaining accessible and usable ver-
sions of open-source modelling software (Frassl et al.,
2019; Jansse et al., 2015).

The challenge is to turn all this effort into more than
just an academic exercise, but into meaningful contribu-
tions to the scientific community. An important area for
this might be the design of new experiments that address
the novel questions we described in the previous section.
Because of the very specific set-ups and needs of these
experiments (which do not usually fit the hypotheses of
ready-to-use models), they provide a fertile ground for the
development of new, custom-tailored models of reduced
complexity that can better link empirical and theoretical
knowledge while tackled by young modellers (e.g.,
GPLake by Chang et al., 2019).
Having a thriving community of modellers would bring

about several benefits beyond the obvious scientific ones.
Modellers regularly work in teams and need to interact with
scientists specialised in many different disciplines. In doing
so, they progressively gain a generalist understanding of
environmental systems and inadvertently become inter-
preters and translators, facilitating integrative research
processes as they help overcome some of the major diffi-
culties of interdisciplinary research (Kragt et al., 2013).
This role can only become more important in the future, as
research is increasingly being conducted in interdiscipli-
nary teams (Wuchty et al., 2007, a fact that has been well
acknowledged by recent doctoral programmes in freshwa-
ter sciences (e.g., Serlet et al., 2020). Moreover, because
models are essential in communicating science, modellers
are the natural interface between pure scientists, on the one
hand, and both decision-makers and natural resource man-
agers, on the other one. For this purpose, the new genera-
tion of modellers should also be trained to communicate
with stakeholders effectively, an ability that – we feel – was
not so commonly fostered in previous generations. Finally,
and coming back to the importance of encouraging custom-
tailored model development, we must add that having a
suite of models of different size, complexity and scope can
be very effective as a multi-model approach to engaging
stakeholders and modellers in complex environmental
problems and better address management needs (Fulton et
al., 2015). 

SUMMARY AND CONCLUSIONS

Any given process-based model is only one of many
possible interpretations of a particular system, at the levels

of biological organisation that are relevant to the questions
being addressed by the modeller. Although the design and
implementation of a model can be realised at varying de-
grees of complexity, the level of detail should match ex-
isting knowledge of the phenomena under investigation.
When there is sufficient knowledge about the system, a
higher complexity level can lead to an improved predic-
tive capacity of the model. Nevertheless, simplicity
should be preferred when process understanding is lack-
ing, as is the case in many areas of ecological research,
such as those where the feedbacks of biology on hydro-
thermodynamics might be crucial, or those dealing with
the combined effects of multiple stressors (especially
novel ones), for which the knowledge base is only starting
to develop. When deciding on the complexity level of a
new model, some questions that might help guide this de-
cision are the following.
• Does a more detailed description of a process lead to
better model performance? If the answer is no, and es-
pecially if uncertainty is high about whether the
process is indeed important in the real system, sim-
plicity should be preferred. This reduces the risk of
overfitting and allows for an easier mechanistic inter-
pretation of model results.

• Do the research questions require lower levels of bio-
logical organisation to be incorporated into the model?
For instance, if the applied stressors are expected to
act on a biomolecular level, this level should be de-
scribed in as much detail as possible, or if their effects
are expected to be seen at the community level (e.g.,
through adaptation), multiple taxonomic groups or
even specific species may need to be modelled sepa-
rately to be able to capture this reorganisation.

• Are simulations going to be run over long periods that
required the consideration of eco-evolutionary dynam-
ics? If so, to capture adaptation and evolution, adap-
tive parameters that change over simulation run time
should be implemented (instead of fixing parameter
values from start to end).

• Will the spatial domain of the model span a range of
biogeographical regions? If such large spatial scales
are to be considered, taxonomical and phenotypical
adaptation to climate gradients is likely going to play
an important role, and so trait-based approaches might
be more suitable.
For all this, we argue that the continued development

of new, custom-tailored models of reduced complexity is
still warranted and should be encouraged, particularly so
because they provide an excellent entry point for young
modellers. These model development exercises will serve
a double purpose. Firstly, they will provide a fertile
ground for young modellers to gain basic knowledge and
build their skill sets, allowing them to become an active
part of the aquatic ecosystem modelling community. Sec-
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ondly, they will provide meaningful contributions to many
other scientists who already recognise the value of math-
ematical modelling as a tool for biological and ecological
research, but whose experiments do not normally fit the
hypotheses and requirements of readily available models.
Increasing the number of active modellers would help re-
verse their scarcity relative to other scientists in the field
of freshwater ecology, finally allowing for a more regular
and systematic involvement of model developers in the
early stages of experimental design. We hope to see the
number of young model developers grow quickly, in par-
ticular, to promote continuing education and training in
the form of international modelling courses and work-
shops; and enable the community-based framework that
will push the state of the art forward through the devel-
opment of new open-source models and the further devel-
opment of existing ones, the construction and sharing of
global data and code repositories, libraries of models,
equations and parameter values, wider adoption of ensem-
ble modelling approaches, etc.
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