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Abstract

Objective. In this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological
effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines
simulations of microdosimetric distributions with radiobiological microdosimetry-based models for
predicting cell survival curves and dose-dependent RBE. Approach. MONAS expands TOPAS
microdosimetric extension, by including novel specific energy scorers to calculate the single- and
multi-event specific energy microdosimetric distributions at different micrometer scales. These
spectra are used as physical input to three different formulations of the microdosimetric kinetic model,
and to the generalized stochastic microdosimetric model (GSM?), to predict dose-dependent cell survival
fraction and RBE. MONAS predictions are then validated against experimental microdosimetric
spectra and in vitro survival fraction data. To show the MONAS features, we present two different
applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP
and monoenergetic '°C-ion beam by using experimentally validated spectra as physical input, and (ii)
the calculation of the 3D RBE distribution on a real head and neck patient geometry treated with
protons. Main results. MONAS can estimate dose-dependent RBE and cell survival curves from
experimentally validated microdosimetric spectra with four clinically relevant radiobiological models.
From the radiobiological characterization of a proton SOBP and 12( fields, we observe the well-known
trend of increasing RBE values at the distal edge of the radiation field. The 3D RBE map calculated
confirmed the trend observed in the analysis of the SOBP, with the highest RBE values found in the
distal edge of the target. Significance. MONAS extension offers a comprehensive microdosimetry-
based framework for assessing the biological effects of particle radiation in both research and clinical
environments, pushing closer the experimental physics-based description to the biological damage
assessment, contributing to bridging the gap between a microdosimetric description of the radiation
field and its application in proton therapy treatment with variable RBE.

1. Introduction

Proton therapy is now widely recognized as an advanced form of radiation therapy compared to the
conventional use of photons for treating a steadily increasing number of types of cancers, especially deep-seated,
radioresistant, and hypoxic (Loeffler and Durante 2013, Tambas et al 2022). The advantages of ions over photons
are mainly attributed to the localized energy deposition at the end-of-range of the particle, known as the Bragg
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peak, resulting in a highly conformal dose distribution and normal tissue sparing (Durante et al 2017). In
addition to the physical advantages, ion beam therapy is characterized by larger biological effectiveness. The
reason for this is the higher ionization density and more severe damage to cellular DNA (e.g. double-strand
breaks and clustered damage) than photon radiation (Scholz et al 2001). The superior biological effectiveness of
ions is quantified by the relative biological effectiveness (RBE), that is, the ratio between the reference radiation
and the ion dose causing a same biological effect (Jakel et al 2016). In particle therapy, in general, to obtain a
homogeneous biological effect in the tumor volume, the RBE of ions is included in the treatment plan
optimization as a multiplication factor to the absorbed physical dose. In proton treatment planning, an RBE
value equal to 1.1 is adopted for both tumor and normal tissue, namely, protons are considered 10% more
effective than photons. Despite the clinical practice assumes a spatially invariant RBE for protons, pre-clinical
invitro and in vivo studies have demonstrated that a constant RBE is an oversimplification due to its dependence
on numerous parameters (dose, dose rate, cell line, biological endpoint, radiation quality in the specific voxel,
etc) (Paganetti and Goitein 2000, Paganetti 2014), with the RBE being significantly above 1.1 in the distal region,
(Missiaggia et al 2020). For heavier ions like Carbon and Helium, the variations in RBE along the beam
penetration depth are so significant that a fixed RBE value cannot be deemed appropriate, and current treatment
plans are calculated accounting for a variable RBE (Inaniwa and Kanematsu 2018, Mairani et al 2022).

Therefore, for optimal treatment outcomes that effectively balance the targeting of the tumor and the
minimization of the damage to the surrounding healthy tissue, it is crucial to accurately estimate the RBE at any
point of the irradiated field. The first step in achieving such a challenging goal is to characterize the radiation
field, both in terms of macroscopic absorbed energy and the microscopic local pattern of energy deposition.
Microdosimetry (Zaider et al 1996) has proven over the years to be an extremely powerful tool to accomplish
such a task. Microdosimetry is a branch of physics that studies the energy deposition of particles at a scale in the
order of a few microns, which is the scale of a cell nucleus, believed to be the most sensitive target to radiation-
induced cell killing due to the presence of DNA. At the micron scale, single-particle energy deposition is
characterized by large fluctuations due to the inherently stochastic nature of particle interaction, and, therefore,
microdosimetry characterizes the radiation field in terms of probability distributions of energy.

By characterizing the energy depositions at the micron scale, microdosimetry provides an ideal tool to link
radiation to its biological effects directly. For this reason, many radiobiological models rely on microdosimetry
principles, among which the microdosimetric kinetic model (MKM) is the most prominent and widespread in
particle therapy (Hawkins 1994, 1996, Inaniwa and Kanematsu 20138).

The MKM is a mechanistic model that predicts the cell survival fraction of irradiated cells based on
microdosimetric average values and estimates the resulting RBE (Zaider et al 1996). In particular, the MKM
predicts the logarithm of the cell survival fraction of irradiated cells as a linear-quadratic (LQ) function of the
imparted dose, (McMahon 2018)

logS(D) = —aD — 3D?, (D

with o and 3 two radiobiological parameters that depend on the biological tissue and on the specific ionizing
radiation. Despite the MKM has displayed notable consistency with experimental data obtained both in vitro and
invivo (Mein et al 2020), over time, numerous successive adaptations of the MKM have been developed in the
literature, (Kase et al 2006, 2007, Sato et al 2006, Inaniwa et al 2010, Bellinzona et al 2021a), primarily aimed to
address limitations of the original model in specific scenarios where its underlying assumptions were unsuitable.
Currently, the MKM represents the standard model used to calculate the RBE in several carbon-ion therapy
centers, (Mein et al 2020), and, along with the Local Effect Model (LEM), the MKM is one of the only two models
currently used in clinics for this purpose. Further, the MKM has been used as the reference RBE model in the
recently first treated patient with helium, (Mairani et al 2022). The MKM’s success and widespread use highlight
the importance of microdosimetry in accurately predicting the biological effects of radiation and optimizing
treatment planning for patients.

Recently, the generalized stochastic microdosimetric model (GSM?) has been developed, (Cordoni et al 2021),
which is a theoretically grounded mechanistic radiobiological model able to include several spatiotemporal
stochastic effects inherent to the formation and repair of radiation-induced DNA damage, (Cordoni et al
2022a,2022b, Missiaggia et al 2023b). GSM? is a fully probabilistic model that overcomes one of the main
assumptions shared by most existing radiobiological models including the MKM, that is the fact that the
distribution of the number of damages induced by radiation on DNA is Poissonian. In doing so, GSM? describes
the time evolution of probability distribution of radiation-induced DNA damage rather than focusing on
average values as done in the MKM.

Although mechanistic models based on the microdosimetric description of radiation field quality have been
shown as an accurate tool for predicting RBE in ion therapy, experimental microdosimetric spectra are still
challenging to measure in the daily clinical practice even using commercial detectors, e.g. tissue equivalent
proportional counter (TEPC) or silicon-on-insulator (SOI) detector (Bradley et al 2001, Kase et al 2006,
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Rosenfeld 2016, Conte et al 2020, Missiaggia et al 2020, Missiaggia et al 2021, 2023a). Therefore, numerical
algorithms, such as Monte Carlo (MC) particle simulation toolkits, have been demonstrated as a valuable
alternative for the microdosimetric characterization of the radiation field (Zhu et al 2019, Baratto-Roldéan et al
2021, Missiaggia et al 2020, 2023a). Nevertheless, MC simulations for microdosimetric spectra are exceedingly
time-consuming, which has prevented their integration into clinical treatment planning systems. This limitation
has hindered the utilization of valuable microdosimetric insights within the clinical practice. Hence, to expedite
computational processes, various numerical approximations have been incorporated into MKM models,
Inaniwa and Kanematsu (2018), enabling their practical application in everyday scenarios. The most relevant
one was the use of an analytical amorphous track model of particle energy deposition at the nanometer and
micrometer scale (Kiefer and Straaten 1986, Chatterjee and Schaefer 1976), which speed up the computation of
microdosimetric quantities used as input for the MKM RBE models (Kase et al 2007, Inaniwa and

Kanematsu 2018). Itis important to note that in addition to microdosimetry, nanodosimetry holds great
promise in sheddinglight on the biological effects of radiation. Over the years, several radiobiological models
have been proposed to establish connections between ionization cluster size and the formation of DNA lesions
(Garty et al 2010, Rabus and Nettelbeck 2011). Notably, (Conte et al 2018, Selva et al 2020), nanodosimetry offers
adirect pathway to understanding the biological consequences of radiation exposure. Furthermore, it has
become evident that both microdosimetric and nanodosimetric scales play a significant role in assessing
radiation-induced biological damage (Friedrich et al 2018, Baiocco et al 2022). However, it is crucial to highlight
that accurately simulating nanoscale phenomena necessitates the implementation of a physics list based on track
structure, which, for the sake of clarity, is not the focus of this paper.

In this work, we present a novel TOPAS Monte Carlo (MC) microdosimetric extension: MicrOdosimetry-
based modelliNg for RBE ASsessment (MONAS). MONAS combines full MC simulations of microdosimetric
spectra with clinically relevant microdosimetry-based radiobiological models for cell survival and dose-
dependent RBE assessment. Furthermore, by utilizing the new scorers of MONAS, it is now possible to generate
fully Monte Carlo-based Look-Up tables (LUTSs) of radiobiological parameters o and 3 for RBE-based treatment
plan optimization in clinical proton therapy. MONAS is based on the existing TOPAS microdosimetric
extension (Zhu et al 2019), which models the main microdosimetry detectors used in literature and scores the
lineal energy distributions. The lineal energy y is defined as the energy € deposited over the target volume mean
chordlength ], i.e. y = €/I. This is the quantity of reference measured in experimental microdosimetry. Starting
from the simulated y distributions, we implemented a novel scorer based on specific energy z, defined as the
energy imparted e over the mass m of sensitive volume, i.e. z = ¢/m. The extension allows the user to calculate
specific energy distributions at different microscopic scales. These z distributions are the building blocks for the
microdosimetry-based radiobiological models implemented in MONAS. We included the GSM? and three
clinically relevant MKM formulations: saturation corrected MKM (MKM-z") (Kase et al 2006), double
stochastic MKM (DSMKM) (Sato and Furusawa 2012) and the modified Stochastic MKM (mSMKM) (Inaniwa
and Kanematsu 2018). Therefore, MONAS predicts dose-dependent cell survival fraction and RBE specifically
for the simulated radiation field.

MONAS simulates experimental microdosimetric distributions acquired with three different detectors, and
from validated z-distributions, it calculates cell survival curves which can be directly compared with
experimental in vitro data. Therefore, MONAS is the first full MC toolkit that allows the user to benchmark the
physical input and the biological output of the radiobiological models with experiments. To show that, we
compared the MONAS cell survival curves with experimental data from the particle irradiation data ensemble
(PIDE) (Friedrich etal 2013). We also calculated cell survival and RBE depth curves using all radiobiological
models available in MONAS for a proton spread-out Bragg-peak (SOBP), whose microdosimetric spectra were
previously measured by us (Missiaggia et al 2023a) and used to validate TOPAS. Additionally, to test the model
predictions for heavy ions, we characterized a 300 MeV /u *C-ion Bragg curve in water (Martino et al 2010,
Burigo etal 2013).

MONAS is also an accurate and fast tool to predict RBE in proton therapy treatment plans. In particular, in
this study, we used the MONAS extension to generate full Monte Carlo-based Look-Up-tables (LUTs) of
radiobiological parameters avand 3 from monoenergetic proton beams. By combining MONAS LUTs and
TOPAS MC’s precision in tracking therapeutic protons within the patient’s anatomy, MONAS allows the
calculation of the RBE spatial distribution in a real patient’s geometry. In particular, we determined the mixed-
filed ar,yi and m ,defined as the dose-averaged of single particle a and \/B extrapolated from MONAS
LUTs, in each voxel of the scoring mesh. Consequently, we could predict the biological effectiveness of a real
proton beam. As an example, we recalculated with TOPAS MC a real head and neck proton treatment,
optimized with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) and delivered at the
Dwoskin Proton Therapy Center (University of Miami). Our study demonstrated that by fully integrating the
MONAS toolkit within the TOPAS MC code, we can accurately simulate microdosimetric spectra and use them
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asinput for the microdosimetry base models, enabling us to estimate the effect of radiation on biological tissue
in clinical conditions. The present work represents the first crucial step toward bridging the gap between
microdosimetry and clinical applications. By providing a comprehensive microdosimetric analysis of the
radiation field, we show how real-life clinical and experimental scenarios can greatly benefit, allowing clinicians
and researchers to estimate the biological effect of radiation accurately.

The main contributions of the present paper are:

(i) to introduce a Monte Carlo-based microdosimetric toolkit that allows estimating in vitro cell survival data
and RBE distribution in realistic radiotherapy treatment plans with a full microdosimetric description of
radiation.

(i) to introduce a new methodology for utilizing the microdosimetry-based radiobiological models to evaluate
RBE in real proton therapy treatments.

2. Material and methods

2.1. Microdosimetric quantities and microdosimetry-based RBE models
Microdosimetry considers two quantities of interest: the specific energy zand lineal energy y (Zaider et al 1996).
The specific energy zis the ratio between the energy imparted by ionizing radiation € and the mass m of the

sensitive volume,

€

z=—.

m
The lineal energy y is the ratio between the energy imparted by ionizing radiation ¢ and the mean chord length of
the sensitive volume I,

=<
y &

Itis possible to relate y to zvia the following relation z = Ly. By assuming a spherical site of density
_3 . . . m .
p=1gcm™ ~andradius rexpressed in um, the relations between the y and zis:

0.16

G =
2l 7 p [g/cm’] - r? [um?]

y [keV/pm] )

where 0.16 is the coefficient to pass from keV /g to Gy.

The lineal energy y is the reference quantity in experimental microdosimetry, whereas the specific energy zis
the main reference quantity in microdosimetry-based radiobiological models. A key difference between lineal
energy and specific energy is that the quantity e refers to the energy imparted in a single event for y, or the energy
imparted in any number of events for z. This implies that when considering the distribution of z, the ionization
of more than one event must be considered. For this reason, most of the MKM and the GSM? models are based
on the so-called multi-event specific energy distributions (Bellinzona et al 202 1b, Zaider et al 1996).

As standard in microdosimetry, the first two moments of the single-event distribution play a crucial role and
they are defined as

Zp = fooc zf,(2)dz, (3

- L >,
Zp = — z%f,(2)dz. 4)
Zr Y0
The most used microdosimetry-based radiobiological model is the MKM. It utilizes a system of differential
equations to predict the survival fraction of irradiated cells. These equations describe the time evolution of the
average number of DNA damages that can be repaired if theylead to cell death. To better align with biological
data, the MKM postulates that the nucleus is partitioned into sub-units called domains so that the number of
DNA damages is evaluated for each domain separately. Therefore, the probability of cell survival is estimated by
considering all the domains into which the nucleus has been divided.

Since its original formulation in Hawkins (1994), the MKM has been widely generalized to include several
endpoints and stochastic inter- and intra-cellular effects, (Hawkins 1996, 2003, Inaniwa et al 2010, Manganaro
etal 2017, Inaniwa and Kanematsu 2018, Bellinzona et al 202 1b, Attili et al 2022).

A proposed correction to the MKM model, named saturation corrected MKM (MKM-z"), aims to improve
its alignment with heavy ion data, which exhibits the so-called overkill effect (Kase et al 2006). This effect consists
in a decrease of the RBE versus LET, for LET beyond approximately 150 keV pm ", following its initial raise for
increasing LET (Kase et al 2006). Although the saturated corrected MKM shows a better match with
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experimental data, it still does not include energy deposition variations both at the cell domain and nucleus level.
To include these effects, the double stochastic MKM (DSMKM) has been proposed (Sato and Furusawa 2012). In
the same work, the authors proposed an approximation of the DSMKM, named stochastic MKM (SMKM). It
was developed to reduce the computational time by approximating the stochastic nature of zat the cell domain
level with its mean value and variance. The SMKM has been further simplified in Inaniwa and Kanematsu (2018)
to speed up the computational time and to be implemented in treatment planning systems. The modified
version of SMKM (mSMKM) is based on the assumption that, in charged-particle therapy, the domain-specific
energy z,1s, in general, delivered by a large number of low-energy deposition events, and the events inducing the
saturation of complex DNA damages are rare. Also, itis assumed that the specific energy imparted z,, is
sufficiently close to the macroscopic dose D. From these hypotheses, an analytical formulation of the cell survival
fraction as a function of domain and nucleus-specific energies was derived.

Recently, starting from the building assumptions of the MKM, a novel microdosimetry-based
radiobiological model, GSM?, was presented, (Cordoni et al 2021, 2022a, 2022b). GSM? aims at providing a fully
probabilistic model that takes into account the effects of stochasticity in different aspects of radiation-induced
damage, e.g. in the initial damage distribution as well as damage evolution.

Like the MKM formulations, GSM? describes the time evolution of DNA lesions in a cell nucleus, which is
divided into smaller sub-domains. Differently from the MKM, GSM? can describe the time evolution of the
whole probability distribution of lesions rather than simple average values. Notable enough, it has been shown in
(Cordoni et al 2022b, Missiaggia et al 2023b), that the distribution of lesions predicted by GSM? can deviate from
a Poisson distribution, as assumed by the MKM models, especially at sufficiently high LET and doses.

Supplementary materials provide a detailed description of the microdosimetric quantities, formalism, and
the radiobiological models presented in this work.

2.2. TOPAS

The microdosimetry-based radiobiological extension presented in this work extends the TOPAS MC toolkit
(Perletal 2012). TOPAS is an easy-to-use interface to the Geant4 Simulation toolkit (Agostinelli er al 2003)
allowing both medical physicists and researchers to make Monte Carlo simulations without the necessity of
advanced coding knowledge. In Zhu et al (2019) the microdosimetric extension of TOPAS has been
implemented, allowing to score of lineal energy y with three different types of detectors: (i) spherical Tissue
Equivalent Proportional Counter (TEPC), (ii) a cylindrical TEPC (also known a mini-TEPC) and (iii) Silicon on
Insulator (SOI) microdosimeter. These detectors are the reference detectors for microdosimetry, (Bradley et al
2001, De Nardo et al 2004, Debrot et al 2018, Bianchi et al 2022, Missiaggia et al 2020, 2023a). The
microdosimetric extension offers to the user the possibility to save microdosimetric spectra (yf(y) and yd(y)) and
the relative average quantities (yzand yp) for each detector, including the contribution of the particle species of
the radiation field. The lineal energy distributions obtained via the TOPAS microdosimetric extension have been
benchmarked with experimental data, showing good agreement, (Zhu et al 2019, Missiaggia et al 2023a).

2.2.1. MONAS

MONAS extension starts from the original lineal energy scorer to provide a further toolkit that calculates specific
energy z. Based on specific energy microdosimetric spectra, MONAS predicts cell survival fraction and RBE
using the different MKM formulations and GSM? radiobiological model. The workflow of MONAS is depicted
in figure 1.

In addition to the parameters of the lineal energy scorer (Zhu et al 2019), new optional parameters were
implemented to activate the cell-survival and RBE calculations module according to MKM and GSM*:
GetRBEWithMKModel, GetRBEWithGSM2. The user can further choose one or more MKM formulations
available by setting the value of the string parameter MKM Calculation equal to (i) ‘MKM-z" for the saturation
corrected MKM, (ii) ‘mSMKM for the modified-SMKM or (iii) ‘DSMKM for the double stochastic MKM. By
default, the saturation corrected is set. The cell-survival S is computed as a function of macroscopic absorbed
dose D, given as input parameter by the user setting the parameter SurvivalDoses; thus, RBE values are calculated
as a function of S(D) as follows

2 - J—
RBE(S, D) = \/ax 4ﬁ);;n(;(D)) ay , -
X

where axand Bxare the linear-quadratic coefficients of photon reference radiation. Model-specific
radiobiological parameters can be set both for MKM and GSM? separately, including the reference radiation
coefficients for the RBE calculations. Table 1 summarizes all MONAS parameters and their default values.
Further details about the evaluation of radiobiological parameters will be given in section 2.3.1.
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MONAS WORKFLOW
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Figure 1. MONAS workflow. Monoenergetic microdosimetric spectra are simulated using TOPAS MC to predict cell survival fraction
and RBE with different radiobiological models. The predicted cell survival is thus used to construct o and Flook-up tables. Then,
voxel-based energy depositions are scored and used to reconstruct cvand 3 parameters for mixed fields, from which RBE distribution
in clinical patients is obtained.

The output files include the values set by the user both for the radiobiological model and reference radiation,
specific energy spectra both for cell nucleus and domain, cell survival for the macroscopic doses specified, and
RBE as a function of cell irradiation dose in ASCII format. The MONAS extension is an open-source code
available on GitHub (Cartechini 2023).

2.2.2. Specific energy spectra
Parallel to the default lineal energy scorer, MONAS includes the calculation of specific energy quantities
converting single-event lineal energy y into single-event specific energy z; according to the equation (2). Single-
event and multi-event specific energy spectra are calculated and used for cell survival and RBE evaluation
(Supplementary Materials). By setting the boolean parameter SaveSpecificEnergySpectra, the user can save in
ASCII format the single-event and multi-event distributions calculated on cell domain and cell nucleus: z,, f,. 1(zx),
Zf1(2), 2 (2 D/ z.r), where the subscript x can be either d for the domain and # for the nucleus distributions.
Since the n-fold convolution for the multi-event calculation is time-consuming, especially for high doses
when the number of convolutions increases, a Monte Carlo approach for evaluating the multi-event distribution
has been specifically implemented according to the following workflow: (i) the number of tracks k which deposit
energy on sensitive volume is generated from a Poisson distribution with mean value \,, = z,,/z, for cell
domain and A\, = D/z, pfor nucleus, respectively. Then, (ii) k single-event specific energies z; are sampled from
the single-event probability distribution f;(z) and summed up to obtain the total specific energy z;,; = Zf: 14,
deposited in the target; (iii) the multi-event probability distribution f (z, A,,) both for cell domain and the nucleus
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Table 1. Summary of new input parameters for survival, RBE, and quality factor scorers. The parameter types are indicated according to the
TOPAS syntax (b stands for boolean, sv for string vector, u for unitless double, i for integer). Default model-specific biological parameters
refer to the HSG cell line.

Parameter Type Default Note

GetRBEWithMKM b True Flag for Survival and RBE calculation with MKM

MKMCalculation sV MKM-z* String vector with MKM formulations: “MKM-z*”, “mSMKM”, ‘DSMKM’

MKM_Alpha0 u 0.13Gy ™! MKM parameters

MKM_Beta0 0.05Gy *

MKM_AlphaX 0.19Gy

MKM_BetaX 0.05Gy !

MKM_rho 1 gcm73

MKM_y0 150 keV pym™*

MKM_DomainRadius 0.44 ym

MKM_ NucleusRadius 8.0um

GetRBEWithGSM2 b false Flag for Survival and RBE calculation with GSM>

GSM2_AlphaX u 0.19Gy ! GSM? model parameters

GSM2_BetaX 0.05Gy *

GSM2_rho lg cm”?

GSM2_a 0.037h™"

GSM2_b 0.182h~"

GSM2_r 3.641h7"

GSM2_DomainRadius 0.8 um

GSM2_NucleusRadius 5.0 um

SetMultieventStatistic i 10* Number of iterations for calculating the multi-event probability distribution via
Monte Carlo approach

SaveSpecificEnergySpectra b False Flag for saving in an ASCII file the single—- and multi-event distributions for cell

domain and nucleus

is thus constructed by iterating steps (i) and (ii) N-times according to the parameter SetMultieventStatistic. A
scheme of the algorithmic construction described is depicted in figure 2.

2.3. Cell-survival and RBE

The main feature of the MONAS extension is the prediction of cell survival curves and dose-dependent RBE
after irradiation with ion beams. To prove the accuracy of the toolkit, we determined the radiobiological
parameters specific to each model by comparing the survival predictions with experimental iz vitro data on the
human salivary gland (HSG) cell line. Once the model parameters were determined, we used MONAS to predict
RBE distribution in two relevant cases for proton therapy: passively scattering proton spread-out Bragg peak
(SOBP) (Tommasino et al 2019, Missiaggia et al 2023a) and head and neck proton therapy irradiation delivered
at the Dwoskin Proton therapy center (University of Miami) and optimized with the Eclipse treatment planning
system (Varian Medical Systems, Palo Alto, CA).

2.3.1. Radiobiological parameters
The radiobiological models implemented in this work are based on a variable number of free parameters
independent of the radiation type, but they are only cell-line dependent.

These parameters were estimated by fitting the models with in vitro cell-survival experimental curves
available in the literature and measured for a specific irradiation condition. It is worth stressing that, previous
works (Kase et al 2006, Sato and Furusawa 2012, Inaniwa and Kanematsu 2018) reported MKM parameters for
HSG cell line. Nonetheless, since the physical estimation of the radiation field is different from what was
implemented in MONAS, the biological parameters have been fitted to ensure the highest reproducibility of
in vitro cell survival experiments. In the present work, we characterized the radiation field regarding lineal energy
and specific energy spectra by exploiting the TOPAS toolkit, a condensed history Monte Carlo algorithm. On the
contrary, a different methodology was used both for the DSMKM and for the mSMKM (Sato and
Furusawa 2012, Inaniwa et al 2013). DSMKM exploits a combination of microdosimetric Monte Carlo
simulations with PHITS code (Sato efal 2013) in 1 um volume for the cell domain (Sato et al 2009, 2006), while a
Fermi function of macroscopic LET is used for evaluating the specific energy probability distribution on cell
nucleus (Sato and Furusawa 2012). The modified-SMKM, instead, exploits analytical amorphous-track models
to describe the radial dose distribution of the ion track and, thus, to compute the specific energy deposited on the
cell domain and nucleus (Chatterjee and Schaefer 1976, Kiefer and Straaten 1986, Kase et al 2006, Inaniwa et al
2010). Due to the intrinsic difference in the description of radiation energy deposition in the sensitive volume
between TOPAS and the previous work, we re-calculated the model parameters. A systematic comparison
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Figure 2. Flowchart of multi-event probability distribution calculation with a Monte Carlo approach by sampling distributions via
random number generators. Steps inside curly brackets are the body of the two for loops iterating on the number of multi-event
statistics and cell domain (nucleus) particle hits.

between Monte Carlo condensed history (e.g. TOPAS MC) and track structure algorithm for calculating specific
energy spectra is out of the scope of this work.

Therefore, the parameters for the MKM and GSM? were determined to reproduce i vitro experimental data
of HSG cells. Experimental cell survival curves were taken from the Particle Irradiation Data Ensemble (PIDE)
(Friedrich et al 2013) in which a large amount of cell survival data are systematically collected and analyzed as a
function of particle LET, cell line, and reference radiation. Regarding the estimation of specific energy spectra,
we simulated with TOPAS MC (v3.7) a water sphere placed in a vacuum world to avoid particle energy loss
outside the sensitive volume. The sphere was irradiated by a mono-energetic >He (10.2MeV /u and 4.89 MeV /u)
and "2C(12.9 MeV /uand 126 MeV /u) ion beams as reported in the experiments (Furusawa et al 2000, Friedrich
etal 2013). The beam was modeled as the Environment particle source available in TOPAS. It creates an isotropic,
uniform radiation field enclosing the water sphere. The default TOPAS physics list was used (Jarlskog and
Paganetti 2008). Then, we scored the specific energy spectra in the sensitive volume. It must be remarked that the
simulation setup used to reproduce the radiobiological data approximates the complexities of the experimental
conditions. Based on beam energy information in the PIDE database, we assumed a purely mono-energetic
beam as a particle source. This approximation can lead to deviations between predicted and experimental cell
survival curves.

2.3.2. Cell survival and RBE for a proton Spread-out Bragg-peak

Recently in Missiaggia et al (2023a), a systematic characterization of the radiation field produced by passively
scattered proton SOBP generated by a pencil beam of 148 MeV has been presented. Microdosimetric spectra
were acquired with spherical TEPC both in-field and out-of-field. The same work also shows a good agreement
between TOPAS microdosimetric simulations and experiments.

Starting from validated lineal energy spectra, we calculated cell survival, and RBE along the beam axis using
the MONAS code. As described in Missiaggia et al (2023a), we simulated the Far West Technologies LET-1/2
spherical TEPC with an active volume made of pure propane gas (C;Hg) at an operative pressure such that it is
equivalent to a tissue sphere of 2 ym in diameter. The default physics list was used, and the particle production
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cut was set according to the microdosimetric extension (Zhu et al 2019). About 107 primaries were simulated for
each position along the beam axis. 200 kV x-ray was chosen as reference radiation for the HSG cell line, with
ax=0.19Gy 'and Bx = 0.05 Gy * (Kase et al 2006).

2.3.3. Cell survival and RBE for a '>C-ion Bragg-peak

We simulated a 300 MeV /u '2C-ion Bragg curve to test the MONAS toolkit with heavy ion irradiation. The
simulation geometry described in Zhu et al (2019), Burigo et al (2013) was implemented in TOPAS MC to
reproduce the experimental microdosimetric spectra published by Martino et al (2010). To reproduce the
experimental conditions, we simulated a spherical TEPC detector filled with propane-based gas (CsHg (55%),
C0,(39.6%) and N, (5.4%)) equivalent to a sphere of tissue of 2.7 um in diameter.

We computed microdosimetric specific energy spectra at various depths along the beam directions. To validate
our simulations, prior studies have already confirmed the accuracy of the simulated lineal energy spectra at three
distinct positionsthe entrance, Bragg-peak, and tailthrough experimental comparisons (Martino et al 2010, Burigo
etal 2013, Zhu et al 2019). In the context of the SOBP, we conducted simulations with a sample size of 107 primaries
for each position along the beam axis. We employed the HSG cell line to evaluate cell survival and the RBE depth
curve, using 200 kV x-ray as the reference radiation source (ax = 0.19 Gy ' and By = 0.05 Gy ).

2.3.4. Cell survival and RBE assessment in a patient case

Predicting the cell survival fraction and RBE within the patient’s anatomy involved a two-step process. First, we
utilized the MONAS extension to create lookup tables (LUTs) of radiobiological parameters avand ( for each
model and proton beam energy. Then, we incorporated the MONAS LUTs into the TOPAS Monte Carlo
particle transport algorithm to score the survival fraction and RBE in each voxel of the patient. To construct the
LUTs, we irradiated a sphere of 1 ym of radius made of water with monoenergetic proton beams at different
energies (from 0.1 to 300 MeV), and we scored the cell survival fraction with the MONAS extension. We fitted
each survival curve with the LQ model, and we determined the o and (3 coefficients. Using the TOPAS particle
transport algorithm, we created a novel scorer to calculate the mixed-field v, and B, for each voxel of the
patient scoring mesh starting from the LUT's of monoenergetic beams. In particular, for each step s of primary
and secondary protons inside the voxel v, we registered the kinetic energy of the particle (E, ;) and the energy
deposited along the step plus the energy released to secondary é-rays (dE, ;) (Cortés-Giraldo and Carabe 2015).
As standard, the oy, and G are thus calculated as a weighted sum of v and 3 for the monoenergetic beam,
(Zaider and Rossi 1980)

o Zﬁ\i 1dEv,sa (Ev,s)

mix — 6
: >N dE, ©
\/ﬁ _ Zi\];]dEV,S\/ ﬁ(Ev,s) (7)
mix Zi\f;ldEv,s °

To show the applicability of this approach in real patient irradiation, we simulated in TOPAS a head and
neck treatment plan, optimized with the Eclipse treatment planning system (Varian Medical Systems, Palo Alto,
CA) at the Dwoskin Proton therapy center (University of Miami). The plan comprises 2 coplanar fields at 30 and
60-degree gantry angles and a third noncoplanar at 30 degrees gantry and couch angle at 300 degrees. All fields
employed a range shifter of 57 mm of water equivalent thickness. A uniform biological dose of 60 Gy (RBE) in 30
fractions was prescribed to the target using a constant RBE equal to 1.1.

We estimated the cell survival fraction and the dose-dependent RBE with the abovementioned approach.
The radiobiological parameters for the reference radiation were ax = 0.19 Gy ' and fx = 0.05 Gy * for HSG
cellline.

To compare our findings, we repeated the same analysis using the mSMKM based on the amorphous track
description of radiation energy description at the microscopic scale (Inaniwa and Kanematsu 2018), which is the
version currently used in carbon ion therapy. To generate the dose-averaged specific energies per event z; p and
z;'p imparted to the domain, and to the cell nucleus, Z,, p, we employed the Survival toolkit code (Manganaro
etal2018). The resulting cell survival fraction and RBE are described in (Inaniwa and Kanematsu 2018).

3. Results

3.1.Radiobiological parameters

Table 2 reports the MKM and GSM? parameters that give the best fit for the in vitro cell-survival data of the HSG
cell line when irradiated with '2C and *He ion beam:s. Figure 3 shows the experimental cell survival fraction, as
taken from the PIDE dataset, (Friedrich et al 2013), for the HSG cell line, compared to the corresponding
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Figure 3. Survival fraction of HSG cellls irradiated with '*Cat 12.9 MeV /uand 126 MeV/u (panel (a)), and *He at 10.2 MeV/uand
4.89 MeV /u (panel (b)). Experimental data from Furusawa et al (2000), tabulated in the PIDE.

Table 2. MKM and GSM? model parameters for human salivary gland cell line.
Experimental data are taken from the PIDE dataset, (Friedrich et al 2013).

HSG

MKM-z* DSMKM mSMKM GSM?
a[Gy 0.19 0.16 0.16 alh™ 0.037
Bo[Gy ] 0.07 0.08 0.08 b[h7'] 0.182
Yo [keV/um] 150 — — r[h™'] 3.641
Ry[pm] 0.44 0.46 0.46 Ry[pm] 0.80
R, [pm] — 8.0 8.0 R, [pm] 5.0

predicted cell survival curves using the four radiobiological models with parameters as given in table 2. All
radiobiological models agree with the HSG in vitro cell survival curves for both carbon and helium ions.

Regarding the fitted MKM parameters, given a new description of the physics of the radiation field employed
in this study, all parameters have been recalibrated due to a discrepancy between cell survival experimental
results and prediction using parameter values reported in the original papers. In particular, in Kase et al (2006),
the MKM-z" parameters extrapolated directly from microdosimetric measurements of yp, and from in vitro HSG
cell survival data are reported to be oy = 0.13 Gy ', 3= 0.05 Gy 2. Absolute values of oy and 3 do not agree
with our fit; nevertheless, the a/ G ratio and domain radius are consistent with (Kase et al 2006). Further,
DSMKM and mSMKM parameters are different from the originals, (Sato and Furusawa 2012, Inaniwa and
Kanematsu 2018), but nevertheless, the difference in absolute value is moderate.

Atlast, concerning GSM?, coherently with Missiaggia et al (2023b), only a, b, and r parameters were fitted,
whereas domain and cell nucleus radius were set a priori. This is done to avoid overfitting.

3.2. Specific energy spectra

The novel specific energy scorer implemented in this work allows calculating the single- and multi-event
probability distributions, both at the domain and cell nucleus scales, that is, in the order of 1 micron and 10
microns, respectively. Figure 4 shows the single-event zf,(z) and multi-event zf (z, z,,) distributions computed at
different averages doses z,, = 0.1, 1 and 30 Gy for a cell domain radius equal to 0.46 pm, chosen as the
representative domain sizes for the DSMKM and the mSMKM. These spectra were calculated by locating the
TEPC active volume at the center of the SOBP proton beam described in section 2.3.2.

The single-event distribution zf,(z) preserves a similar shape as the corresponding yf(y) distribution, as
could be expected from equation (2). On the contrary, the shape of the multi-event distribution changes
significantly as a function of the dose delivered to the cell domain z,,. In particular, to lower doses, e.g. z, = 0.1
and 1 Gy, it corresponds to a higher probability of null energy deposition in the domain due to the case of no
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Figure 4. Single-event (a) and multi-event (b) specific energy probability distributions calculated on cell domain of radius 0.46 m. The
spectra were scored by locating the sensitive volume at the center of a proton SOBP.
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Figure 5. Multi-event specific energy probability distributions calculated on cell nucleus of radius 8 pumat D = 1, 5, 15 Gy.

tracks hitting the target. This phenomenon is evident by the high peak at z = 0 Gy. As the dose z,, increases, since

the average value of Poisson distribution is proportional to z,, the probability of scoring zero tracks vanishes,

and consequently, the peak at null z disappears. All three multi-event distributions have an average value equal to

z,,, and furthermore, at higher z, the distribution is uni-modal and peaked at z = z, with a Gaussian-like shape.
The zf (z, D) distribution at the cell nucleus scale, with a radius of 8 m, as a function of macroscopic dose

D =1,5,15 Gyisshown in figure 5. As before, the spectrum is generated by an SOBP proton beam. The multi-

event distribution has a uni-modal Gaussian-like shape peaked at z = D even at alow dose of D = 1 Gy.

3.3. Cell survival and RBE for a proton Spread-out Bragg-peak
Cell survival fraction and RBE were calculated using MKM formulations and GSM? along the beam axis using
experimentally validated microdosimetric spectra, (Missiaggia et al 2023a), as described in section 2.3.2. The
physical 3D dose distribution was simulated in the water phantom using a voxel size of 1 x 1 x 1 mm®and
normalized to 1.8 Gy at the center of SOBP to obtain a biological dose of 2 Gy(RBE) for constant RBE equal
to 1.1.

Figure 6 panel (a) shows the depth survival curve compared to the physical dose. All models predict a similar
trend: the survival is higher at the plateau, around 0.7, and drops to a minimum in the SOBP, where the survival
remains constant at around 0.5. At the distal edge of the SOBP, the survival fraction raises again to a similar value
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Figure 6. Radiobiological characterization of a proton SOBP. Cell survival fraction (panel (a)) and dose-dependent RBE (panel (b)), as
a function of depth in water, predicted by DSMKM (black), GSM? (orange), MKM (light blue), and mSMKM (green). The SOBP
region is depicted in a shaded gray. The horizontal dashed black line in panel (b) correspond to RBE 1.1, which is the standard value
used in clinics.

Table 3. Cell survival fraction, S(D), and RBE(D) calculated with MKM
formulations and GSM? for HSG cell line. The values are reported at three relevant
water depths of the proton SOBP and '*C-ion Bragg peak: plateau (34 mm), mid-
SOBP (116 mm), and distal penumbra (136 mm) for SOBP; plateau (52.1 mm),
Bragg peak (170 mm), and distal penumbra (277.1 mm). The values refer to the

center of TEPC detector.
"H Plateau '2C Plateau
S(D) RBE(D) S(D) RBE(D)
GSM?> 0.74 £ 0.03 1.06 £+ 0.05 0.76 + 0.04 2.29 +£0.08
MKM-z* 0.70 £ 0.02 1.22 £ 0.04 0.77 + 0.04 2.22 +£0.08
mSMKM 0.69 £ 0.02 1.16 £ 0.04 0.77 £ 0.04 2.20 £ 0.07
DSMKM 0.73 £ 0.03 1.12 £ 0.05 0.76 + 0.04 2.44 £+ 0.09
"H mid-SOBP 12C Bragg Peak
S(D) RBE(D) S(D) RBE(D)
GSM?> 0.54 + 0.02 1.12 £ 0.05 0.22 +0.01 2.94 +0.09
MKM-z* 0.48 +0.01 1.27 £0.03 0.22 +0.01 2.94 +0.09
mSMKM 0.50 £ 0.01 1.22 £ 0.03 0.22 £ 0.01 2.94 £+ 0.09
DSMKM 0.53 £+ 0.02 1.15 £+ 0.05 0.22 +0.01 3.04 +£0.10
"H Distal 2C Tail
S(D) RBE(D) S(D) RBE(D)
GSM?> 0.77 £ 0.07 1.47 + 0.08 0.98 £+ 0.07 1.51 £0.11
MKM-z* 0.70 £+ 0.04 1.86 £+ 0.07 0.97 4+ 0.07 2.04 £ 0.08

mSMKM 0.71 £ 0.04 1.82 £0.07 0.97 £ 0.07 1.95 £ 0.08
DSMKM 0.72 £ 0.07 1.81 +0.09 0.97 £ 0.07 2.09 £0.10

as the plateau. However, quantitative differences between the considered models are appreciable. The MKM-z*
and mSMKM formulations predict cell survival fractions systematically lower than GSM? in all regions. The
DSMKM shows comparable survival fraction values with GSM? in the plateau up to the mid-SOBP, while in the
distal region, GSM? predicts a slightly higher cell survival. Dose-dependent cell survivals were further used to
calculate RBE according to equation (5). All the models predict an RBE higher than 1 for all depths, figure 6 panel
(b). In addition, all models show a constant RBE trend as a function of penetration depth with a value between
1.1and 1.2 in the plateau and a sharp increase in the distal edge of the field. Table 3 reports the survival fraction
and RBE values, along with statistical errors, at three water depths: plateau (34 mm), middle SOBP (116 mm),

and distal edge (136 mm).
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Figure 7. Radiobiological characterization of a 300 MeV /u '*C-ion beam. Cell survival fraction (panel (a)) and dose-dependent RBE
(panel (b)), as a function of depth in water, predicted by DSMKM (black), GSM? (orange), MKM (light blue), and mSMKM (green).
The SOBP region is depicted in a shaded gray.

3.4. Cell survival and RBE for a 300 MeV/u '*C-ion beam
Figure 7 illustrates the depth survival curve and RBE compared to the physical dose. The dose calculations were
performed within a voxel sizeof 1 x 1 x 1 mm®and were normalized to 2 Gy at the Bragg peak. In the context of
the spread-out Bragg peak (SOBP), all models consistently predict a higher cell survival in the plateau region,
averaging at 0.76 = 0.01. This survival fraction decreases at the Bragg peak, reaching a minimum of 0.22 £ 0.01.
As we move far out-of-field, the survival fraction increases to 0.98 4= 0.07.

The dose-dependent RBE of '*C-ion beams is notably higher than that of proton RBE at all water depths. In
the plateau region, all models converge on an average RBE value 0f 2.3 & 0.1, which sharply escalates to 6.9 £ 0.6
immediately after the Bragg peak. In the dose tail, situated far out-of-field, RBE values decrease to 1.9 £ 0.3.

Table 2 presents the survival fraction and RBE values, along with their associated statistical errors, at three
distinct water depths: plateau (52.1 mm), Bragg peak (170 mm), and dose tail (277.1 mm). We must note that we
chose the simulation point at a water depth of 170 mm to represent the Bragg peak region. While in Zhu et al
(2019), the Bragg peak region has been identified at a water depth of 179.1 mm, our simulations indicate that the
Bragg peak islocated at 171 £ 1 mm water depth, which is consistent with the findings (Burigo et al2013). Thus,
we have maintained consistency with our simulation results. Previous research has indicated that the peak in
RBE for '*C-ion beams is located a few millimeters downstream of the Bragg peak (Tommasino et al 2015).
However, the substantial size of the spherical TEPC, measuring 1.27 cm in diameter, and the high sensitivity of
microdosimetric spectra near the Bragg peak region could account for the peak in RBE being situated at 7 mm
from the dose Bragg peak.

3.5. MONAS application to a patient case

To estimate a 3D spatial distribution of cell survival and RBE for a patient case, we calculated lookup tables
(LUTs) of radiobiological parameters v and (3 for protons specific to the HSG cell line. We incorporated the
LUTSs within the TOPAS Monte Carlo algorithm and simulated a treatment plan, calculating the 3D spatial
distributions of dose-dependent cell survival and RBE. To benchmark our results, we also included the mSMKM
with amorphous track (mSMKM-AT), a validated radiobiological model for Carbon ion therapy, (Inaniwa and
Kanematsu 2018). The 2D spatial distribution of cell survival fraction is plotted in figure 8 for GSM? (panel (¢)),
and mSMKM-AT (panel (a)) as abenchmark to the current state-of-the-art of MKM clinical application (tuned
for carbon ion therapy). The two models agree in the shape of S(D) distribution where a minimum (color map
hot region) of the cell survival fraction is estimated in the Clinical Target Volume (CTV) and a few millimeters in
the surrounding volume. By comparing the monodimensional depth-survival curves (panel (e)), large
differences are evident among the models. MONAS-based MKM formulations predict the lowest S(D) values
(0.46 + 0.03 on average in CTV), while GSM” and mSMKM-AT predict an average cell survival fraction of

0.52 £ 0.07 and 0.55 & 0.04, respectively.

The RBE 2D map displayed in panels (b) and (d) exhibits similar patterns: both the mSMKM-AT and GSM>
are characterized by a notable increase in RBE values in the distal region of the therapeutic field, specifically at
beam angles of 30 and 60 degrees. mSMKM-AT 2D distribution shows a wider dark red region (RBE values
above 1.5) compared to GSM? in the distal part of the CTV, while in the patient’s entrance mSMKM-AT map has
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Figure 8. Panels (a) and (b) show the 2D spatial distributions of cell survival and RBE calculated with mSMKM-AT on the patient case,
respectively. The same patient slice and distributions are shown for the GSM2 model, representative of the MONAS prediction (panels
(c)and (d)). The horizontal dotted white line indicates the position of the line curves plotted in panels (e) and (f) for cell survival and
RBEs, respectively. The red vertical band in the latter plots shows the position of the target region.

lower RBE values (blue colormap). As shown in the depth-RBE curve (panel (f)), MKM models from MONAS
code predict RBE values systematically higher than GSM? and mSMKM-AT both at the beam entrance and in
the distal region (from 1.3 to 1.6). GSM? model predicts RBE values lower than the MKM formulations from
around 1.1 at the entrance, up to 1.5 downstream of the CTV. The same holds for mSMKM-AT, which shows
RBE values around 1 at the entrance, exceeding GSM? in distal reaching RBEs of around 1.7. In figure 8 panel ()
all models shows two RBE peaks for voxel indices blow 240 on the x-axis. These values correspond to the distal
out-of-field region of the beam, where the dose and the density are low due to the presence of the nasal cavities.
In figure 8 panel (e), we observe cell survival values slightly higher than 0.9 in the same region. Since we are
calculating the dose-dependent RBE, combining these cell survival spikes and the low dose values (which serve as
the denominator in the RBE calculation) generates artifacts in the RBE distribution.
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Although the inter-model differences in absolute values of the survival S and RBE, both MONAS-based and
mSMKM-AT models show the same spatial distribution characteristics. Inside the target volume, S and RBEs
remain constant and sharply increase at the distal edges of the fields where most organs at risk are located.

4. Discussion

In this work, we presented the MONAS toolkit, a TOPAS MC extension that combines accurate Monte Carlo
simulations of microdosimetric distributions with microdosimetry-based models for predicting cell survival
and RBE. MONAS provides a powerful tool to bridge the gap between a microdosimetric description of a
radiation field, the biological evaluation of radiation effects, and its implementation in the clinical practice of
proton beam therapy.

To show MONAS applications, we presented two examples: (i) the radiobiological characterization of a
SOBP, and (ii) the calculation of the RBE spatial distribution for a real patient’s treatment with protons. In
figure 6, we showed that MONAS can estimate the cell survival fraction and RBEs from experimentally validated
spectra, predicting a trend consistent with previous works (Kase et al 2006, Tran et al 2017). In this context, it is
important to emphasize that most of the research paper on protons and heavier ions focuses on RBE o, which is
the ratio of reference radiation and ion dose giving the 10% survival fraction (Tran et al 2017, Debrot et al 2018,
Bianchi et al 2020, Conte et al 2020). The RBE, 4 represents a universally accepted radiobiological endpoint,
allowing thus a comparison of different radiobiological experiments. However, when considering clinical
applications, it becomes more meaningful to examine a dose-dependent RBE, i.e. the RBE associated with the
dose specifically absorbed by each voxel of the treatment plan. This critical information enables direct
estimation of the treatment plan’s biological effectiveness. The presented MONAS extension, which is directly
linked to TOPAS, offers a rapid assessment of the MC-based dose-dependent RBE, which can have an impact
both in clinical scenarios and in experimental radiobiology.

Using the complete range of microdosimetric spectrum as the input for radiobiological models emphasized
the need to recalibrate the model parameters, as outlined in table 1, to accurately fit the MONAS cell survival
curves with the existing experimental data. Figure 3 shows a good agreement between MONAS predictions and
the experimental in vitro data at different irradiation conditions. Furthermore, the new set of parameters is
consistent with parameters already published for the MKM (Kase et al 2006, Sato and Furusawa 2012, Inaniwa
and Kanematsu 2018) in terms of the order of magnitude of the cell domain and nucleus radii, as well as the a- 5
absolute values. The MONAS toolkit thus further allows testing the robustness of the model parameter against
experiments. In MONAS, all microdosimetric values are evaluated using the entire microdosimetric
distribution (figures 4 and 5), which can be validated by direct comparison with the experimental y-spectra
measured with commercial microdosimetric detectors. As a result, the MONAS toolkit provides a
comprehensive framework for validating the entire radiobiological workflow, encompassing the simulation of
the radiation field’s physical properties and the direct estimation of its biological impact. This is achieved by
utilizing microdosimetric quantities and cell survival experiments directly calibrated against experimental data,
ensuring accuracy and reliability in assessing biological effectiveness.

The radiobiological models implemented in our code use domain radii smaller than 1 ym, a scale where a
condensed history Monte Carlo might not be accurate. However, we primarily employed two sizes of scoring
spheres: a 1 pm radius sphere made of water and a 6.35 mm radius sphere made of tissue-equivalent gas.
Notably, studies by Zhu et al (2019), Bianchi et al (2023), Missiaggia et al (2023a) have demonstrated that
microdosimetric spectra simulated with a TEPC detector align well with experimental data. The 1 pzm radius
water sphere was used to construct the LUTs and replicate the PIDE cell survival data. As shown in figure SM. I of
the supplementary materials , the 6.35 mm radius sphere made of tissue-equivalent gas and the 1 um produce
identical microdosimetric spectra, which are used by our models to compute the cell survival curve. It is worth
noticing that all the radiobiological use domain and nucleus radii that do not match the experimental or

simulation active volume sphere. Therefore, we adopted a rescaling approach using the z—y relation: z = 0.16

omr?” "
This procedure, as employed in previous works (Kase et al 2006, 2013), allowed us to simulate microdosinietric
spectrain larger geometries than the actual domain scale, providing valuable insights into the biological effects.
The second main application of MONAS is the RBE evaluation in a real patient case. In figure 8, we show the
3D spatial distribution of cell survival fraction and RBE values calculated for proton treatment of a head and
neck tumor. The results for a complex beam and patient’s geometry follow the same trend exhibited in figure 6
from the SOBP: RBE hot spots are observed at the distal edge of the field, where most of the organs at risk are
located (e.g. salivary glands, oral cavity, optical nerves). We used the MONAS extension to generate LUTs of «
and (3 coefficients for monoenergetic proton beams and eventually asses the biological effectiveness of a mixed-
energy beam averaging o and (G values. The RBE evaluated in the present paper is calculated considering only the
contribution from primary and secondary protons, but it can be extended to include other secondary ions by
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adding LUTs for alpha, carbons, and oxygen ions. This could increase the accuracy of the estimated RBE values,
especially at the field-edge and out-of-field, where a non-negligible contribution to the radiation field is given by
high-LET radiation such as alpha particles (Missiaggia et al 2023a). The application of MONAS in a real patient
case represents a significant advancement in integrating a detailed microdosimetric description of the radiation
field into treatment planning systems. These LUTs can be incorporated into a particle tracking Monte Carlo
toolkit to estimate a three-dimensional map of cell survival fraction and RBE within a mixed-field radiation
treatment plan.

While using LUTSs does not fully address the computational challenge of simulating the complete
microdosimetric distribution in all voxels, we propose a fundamental step into using microdosimetric
information in proton and ion therapy. LUTs have been generated by simulating the entire microdosimetry
distribution of monoenergetic beams, which were then used as input for the radiobiological models to estimate
the cell survival fraction. Therefore, the intrinsic stochastic nature of energy deposition at the micron scale is
considered in the final LUT values. Using pre-calculated v and (3 values that are loaded during the particle
simulation in patients does not increase the treatment plan computation time. The time required by TOPASMC
to calculate ¢v,; and \/m in each voxel of the patient is comparable to a similar volumetric scorer already
implemented in TOPAS (e.g. ProtonLET Cortés-Giraldo and Carabe 2015, Granville and Sawakuchi 2015). This
feature is of great significance in the proposed methodology because it enables the inclusion of our LUTs in
clinical Monte Carlo treatment planning systems without causing a slowdown in computational time for
treatment plan calculations. Indeed, a significant enhancement to this analysis could involve the creation of
LUTs for different cell lines, each specifically assigned to a patient’s organ. This approach would enable the
calculation of cell-line-dependent RBE within the patient’s anatomical context, thus accounting for the varying
radiosensitivity of different clinical structures.

Our findings reveal that there is a clear inter-model variability in the absolute values of cell survival and, thus,
in RBE values observed both in SOBP characterization and in the patient simulation, as seen in figures 6-8.
Figures 8 panels (e)—(f) exhibit significant differences between the MKM models and GSM? in the CTV region,
being further the mSMKM-AT closer to the GSM? prediction. Differences in the models stem from the fact that
they all have different foundations and include different stochasticities. In addition, deviations in the predictions
of RBE have already been verified in the literature when comparing the MKM with the LEM, (Monini et al 2019,
Bellinzona et al 2021b). Furthermore, the predictions made by the implemented models exhibit consistent
trends, with GSM? showing a higher predicted survival probability within the tumor compared to all versions of
MKM. In the context of heavy ion beam irradiation, as depicted in figure 7, the variations between different
models are less pronounced than in the case of proton irradiation. However, GSM? still exhibits deviations from
MKM. In the scenario of high LET particles, the assumption that DNA damages follow a Poisson distribution is,
in general, believed not to be valid. One notable strength of the GSM?* model lies in its capacity to avoid assuming
any Poisson distribution for both lethal and sub-lethal damages, a common practice in dealing with high-LET
radiation energy deposition. This inherent distinction between MKM formulations and GSM? can lead to
discrepancies between models, particularly in regions beyond the field of the heavy ion beam. The primary
objective of this study is to present a proof-of-principle regarding the key features of MONAS, without imposing
assumptions on the model’s parameters. The strength of our toolkit lies in the ability to customize each model’s
parameters and cell line-specific settings. However, we provided a set of potential parameters that yield
radiobiological results consistent with the in vitro data presented in figure 3. Further investigations will be
conducted to calculate the model parameters that best fit a larger sample of experimental cell survival curves at
various irradiation conditions. This analysis highlights the importance of determining precise model parameters
that have a significant impact on the absolute values of cell survival fractions and, consequently, RBE.
Furthermore, all models predict an RBE that significantly differs from the constant value used in the clinic.
GSM? and the DSMKM calculate an RBE value close to 1.1 only in the plateau, while all the models show a sharp
increase in the RBE in the distal region. This increase in the RBE could have an impact on the organs at risk
located right after the tumor, for which a significant underestimation of RBE could lead to toxicities.

Microdosimetry is proving to be extremely valuable in clinical applications for several compelling reasons,
surpassing the traditional use of LET values and providing a more reliable and experimentally measurable, as
demonstrated in numerous campaigns conducted over the years, (Kase et al 2006, Tran et al 2018, Bianchi et al
2020, Missiaggia et al 2020, Lee et al 2021, Magrin et al 2023, Missiaggia et al 2023a), radiation quality
description. Moreover, microdosimetry naturally includes the geometry of the sensitive volume in the measured
spectra, providing information that not only considers the stochastic nature of energy deposition but also
incorporates specific geometric considerations of the studied volume. This eliminates any potential uncertainty
in interpreting the analyzed spectra and quantities. Because of the several LET definitions, it can be challenging
to discern whether the value indicates the track average or the dose average. Additionally, different LET scorers
are commonly used, and including only primary particles or both primary and secondary particles in the scorer
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can completely change the physical significance of the resulting values and the estimation of the biological effect
(Grassberger and Paganetti 2011, Bellinzona et al 202 1a, Kalholm et al 2021). This becomes particularly
problematic in the out-of-field regions, where the radiation field is mixed, short-track particles can play a
significant role, and LET may not accurately characterize the radiation quality (Griin et al 2019). On the other
hand, microdosimetry offers comprehensive information that allows for a precise assessment of all the physical
processes involved, enabling a more accurate estimation of the biological effects.

Therefore, radiotherapy clinical practice can greatly benefit from consistently and rigorously evaluating
treatment plans based on microdosimetry. In the past, the computational effort required for calculating
microdosimetry quantities in treatment plans has been a hindrance to its practical implementation in the clinic.
However, with advancements in computational power and the effective simplification methods demonstrated in
this study, clinicians can now improve the prescribed treatment plans by incorporating microdosimetric
considerations allowing for a more robust estimation of the plan’s biological effectiveness.

5. Conclusions

In this work, we presented a novel TOPAS MC extension, MONAS: MicrOdosimetry-based modelliNg for RBE
ASsessment, which allows the user to evaluate dose-dependent cell survival curves and RBE with the most used
microdosimetry-based radiobiological models: three MKM formulations (saturation corrected MKM (MKM-
z") (Kase et al 2006), double stochastic MKM (DSMKM) (Sato and Furusawa 2012) and the modified Stochastic
MKM (mSMKM) Inaniwa and Kanematsu 2018) and the GSM? model, (Cordoni et al 2021, 2022b).

MONAS wraps the already published TOPAS microdosimetric extensions to evaluate the single- and multi-
event specific energy (z) distributions at different micrometric scales. Full microdosimetric distributions are
then used as input for both MKM and GSM? models. This approach showed intrinsic differences in
microdosimetric radiation characterization with respect to the amorphous track structure model used in the
latest MKM formulations. Therefore, we recalculated the model parameter that best fit the radiobiological
experiments for the HSG cell line. To show the main MONAS applications, we reproduced experimental
microdosimetric spectra from a passively scattered SOBP. We used the MONAS code to assess cell survival
fraction and RBE as a function of proton penetration depth. Our findings are consistent with the well-known
RBE trend, which presents a steep increase in the distal edge of the field. Furthermore, we were able to assess the
high inter-model variability on the absolute RBE values thus quantifying a radiobiological uncertainty in proton
plans in addition to other physical uncertainties.

The applicability of the MONAS toolkit can be further extended to a radiobiological analysis of treatment
plans. We showed that it is possible to generate radiobiological parameter look-up tables which can be combined
with the Monte Carlo toolkit for computing RBE maps on patients and therapeutic beam geometries. We
showed an example of cell survival and RBE predictions on a real head and neck proton therapy plan delivered at
the Dwoskin Proton Therapy Center at the University of Miami. The results have been compared to the
mSMKM model based on the amorphous track structure model, as recently developed in (Inaniwa and
Kanematsu 2018), representing one of the most used models in carbon ion therapy. Despite the variability in
RBE absolute values, all the models showed a reasonable RBE trend as a function of beam penetration depth.

In conclusion, the MONAS extension offers a comprehensive microdosimetric framework for assessing the
biological effect of radiation in both research and clinical environments. MONAS could be a key tool to include a
detailed microdosimetric description of radiation field into treatment planning systems for variable RBE
calculations.
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