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Abstract
Objective. In this paper, we presentMONAS (MicrOdosimetry-basedmodelliNg for relative biological
effectiveness (RBE)ASsessment) toolkit.MONAS is a TOPASMonteCarlo extension, that combines
simulations ofmicrodosimetric distributions with radiobiologicalmicrodosimetry-basedmodels for
predicting cell survival curves and dose-dependent RBE.Approach.MONAS expands TOPAS
microdosimetric extension, by including novel specific energy scorers to calculate the single- and
multi-event specific energymicrodosimetric distributions at differentmicrometer scales. These
spectra are used as physical input to three different formulations of themicrodosimetric kineticmodel,
and to the generalized stochasticmicrodosimetric model (GSM2), to predict dose-dependent cell survival
fraction andRBE.MONAS predictions are then validated against experimentalmicrodosimetric
spectra and in vitro survival fraction data. To show theMONAS features, we present two different
applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP
andmonoenergetic 12C-ion beamby using experimentally validated spectra as physical input, and (ii)
the calculation of the 3DRBEdistribution on a real head and neck patient geometry treatedwith
protons.Main results.MONAS can estimate dose-dependent RBE and cell survival curves from
experimentally validatedmicrodosimetric spectra with four clinically relevant radiobiologicalmodels.
From the radiobiological characterization of a proton SOBP and 12Cfields, we observe thewell-known
trend of increasing RBE values at the distal edge of the radiationfield. The 3DRBEmap calculated
confirmed the trend observed in the analysis of the SOBP,with the highest RBE values found in the
distal edge of the target. Significance.MONAS extension offers a comprehensivemicrodosimetry-
based framework for assessing the biological effects of particle radiation in both research and clinical
environments, pushing closer the experimental physics-based description to the biological damage
assessment, contributing to bridging the gap between amicrodosimetric description of the radiation
field and its application in proton therapy treatment with variable RBE.

1. Introduction

Proton therapy is nowwidely recognized as an advanced formof radiation therapy compared to the
conventional use of photons for treating a steadily increasing number of types of cancers, especially deep-seated,
radioresistant, and hypoxic (Loeffler andDurante 2013, Tambas et al 2022). The advantages of ions over photons
aremainly attributed to the localized energy deposition at the end-of-range of the particle, known as the Bragg
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peak, resulting in a highly conformal dose distribution and normal tissue sparing (Durante et al 2017). In
addition to the physical advantages, ion beam therapy is characterized by larger biological effectiveness. The
reason for this is the higher ionization density andmore severe damage to cellularDNA (e.g. double-strand
breaks and clustered damage) than photon radiation (Scholz et al 2001). The superior biological effectiveness of
ions is quantified by the relative biological effectiveness (RBE), that is, the ratio between the reference radiation
and the ion dose causing a same biological effect (Jäkel et al 2016). In particle therapy, in general, to obtain a
homogeneous biological effect in the tumor volume, the RBE of ions is included in the treatment plan
optimization as amultiplication factor to the absorbed physical dose. In proton treatment planning, an RBE
value equal to 1.1 is adopted for both tumor and normal tissue, namely, protons are considered 10%more
effective than photons. Despite the clinical practice assumes a spatially invariant RBE for protons, pre-clinical
in vitro and in vivo studies have demonstrated that a constant RBE is an oversimplification due to its dependence
on numerous parameters (dose, dose rate, cell line, biological endpoint, radiation quality in the specific voxel,
etc) (Paganetti andGoitein 2000, Paganetti 2014), with the RBEbeing significantly above 1.1 in the distal region,
(Missiaggia et al 2020). For heavier ions like Carbon andHelium, the variations in RBE along the beam
penetration depth are so significant that a fixedRBE value cannot be deemed appropriate, and current treatment
plans are calculated accounting for a variable RBE (Inaniwa andKanematsu 2018,Mairani et al 2022).

Therefore, for optimal treatment outcomes that effectively balance the targeting of the tumor and the
minimization of the damage to the surrounding healthy tissue, it is crucial to accurately estimate the RBE at any
point of the irradiated field. Thefirst step in achieving such a challenging goal is to characterize the radiation
field, both in terms ofmacroscopic absorbed energy and themicroscopic local pattern of energy deposition.
Microdosimetry (Zaider et al 1996) has proven over the years to be an extremely powerful tool to accomplish
such a task.Microdosimetry is a branch of physics that studies the energy deposition of particles at a scale in the
order of a fewmicrons, which is the scale of a cell nucleus, believed to be themost sensitive target to radiation-
induced cell killing due to the presence ofDNA. At themicron scale, single-particle energy deposition is
characterized by largefluctuations due to the inherently stochastic nature of particle interaction, and, therefore,
microdosimetry characterizes the radiationfield in terms of probability distributions of energy.

By characterizing the energy depositions at themicron scale,microdosimetry provides an ideal tool to link
radiation to its biological effects directly. For this reason,many radiobiologicalmodels rely onmicrodosimetry
principles, amongwhich themicrodosimetric kineticmodel (MKM) is themost prominent andwidespread in
particle therapy (Hawkins 1994, 1996, Inaniwa andKanematsu 2018).

TheMKM is amechanisticmodel that predicts the cell survival fraction of irradiated cells based on
microdosimetric average values and estimates the resulting RBE (Zaider et al 1996). In particular, theMKM
predicts the logarithmof the cell survival fraction of irradiated cells as a linear-quadratic (LQ) function of the
imparted dose, (McMahon 2018)

a b= - -( ) ( )S D D Dlog , 12

withα andβ two radiobiological parameters that depend on the biological tissue and on the specific ionizing
radiation. Despite theMKMhas displayed notable consistencywith experimental data obtained both in vitro and
in vivo (Mein et al 2020), over time, numerous successive adaptations of theMKMhave been developed in the
literature, (Kase et al 2006, 2007, Sato et al 2006, Inaniwa et al 2010, Bellinzona et al 2021a), primarily aimed to
address limitations of the originalmodel in specific scenarios where its underlying assumptionswere unsuitable.
Currently, theMKMrepresents the standardmodel used to calculate the RBE in several carbon-ion therapy
centers, (Mein et al 2020), and, alongwith the Local EffectModel (LEM), theMKM is one of the only twomodels
currently used in clinics for this purpose. Further, theMKMhas been used as the reference RBEmodel in the
recently first treated patient with helium, (Mairani et al 2022). TheMKM’s success andwidespread use highlight
the importance ofmicrodosimetry in accurately predicting the biological effects of radiation and optimizing
treatment planning for patients.

Recently, the generalized stochastic microdosimetric model (GSM2) has been developed, (Cordoni et al 2021),
which is a theoretically groundedmechanistic radiobiologicalmodel able to include several spatiotemporal
stochastic effects inherent to the formation and repair of radiation-inducedDNAdamage, (Cordoni et al
2022a, 2022b,Missiaggia et al 2023b). GSM2 is a fully probabilisticmodel that overcomes one of themain
assumptions shared bymost existing radiobiologicalmodels including theMKM, that is the fact that the
distribution of the number of damages induced by radiation onDNA is Poissonian. In doing so, GSM2 describes
the time evolution of probability distribution of radiation-inducedDNAdamage rather than focusing on
average values as done in theMKM.

Althoughmechanisticmodels based on themicrodosimetric description of radiationfield quality have been
shown as an accurate tool for predicting RBE in ion therapy, experimentalmicrodosimetric spectra are still
challenging tomeasure in the daily clinical practice even using commercial detectors, e.g. tissue equivalent
proportional counter (TEPC) or silicon-on-insulator (SOI) detector (Bradley et al 2001, Kase et al 2006,
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Rosenfeld 2016, Conte et al 2020,Missiaggia et al 2020,Missiaggia et al 2021, 2023a). Therefore, numerical
algorithms, such asMonte Carlo (MC) particle simulation toolkits, have been demonstrated as a valuable
alternative for themicrodosimetric characterization of the radiationfield (Zhu et al 2019, Baratto-Roldán et al
2021,Missiaggia et al 2020, 2023a). Nevertheless,MC simulations formicrodosimetric spectra are exceedingly
time-consuming, which has prevented their integration into clinical treatment planning systems. This limitation
has hindered the utilization of valuablemicrodosimetric insights within the clinical practice. Hence, to expedite
computational processes, various numerical approximations have been incorporated intoMKMmodels,
Inaniwa andKanematsu (2018), enabling their practical application in everyday scenarios. Themost relevant
onewas the use of an analytical amorphous trackmodel of particle energy deposition at the nanometer and
micrometer scale (Kiefer and Straaten 1986, Chatterjee and Schaefer 1976), which speed up the computation of
microdosimetric quantities used as input for theMKMRBEmodels (Kase et al 2007, Inaniwa and
Kanematsu 2018). It is important to note that in addition tomicrodosimetry, nanodosimetry holds great
promise in shedding light on the biological effects of radiation.Over the years, several radiobiologicalmodels
have been proposed to establish connections between ionization cluster size and the formation ofDNA lesions
(Garty et al 2010, Rabus andNettelbeck 2011). Notably, (Conte et al 2018, Selva et al 2020), nanodosimetry offers
a direct pathway to understanding the biological consequences of radiation exposure. Furthermore, it has
become evident that bothmicrodosimetric and nanodosimetric scales play a significant role in assessing
radiation-induced biological damage (Friedrich et al 2018, Baiocco et al 2022). However, it is crucial to highlight
that accurately simulating nanoscale phenomena necessitates the implementation of a physics list based on track
structure, which, for the sake of clarity, is not the focus of this paper.

In this work, we present a novel TOPASMonte Carlo (MC)microdosimetric extension:MicrOdosimetry-
basedmodelliNg for RBEASsessment (MONAS).MONAS combines fullMC simulations ofmicrodosimetric
spectrawith clinically relevantmicrodosimetry-based radiobiologicalmodels for cell survival and dose-
dependent RBE assessment. Furthermore, by utilizing the new scorers ofMONAS, it is nowpossible to generate
fullyMonte Carlo-based Look-Up tables (LUTs) of radiobiological parametersα andβ for RBE-based treatment
plan optimization in clinical proton therapy.MONAS is based on the existing TOPASmicrodosimetric
extension (Zhu et al 2019), whichmodels themainmicrodosimetry detectors used in literature and scores the
lineal energy distributions. The lineal energy y is defined as the energy ò deposited over the target volumemean
chord length l, i.e. y= ò/l. This is the quantity of referencemeasured in experimentalmicrodosimetry. Starting
from the simulated y distributions, we implemented a novel scorer based on specific energy z, defined as the
energy imparted ò over themassm of sensitive volume, i.e. z= ò/m. The extension allows the user to calculate
specific energy distributions at differentmicroscopic scales. These z distributions are the building blocks for the
microdosimetry-based radiobiologicalmodels implemented inMONAS.We included theGSM2 and three
clinically relevantMKM formulations: saturation correctedMKM (MKM-z*) (Kase et al 2006), double
stochasticMKM (DSMKM) (Sato and Furusawa 2012) and themodified StochasticMKM (mSMKM) (Inaniwa
andKanematsu 2018). Therefore,MONAS predicts dose-dependent cell survival fraction andRBE specifically
for the simulated radiationfield.

MONAS simulates experimentalmicrodosimetric distributions acquiredwith three different detectors, and
fromvalidated z-distributions, it calculates cell survival curves which can be directly comparedwith
experimental in vitro data. Therefore,MONAS is the first fullMC toolkit that allows the user to benchmark the
physical input and the biological output of the radiobiologicalmodels with experiments. To show that, we
compared theMONAS cell survival curves with experimental data from the particle irradiation data ensemble
(PIDE) (Friedrich et al 2013).We also calculated cell survival andRBEdepth curves using all radiobiological
models available inMONAS for a proton spread-out Bragg-peak (SOBP), whosemicrodosimetric spectrawere
previouslymeasured by us (Missiaggia et al 2023a) and used to validate TOPAS. Additionally, to test themodel
predictions for heavy ions, we characterized a 300MeV/u 12C-ion Bragg curve inwater (Martino et al 2010,
Burigo et al 2013).

MONAS is also an accurate and fast tool to predict RBE in proton therapy treatment plans. In particular, in
this study, we used theMONAS extension to generate fullMonte Carlo-based Look-Up-tables (LUTs) of
radiobiological parametersα andβ frommonoenergetic proton beams. By combiningMONAS LUTs and
TOPASMC’s precision in tracking therapeutic protonswithin the patient’s anatomy,MONAS allows the
calculation of the RBE spatial distribution in a real patient’s geometry. In particular, we determined themixed-
filedαmix and bmix , defined as the dose-averaged of single particleα and b extrapolated fromMONAS
LUTs, in each voxel of the scoringmesh. Consequently, we could predict the biological effectiveness of a real
proton beam. As an example, we recalculatedwith TOPASMCa real head and neck proton treatment,
optimizedwith the Eclipse planning system (VarianMedical Systems, Palo Alto, CA) and delivered at the
Dwoskin ProtonTherapyCenter (University ofMiami). Our study demonstrated that by fully integrating the
MONAS toolkit within the TOPASMCcode, we can accurately simulatemicrodosimetric spectra and use them
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as input for themicrodosimetry basemodels, enabling us to estimate the effect of radiation on biological tissue
in clinical conditions. The present work represents the first crucial step toward bridging the gap between
microdosimetry and clinical applications. By providing a comprehensivemicrodosimetric analysis of the
radiationfield, we showhow real-life clinical and experimental scenarios can greatly benefit, allowing clinicians
and researchers to estimate the biological effect of radiation accurately.

Themain contributions of the present paper are:

(i) to introduce a Monte Carlo-based microdosimetric toolkit that allows estimating in vitro cell survival data
andRBE distribution in realistic radiotherapy treatment planswith a fullmicrodosimetric description of
radiation.

(ii) to introduce a newmethodology for utilizing the microdosimetry-based radiobiological models to evaluate
RBE in real proton therapy treatments.

2.Material andmethods

2.1.Microdosimetric quantities andmicrodosimetry-based RBEmodels
Microdosimetry considers two quantities of interest: the specific energy z and lineal energy y (Zaider et al 1996).

The specific energy z is the ratio between the energy imparted by ionizing radiation ò and themassm of the
sensitive volume,

=z
m

.


The lineal energy y is the ratio between the energy imparted by ionizing radiation ò and themean chord length of
the sensitive volume l,

=y
l

.


It is possible to relate y to z via the following relation =z yl

m
. By assuming a spherical site of density

ρ= 1 g cm−3 and radius r expressed inμm, the relations between the y and z is:

p r m
m=[ ]

· [ ] · [ ]
[ ] ( )z Gy

r
y

0.16

g cm m
keV m 2

3 2 2

where 0.16 is the coefficient to pass fromkeV/g toGy.
The lineal energy y is the reference quantity in experimentalmicrodosimetry, whereas the specific energy z is

themain reference quantity inmicrodosimetry-based radiobiologicalmodels. A key difference between lineal
energy and specific energy is that the quantity ò refers to the energy imparted in a single event for y, or the energy
imparted in any number of events for z. This implies that when considering the distribution of z, the ionization
ofmore than one eventmust be considered. For this reason,most of theMKMand theGSM2models are based
on the so-calledmulti-event specific energy distributions (Bellinzona et al 2021b, Zaider et al 1996).

As standard inmicrodosimetry, thefirst twomoments of the single-event distribution play a crucial role and
they are defined as

ò=
¥

¯ ( ) ( )z zf z dz, 3F
0

1

ò=
¥

¯
¯

( ) ( )z
z

z f z dz
1

. 4D
F 0

2
1

Themost usedmicrodosimetry-based radiobiologicalmodel is theMKM. It utilizes a systemof differential
equations to predict the survival fraction of irradiated cells. These equations describe the time evolution of the
average number ofDNAdamages that can be repaired if they lead to cell death. To better alignwith biological
data, theMKMpostulates that the nucleus is partitioned into sub-units called domains so that the number of
DNAdamages is evaluated for each domain separately. Therefore, the probability of cell survival is estimated by
considering all the domains intowhich the nucleus has been divided.

Since its original formulation inHawkins (1994), theMKMhas beenwidely generalized to include several
endpoints and stochastic inter- and intra-cellular effects, (Hawkins 1996, 2003, Inaniwa et al 2010,Manganaro
et al 2017, Inaniwa andKanematsu 2018, Bellinzona et al 2021b, Attili et al 2022).

A proposed correction to theMKMmodel, named saturation correctedMKM (MKM-z*), aims to improve
its alignment with heavy ion data, which exhibits the so-called overkill effect (Kase et al 2006). This effect consists
in a decrease of the RBE versus LET, for LET beyond approximately 150 keV μm−1, following its initial raise for
increasing LET (Kase et al 2006). Although the saturated correctedMKMshows a bettermatchwith
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experimental data, it still does not include energy deposition variations both at the cell domain andnucleus level.
To include these effects, the double stochasticMKM (DSMKM) has been proposed (Sato and Furusawa 2012). In
the samework, the authors proposed an approximation of theDSMKM, named stochasticMKM (SMKM). It
was developed to reduce the computational time by approximating the stochastic nature of z at the cell domain
level with itsmean value and variance. The SMKMhas been further simplified in Inaniwa andKanematsu (2018)
to speed up the computational time and to be implemented in treatment planning systems. Themodified
version of SMKM (mSMKM) is based on the assumption that, in charged-particle therapy, the domain-specific
energy zd is, in general, delivered by a large number of low-energy deposition events, and the events inducing the
saturation of complexDNAdamages are rare. Also, it is assumed that the specific energy imparted zn is
sufficiently close to themacroscopic doseD. From these hypotheses, an analytical formulation of the cell survival
fraction as a function of domain andnucleus-specific energies was derived.

Recently, starting from the building assumptions of theMKM, a novelmicrodosimetry-based
radiobiologicalmodel, GSM2, was presented, (Cordoni et al 2021, 2022a, 2022b). GSM2 aims at providing a fully
probabilisticmodel that takes into account the effects of stochasticity in different aspects of radiation-induced
damage, e.g. in the initial damage distribution as well as damage evolution.

Like theMKMformulations, GSM2 describes the time evolution ofDNA lesions in a cell nucleus, which is
divided into smaller sub-domains. Differently from theMKM,GSM2 can describe the time evolution of the
whole probability distribution of lesions rather than simple average values. Notable enough, it has been shown in
(Cordoni et al 2022b,Missiaggia et al 2023b), that the distribution of lesions predicted byGSM2 can deviate from
aPoisson distribution, as assumed by theMKMmodels, especially at sufficiently high LET and doses.

Supplementarymaterials provide a detailed description of themicrodosimetric quantities, formalism, and
the radiobiologicalmodels presented in this work.

2.2. TOPAS
Themicrodosimetry-based radiobiological extension presented in this work extends the TOPASMC toolkit
(Perl et al 2012). TOPAS is an easy-to-use interface to theGeant4 Simulation toolkit (Agostinelli et al 2003)
allowing bothmedical physicists and researchers tomakeMonte Carlo simulationswithout the necessity of
advanced coding knowledge. In Zhu et al (2019) themicrodosimetric extension of TOPAShas been
implemented, allowing to score of lineal energy ywith three different types of detectors: (i) spherical Tissue
Equivalent Proportional Counter (TEPC), (ii) a cylindrical TEPC (also known amini-TEPC) and (iii) Silicon on
Insulator (SOI)microdosimeter. These detectors are the reference detectors formicrodosimetry, (Bradley et al
2001,DeNardo et al 2004,Debrot et al 2018, Bianchi et al 2022,Missiaggia et al 2020, 2023a). The
microdosimetric extension offers to the user the possibility to savemicrodosimetric spectra (yf (y) and yd(y)) and
the relative average quantities (yF and yD) for each detector, including the contribution of the particle species of
the radiationfield. The lineal energy distributions obtained via the TOPASmicrodosimetric extension have been
benchmarkedwith experimental data, showing good agreement, (Zhu et al 2019,Missiaggia et al 2023a).

2.2.1.MONAS
MONAS extension starts from the original lineal energy scorer to provide a further toolkit that calculates specific
energy z. Based on specific energymicrodosimetric spectra,MONAS predicts cell survival fraction andRBE
using the differentMKMformulations andGSM2 radiobiologicalmodel. TheworkflowofMONAS is depicted
infigure 1.

In addition to the parameters of the lineal energy scorer (Zhu et al 2019), new optional parameters were
implemented to activate the cell-survival andRBE calculationsmodule according toMKMandGSM2:
GetRBEWithMKModel,GetRBEWithGSM2. The user can further choose one ormoreMKM formulations
available by setting the value of the string parameterMKMCalculation equal to (i) ‘MKM-z*’ for the saturation
correctedMKM, (ii) ‘mSMKM’ for themodified-SMKMor (iii) ‘DSMKM’ for the double stochasticMKM. By
default, the saturation corrected is set. The cell-survival S is computed as a function ofmacroscopic absorbed
doseD, given as input parameter by the user setting the parameter SurvivalDoses; thus, RBE values are calculated
as a function of S(D) as follows

a b a
b

=
- -

( )
( ( ))

( )S D
S D

D
RBE ,

4 ln

2
, 5X X X

X

2

whereαX andβX are the linear-quadratic coefficients of photon reference radiation.Model-specific
radiobiological parameters can be set both forMKMandGSM2 separately, including the reference radiation
coefficients for the RBE calculations. Table 1 summarizes allMONAS parameters and their default values.
Further details about the evaluation of radiobiological parameters will be given in section 2.3.1.
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The outputfiles include the values set by the user both for the radiobiologicalmodel and reference radiation,
specific energy spectra both for cell nucleus and domain, cell survival for themacroscopic doses specified, and
RBE as a function of cell irradiation dose inASCII format. TheMONAS extension is an open-source code
available onGitHub (Cartechini 2023).

2.2.2. Specific energy spectra
Parallel to the default lineal energy scorer,MONAS includes the calculation of specific energy quantities
converting single-event lineal energy y into single-event specific energy z1 according to the equation (2). Single-
event andmulti-event specific energy spectra are calculated and used for cell survival andRBE evaluation
(SupplementaryMaterials). By setting the boolean parameter SaveSpecificEnergySpectra, the user can save in
ASCII format the single-event andmulti-event distributions calculated on cell domain and cell nucleus: zx, fx,1(zx),
zxfx,1(zx), zxfx(zx,D/zxF), where the subscript x can be either d for the domain and n for the nucleus distributions.

Since the n-fold convolution for themulti-event calculation is time-consuming, especially for high doses
when the number of convolutions increases, aMonte Carlo approach for evaluating themulti-event distribution
has been specifically implemented according to the followingworkflow: (i) the number of tracks kwhich deposit
energy on sensitive volume is generated from aPoisson distributionwithmean valueλn= zn/zd,F for cell
domain andλn=D/zn,F for nucleus, respectively. Then, (ii) k single-event specific energies z1 are sampled from
the single-event probability distribution f1(z) and summed up to obtain the total specific energy = å =z ztot i

k
i1 1,

deposited in the target; (iii) themulti-event probability distribution f (z,λn) both for cell domain and the nucleus

Figure 1.MONASworkflow.Monoenergeticmicrodosimetric spectra are simulated using TOPASMC to predict cell survival fraction
andRBEwith different radiobiologicalmodels. The predicted cell survival is thus used to constructα andβ look-up tables. Then,
voxel-based energy depositions are scored and used to reconstructα andβ parameters formixedfields, fromwhichRBE distribution
in clinical patients is obtained.
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is thus constructed by iterating steps (i) and (ii)N-times according to the parameter SetMultieventStatistic. A
scheme of the algorithmic construction described is depicted infigure 2.

2.3. Cell-survival andRBE
Themain feature of theMONAS extension is the prediction of cell survival curves and dose-dependent RBE
after irradiationwith ion beams. To prove the accuracy of the toolkit, we determined the radiobiological
parameters specific to eachmodel by comparing the survival predictionswith experimental in vitro data on the
human salivary gland (HSG) cell line. Once themodel parameters were determined, we usedMONAS to predict
RBEdistribution in two relevant cases for proton therapy: passively scattering proton spread-out Bragg peak
(SOBP) (Tommasino et al 2019,Missiaggia et al 2023a) and head and neck proton therapy irradiation delivered
at theDwoskin Proton therapy center (University ofMiami) and optimizedwith the Eclipse treatment planning
system (VarianMedical Systems, PaloAlto, CA).

2.3.1. Radiobiological parameters
The radiobiologicalmodels implemented in this work are based on a variable number of free parameters
independent of the radiation type, but they are only cell-line dependent.

These parameters were estimated by fitting themodels with in vitro cell-survival experimental curves
available in the literature andmeasured for a specific irradiation condition. It is worth stressing that, previous
works (Kase et al 2006, Sato and Furusawa 2012, Inaniwa andKanematsu 2018) reportedMKMparameters for
HSG cell line. Nonetheless, since the physical estimation of the radiationfield is different fromwhat was
implemented inMONAS, the biological parameters have beenfitted to ensure the highest reproducibility of
in vitro cell survival experiments. In the present work, we characterized the radiation field regarding lineal energy
and specific energy spectra by exploiting the TOPAS toolkit, a condensed historyMonte Carlo algorithm.On the
contrary, a differentmethodology was used both for theDSMKMand for themSMKM (Sato and
Furusawa 2012, Inaniwa et al 2013). DSMKMexploits a combination ofmicrodosimetricMonte Carlo
simulationswith PHITS code (Sato et al 2013) in 1 μmvolume for the cell domain (Sato et al 2009, 2006), while a
Fermi function ofmacroscopic LET is used for evaluating the specific energy probability distribution on cell
nucleus (Sato and Furusawa 2012). Themodified-SMKM, instead, exploits analytical amorphous-trackmodels
to describe the radial dose distribution of the ion track and, thus, to compute the specific energy deposited on the
cell domain and nucleus (Chatterjee and Schaefer 1976, Kiefer and Straaten 1986, Kase et al 2006, Inaniwa et al
2010). Due to the intrinsic difference in the description of radiation energy deposition in the sensitive volume
betweenTOPAS and the previous work, we re-calculated themodel parameters. A systematic comparison

Table 1. Summary of new input parameters for survival, RBE, and quality factor scorers. The parameter types are indicated according to the
TOPAS syntax (b stands for boolean, sv for string vector, u for unitless double, i for integer). Defaultmodel-specific biological parameters
refer to theHSG cell line.

Parameter Type Default Note

GetRBEWithMKM b True Flag for Survival andRBE calculationwithMKM

MKMCalculation sv MKM-z* String vector withMKM formulations: “MKM-z*”, “mSMKM”, ‘DSMKM’

MKM_Alpha0 u 0.13Gy−1 MKMparameters

MKM_Beta0 0.05Gy−2

MKM_AlphaX 0.19Gy−1

MKM_BetaX 0.05Gy−1

MKM_rho 1 gcm−3

MKM_y0 150 keV μm−1

MKM_DomainRadius 0.44μm

MKM_NucleusRadius 8.0 um

GetRBEWithGSM2 b false Flag for Survival andRBE calculationwithGSM2

GSM2_AlphaX u 0.19Gy−1 GSM2model parameters

GSM2_BetaX 0.05Gy−2

GSM2_rho 1 g cm−3

GSM2_a 0.037 h−1

GSM2_b 0.182 h−1

GSM2_r 3.641 h−1

GSM2_DomainRadius 0.8μm

GSM2_NucleusRadius 5.0μm

SetMultieventStatistic i 104 Number of iterations for calculating themulti-event probability distribution via

Monte Carlo approach

SaveSpecificEnergySpectra b False Flag for saving in anASCII file the single—- andmulti-event distributions for cell

domain and nucleus
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betweenMonte Carlo condensed history (e.g. TOPASMC) and track structure algorithm for calculating specific
energy spectra is out of the scope of this work.

Therefore, the parameters for theMKMandGSM2were determined to reproduce in vitro experimental data
ofHSG cells. Experimental cell survival curves were taken from the Particle IrradiationData Ensemble (PIDE)
(Friedrich et al 2013) inwhich a large amount of cell survival data are systematically collected and analyzed as a
function of particle LET, cell line, and reference radiation. Regarding the estimation of specific energy spectra,
we simulatedwith TOPASMC (v3.7) awater sphere placed in a vacuumworld to avoid particle energy loss
outside the sensitive volume. The spherewas irradiated by amono-energetic 3He (10.2MeV/u and 4.89 MeV/u)
and 12C (12.9 MeV/u and 126MeV/u) ion beams as reported in the experiments (Furusawa et al 2000, Friedrich
et al 2013). The beamwasmodeled as theEnvironment particle source available in TOPAS. It creates an isotropic,
uniform radiationfield enclosing thewater sphere. The default TOPAS physics list was used (Jarlskog and
Paganetti 2008). Then, we scored the specific energy spectra in the sensitive volume. Itmust be remarked that the
simulation setup used to reproduce the radiobiological data approximates the complexities of the experimental
conditions. Based on beam energy information in the PIDEdatabase, we assumed a purelymono-energetic
beam as a particle source. This approximation can lead to deviations between predicted and experimental cell
survival curves.

2.3.2. Cell survival and RBE for a proton Spread-out Bragg-peak
Recently inMissiaggia et al (2023a), a systematic characterization of the radiationfield produced by passively
scattered proton SOBP generated by a pencil beamof 148MeVhas been presented.Microdosimetric spectra
were acquiredwith spherical TEPCboth in-field and out-of-field. The samework also shows a good agreement
betweenTOPASmicrodosimetric simulations and experiments.

Starting from validated lineal energy spectra, we calculated cell survival, andRBE along the beam axis using
theMONAS code. As described inMissiaggia et al (2023a), we simulated the FarWest Technologies LET-1/2
spherical TEPCwith an active volumemade of pure propane gas (C3H8) at an operative pressure such that it is
equivalent to a tissue sphere of 2μmin diameter. The default physics list was used, and the particle production

Figure 2. Flowchart ofmulti-event probability distribution calculationwith aMonte Carlo approach by sampling distributions via
randomnumber generators. Steps inside curly brackets are the body of the two for loops iterating on the number ofmulti-event
statistics and cell domain (nucleus) particle hits.
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cut was set according to themicrodosimetric extension (Zhu et al 2019). About 107 primaries were simulated for
each position along the beam axis. 200 kV x-raywas chosen as reference radiation for theHSG cell line, with
αX= 0.19Gy−1 andβX= 0.05Gy−2 (Kase et al 2006).

2.3.3. Cell survival and RBE for a 12C-ion Bragg-peak
We simulated a 300MeV/u 12C-ion Bragg curve to test theMONAS toolkit with heavy ion irradiation. The
simulation geometry described in Zhu et al (2019), Burigo et al (2013)was implemented in TOPASMC to
reproduce the experimentalmicrodosimetric spectra published byMartino et al (2010). To reproduce the
experimental conditions, we simulated a spherical TEPCdetector filledwith propane-based gas (C3H8 (55%),
CO2 (39.6%) andN2 (5.4%)) equivalent to a sphere of tissue of 2.7μm in diameter.

Wecomputedmicrodosimetric specific energy spectra at various depths along thebeamdirections. Tovalidate
our simulations, prior studies have already confirmed the accuracy of the simulated lineal energy spectra at three
distinct positionsthe entrance,Bragg-peak, and tailthrough experimental comparisons (Martino et al2010, Burigo
et al2013,Zhu et al2019). In the context of the SOBP,we conducted simulationswith a sample size of 107primaries
for eachposition along thebeamaxis.Weemployed theHSGcell line to evaluate cell survival and theRBEdepth
curve, using 200 kVx-ray as the reference radiation source (αX= 0.19Gy−1 andβX= 0.05Gy−2).

2.3.4. Cell survival and RBE assessment in a patient case
Predicting the cell survival fraction andRBEwithin the patient’s anatomy involved a two-step process. First, we
utilized theMONAS extension to create lookup tables (LUTs) of radiobiological parametersα andβ for each
model and proton beam energy. Then, we incorporated theMONASLUTs into the TOPASMonte Carlo
particle transport algorithm to score the survival fraction andRBE in each voxel of the patient. To construct the
LUTs, we irradiated a sphere of 1 μmof radiusmade of waterwithmonoenergetic proton beams at different
energies (from0.1 to 300MeV), andwe scored the cell survival fractionwith theMONAS extension.Wefitted
each survival curvewith the LQmodel, andwe determined theα andβ coefficients. Using the TOPAS particle
transport algorithm,we created a novel scorer to calculate themixed-fieldαmix andβmix for each voxel of the
patient scoringmesh starting from the LUTs ofmonoenergetic beams. In particular, for each step s of primary
and secondary protons inside the voxel v, we registered the kinetic energy of the particle (Ev,s) and the energy
deposited along the step plus the energy released to secondary δ-rays (dEv,s) (Cortés-Giraldo andCarabe 2015).
As standard, theαmix andβmix are thus calculated as aweighted sumofα andβ for themonoenergetic beam,
(Zaider andRossi 1980)
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To show the applicability of this approach in real patient irradiation, we simulated in TOPAS a head and
neck treatment plan, optimizedwith the Eclipse treatment planning system (VarianMedical Systems, Palo Alto,
CA) at theDwoskin Proton therapy center (University ofMiami). The plan comprises 2 coplanar fields at 30 and
60-degree gantry angles and a third noncoplanar at 30 degrees gantry and couch angle at 300 degrees. All fields
employed a range shifter of 57 mmofwater equivalent thickness. A uniformbiological dose of 60Gy (RBE) in 30
fractionswas prescribed to the target using a constant RBE equal to 1.1.

We estimated the cell survival fraction and the dose-dependent RBEwith the abovementioned approach.
The radiobiological parameters for the reference radiationwereαX= 0.19Gy−1 andβX= 0.05Gy−2 forHSG
cell line.

To compare ourfindings, we repeated the same analysis using themSMKMbased on the amorphous track
description of radiation energy description at themicroscopic scale (Inaniwa andKanematsu 2018), which is the
version currently used in carbon ion therapy. To generate the dose-averaged specific energies per event z̄d D, and
¯*zd D, imparted to the domain, and to the cell nucleus, z̄n D, , we employed the Survival toolkit code (Manganaro
et al 2018). The resulting cell survival fraction andRBE are described in (Inaniwa andKanematsu 2018).

3. Results

3.1. Radiobiological parameters
Table 2 reports theMKMandGSM2 parameters that give the bestfit for the in vitro cell-survival data of theHSG
cell linewhen irradiatedwith 12C and 3He ion beams. Figure 3 shows the experimental cell survival fraction, as
taken from the PIDEdataset, (Friedrich et al 2013), for theHSG cell line, compared to the corresponding
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predicted cell survival curves using the four radiobiologicalmodels with parameters as given in table 2. All
radiobiologicalmodels agreewith theHSG in vitro cell survival curves for both carbon and helium ions.

Regarding thefittedMKMparameters, given a newdescription of the physics of the radiation field employed
in this study, all parameters have been recalibrated due to a discrepancy between cell survival experimental
results and prediction using parameter values reported in the original papers. In particular, in Kase et al (2006),
theMKM-z* parameters extrapolated directly frommicrodosimetricmeasurements of yD and from in vitroHSG
cell survival data are reported to beα0= 0.13Gy−1,β= 0.05Gy−2. Absolute values ofα0 andβ do not agree
with ourfit; nevertheless, theα/β ratio and domain radius are consistent with (Kase et al 2006). Further,
DSMKMandmSMKMparameters are different from the originals, (Sato and Furusawa 2012, Inaniwa and
Kanematsu 2018), but nevertheless, the difference in absolute value ismoderate.

At last, concerningGSM2, coherently withMissiaggia et al (2023b), only a, b, and r parameters were fitted,
whereas domain and cell nucleus radius were set a priori. This is done to avoid overfitting.

3.2. Specific energy spectra
The novel specific energy scorer implemented in this work allows calculating the single- andmulti-event
probability distributions, both at the domain and cell nucleus scales, that is, in the order of 1micron and 10
microns, respectively. Figure 4 shows the single-event zf1(z) andmulti-event zf (z, zn) distributions computed at
different averages doses zn= 0.1, 1 and 30 Gy for a cell domain radius equal to 0.46μm, chosen as the
representative domain sizes for theDSMKMand themSMKM.These spectra were calculated by locating the
TEPC active volume at the center of the SOBPproton beamdescribed in section 2.3.2.

The single-event distribution zf1(z) preserves a similar shape as the corresponding yf (y) distribution, as
could be expected from equation (2). On the contrary, the shape of themulti-event distribution changes
significantly as a function of the dose delivered to the cell domain zn. In particular, to lower doses, e.g. zn= 0.1
and 1 Gy, it corresponds to a higher probability of null energy deposition in the domain due to the case of no

Figure 3. Survival fraction ofHSG cellls irradiatedwith 12C at 12.9 MeV/u and 126 MeV/u (panel (a)), and 3He at 10.2 MeV/u and
4.89 MeV/u (panel (b)). Experimental data fromFurusawa et al (2000), tabulated in the PIDE.

Table 2.MKMandGSM2model parameters for human salivary gland cell line.
Experimental data are taken from the PIDE dataset, (Friedrich et al 2013).

HSG

MKM-z* DSMKM mSMKM GSM2

α0 [Gy
−1] 0.19 0.16 0.16 a [h−1] 0.037

β0 [Gy
−2] 0.07 0.08 0.08 b [h−1] 0.182

y0 [keV/μm] 150 — — r [h−1] 3.641

Rd [μm] 0.44 0.46 0.46 Rd [μm] 0.80

Rn [μm] — 8.0 8.0 Rn [μm] 5.0
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tracks hitting the target. This phenomenon is evident by the high peak at z= 0 Gy. As the dose zn increases, since
the average value of Poisson distribution is proportional to zn, the probability of scoring zero tracks vanishes,
and consequently, the peak at null z disappears. All threemulti-event distributions have an average value equal to
zn, and furthermore, at higher zn the distribution is uni-modal and peaked at z= znwith aGaussian-like shape.

The zf (z,D) distribution at the cell nucleus scale, with a radius of 8 μm, as a function ofmacroscopic dose
D= 1, 5, 15 Gy is shown infigure 5. As before, the spectrum is generated by an SOBPproton beam. Themulti-
event distribution has a uni-modal Gaussian-like shape peaked at z=D even at a low dose ofD= 1 Gy.

3.3. Cell survival andRBE for a proton Spread-out Bragg-peak
Cell survival fraction andRBEwere calculated usingMKMformulations andGSM2 along the beamaxis using
experimentally validatedmicrodosimetric spectra, (Missiaggia et al 2023a), as described in section 2.3.2. The
physical 3Ddose distributionwas simulated in thewater phantomusing a voxel size of 1× 1× 1mm3 and
normalized to 1.8 Gy at the center of SOBP to obtain a biological dose of 2Gy(RBE) for constant RBE equal
to 1.1.

Figure 6 panel (a) shows the depth survival curve compared to the physical dose. Allmodels predict a similar
trend: the survival is higher at the plateau, around 0.7, and drops to aminimum in the SOBP,where the survival
remains constant at around 0.5. At the distal edge of the SOBP, the survival fraction raises again to a similar value

Figure 4. Single-event (a) andmulti-event (b) specific energy probability distributions calculated on cell domain of radius 0.46μm.The
spectra were scored by locating the sensitive volume at the center of a proton SOBP.

Figure 5.Multi-event specific energy probability distributions calculated on cell nucleus of radius 8μmatD = 1, 5, 15 Gy.
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as the plateau.However, quantitative differences between the consideredmodels are appreciable. TheMKM-z*

andmSMKMformulations predict cell survival fractions systematically lower thanGSM2 in all regions. The
DSMKMshows comparable survival fraction values withGSM2 in the plateau up to themid-SOBP, while in the
distal region, GSM2 predicts a slightly higher cell survival. Dose-dependent cell survivals were further used to
calculate RBE according to equation (5). All themodels predict an RBEhigher than 1 for all depths, figure 6 panel
(b). In addition, allmodels show a constant RBE trend as a function of penetration depthwith a value between
1.1 and 1.2 in the plateau and a sharp increase in the distal edge of the field. Table 3 reports the survival fraction
andRBE values, alongwith statistical errors, at three water depths: plateau (34mm), middle SOBP (116mm),
and distal edge (136mm).

Figure 6.Radiobiological characterization of a proton SOBP. Cell survival fraction (panel (a)) and dose-dependent RBE (panel (b)), as
a function of depth inwater, predicted byDSMKM (black), GSM2 (orange),MKM (light blue), andmSMKM (green). The SOBP
region is depicted in a shaded gray. The horizontal dashed black line in panel (b) correspond toRBE 1.1, which is the standard value
used in clinics.

Table 3.Cell survival fraction, S(D), andRBE(D) calculatedwithMKM
formulations andGSM2 forHSG cell line. The values are reported at three relevant
water depths of the proton SOBP and 12C-ionBragg peak: plateau (34mm), mid-
SOBP (116mm), and distal penumbra (136mm) for SOBP; plateau (52.1mm),
Bragg peak (170mm), and distal penumbra (277.1mm). The values refer to the
center of TEPCdetector.

1HPlateau 12CPlateau

S(D) RBE(D) S(D) RBE(D)

GSM2 0.74 ± 0.03 1.06 ± 0.05 0.76 ± 0.04 2.29 ± 0.08

MKM-z* 0.70 ± 0.02 1.22 ± 0.04 0.77 ± 0.04 2.22 ± 0.08

mSMKM 0.69 ± 0.02 1.16 ± 0.04 0.77 ± 0.04 2.20 ± 0.07

DSMKM 0.73 ± 0.03 1.12 ± 0.05 0.76 ± 0.04 2.44 ± 0.09
1Hmid-SOBP 12CBragg Peak

S(D) RBE(D) S(D) RBE(D)
GSM2 0.54 ± 0.02 1.12 ± 0.05 0.22 ± 0.01 2.94 ± 0.09

MKM-z* 0.48 ± 0.01 1.27 ± 0.03 0.22 ± 0.01 2.94 ± 0.09

mSMKM 0.50 ± 0.01 1.22 ± 0.03 0.22 ± 0.01 2.94 ± 0.09

DSMKM 0.53 ± 0.02 1.15 ± 0.05 0.22 ± 0.01 3.04 ± 0.10
1HDistal 12CTail

S(D) RBE(D) S(D) RBE(D)
GSM2 0.77 ± 0.07 1.47 ± 0.08 0.98 ± 0.07 1.51 ± 0.11

MKM-z* 0.70 ± 0.04 1.86 ± 0.07 0.97 ± 0.07 2.04 ± 0.08

mSMKM 0.71 ± 0.04 1.82 ± 0.07 0.97 ± 0.07 1.95 ± 0.08

DSMKM 0.72 ± 0.07 1.81 ± 0.09 0.97 ± 0.07 2.09 ± 0.10
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3.4. Cell survival andRBE for a 300MeV/u 12C-ion beam
Figure 7 illustrates the depth survival curve andRBE compared to the physical dose. The dose calculations were
performedwithin a voxel size of 1× 1× 1mm3 andwere normalized to 2 Gy at the Bragg peak. In the context of
the spread-out Bragg peak (SOBP), allmodels consistently predict a higher cell survival in the plateau region,
averaging at 0.76± 0.01. This survival fraction decreases at the Bragg peak, reaching aminimumof 0.22± 0.01.
Aswemove far out-of-field, the survival fraction increases to 0.98± 0.07.

The dose-dependent RBEof 12C-ion beams is notably higher than that of protonRBE at all water depths. In
the plateau region, allmodels converge on an average RBE value of 2.3± 0.1, which sharply escalates to 6.9± 0.6
immediately after the Bragg peak. In the dose tail, situated far out-of-field, RBE values decrease to 1.9± 0.3.

Table 2 presents the survival fraction andRBE values, alongwith their associated statistical errors, at three
distinct water depths: plateau (52.1mm), Bragg peak (170mm), and dose tail (277.1mm).Wemust note thatwe
chose the simulation point at awater depth of 170 mm to represent the Bragg peak region.While in Zhu et al
(2019), the Bragg peak region has been identified at awater depth of 179.1 mm, our simulations indicate that the
Bragg peak is located at 171± 1 mmwater depth, which is consistent with the findings (Burigo et al 2013). Thus,
we havemaintained consistencywith our simulation results. Previous research has indicated that the peak in
RBE for 12C-ion beams is located a fewmillimeters downstreamof the Bragg peak (Tommasino et al 2015).
However, the substantial size of the spherical TEPC,measuring 1.27 cm in diameter, and the high sensitivity of
microdosimetric spectra near the Bragg peak region could account for the peak in RBE being situated at 7 mm
from the dose Bragg peak.

3.5.MONAS application to a patient case
To estimate a 3D spatial distribution of cell survival andRBE for a patient case, we calculated lookup tables
(LUTs) of radiobiological parametersα andβ for protons specific to theHSG cell line.We incorporated the
LUTswithin the TOPASMonte Carlo algorithm and simulated a treatment plan, calculating the 3D spatial
distributions of dose-dependent cell survival andRBE. To benchmark our results, we also included themSMKM
with amorphous track (mSMKM-AT), a validated radiobiologicalmodel for Carbon ion therapy, (Inaniwa and
Kanematsu 2018). The 2D spatial distribution of cell survival fraction is plotted infigure 8 forGSM2 (panel (c)),
andmSMKM-AT (panel (a)) as a benchmark to the current state-of-the-art ofMKMclinical application (tuned
for carbon ion therapy). The twomodels agree in the shape of S(D) distributionwhere aminimum (colormap
hot region) of the cell survival fraction is estimated in theClinical Target Volume (CTV) and a fewmillimeters in
the surrounding volume. By comparing themonodimensional depth-survival curves (panel (e)), large
differences are evident among themodels.MONAS-basedMKM formulations predict the lowest S(D) values
(0.46± 0.03 on average inCTV), while GSM2 andmSMKM-ATpredict an average cell survival fraction of
0.52± 0.07 and 0.55± 0.04, respectively.

The RBE 2Dmap displayed in panels (b) and (d) exhibits similar patterns: both themSMKM-AT andGSM2

are characterized by a notable increase in RBE values in the distal region of the therapeutic field, specifically at
beam angles of 30 and 60 degrees.mSMKM-AT 2Ddistribution shows awider dark red region (RBE values
above 1.5) compared toGSM2 in the distal part of the CTV,while in the patient’s entrancemSMKM-ATmaphas

Figure 7.Radiobiological characterization of a 300 MeV/u 12C-ion beam.Cell survival fraction (panel (a)) and dose-dependent RBE
(panel (b)), as a function of depth inwater, predicted byDSMKM (black), GSM2 (orange),MKM (light blue), andmSMKM (green).
The SOBP region is depicted in a shaded gray.
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lower RBE values (blue colormap). As shown in the depth-RBE curve (panel (f)),MKMmodels fromMONAS
code predict RBE values systematically higher thanGSM2 andmSMKM-ATboth at the beam entrance and in
the distal region (from1.3 to 1.6). GSM2model predicts RBE values lower than theMKM formulations from
around 1.1 at the entrance, up to 1.5 downstreamof theCTV. The same holds formSMKM-AT, which shows
RBE values around 1 at the entrance, exceedingGSM2 in distal reaching RBEs of around 1.7. Infigure 8 panel (f)
allmodels shows twoRBEpeaks for voxel indices blow 240 on the x-axis. These values correspond to the distal
out-of-field region of the beam,where the dose and the density are low due to the presence of the nasal cavities.
Infigure 8 panel (e), we observe cell survival values slightly higher than 0.9 in the same region. Sincewe are
calculating the dose-dependent RBE, combining these cell survival spikes and the low dose values (which serve as
the denominator in the RBE calculation) generates artifacts in theRBE distribution.

Figure 8.Panels (a) and (b) show the 2D spatial distributions of cell survival andRBE calculatedwithmSMKM-ATon the patient case,
respectively. The same patient slice and distributions are shown for theGSM2model, representative of theMONAS prediction (panels
(c) and (d)). The horizontal dottedwhite line indicates the position of the line curves plotted in panels (e) and (f) for cell survival and
RBEs, respectively. The red vertical band in the latter plots shows the position of the target region.
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Although the inter-model differences in absolute values of the survival S andRBE, bothMONAS-based and
mSMKM-ATmodels show the same spatial distribution characteristics. Inside the target volume, S andRBEs
remain constant and sharply increase at the distal edges of thefields wheremost organs at risk are located.

4.Discussion

In this work, we presented theMONAS toolkit, a TOPASMCextension that combines accurateMonte Carlo
simulations ofmicrodosimetric distributionswithmicrodosimetry-basedmodels for predicting cell survival
andRBE.MONAS provides a powerful tool to bridge the gap between amicrodosimetric description of a
radiationfield, the biological evaluation of radiation effects, and its implementation in the clinical practice of
proton beam therapy.

To showMONAS applications, we presented two examples: (i) the radiobiological characterization of a
SOBP, and (ii) the calculation of the RBE spatial distribution for a real patient’s treatment with protons. In
figure 6, we showed thatMONAS can estimate the cell survival fraction andRBEs from experimentally validated
spectra, predicting a trend consistent with previous works (Kase et al 2006, Tran et al 2017). In this context, it is
important to emphasize thatmost of the research paper on protons and heavier ions focuses onRBE10, which is
the ratio of reference radiation and ion dose giving the 10% survival fraction (Tran et al 2017,Debrot et al 2018,
Bianchi et al 2020, Conte et al 2020). The RBE10 represents a universally accepted radiobiological endpoint,
allowing thus a comparison of different radiobiological experiments. However, when considering clinical
applications, it becomesmoremeaningful to examine a dose-dependent RBE, i.e. the RBE associatedwith the
dose specifically absorbed by each voxel of the treatment plan. This critical information enables direct
estimation of the treatment plan’s biological effectiveness. The presentedMONAS extension, which is directly
linked toTOPAS, offers a rapid assessment of theMC-based dose-dependent RBE,which can have an impact
both in clinical scenarios and in experimental radiobiology.

Using the complete range ofmicrodosimetric spectrum as the input for radiobiologicalmodels emphasized
the need to recalibrate themodel parameters, as outlined in table 1, to accurately fit theMONAS cell survival
curves with the existing experimental data. Figure 3 shows a good agreement betweenMONAS predictions and
the experimental in vitro data at different irradiation conditions. Furthermore, the new set of parameters is
consistent with parameters already published for theMKM (Kase et al 2006, Sato and Furusawa 2012, Inaniwa
andKanematsu 2018) in terms of the order ofmagnitude of the cell domain and nucleus radii, as well as theα-β
absolute values. TheMONAS toolkit thus further allows testing the robustness of themodel parameter against
experiments. InMONAS, allmicrodosimetric values are evaluated using the entiremicrodosimetric
distribution (figures 4 and 5), which can be validated by direct comparisonwith the experimental y-spectra
measuredwith commercialmicrodosimetric detectors. As a result, theMONAS toolkit provides a
comprehensive framework for validating the entire radiobiological workflow, encompassing the simulation of
the radiationfield’s physical properties and the direct estimation of its biological impact. This is achieved by
utilizingmicrodosimetric quantities and cell survival experiments directly calibrated against experimental data,
ensuring accuracy and reliability in assessing biological effectiveness.

The radiobiologicalmodels implemented in our code use domain radii smaller than 1μm, a scale where a
condensed historyMonte Carlomight not be accurate.However, we primarily employed two sizes of scoring
spheres: a 1μmradius spheremade of water and a 6.35 mm radius spheremade of tissue-equivalent gas.
Notably, studies by Zhu et al (2019), Bianchi et al (2023),Missiaggia et al (2023a) have demonstrated that
microdosimetric spectra simulatedwith a TEPCdetector alignwell with experimental data. The 1 μmradius
water sphere was used to construct the LUTs and replicate the PIDE cell survival data. As shown infigure SM.1 of
the supplementarymaterials , the 6.35 mmradius spheremade of tissue-equivalent gas and the 1μmproduce
identicalmicrodosimetric spectra, which are used by ourmodels to compute the cell survival curve. It is worth
noticing that all the radiobiological use domain andnucleus radii that do notmatch the experimental or
simulation active volume sphere. Therefore, we adopted a rescaling approach using the z–y relation: =

rp
z y

r

0.16
2 .

This procedure, as employed in previousworks (Kase et al 2006, 2013), allowed us to simulatemicrodosimetric
spectra in larger geometries than the actual domain scale, providing valuable insights into the biological effects.

The secondmain application ofMONAS is the RBE evaluation in a real patient case. Infigure 8, we show the
3D spatial distribution of cell survival fraction andRBE values calculated for proton treatment of a head and
neck tumor. The results for a complex beamand patient’s geometry follow the same trend exhibited infigure 6
from the SOBP: RBE hot spots are observed at the distal edge of thefield, wheremost of the organs at risk are
located (e.g. salivary glands, oral cavity, optical nerves).We used theMONAS extension to generate LUTs ofα
andβ coefficients formonoenergetic proton beams and eventually asses the biological effectiveness of amixed-
energy beam averagingα andβ values. The RBE evaluated in the present paper is calculated considering only the
contribution fromprimary and secondary protons, but it can be extended to include other secondary ions by
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adding LUTs for alpha, carbons, and oxygen ions. This could increase the accuracy of the estimated RBE values,
especially at the field-edge and out-of-field, where a non-negligible contribution to the radiationfield is given by
high-LET radiation such as alpha particles (Missiaggia et al 2023a). The application ofMONAS in a real patient
case represents a significant advancement in integrating a detailedmicrodosimetric description of the radiation
field into treatment planning systems. These LUTs can be incorporated into a particle trackingMonte Carlo
toolkit to estimate a three-dimensionalmap of cell survival fraction andRBEwithin amixed-field radiation
treatment plan.

While using LUTs does not fully address the computational challenge of simulating the complete
microdosimetric distribution in all voxels, we propose a fundamental step into usingmicrodosimetric
information in proton and ion therapy. LUTs have been generated by simulating the entiremicrodosimetry
distribution ofmonoenergetic beams, whichwere then used as input for the radiobiologicalmodels to estimate
the cell survival fraction. Therefore, the intrinsic stochastic nature of energy deposition at themicron scale is
considered in thefinal LUT values. Using pre-calculatedα andβ values that are loaded during the particle
simulation in patients does not increase the treatment plan computation time. The time required by TOPASMC
to calculateαmix and bmix in each voxel of the patient is comparable to a similar volumetric scorer already
implemented in TOPAS (e.g.ProtonLETCortés-Giraldo andCarabe 2015, Granville and Sawakuchi 2015). This
feature is of great significance in the proposedmethodology because it enables the inclusion of our LUTs in
clinicalMonte Carlo treatment planning systemswithout causing a slowdown in computational time for
treatment plan calculations. Indeed, a significant enhancement to this analysis could involve the creation of
LUTs for different cell lines, each specifically assigned to a patient’s organ. This approachwould enable the
calculation of cell-line-dependent RBEwithin the patient’s anatomical context, thus accounting for the varying
radiosensitivity of different clinical structures.

Our findings reveal that there is a clear inter-model variability in the absolute values of cell survival and, thus,
in RBE values observed both in SOBP characterization and in the patient simulation, as seen infigures 6–8.
Figures 8 panels (e)–(f) exhibit significant differences between theMKMmodels andGSM2 in theCTV region,
being further themSMKM-AT closer to theGSM2 prediction. Differences in themodels stem from the fact that
they all have different foundations and include different stochasticities. In addition, deviations in the predictions
of RBEhave already been verified in the literature when comparing theMKMwith the LEM, (Monini et al 2019,
Bellinzona et al 2021b). Furthermore, the predictionsmade by the implementedmodels exhibit consistent
trends, withGSM2 showing a higher predicted survival probability within the tumor compared to all versions of
MKM. In the context of heavy ion beam irradiation, as depicted infigure 7, the variations between different
models are less pronounced than in the case of proton irradiation.However, GSM2 still exhibits deviations from
MKM. In the scenario of high LETparticles, the assumption thatDNAdamages follow a Poisson distribution is,
in general, believed not to be valid. One notable strength of theGSM2model lies in its capacity to avoid assuming
any Poisson distribution for both lethal and sub-lethal damages, a commonpractice in dealingwith high-LET
radiation energy deposition. This inherent distinction betweenMKMformulations andGSM2 can lead to
discrepancies betweenmodels, particularly in regions beyond thefield of the heavy ion beam. The primary
objective of this study is to present a proof-of-principle regarding the key features ofMONAS, without imposing
assumptions on themodel’s parameters. The strength of our toolkit lies in the ability to customize eachmodel’s
parameters and cell line-specific settings. However, we provided a set of potential parameters that yield
radiobiological results consistent with the in vitro data presented infigure 3. Further investigations will be
conducted to calculate themodel parameters that bestfit a larger sample of experimental cell survival curves at
various irradiation conditions. This analysis highlights the importance of determining precisemodel parameters
that have a significant impact on the absolute values of cell survival fractions and, consequently, RBE.
Furthermore, allmodels predict an RBE that significantly differs from the constant value used in the clinic.
GSM2 and theDSMKMcalculate anRBE value close to 1.1 only in the plateau, while all themodels show a sharp
increase in the RBE in the distal region. This increase in theRBE could have an impact on the organs at risk
located right after the tumor, for which a significant underestimation of RBE could lead to toxicities.

Microdosimetry is proving to be extremely valuable in clinical applications for several compelling reasons,
surpassing the traditional use of LET values and providing amore reliable and experimentallymeasurable, as
demonstrated in numerous campaigns conducted over the years, (Kase et al 2006, Tran et al 2018, Bianchi et al
2020,Missiaggia et al 2020, Lee et al 2021,Magrin et al 2023,Missiaggia et al 2023a), radiation quality
description.Moreover,microdosimetry naturally includes the geometry of the sensitive volume in themeasured
spectra, providing information that not only considers the stochastic nature of energy deposition but also
incorporates specific geometric considerations of the studied volume. This eliminates any potential uncertainty
in interpreting the analyzed spectra and quantities. Because of the several LET definitions, it can be challenging
to discernwhether the value indicates the track average or the dose average. Additionally, different LET scorers
are commonly used, and including only primary particles or both primary and secondary particles in the scorer
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can completely change the physical significance of the resulting values and the estimation of the biological effect
(Grassberger and Paganetti 2011, Bellinzona et al 2021a, Kalholm et al 2021). This becomes particularly
problematic in the out-of-field regions, where the radiationfield ismixed, short-track particles can play a
significant role, and LETmay not accurately characterize the radiation quality (Grün et al 2019). On the other
hand,microdosimetry offers comprehensive information that allows for a precise assessment of all the physical
processes involved, enabling amore accurate estimation of the biological effects.

Therefore, radiotherapy clinical practice can greatly benefit from consistently and rigorously evaluating
treatment plans based onmicrodosimetry. In the past, the computational effort required for calculating
microdosimetry quantities in treatment plans has been a hindrance to its practical implementation in the clinic.
However, with advancements in computational power and the effective simplificationmethods demonstrated in
this study, clinicians can now improve the prescribed treatment plans by incorporatingmicrodosimetric
considerations allowing for amore robust estimation of the plan’s biological effectiveness.

5. Conclusions

In this work, we presented a novel TOPASMCextension,MONAS:MicrOdosimetry-basedmodelliNg for RBE
ASsessment, which allows the user to evaluate dose-dependent cell survival curves andRBEwith themost used
microdosimetry-based radiobiologicalmodels: threeMKM formulations (saturation correctedMKM (MKM-
z*) (Kase et al 2006), double stochasticMKM (DSMKM) (Sato and Furusawa 2012) and themodified Stochastic
MKM (mSMKM) Inaniwa andKanematsu 2018) and theGSM2model, (Cordoni et al 2021, 2022b).

MONASwraps the already publishedTOPASmicrodosimetric extensions to evaluate the single- andmulti-
event specific energy (z)distributions at differentmicrometric scales. Fullmicrodosimetric distributions are
then used as input for bothMKMandGSM2models. This approach showed intrinsic differences in
microdosimetric radiation characterizationwith respect to the amorphous track structuremodel used in the
latestMKM formulations. Therefore, we recalculated themodel parameter that bestfit the radiobiological
experiments for theHSG cell line. To show themainMONAS applications, we reproduced experimental
microdosimetric spectra from a passively scattered SOBP.We used theMONAS code to assess cell survival
fraction andRBE as a function of proton penetration depth. Ourfindings are consistent with thewell-known
RBE trend, which presents a steep increase in the distal edge of the field. Furthermore, wewere able to assess the
high inter-model variability on the absolute RBE values thus quantifying a radiobiological uncertainty in proton
plans in addition to other physical uncertainties.

The applicability of theMONAS toolkit can be further extended to a radiobiological analysis of treatment
plans.We showed that it is possible to generate radiobiological parameter look-up tables which can be combined
with theMonte Carlo toolkit for computing RBEmaps on patients and therapeutic beam geometries.We
showed an example of cell survival andRBEpredictions on a real head and neck proton therapy plan delivered at
theDwoskin ProtonTherapyCenter at theUniversity ofMiami. The results have been compared to the
mSMKMmodel based on the amorphous track structuremodel, as recently developed in (Inaniwa and
Kanematsu 2018), representing one of themost usedmodels in carbon ion therapy. Despite the variability in
RBE absolute values, all themodels showed a reasonable RBE trend as a function of beampenetration depth.

In conclusion, theMONAS extension offers a comprehensivemicrodosimetric framework for assessing the
biological effect of radiation in both research and clinical environments.MONAS could be a key tool to include a
detailedmicrodosimetric description of radiation field into treatment planning systems for variable RBE
calculations.
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