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Abstract

Nuclear electromagnetic breakup processes at low energy are particularly relevant
in the astrophysical context. In this Thesis we analyse the Beryllium–9 photodis-
integration reaction, whose inverse process, under certain astrophysical conditions,
is related to the Carbon–12 formation. A preliminary study of the Carbon–12
photodisintegration is also carried out. The interaction of these nuclei with a low–
energy photon induces a transition to a state consisting of cluster sub–units, the
α–particles, and possibly a neutron, n. The theoretical study of the cross section
in the low–energy regime is conducted by using a three–body ab initio approach.

Beryllium–9 exhibits a clear separation of energy scales, since its ααn three–
body binding energy is shallow compared to the binding of the α–particle. Within
this framework a halo/cluster Effective Field Theory (EFT) can be developed. The
α–α and α–n effective interactions are defined in momentum space as a series of
contact terms, regularized by a momentum–regulator function. The Low Energy
Constants are expressed in terms of scattering observables, i.e. scattering length and
effective range. A three–body potential is also introduced in the model. Carbon–12
is studied on the same footing.

By means of an integral transform approach, the problem of the transition to a
state in the continuum can be advantageously reformulated in terms of a bound–
state problem: in the calculations we use the Lorentz Integral Transform method,
in conjunction with the Non–Symmetrized Hyperspherical Harmonics method.

In determining the low–energy photodisintegration cross section, the nuclear
current matrix element is evaluated through the electric dipole, or quadrupole,
transition operator (Siegert theorem). Since the continuity equation is used ex-
plicitly, the contribution of the one–body and the many–body current operators is
implicitly included in the calculation. By comparing the results with those obtained
by using a one–body convection current, the effect of the many–body terms can be
quantified.

The dependence of the results on different EFT parameters is discussed, always
in connection with the experimental data available in the literature. By following
the power counting dictated by the EFT approach for Beryllium–9, the inclusion
of different partial waves in the potential model is explored. In addition to a α–α
S–wave, a α–n P–wave and a three–body effective interaction, a α–n S–wave term
is also required to obtain results more consistent with the experimental data. The
contribution of the many–body currents to the cross section is found to be non–
negligible. Although at an early stage, Carbon–12 results show interesting features.

The formalism presented in this Thesis can be extended to study the photodis-
integration of Oxygen–16 within a fully four–body ab initio approach.
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[1]
λ |Ψ0⟩ as a

function of the photon energy. The sum is represented by the dotted
black line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.37 Comparison between the total 9Be photodisintegration cross section
calculated by using the one–body current and the Siegert operator.
The results relative to the the Siegert operator are those already
shown in Fig. 6.30. The experimental data are taken from Refs. [5,
7–10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of Figures xv

7.1 12C level scheme taken from Ref. [11]. At incident photon energy
7.275 MeV the three–body α + α + α breakup occurs. The 8Be + α
threshold is also shown. The possible electromagnetic transitions
between the Hoyle state (0+

2 ) and the ground state (0+
1 ) and between

the Hoyle state and the first excited bound state (2+
1 ) are represented

with different colours. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 Convergence study relative to the 12C(2+

1 ) bound–state energy with
respect to the maximum grand–angular momentum quantum num-
ber Kmax. The effective potential VLO+3 (7.18) is used, with Λ3 =
200 MeV and λ2+

3 = −0.9401736 fm5. With the chosen strength λ2+
3

the experimental energy Eexp(2+
1 ) = −2.875 MeV [123] is reproduced. 132

7.3 Values of the strengths λ2+
3 , λ0+

3 (upper panel) and of the relative
combination c3 = λ3Λ4

3 (lower panel) as a function of the three–body
cut–off Λ3. The potential VLO+3 (7.18) has been used in the calcu-
lations. The constant λ2+

3 (λ0+
3 ) is tuned so that the experimental

energy Eexp(2+
1 ) = −2.875 MeV [123] (Eexp(0+

1 ) = −7.275 MeV [123])
is reproduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 LIT relative to the quadrupole transition 2+
1 → 0+

2 for σI = 0.05 MeV.
The potential VLO+3 is used in the calculation with cut–off Λ3 =
200 MeV and strength λ3 = −0.70918 fm5. The value of the max-
imum grand–angular momentum is fixed at Kmax = 20, while the
convergence by increasing the basis parameter NL is shown. . . . . 134

7.5 Same as Fig. 7.4 but here the LIT is calculated also for σI = 0.01 MeV
(a) and σI = 0.0001 MeV (b.) . . . . . . . . . . . . . . . . . . . . . . 135

7.6 (a) Response function obtained by imposing for the width of the
Lorentzian kernel the experimental value Γexp(0+

2 ) = 8.5 eV (solid
line) and the value obtained in Ref. [33] Γth(0+

2 ) = 15.8 eV (dashed
line). (b) Calculated cross sections for the E2 transition 2+

1 → 0+
2 . In

both panels ω is the energy of the photon and the three–α threshold
is located at 2.875 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.7 12C photodisintegration cross section through the states 2+
1 → 0+

2 as
a function of the energy E = Eγ + Q with Q = −2.836 MeV taken
from Ref. [33]. A comparison with our results in Fig. 7.6b can be
made. More details can be found in the text. . . . . . . . . . . . . . 136

7.8 Same as Fig. 7.6b. Here the 12C photodisintegration cross section
proceeding through the states 2+

1 → 0+
2 is represented as a function

of the photon energy taken in a range starting from the three–α
threshold located at 2.875 MeV. . . . . . . . . . . . . . . . . . . . . 137

G.1 LIT computed by using Eq. (6.30) and the functions G0,l
µ (ρ) in (6.28)

(solid blue) or Eq. (G.1) with fm(ρ) (dot–dashed green line) to eval-
uate the dipole matrix elements ⟨Ψl|d̂λ|Ψ0⟩. . . . . . . . . . . . . . 164





List of Tables

4.1 Scattering observables (scattering length and effective range) related
to the α–n system in the partial waves ℓ = 0 and ℓ = 1. The
experimental values are from Ref. [70]. . . . . . . . . . . . . . . . . 34

4.2 Scattering observables (scattering length and effective range) relative
to the α–α system in the partial wave ℓ = 0. The values are taken
from Ref. [25], being an ERE fit of the experimental data from Table
II of Ref. [74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 9Be ground state energies (in MeV) calculated for Kmax = 17 and
β = 0.05 fm−1 as a function of NQ/Nφ, the number of points relative
to the integration grids in the hypermomentum Q (Q′) and in the
hyperangle φ2, respectively. On the right, the variation of E0 by
increasing NL, the dimension of the Laguerre polynomials basis. The
two–body potential cut–off parameters are fixed to ΛS

αα = 190 MeV
and ΛP

αn = 300 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Energies e0 (MeV) of the α–n bound–states that exist in correspon-

dence to some values of ΛS
αn (MeV), the cut–off parameter relative

to the α–n effective potential in the partial wave S. . . . . . . . . . . 108
6.3 Discretized low–energy spectrum (MeV) for the channel 1/2+ relative

to the subsystem α–n for different values of the projection parameter
Γ (MeV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

G.1 Evaluation of the expression σ2
R L(σR, σI) (fm2) for increasing σR

(MeV) by using the functions G0,l
µ (ρ) or fm(ρ) to calculate the dipole

matrix elements in the LIT L(σR, σI). σI is fixed at 0.2 MeV. More
details can be found in the text. . . . . . . . . . . . . . . . . . . . . 165

xvii





Chapter 1

Introduction

The formation of the elements, from the light to the heavy ones, is one of the prin-
ciple subject in the field of nuclear astrophysics. The fundamental building blocks
of nucleosynthesis are the single nucleons, protons and neutrons, as well as cluster
structures, such as the α–particles. Understanding the processes in which these
particles are involved is of primary importance. Within this framework, nuclear
physics provides an essential input through the determination of nuclear structures
and reactions [1].

The absence of stable elements at mass numbers A = 5 and A = 8 represents
an obstacle to the formation of heavy elements starting from p, n and α. In the
Helium–burning phase of stars, one reaction path capable of bridging these well–
known gaps is the triple–α process, leading to the Carbon–12 nucleosynthesis [2].
However, in a neutron–rich environment, such as neutron star mergers or supernovae
explosions, an alternative path to 12C is represented by both direct and sequential
reactions that combine two α–particles and a neutron into Beryllium–9. The whole
process can be represented schematically as

4He(αn, γ)9Be(α, n)12C , (1.1)

whereas in the case of sequential reactions, first 8Be is formed from two α–particles,
being a resonance located slightly above the two–α threshold, and then 8Be(n, γ)9Be
takes place [3]. In this way, under certain astrophysical conditions, the production
of heavier elements, turns out to be sensitive to the rate of 9Be formation [4]. In
order to construct models as accurate as possible, a theoretical study is therefore
required. Due to the time reversal invariance, one can focus on the inverse process,
which is the 9Be photodisintegration reaction. For these reasons, in this work we
present a theoretical study of the following reaction

γ + 9Be→ α+ α+ n , (1.2)

in a fully three–body ab initio approach and in the low–energy regime of astrophys-
ical interest.

Since direct measurements of the three–body capture are not possible, several
experiments have been conducted over the years to measure the 9Be photodisin-
tegration cross section by using different photon sources. One of the most recent
ones is reported in Ref. [5], by Arnold, et al. (2012), carried out by employing a
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Figure 1.1: Data relative to the total 9Be(γ, n)8Be cross section collected by us-
ing different γ–ray sources such as real photons from both natural radioisotopes
(Gibbons et al., John et al., Fujishiro, et al. [6]) and inverse Compton scattering
(Utsunomiya, et al. [7]) as well as virtual photons from inelastic electron scatter-
ing (Burda, et al. [8]). The label “present” refers to the experiment conducted by
Arnold, et al. with nearly monoenergetic photon beams and reported in Ref. [5],
from which the figure is taken.

highly efficient neutron detector and nearly monoenergetic photon beams produced
by the High Intensity γ–ray Source of Triangle Universities Nuclear Laboratory. In
Fig. 1.1 the collected data are shown, where also a comparison with those from
previous measurements is present. These include experiments performed with real
photons from both natural radioisotopes [6] and laser–induced Compton backscat-
tered γ–rays [7], and with virtual photons from inelastic electron scattering [8]. It
can be noticed that the data collected by Arnold, et al. are larger than most of the
measurements coming from earlier experiments, both in the region just above the
two–body threshold, corresponding to energy ≈ 1.7 MeV, and at energy ≈ 3 MeV,
where the difference is almost a factor of two. Another recent set of data regarding
a broader range of energy, up to ≈ 16 MeV, can be found in Ref. [9] by Utsunomiya,
et al. (2015). They focused on the resonance peak just above the neutron thresh-
old energy, due to the state Jπ = 1/2+, finding consistence with the previous
2001 data [7], and on the Cluster Dipole Resonance (CDR) below the Giant Dipole
Resonance (GDR). Fig. 1.2 shows the experimental cross section obtained by us-
ing quasi–monochromatic γ–ray beams produced by means of the inverse Compton
scattering of laser photons at the NewSUBARU synchrotron radiation facility.

The grouping of elementary constituents into sub–units is characteristic of a
wide variety of physical systems, and it is commonly defined clustering. This can be
seen as an effect due to the transition of such systems towards states characterized
by a lower potential energy, leading also to a gain in stability [11]. Specifically,
nuclear clustering structures are the result of a balance between different ingredients:
the repulsive short–range interactions and the Pauli blocking effects, the attractive
medium–range nuclear forces, and the long–range Coulomb interactions involving
protons. A good candidate for such a structure is represented by the 4He nucleus,
i.e. the α–particle, which is highly symmetric and stable. α–clustering is indeed a
reality in light nuclei [12].
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Figure 1.2: Figure taken from Ref. [9] by Utsunomiya, et al. (2015), to which
the label “present” refers. The 9Be(γ, n) cross section is shown, from the energy
corresponding to the two–body n + 8Be threshold, and up to the Giant Dipole
Resonance (GDR) region. For the state Jπ = 1/2+ also the bremsstrahlung data
by Goryachev, et al. [10] and the data collected by Arnold, et al. [5] are reported.
Jπ = 5/2+ 2001 data are from Ref. [7].

The origin of the cluster model for atomic nuclei dates back to the very early
stages of nuclear physics (see [11] and References therein). After the discovery of α–
radioactivity by Becquerel, and Marie and Pierre Curie, and after the identification
of α–particles with 4He nuclei by Rutherford, already in 1930, Gamow proposed
a type of nuclear model in which nuclei are composed of α–particles. During the
30’s Wefelmeier pointed out that the N = Z even–even nuclei, such as 12C and
16O, show a great stability in terms of binding energy, and he suggested for these
nuclei a structure of α–particles with a regular geometry. Together with other
studies by Wheeler and Fano, this pioneered a strong development of the α–model
of the nucleus in the late 30’s, represented by the works of Hafstad and Teller, and
Dennison. The success in describing the binding energy of the ground state of self–
conjugate nuclei led also to a thorough investigation of the α–α interaction. The
widely used phenomenological Ali–Bodmer potential [13] was developed in the 60’s
for the description of the α–α scattering. In those years, another step forward was
represented by the publication of the so–called Ikeda diagram [14], developed by
following the idea that clustered structures in light nuclei should occur close to the
α–threshold energies, i.e. the energies required for the decay into the relevant sub–
units. This also suggested that clustering could play a significant role in nuclear
astrophysics, since states existing near the thresholds could influence the reaction
rates relative to the processes occurring in the Helium–burning stage. An example
of this kind is provided by the triple–α process and the Hoyle state [15]. Later,
these concepts were somehow extended also to neutron–rich systems. In 1996, von
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Figure 1.3: Re–elaboration of the Ikeda diagram taken from Ref. [11], where the
threshold energy (MeV) for each decay mode is indicated. The threshold–rule is
represented for different nuclei: self–conjugate nuclei (left–section) and neutron–
rich light isotopes (section on the right). On the horizontal axis they are ordered
by increasing mass number A. The α–particles are depicted in light blue, neutrons
in red.

Oertzen [16] argued about the possible presence of dimeric structures in Beryllium
isotopes, leading, among other things, to the full understanding of 9Be structure
concerning the ground state and the first excited states. In Fig. 1.3 the threshold–
rule of the Ikeda diagram is represented for both self–conjugate nuclei and neutron–
rich light isotopes. Among others, α–clustering of 9Be and 12C is visible.

9Be nucleus provides a three–body effective clustering system with a Borromean
structure: the whole nucleus is bound but each of the two–body subsystems, here
α–n and α–α, is not bound. The threshold energy for the three–body α + α +
n breakup corresponds to B3 ≈ 1.57 MeV, while the proton separation energy
relative to the α–particle is Sp(4He) = 19.81 MeV. The three–body binding of 9Be is
therefore shallow when compared to the α binding. This provides a clear separation
of energy scales, which is an essential feature required for the use of an Effective Field
Theory (EFT) approach. In the literature, theoretical calculations of the low–energy
9Be photodisintegration can be found, where a three–body representation of the
nucleus in its bound state is assumed, and two–body phenomenological potentials
are employed. We mention here, for example, the work by Efros, et al. [17], as
well as that by Casal, et al. [18], or Kikuchi, et al. [19], in which also a three–body
potential is included in the model in order to adjust the energy of the system. In the
latter a wider range of energies, up to 16 MeV, is also considered. Instead of using
phenomenological potentials, in this work the aforementioned separation of scales
is exploited, leading to a description of 9Be by means of interactions derived from a
halo/cluster EFT [20], and therefore based on a more solid theoretical background.
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Since their introduction into nuclear physics [21], EFTs have had a huge impact
in this field. Nowadays a large part of ab initio calculations, consisting mainly in
solving the Schrödinger equation relative to the chosen degrees of freedom, are per-
formed by using interactions from EFTs. An EFT provides a general framework for
studying the low–energy behaviour of a physical system consistently with some as-
sumed symmetries. By taking the known symmetries of Quantum Chromodynamics
(QCD), an EFT essentially provides a realisation of QCD in terms of hadrons in-
stead of quarks and gluons [22]. Once the energies of interest have been identified,
the most general Lagrangian is constructed by means of a set of fields corresponding
to the relevant degrees of freedom, and each term is constrained only by the sym-
metries of the underlying theory. The long–distance physics is treated explicitly.
All the details about the short–distance dynamics that cannot be resolved at low
energy are implicitly included in the interaction strengths, commonly known as Low
Energy Constants (LECs). This also provides a “controlled” framework, where the
physical quantities are given by means of an expansion in powers of the small ratio
Mlo/Mhi; Mlo is the typical scale of the effective theory to be constructed while
Mhi represents the scale at which the EFT breaks down (Mlo ≪ Mhi). By consid-
ering processes characterized by a typical momentum Q ∼ Mlo, if calculations are
carried out at a certain order ν of the expansion, then the errors can be quantified
as (Mlo/Mhi)ν+1 [20]. In this sense an EFT is renormalizable, since at each order
in the expansion the sensitivity to the unaccounted short–distance physics is small,
being of relative size O(Mlo/Mhi) [22].

Historically, the first nuclear effective theory to be developed was the chiral
EFT [21], which includes as degrees of freedom nucleons and pions, and it is de-
signed for momenta of the order Q ∼ mπ ≪ 1 GeV. Despite its success in terms
of phenomenology, renormalization has proven to be challenging [22]. A different
effective theory is the so–called pionless EFT (see [22] and References therein),
working for momenta well below the pion mass. The degrees of freedom are repre-
sented by the nucleons, since the pions can be treated as short–range interactions.
In this case, renormalization is relatively better understood. A variant of the pion-
less (or contact) EFT is represented by the halo/cluster EFT [20, 23–25]. Within
this framework, halo and cluster nuclei can be studied. In some processes involving
these nuclear systems the typical energies are so low that not only nucleons but also
clusters of nucleons, such as α–particles, can be treated as elementary degrees of
freedom. This is the effective theory of interest to us, from which our α–n and α–α
effective potentials, as well as a possible three–body interaction, are inspired.

Photodisintegration reactions of light nuclei are processes in which a real photon
interacts with the single nucleus, as diagrammatically represented in Fig. 1.4. Basi-
cally, the photon with energy ω causes a transition from an initial nuclear state |ψi⟩
to a final state in the continuum |ψf ⟩, where the nucleus breaks into sub–units. In
this work we are interested in the low–energy regime of astrophysical relevance, and
therefore, by taking the initial state as the ground state of the nucleus under study,
the sub–units in the final configuration are represented by nucleons and α–particles.

The calculation of the photodisintegration cross section involves the evaluation
of the so–called Nuclear Current matrix element (NCme). In its more general form,
it explicitly depends on the Fourier transform of the nuclear current, J̃(q), and
on the spherical component of the photon polarization vector, ε̂q,λ. The NCme is
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Figure 1.4: Figure taken from Ref. [26]. The diagram of the interaction between a
single real photon and a nucleus is represented.

commonly denoted as [26]

Nfi =
〈
ψf

∣∣∣ ε̂q,λ · J̃(q)
∣∣∣ψi

〉
. (1.3)

Since the photon is real, it must be λ = ±1. Moreover, the momentum q transferred
by the photon is such that ω = |q|. Essentially, Nfi encodes all the necessary infor-
mation about the nuclear structure. From a theoretical point of view, the calculation
of the final states |ψf ⟩ belonging to the continuum is not an easy task. To overcome
this difficulty, in this work, we adopt an integral transform approach [27] in conjunc-
tion with the Non–Symmetrized Hyperspherical Harmonics (NSHH) method [28],
where the interactions derived from a halo/cluster EFT are given as an input.

Since the nuclear current J̃(q) can be formally expressed as a sum of a one–body
and many–body terms, one way to proceed is to evaluate Nfi by taking into account
only the one–body term, i.e. the nuclear convection current. This calculation has
already been performed by Filandri in Ref. [29]. With respect to this computation,
here we want to make a step further. Due to the condition of Gauge invariance of
the electromagnetic interaction, i.e. the continuity equation, the transverse electric
multipoles of the nuclear current operator can be related to the Coulomb multipoles
of the nuclear charge of the same order. This can be demonstrated rather easily by
restricting to low energies. As a consequence, if we focus on the electric transitions,
then an explicit expression of the nuclear current is not required anymore, since
the NCme is completely determined by the nuclear charge [30]. For electric E1
transitions, this corresponds to the formulation of the Siegert theorem [31]. In this
case, in the low–energy limit, the calculation of the cross section entirely depends on
the matrix element of the dipole operator. Since the continuity equation has been
used explicitly, this turns out to be a powerful mechanism that allows to implicitly
include in the calculation the contribution of the one–body current as well as that of
the many–body terms. From a direct comparison with the cross section obtained by
using only the one–body current, the contribution due to the many–body currents
can be quantified.

The models and the methods presented so far can be employed to study also
other processes of astrophysical relevance. Among others, the nuclear system pro-
vided by 12C nucleus can be analysed. In the regime of low energies, 12C can be
considered as an effective three–body system. This nucleus is Borromean, since it is
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bound, with a three–body binding energy corresponding to B3 = 7.275 MeV, while
each two–body α–α subsystem is unbound. The EFT approach is still legitimate,
if one takes into account the energy scales given by the binding energy of each
α–particle and the proton separation energy Sp(4He).

As already mentioned, the triple–α process
4He(2α, γ)12C , (1.4)

assumes a key role in bridging the mass gaps at A = 5 and A = 8, leading to
the production of 12C in the Helium–burning stage of red giant stars [2]. The
importance of this element in understanding the origin of organic life is well–known.
The reaction that proceeds through the formation of 8Be from two α, and the
subsequent capture of another α–particle by the unstable 8Be, has a very low rate,
not being able to explain the observed abundance of Carbon in the Universe. In
1953, Hoyle proposed the existence of a Jπ = 0+ resonance, the 12C(0+

2 ) state, very
close to the 8Be + α decay threshold, which is capable of strongly enhancing the
process (1.4) [32]. This was later confirmed experimentally.

When the stellar temperature T ∼ 109 K is reached, approximately correspond-
ing to energies ≈ 0.1 MeV, the triple–α process is dominated by the sequential
picture: first 8Be resonance is formed, and then the Hoyle state plays an essential
role in the reaction (1.4), where the bound state 12C(2+

1 ) is formed through γ–decay
of 12C(0+

2 ). By the emission of another γ, also the ground state 12C(0+
1 ) can be

reached. On the other hand, at lower temperatures T ∼ 107 K, since the formation
of the intermediate resonances is not possible, the process should be considered as a
direct three–body reaction. In this very–low–energy regime measurements are not
feasible, and therefore a theoretical study is essential.

The computation of the triple–α reaction rate is still a subject of discussion [33].
Among calculations performed by assuming the sequential picture, we mention the
approach by Angulo et al. [34], who also carried out an extrapolation of the se-
quential model to very–low energies. In the most recent works, in order to carry
out a proper computation, the importance of adopting the non–sequential picture
at very–low energies was pointed out [35]. Since Ogata et al. [35], a large litera-
ture has been produced on this subject, the results of which can be summarised
by saying that the computed reaction rates are essentially in agreement at higher
temperatures; however, the calculation in the low–temperature regime remains con-
troversial. It is worth mentioning, among the others, the works by Garrido, et
al. [36], Nguyen, et al. [37], Ishikawa [38] and Suno, et al. [33] (and the References
therein), where thorough studies of the triple–α process can be found, by using
different techniques.

A full treatment of this subject is beyond the scope of this work. For the moment,
our aim is to see to what extent our models and methods can be used to analyse
the inverse triple–α process, which is represented by the 12C photodisintegration
reaction, leaving other possible in–depth studies for the future. In this work, we
will therefore study the following process

γ + 12C→ α+ α+ α , (1.5)

at low energies, proceeding through the E2 transition 2+
1 → 0+

2 , by adopting a three–
body ab initio approach. In line with what is done with 9Be photodisintegration,
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the cross section of the reaction in Eq. (1.5) is calculated by employing potential
models derived from a halo/cluster EFT, in conjunction with the NSHH method
and an integral transform approach.

Outline

This Thesis is organized according to the scheme below.

In Chapter 2 we introduce the observable of interest, the cross section of nuclear
photodisintegration processes, whose calculation in terms of the NCme is derived in
detail. Starting from the multipole decomposition of the nuclear current operator,
by exploiting the continuity equation, the definition of the so–called Siegert operator
is given.

Chapter 3 is entirely devoted to the description of the integral transform ap-
proach used to calculate the reaction cross section. Essentially, one of the main
advantages in using this approach is that the problem of the transition to the con-
tinuum is reformulated as a typical bound–state–like problem. The response func-
tion relative to the reaction under study can be computed by means of the Lorentz
Integral Transform (LIT) method: first an integral transform with a Lorentzian
kernel is calculated, then an inversion procedure is required. A discussion about
both these steps is presented.

After a brief description of the α–n and α–α systems from the point of view
of EFTs, including the power counting procedure, Chapter 4 contains the explicit
derivation of the two–body effective potentials employed in this work. A three–body
potential is also introduced.

In Chapter 5 we construct a Non–Symmetrized Hyperspherical Harmonics basis,
both in coordinate and in momentum space. The bound–state problem is then
solved by means of a variational procedure. These are the key ingredients of the
so–called NSHH method. The procedure of defining bases that allow to switch from
momentum to coordinate space (and vice versa) when computing matrix elements
is also particularly emphasised.

Our results of the calculated cross section relative to 9Be and 12C photodisinte-
gration reactions are collected in Chapter 6 and Chapter 7, respectively.

Driven by the results obtained, the conclusions and the possible outlooks are
reported in Chapter 8.



Chapter 2

Nuclear photodisintegration
reactions

In this Chapter we study photodisintegration processes involving nuclear systems.
The observable of interest is the reaction cross section, whose expression in terms
of the nuclear current matrix element is derived in Section 2.1. In Section 2.2 an
expansion of the nuclear current operator by means of electric and magnetic multi-
poles is performed. By focussing on the electric terms, the definition of the Siegert
operator is given in Section 2.3, where also the long–wavelength limit approximation
is analysed. Finally, Section 2.4 highlights the main advantages of using the Siegert
operator, in connection with the continuity equation.

Photonuclear reactions, together with electron–scattering processes, have been
analysed in several works, from Ref. [39] to the more recent and comprehensive
review by Bacca and Pastore [26] about electromagnetic reactions on light nuclei.
Explicit calculations of the various quantities can also be found, among others, in
Refs. [40, 41].

2.1 The reaction cross section

Our aim is to study the interaction of the nucleus with the electromagnetic field.
Since we are interested in photoabsorption processes, we start from the relevant
term of the interaction Hamiltonian [42]

Hint(t) = −
∫
d3x J(x) ·A(x) , (2.1)

which is linear in the vector potential field A(x). The assumption here is the
existence of a charge ρ(x) and a current operator J(x) that describe the nucleus,
with x the spacetime vector xµ = (t,x). We need to calculate the matrix element
⟨f |S|i⟩ ≡ Sfi between the initial |i⟩ and the final state |f⟩, with S defined at the
lowest order as

S ∼= I − i
∫
dtHint(t) . (2.2)

In the photodisintegration reaction γ + Y → Y ′, the single photon γ, with quadri-
momentum qµ = (ωq, q) and polarization λ, is absorbed by the nucleus Y , inducing

9
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a transition between two states. Since the photon is real, its energy is fixed by
the relation ωq = |q| = q. We write the initial and final states of the process as
|i⟩ = |q, λ⟩ |Y ⟩ and |f⟩ = |0⟩ |Y ′⟩, respectively, where |0⟩ denotes the vacuum state
relative to the photon space. We also introduce the quadrimomentum relative to
the nucleus in its initial state Pµ

i = (Ei,P i), and the quadrimomentum of the final
state of the system Pµ

f = (Ef ,P f ). For the matrix element Sfi, with f ̸= i, we can
write

Sfi = −i
∫
d4x ⟨Y ′|J(x)|Y ⟩ ⟨0|A(x)|q, λ⟩ , (2.3)

where the matrix element of the photon and the one relative to the nucleus factorize.
First of all we focus on ⟨0|A(x)|q, λ⟩. The vector potential field A(x) relative

to the photon is defined as

A(x) =
∑

λ=±1
Ω
∫

d3k

(2π)3
1√

2Ωωk

(
ε̂k,λak,λe

−ikx + ε̂∗
k,λa

†
k,λe

ikx
)
, (2.4)

where kµ = (ωk,k) and the unit vectors ε̂k,λ are the photon polarization vectors
defined on a spherical basis as

ε̂k,±1 = ∓ 1√
2

(ε̂k,x ± iε̂k,y) . (2.5)

The creation and annihilation operators a†
k′,λ′ and ak,λ satisfy the following anti-

commutation relation [
ak,λ, a

†
k′,λ′

]
= (2π)3

Ω δ3(k − k′)δλ,λ′ , (2.6)

Ω being a normalization volume. The initial state of the photon can be rewritten
by using the creation operator as |q, λ⟩ = a†

q,λ |0⟩. With the help of the anticom-
mutator (2.6), it is not difficult to demonstrate that the photon matrix element in
Eq. (2.3) reduces to the following expression

⟨0|A(x)|q, λ⟩ = 1√
2Ωωq

ε̂q,λe
−iqx . (2.7)

Now we move on to consider the nuclear matrix element that appears in Eq. (2.3).
The nuclear current is Lorentz invariant and we can use the operator T (x) = e−iP x

to rewrite J(x). P is defined as the momentum operator. We have that J(x) =
eiP xJ(0)e−iP x, and therefore we can write

⟨Y ′|J(x)|Y ⟩ = ei(Pf −Pi)x ⟨Y ′|J(0)|Y ⟩ . (2.8)

By using the expressions of the matrix elements in Eqs. (2.7) and (2.8), we can
rewrite Sfi in Eq. (2.3) as

Sfi = −i(2π)4δ4(Pf − Pi − q)
ε̂q,λ√
2Ωωq

⟨Y ′|J(0)|Y ⟩ , (2.9)

where the delta function relative to the conservation of the quadrimomenta is the
result of the integration. In the equation above, the matrix element of the nuclear
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current can be further manipulated. We project the nuclear states |Y ⟩ and |Y ′⟩ on
the space of the position coordinates rj relative to each component of the nucleus.
By assuming a system composed of A particles, we have j = 1, . . . , A, and we define

⟨r1, . . . , rA|Y ⟩ = Ψi
A(r1, . . . , rA) , ⟨r1, . . . , rA|Y ′⟩ = Ψf

A(r1, . . . , rA) , (2.10)

in which the part dependent on the center–of–mass coordinate Rcm can be separated
from the internal degrees of freedom as follows

Ψi
A(r1, . . . , rA) = ψi(Rcm) Ψi

N (r′
1, . . . , r

′
A) , (2.11a)

Ψf
A(r1, . . . , rA) = ψf (Rcm) Ψf

N (r′
1, . . . , r

′
A) . (2.11b)

The functions ψi(Rcm) and ψf (Rcm) are written in the form of plane waves as

ψi(Rcm) = 1√
Ω
eiP iRcm , ψf (Rcm) = 1√

Ω
eiP f Rcm , (2.12)

where Ω is a normalization volume. Each new position coordinate r′
j is defined as

r′
j = rj−Rcm, j = 1, . . . , A. Since the set { r′

1, . . . , r
′
A } can be easily related to the

N ≡ A − 1 internal coordinates that describe the nuclear system, the states |Ψi
N ⟩

and |Ψf
N ⟩ are the so–called intrinsic nuclear states. By using Eqs. (2.10) and (2.11),

the matrix element of the nuclear current operator, assumes the form

⟨Y ′|J(0)|Y ⟩ = 1
Ω

∫
d3Rcm e

−iRcm(P f −P i) ⟨Ψf
N |J(0)|Ψi

N ⟩ . (2.13)

In the center–of–mass frame we have

⟨Y ′|J(0)|Y ⟩ = 1
Ω ⟨Ψ

f
N |J̃(P f − P i)|Ψi

N ⟩ , (2.14)

where J̃(P f − P i) is the Fourier transform of the nuclear current with respect to
the center–of–mass coordinate. This yields to the following expression for Sfi

Sfi = −i(2π) δ(Ef − Ei − ωq) (2π)3 δ3(P f − P i − q)

× 1√
2Ωωq

1
Ω ⟨Ψ

f
N |ε̂q,λ · J̃(P f − P i)|Ψi

N ⟩ .
(2.15)

At this point, it is important to note that, by considering the nucleus initially at
rest in the laboratory frame, we have P i = 0, and from the momentum conservation
P f = q. Typically, Ei is the energy of the nucleus in its ground state, Ei = E0,
while Ef is explicitly Ef ≃ E′ + q2

2MA
, where E′ is the energy of the final nuclear

state, and MA is the mass of the A–body nucleus. It follows that, if we neglect the
recoil of the nucleus, we can identify Ef ≃ E′. This is the case that we will consider
here and henceforth.

The matrix element Sfi enters in the calculation of the differential photodisin-
tegration cross section, which is, according to the Fermi’s Golden Rule,

dσ(ω) = 1
2(2Ji + 1)

∑
λ=±1

∑
Mi

∑
f

1
|jin|ρt

|Sfi|2

ΩT Ωd
3P f

(2π)3 . (2.16)
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In this expression, we sum over the final states of the nuclear system and we average
over the initial states, which are characterized by the angular momentum quantum
number Ji. We also average over the two polarizations λ relative to the real photon.
The differential cross section explicitly depends also on jin and ρt, the incoming
flux and the density of the target, respectively. By considering a single incoming
photon we have jin = 1/Ω, and for a single target nucleus the density is ρt =
1/Ω. Moreover, the factor Ω d3P f /(2π)3 represents the phase space volume of the
final configuration. By inserting the calculated matrix element Sfi (2.15) in the
expression of the differential cross section (2.16), if we make use of the following
identities for a squared delta function

[(2π) δ(Ef − Ei − ωq)]2 = T (2π) δ(Ef − Ei − ωq) , (2.17a)
[(2π)3 δ3(P f − P i − q)]2 = Ω(2π)3 δ3(P f − P i − q) , (2.17b)

where ΩT is the space–time volume element, we obtain the final result

σ(ωq) = π

2(2Ji + 1)ωq

∑
λ=±1

∑
Mi

∑
f

∣∣∣⟨Ψf
N |ε̂q,λ · J̃(q)|Ψi

N ⟩
∣∣∣2δ(Ef − Ei − ωq) . (2.18)

By extracting the unit electric charge e from the nuclear current operator J̃(q),
the cross section turns out to depend explicitly on e2, and therefore we can rewrite
σ(ωq) in terms of the fine structure constant α = e2/(4π) as [26]

σ(ωq) = 4π2α

ωq
R(ωq) . (2.19)

The so–called response function R(ωq) contains the energy–conserving delta func-
tion as well as the nuclear current matrix element, which encodes all the necessary
information about the internal dynamics of the nuclear system:

R(ωq) = 1
2(2Ji + 1)

∑
λ=±1

∑
Mi

∑
f

∫ ∣∣∣⟨Ψf
N |Jλ(q)|Ψi

N ⟩
∣∣∣2δ(Ef − Ei − ωq) . (2.20)

In the definition above, we have introduced the symbol
∑

f

∫
, denoting the sum over

all the final states belonging to the discrete and the continuum spectrum as well
as the sum over Mf . Moreover, the operator Jλ(q), defined as Jλ(q) ≡ ε̂q,λ · J̃(q),
represents the spherical component of the vector nuclear current operator J̃(q).

2.2 The nuclear current operator: multipole decompo-
sition

Since the nuclear intrinsic states on which we evaluate the matrix element in the
response function of Eq. (2.20) are typically eigenstates of the total angular momen-
tum of the nucleus, the most convenient way to proceed is to perform a multipole
decomposition of the current operator J̃(q). With this aim, we follow here the no-
tation of Ref. [43], where the multipole decomposition is formulated in momentum
space. An alternative derivation can be carried out entirely in configuration space,
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as reported for example in Ref. [42]. Of course both approaches lead to the same
final results.

We start by introducing the vector spherical harmonics. These functions are
defined in terms of the standard spherical harmonics as [44]

Y
(ℓ)
JM (q̂) =

∑
mλ

CJM
ℓm,1λYℓm(q̂)ε̂λ , (2.21)

where q̂ denotes the pair of spherical polar angles q̂ = (θq, ϕq) and the coefficients
CJM

ℓm,1λ are the Clebsch–Gordan coefficients. The unit vectors ε̂λ, with λ = 0,±1,
are defined on a spherical basis as in Eq. (A.2). More details about the vector
spherical harmonics functions can be found in Appendix A. Here we mention the
following important orthonormality property:∫

dx̂Y
(ℓ)∗
JM (x̂) Y

(ℓ′)
J ′M ′(x̂) = δJJ ′δMM ′δℓℓ′ . (2.22)

Being a vector quantity, the nuclear current operator can be expanded in terms
of the vector spherical harmonics. In momentum space we write

J̃(q) =
∑
ℓJM

J ℓ
JM (q)Y (ℓ)∗

JM (q̂) , (2.23)

where the coefficients of the expansion depend only on |q| = q, and they are formally
defined as

J ℓ
JM (q) =

∫
dq̂′ J̃(q′) · Y (ℓ)

JM (q̂′) . (2.24)

The vectors q and q′ have the same modulus, |q′| = |q| = q, but they differ in
the orientation. Due to the properties of the Clebsch–Gordan coefficients in the
definition of the vector spherical harmonics (2.21), for given quantum numbers J
and M , with J ≥ 1, there exist only three kinds of functions Y

(ℓ)
JM (q̂), and they

correspond to the orbital momentum values ℓ = J, J ± 1. As a consequence, they
can be grouped according to their behaviour under the parity operator [44]. For
this reason, we split the nuclear current operator as follows:

J̃(q) =
∑
JM

(
J̃

el
JM (q) + J̃

mag
JM (q)

)
. (2.25)

The electric and magnetic currents J̃
el
JM (q) and J̃

mag
JM (q) are written in terms of

the vector spherical harmonics as

J̃
el
JM (q) = JJ−1

JM (q)Y (J−1)∗
JM (q̂) + JJ+1

JM (q)Y (J+1)∗
JM (q̂) , (2.26)

J̃
mag
JM (q) = JJ

JM (q)Y (J)∗
JM (q̂) , (2.27)

and the parity of each operator is (−1)J and (−1)J+1, respectively. Due to the
properties of the vector spherical harmonics functions, it can be demonstrated that
the explicit form of the electric and magnetic current operators is the following:

J̃
el
JM (q) = q̂ Y ∗

JM (q̂)
∫
dq̂′ q̂′ · J̃(q′) YJM (q̂′)

+ q̂ × Y
(J)∗
JM (q̂)

∫
dq̂′
(
q̂′ × Y

(J)
JM (q̂′)

)
· J̃(q′) , (2.28)

J̃
mag
JM (q) = Y

(J)∗
JM (q̂)

∫
dq̂′ J̃(q′) · Y (J)

JM (q̂′) . (2.29)
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A detailed derivation of the expressions above is reported in Appendix A. If we
now proceed by introducing the longitudinal and the transverse electric multipoles,
Lel

JM (q) and T el
JM (q), as well as the transverse magnetic multipole, Tmag

JM (q),

Lel
JM (q) = 1

4π

∫
dq̂′ q̂′ · J̃(q′) YJM (q̂′) , (2.30)

T el
JM (q) = i

4π

∫
dq̂′
(
q̂′ × Y

(J)
JM (q̂′)

)
· J̃(q′) , (2.31)

Tmag
JM (q) = 1

4π

∫
dq̂′ J̃(q′) · Y (J)

JM (q̂′) , (2.32)

then Eqs. (2.28) and (2.29) become

J̃
el
JM (q) = 4π

(
Lel

JM (q) q̂ Y ∗
JM (q̂)− iT el

JM (q) q̂ × Y
(J)∗
JM (q̂)

)
, (2.33)

J̃
mag
JM (q) = 4π Tmag

JM (q) Y
(J)∗
JM (q̂) . (2.34)

By summing these two terms, it is straightforward to derive the new complete
expression for the nuclear current operator already defined in Eq. (2.25), which is

J̃(q) = 4π
∑
JM

(
Lel

JM (q) q̂ Y ∗
JM (q̂)− iT el

JM (q) q̂ × Y
(J)∗
JM (q̂) + Tmag

JM (q) Y
(J)∗
JM (q̂)

)
.

(2.35)
By making the assumption that the momentum of the photon is oriented along the
z–axis, q = qε̂z = qε̂0, the equation above can be further simplified. If we use the
explicit expressions for q̂ Y ∗

JM (q̂), q̂ ×Y
(J)∗
JM (q̂) and Y

(J)∗
JM (q̂) derived in Appendix A

[see Eqs. (A.9), (A.10) and (A.11)], then we are able to write the nuclear current
operator as

J̃(q) =
√

2π
∑
JM

√
2J + 1

(√
2Lel

JM (q)ε̂0 −M2T el
JM (q)ε̂∗

M −MTmag
JM (q)ε̂∗

M

)
.

(2.36)
As a consequence, the spherical components Jλ(q) ≡ ε̂λ · J̃(q), written in terms of
the electric and magnetic multipoles defined in Eqs. (2.30), (2.31) and (2.32), are

Jλ(q) =
√

2π
∑

J

√
2J + 1

[√
2Lel

Jλ(q)δλ0 + (−1)λ
(
T el

Jλ(q) + λTmag
Jλ (q)

)
δ|λ|1

]
.

(2.37)
When dealing with real photons, as in the photodisintegration processes, the possi-
ble spherical polarization are characterized by λ = ±1, and in this case the current
operator in Eq. (2.37) reduces to

Jλ(q) = −
√

2π
∑

J

√
2J + 1

(
T el

Jλ(q) + λTmag
Jλ (q)

)
, λ = ±1 . (2.38)

In the following Section we will see in detail how these nuclear electric and magnetic
multipole operators can be constructed.
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2.3 The transverse electric and the transverse magnetic
multipole operators

As shown in the last Section, when we calculate the operator Jλ(q) for photodisin-
tegration reactions, we must take into account only the transverse electric T el

Jλ(q)
and transverse magnetic Tmag

Jλ (q) multipoles. Their definition is given in Eqs. (2.31)
and (2.32), respectively. In this Section we will mainly focus on the electric multi-
pole, with a brief mention of the magnetic term at the end.

We rewrite the cross product q̂ × Y
(J)
JM (q̂) that enters in the definition of

Eq. (2.31) by using the following equivalence

q̂ × Y
(J)
JM (q̂) = i

√
J + 1
J

q̂ YJM (q̂) + i

√
2J + 1
J

Y
(J+1)
JM (q̂) , (2.39)

which follows from the relation (A.8b) derived in Appendix A. In this way the
transverse electric multipole T el

Jλ(q) results to be the sum of two terms

T el
JM (q) = T el,I

JM (q) + T el,II
JM (q) , (2.40)

which are

T el,I
JM (q) = − 1

4π

√
J + 1
J

∫
dq̂′ q̂′ · J̃(q′)YJM (q̂′) , (2.41)

T el,II
JM (q) = − 1

4π

√
2J + 1
J

∫
dq̂′ J̃(q′) · Y (J+1)

JM (q̂′) . (2.42)

Both terms depend explicitly on the nuclear current J̃(q) but the important prop-
erty of the first one, T el,I

JM (q), is that it can be rewritten by using the continuity
equation. In momentum space the continuity equation reads

ωqρ̃(q)− q · J̃(q) = 0 , (2.43)

and therefore it relates J̃(q) to the Fourier transform of the nuclear charge operator,
denoted as ρ̃(q). As a consequence, we can make use of the equivalence

q̂ · J̃(q) = ωq

q
ρ̃(q) , (2.44)

to rewrite the electric multipole in Eq. (2.41), obtaining the so–called Siegert oper-
ator

T el,S
JM (q) = − 1

4π

√
J + 1
J

ωq

q

∫
dq̂′ ρ̃(q′)YJM (q̂′) . (2.45)

Clearly, the advantage of doing calculations with the Siegert operator is that the
explicit form of the nuclear current J̃(q) is no longer needed. This point will be
discussed in more detail later in Section 2.4. The “residual” multipole term in
Eq. (2.42), under certain conditions, represents a correction to the Siegert operator,
and the reason will become clear later.
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Now we will see how the expression of the Siegert operator given in Eq. (2.45)
can be reformulated in terms of the multipole operators relative to the nuclear
charge. In fact, as already done with the nuclear current, we can also calculate the
multipoles of the operator ρ̃(q). In momentum space, the expansion of the charge
in terms of the spherical harmonics functions is the following

ρ̃(q) = 4π
∑
JM

(−i)JCJM (q)Y ∗
JM (q̂) , (2.46)

where the coefficients CJM (q) are the so–called Coulomb multipoles, and they are
formally defined as

CJM (q) = iJ

4π

∫
dq̂′ ρ̃(q′)YJM (q̂′) . (2.47)

Note that the nuclear charge has been expanded in terms of the scalar spherical
harmonics, following from the fact that it is a scalar quantity. We proceed by
writing ρ̃(q) as a Fourier transform

ρ̃(q) =
∫
d3x e−iqxρ(x) , (2.48)

and then we replace the plane wave with its well–know expansion in terms of the
spherical Bessel functions jℓ(qx) [44]

e−iqx = 4π
∑
ℓm

(−i)ℓjℓ(qx)Y ∗
ℓm(q̂)Yℓm(x̂) . (2.49)

In this way we obtain for the nuclear charge, in momentum space,

ρ̃(q) = 4π
∑
JM

(−i)JY ∗
JM (q̂)

∫
d3x jJ(qx)ρ(x)YJM (x̂) . (2.50)

From the equation above, it is straightforward that the Coulomb multipoles can be
identified as

CJM (q) =
∫
d3x jJ(qx)ρ(x)YJM (x̂) . (2.51)

The Siegert operator in Eq. (2.45) is easily rewritten in terms of the Coulomb
multipoles as follows:

T el,S
JM (q) = −(−i)J

√
J + 1
J

ωq

q
CJM (q)

= −(−i)J

√
J + 1
J

ωq

q

∫
d3x jJ(qx)ρ(x)YJM (x̂) .

(2.52)

By following a similar procedure, we can also rewrite the operator T el,II
JM (q) de-

fined in Eq. (2.42). One can start from the expression of the nuclear current as a
Fourier transform J̃(q) =

∫
d3x e−iqxJ(x), and then use the plane wave expansion

in Eq. (2.49). This leads to the result

T el,II
JM (q) = −(−i)J+1

√
2J + 1
J

∫
d3x jJ+1(qx) J(x) · Y (J+1)

JM (x̂) . (2.53)
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If we now proceed to consider the limit of low–momentum transfer by the pho-
ton, the expressions of the electric multipoles T el,S

JM (q) and T el,II
JM (q) can be further

simplified. The integrals in Eqs. (2.52) and (2.53) contain spherical Bessel functions
of different orders. By taking qR ≪ 1, where R represents the spatial extension of
the system, the spherical Bessel functions behave as [45]

jℓ(qR)→ (qR)ℓ

(2ℓ+ 1)!! . (2.54)

In this limit, which is also called long–wavelength limit, the Siegert operator T el,S
JM (q)

in Eq. (2.52) becomes

T el,S
JM (q) ≃ −(−i)J

√
J + 1
J

qJ−1ωq

(2J + 1)!!

∫
d3xxJρ(x)YJM (x̂) , (2.55)

while for the multipole T el,II
JM (q) in Eq. (2.53) we have

T el,II
JM (q) ≃ −(−i)J+1

√
2J + 1
J

qJ+1

(2J + 3)!!

∫
d3xxJ+1J(x) · Y (J+1)

JM (x̂) . (2.56)

In the case of real photons, the dependence of the Siegert term in Eq. (2.55) on the
transferred momentum is T el,S

JM (q) ∼ qJ , while the operator in Eq. (2.56) behaves as
T el,II

JM (q) ∼ qJ+1. This means that, in the low–energy regime, calculations performed
by using the Siegert operator are quite accurate and the term T el,II

JM (q) represents
a correction that can be neglected in first approximation.

We underline that the expression of the Siegert operator in Eq. (2.55) for J = 1
represents the the so–called unretarded E1 approximation. We remark that this
long–wavelength approximation is reliable only when dealing with low–momentum
transfer, and therefore it is well suited for our calculations concerning reactions
of astrophysical relevance. With increasing energies approaching ∼100 MeV [46],
retardation effects should be taken into account, i.e. the operator in Eq. (2.52)
should be considered, as well as the contribution due to term T el,II

JM (q) in (2.53).
We conclude this Section by briefly analyse the transverse magnetic multipole

Tmag
JM (q) defined in Eq. (2.32). Similarly to the expression given in Eq. (2.53), also

the magnetic multipole can be written explicitly in terms of the spherical Bessel
functions:

Tmag
JM (q) = (−i)J

∫
d3x jJ(qx) J(x) · Y (J)

JM (x) . (2.57)

In the low–energy regime, when we are allowed to apply the limit (2.54) for jJ(qx),
this operator behaves as Tmag

JM (q) ∼ qJ . As a consequence, in principle, when
carrying out photodisintegration reactions calculations, this contribution should
not be neglected in first approximation.
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2.4 The continuity equation and the Siegert theorem

In the last Section we have used the continuity equation of the electromagnetic
current operator Jµ(x) = (ρ(x),J(x)) expressed in momentum space, Eq. (2.43),
to rewrite the term T el,I

JM (q) in Eq. (2.41). In this way we have obtained the Siegert
operator T el,S

JM (q) in (2.55), which represents the dominant contribution for electric
transitions in the limit of low–momentum transfer. In other words, by means of
the condition of Gauge invariance of the electromagnetic interaction, i.e. the conti-
nuity equation, the transverse electric multipoles are easily related to the Coulomb
multipoles of the nuclear charge of the same order. As a consequence, the electric
transition matrix elements, in the low–energy regime, are completely determined by
the charge density operator, without knowing the explicit expression of the nuclear
currents [30].

In the specific case of an electric J = 1 transition, in the low–energy regime,
the evaluation of the current matrix elements is done by means of the charge dipole
operator, as also emerges from Eq. (2.55). Schematically, if we write the continuity
equation in momentum space in the alternative form

q · J̃(q) = [H, ρ̃(q)] , (2.58)

by taking the matrix elements of the operators between initial and final states, we
have, in the low–energy limit q → 0 [46, 47]

J̃fi(0) = i(Ef − Ei)Dfi , (2.59)

where the energy difference Ef−Ei is equal to the photon energy, previously denoted
as ωq, and the dipole operator is defined as D =

∫
d3x xρ(x). This is a formulation

of what is better known as the Siegert theorem [31]. This powerful theorem can be
exploited in low–energy calculations, and in the rest of this Section we will briefly
explain why.

The nuclear charge and nuclear current densities can be formally written as a
sum of one– and many–body operators as follows [48]

ρ̃(q) =
∑

i

ρ̃
[1]
i (q) +

∑
i<j

ρ̃
[2]
ij (q) +

∑
i<j<k

ρ̃
[3]
ijk(q) + . . . , (2.60)

J̃(q) =
∑

i

J̃
[1]
i (q) +

∑
i<j

J̃
[2]
ij (q) +

∑
i<j<k

J̃
[3]
ijk(q) + . . . . (2.61)

By retaining only the non relativistic contributions, i.e. at the leading order in the
expansion in powers of 1/m, the one–body charge operator is explicitly

ρ̃
[1]
i (q) = eZie

iqri . (2.62)

Regarding the one–body current, we can express this operator as the sum of a
convection and a spin term

J̃
[1]
i (q) = J̃

[1],c
i (q) + J̃

[1],s
i (q) , (2.63)
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whose explicit form is the following

J̃
[1],c
i (q) = eZi

2m
{

pi, e
iqri

}
, (2.64)

J̃
[1],s
i (q) = i

eZi

2mµiσi ×
[
pi, e

iqri

]
, (2.65)

where square and curl brackets denote the commutator and the anticommutator,
respectively. In the equations above eZi is the electric charge of the particle i, whose
position and momentum is given by the pair of vectors ri and pi. σi and µi represent
the Pauli spin operator and the magnetic moment of the particle, respectively. By
taking the operators in Eqs. (2.60) and (2.61) at the lowest order in 1/m, if we
impose that they satisfy the Gauge condition (2.58) with the most general nuclear
Hamiltonian defined as

H =
∑

i

Ti +
∑
i<j

Vij +
∑

i<j<k

Vijk , (2.66)

then we obtain different continuity equations for each n–body current operator.
The first equation involves the one–body kinetic term operator Ti = p2

i
2mi

, being
explicitly

q · J̃ [1]
i (q) =

[
Ti, ρ̃

[1]
i (q)

]
. (2.67)

With the nuclear one–body current defined as in (2.63), it can be demonstrated
that the equation above is always satisfied. The other conditions involve the two–
and the three–body interaction terms of the Hamiltonian in (2.66), and they are

q · J̃ [2]
ij (q) =

[
Vij , ρ̃

[1]
i (q) + ρ̃

[1]
j (q)

]
, (2.68)

q · J̃ [3]
ijk(q) =

[
Vijk, ρ̃

[1]
i (q) + ρ̃

[1]
j (q) + ρ̃

[1]
k (q)

]
. (2.69)

When the interaction potential is such that the commutator terms on the right–
hand–side of the equations above are non–vanishing, then, to maintain consistency,
we must also postulate the existence of non–vanishing two– and three–body nuclear
current operators J̃

[2] and J̃
[3], respectively. Since they are required by Gauge

invariance, these many–body currents are referred to as “model independent” cur-
rents. Their longitudinal part is in fact constrained by the continuity equation
and it is directly related to the nuclear interaction potential, as explicitly shown in
Eqs. (2.68) and (2.69).

In the photodisintegration reactions that we want to study at low–momentum
transfer conditions, as already shown, the nuclear current enters in the calculation
of the transverse electric multipole as

T el
JM (q; J̃) ≃ T el,I

JM (q; J̃) = T el,S
JM (q; ρ̃) , (2.70)

where in the last equivalence the continuity equation has been used. The multipole
T el,I

JM and the Siegert term T el,S
JM have been already defined in Eqs. (2.41) and (2.45)

and here we have highlighted also their operator dependence. At this point, the ad-
vantage of the application of the Siegert theorem is manifest. When we evaluate the
Siegert operator by making use of the one–body non–relativistic charge density ρ̃[1],
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since the continuity equation (2.58) has been employed, we are implicitly including
in the calculation the main contribution due to the one–body current operator J̃

[1],
as well as that of the two– and three–body currents J̃

[2] and J̃
[3]. Schematically,

this can be summarized as follows [49]

T el,S
JM

(
q; ρ̃[1]) = T el,I

JM

(
q; J̃

[1] + J̃
[2] + J̃

[3])
. (2.71)



Chapter 3

The Lorentz Integral Transform
method

The Lorentz Integral Transform (LIT) method [50, 51] is a well–established tool
that is included in the more general context of calculating reactions cross sections
by using integral transforms [52]. This method can be applied to any perturbation–
induced reaction of inclusive as well as exclusive type. A complete review of the
topic and its applications is the one by Efros, et al. [27], which is also the main
reference for the discussion and the formalism presented in this Chapter.

Instead of trying to solve the Schrödinger equation directly, if one focuses on the
transition matrix elements, then it turns out that their calculation can be reduced
to the evaluation of an integral transform and its subsequent inversion. As we will
show in this Chapter, within this approach, the closure property of the eigenstates
of the Hamiltonian plays a central role. Another very important point is the choice
of the kernel that is used in the definition of the integral transform itself.

The main advantage of using such a method is that formal calculations involving
explicit wave functions in the continuum are avoided, and the problem is reformu-
lated as a typical bound–state–like problem. In this work we will deal with systems
composed of A = 3 constituents and even in this case, where one could also use a
Faddeev–Yakubovsky approach [53, 54], this reformulation in terms of bound–state
wave functions allows an easier implementation of the problem with respect to the
initial one.

After a brief introduction to the subject and a presentation of the main mo-
tivations that lead us to use the LIT method, Section 3.1, we will introduce the
formalism for inclusive processes in Section 3.2. More details about the practical
implementation of the method can be found in Section 3.3. Finally, in Section 3.4
we discuss about the inversion of the integral transform, which enables us to calcu-
late indirectly the response function, and thus to evaluate the cross section of the
reactions that we want to study.

21
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3.1 Introduction and motivations
The LIT method allows to perform ab initio calculations of cross sections of light
nuclei. When all the degrees of freedom of the many–body system are explicitly
taken into account in the nuclear Hamiltonian, the solution of the quantum me-
chanical problem can be demanding, especially in the continuum. If we look at the
response function defined in Eq. (2.20), we see that the knowledge of the explicit
wave functions belonging to the full spectrum of the nuclear system is required.
Unfortunately, when we have to find a solution of the problem in the continuum,
various difficulties arise. In configuration space, for example, one of the main issues
is the implementation of the proper boundary conditions. In addition to this, at a
given energy, more than one final configuration becomes accessible to the system,
corresponding to the different breakup channels of the nucleus under study. In prin-
ciple, in performing exact calculations, all of these configurations should be taken
into account in the final state but this is not an easy task. At this point it is pos-
sible to introduce some approximations, which eventually have to be validated by
the experiment. However, this approach is rather inadequate especially for studying
reactions of astrophysical interest, because in some cases experiments could not be
performed. An ab initio calculation is therefore required.

By using an integral transform approach, the direct calculation of a generic
response function R(ω), as the one defined in Eq. (2.20), can be bypassed. Starting
from R(ω), one can define an integral transform as follows

L(σ) =
∫
dωK(σ, ω)R(ω) . (3.1)

If one chooses a suitable kernel function K(σ, ω), then it can be demonstrated that
the direct calculation of the transform L(σ) is reduced to the task of finding the
solutions of a Schrödinger–like equation with a source term. In this sense, one can
say that the calculation in the continuum, which involves the response function
R(ω), is “shifted” to a bound–state–like calculation in terms of the function L(σ).
At the end, the response function is recovered by performing an inversion of the
transform L(σ). In the next Sections, we will go into the details of this procedure.

Although in this work we will only make use of a kernel of Lorentzian type,
the choice of the function K(σ, ω) is not unique [55]. Due to the fact that L(σ) is
calculated numerically and therefore it may contain inaccuracies, the inversion of
this function could be somehow problematic and affected by errors [56]. In order to
minimise these errors, a “clever” kernel should be chosen. In addition to leading to a
transform L(σ) that has to exist and has to be finite, the kernel function should also
be of finite range and should preserve the information contained inside the response
function. From the point of view of the latter requirement, the ideal kernel to use
could be a delta function, K(σ, ω) = δ(σ − ω). However, in this case, there is no
improvement in the calculation, since the defining integral in Eq. (3.1) would lead
to the response function R(σ) itself, whose direct calculation we want to avoid, as
already explained. This is the reason why the choice of the kernel should fall on
a function that is a representation of the delta function. In this sense the Lorentz
function is a suitable kernel to use in the calculations.

Before going any further, it is worth clarifying another aspect. In this work we
are studying photodisintegration reactions in which the nuclei involved break into
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clusters of nucleons, i.e. α–particles, and possibly only one neutron is present

γ + 9Be→ α+ α+ n , γ + 12C→ α+ α+ α . (3.2)

Since actually we are choosing a specific breakup channel among all the possible
final states, these processes seem to be of exclusive type. This is no longer the
case, if we also specify that we are studying the photodisintegration reactions in the
low–energy regime. Under this condition, the breakup channel that we consider is
the only accessible final configuration, and therefore we can use the LIT method in
its formulation for inclusive processes.

3.2 LIT for inclusive processes

In the most general case of an inclusive process the quantity of main interest is [27]

R(E) =
∑

f

∫
⟨Q|Ψf ⟩ ⟨Ψf |Q′⟩ δ(Ef − E) , (3.3)

where with the symbol
∑

f

∫
we denote the summation and the integration over the

discrete and continuum spectrum of the states |Ψf ⟩. The states |Ψf ⟩ are the so-
lutions of the Schrödinger equation (Ĥ − Ef ) |Ψf ⟩ = 0, where Ĥ is the nuclear
Hamiltonian operator. Since the set |Ψf ⟩ is complete and orthonormal, the follow-
ing relation holds ∑

f

∫
|Ψf ⟩ ⟨Ψf | = 1 . (3.4)

Both norms ⟨Q|Q⟩ and ⟨Q′|Q′⟩ are assumed to be finite. If we specialise to the
case of perturbation–induced reactions, then the states |Q⟩ (|Q′⟩) are the result of
the application of a transition operator, denoted as Ô (Ô′), to the initial state |Ψi⟩,
which is typically chosen as the ground state of the nuclear system. This means
that we can write |Q⟩ = Ô |Ψ0⟩ (|Q′⟩ = Ô′ |Ψ0⟩) and, as a consequence, Eq. (3.3)
assumes the form

R(E) =
∑

f

∫
⟨Ψ0| Ô

† |Ψf ⟩ ⟨Ψf | Ô′ |Ψ0⟩ δ(Ef − E) . (3.5)

When the identity Ô = Ô′ holds, the function R(E) can be identified with the so–
called response function of the system. Essentially, it encodes the response of the
nucleus to a perturbative probe when the energy E is transferred to the system.
Due to the fact that a summation and an integration over the full spectrum of
the final states |Ψf ⟩ is involved, the direct calculation of the response function is
difficult. To overcome this problem, we define an integral transform of the response
function as follows

L(σ) =
∑∫

dE K(σ,E)R(E) , (3.6)

where the kernel function K(σ,E) is assumed to be of Lorentzian type [50]

K(σ,E) = 1
(E − σ∗)(E − σ) . (3.7)
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This functional form makes both the evaluation and the subsequent inversion of
L(σ) feasible. With σ we denote a complex energy parameter, which is defined as
σ = E0 + σR + iσI , E0 being the initial ground–state energy of the nuclear system.
This yields to the following explicit form for the kernel

K(σR, σI , E) = 1
(E − E0 − σR)2 + σ2

I

, (3.8)

which is in fact a Lorentzian function centered in the point E0 + σR with a width
equal to 2σI . With this choice, the integral transform (3.6) becomes

L(σR, σI) =
∑∫

dE
R(E)

(E − E0 − σR)2 + σ2
I

. (3.9)

Starting from the more general transform in Eq. (3.6), if we insert directly the
definition of the response function (3.5) and we perform the integral in dE, then we
obtain the following result

L(σ) =
∑

f

∫
⟨Ψ0| Ô

† |Ψf ⟩K(σ,Ef ) ⟨Ψf | Ô′ |Ψ0⟩ , (3.10)

where we have taken into account the presence of the energy–conserving delta func-
tion. This expression can be rewritten in the equivalent operator form

L(σ) =
∑

f

∫
⟨Ψ0| Ô

†
K(σ, Ĥ)|Ψf ⟩ ⟨Ψf | Ô′ |Ψ0⟩ . (3.11)

At this point we exploit the closure property of the final states |Ψf ⟩, which assumes
a fundamental role here. Following from Eq. (3.4), we are able to express the integral
transform L(σ) as

L(σ) = ⟨Ψ0| Ô
†
K(σ, Ĥ) Ô′ |Ψ0⟩ . (3.12)

If we make again the explicit choice of using a Lorentzian kernel function in the
form of Eq. (3.7), it is not difficult to demonstrate that the function L(σ) can be
represented in the compact form

L(σR, σI) = ⟨Ψ̃|Ψ̃′⟩ , (3.13)

where |Ψ̃⟩ and |Ψ̃′⟩ are the so–called “LIT states” and their formal definition is

|Ψ̃⟩ ≡
(
Ĥ − E0 − σR − iσI

)−1
Ô |Ψ0⟩ , (3.14a)

|Ψ̃′⟩ ≡
(
Ĥ − E0 − σR − iσI

)−1
Ô′ |Ψ0⟩ . (3.14b)

From the expressions above, it is straightforward that each LIT state satisfies a
Schrödinger–like inhomogeneous equation(

Ĥ − E0 − σR − iσI

)
|Ψ̃⟩ = Ô |Ψ0⟩ , (3.15a)(

Ĥ − E0 − σR − iσI

)
|Ψ̃′⟩ = Ô′ |Ψ0⟩ , (3.15b)
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with a source term Ô |Ψ0⟩ (Ô′ |Ψ0⟩) that depends on the transition operator Ô

(Ô′). The “LIT equations” above are essentially the same for all the reactions with
the exception of the term on the right–hand–side, since the transition operator is
characteristic of the process that we are studying.

Without loosing generality, we can consider the identity Ô = Ô′ and restrict the
discussion to the case in which the transform (3.13) reduces to L(σR, σI) = ⟨Ψ̃|Ψ̃⟩.
Since we have chosen a kernel function for which the defining integral in Eq. (3.9)
does not diverge for σI ̸= 0, the function L(σR, σI) does exist. As a consequence, the
norm ⟨Ψ̃|Ψ̃⟩ must be finite, and therefore the LIT states |Ψ̃⟩ result to be localized
functions. This also implies that one can find unique solutions of Eq. (3.15a) by
using bound–state methods. This can be achieved by employing different techniques,
working either in coordinate or in momentum space. The LIT functions are therefore
constructed as bound–state wave functions, whose asymptotic behaviour is not as
complicated as in the continuum.

We proceed by performing an explicit separation between the discrete and the
continuum spectrum of the final states. We introduce the discrete excitation ener-
gies, en = En −E0, as well as the excitation energy in the continuum, e = E −E0,
with the relation en < eth < e, where eth is the continuum threshold energy. The
response function already defined in Eq. (3.5) may then be written as the sum of
the following two contributions

Rn = ⟨Ψ0| Ô
† |Ψn⟩ ⟨Ψn| Ô′ |Ψ0⟩ , (3.16)

R(e) =
∫ ∞

eth
dEl ⟨Ψ0| Ô

† |Ψl⟩ ⟨Ψl| Ô′ |Ψ0⟩ δ(El − E0 − e) . (3.17)

An analogue separation can be done for the integral transform. We write L(σR, σI)
as a sum of two terms

L(σR, σI) = Ld(σR, σI) + Lc(σR, σI) , (3.18)

where the discrete and continuum contributions are now defined as

Ld(σR, σI) =
∑

n

Rn

(en − σR)2 + σ2
I

, (3.19)

Lc(σR, σI) =
∫ ∞

eth
de

R(e)
(e− σR)2 + σ2

I

, (3.20)

with the corresponding response functionsRn andR(e) already defined in Eqs. (3.16)
and (3.17), respectively. Essentially, our aim is to first determine L(σR, σI) = ⟨Ψ̃|Ψ̃⟩
for σR belonging to a certain energy range, while keeping the parameter σI fixed.
Then, by using this calculated transform as an input, we want to obtain the terms
Rn and R(e). If one finds the discrete levels explicitly, i.e. |Ψn⟩ and en, then Rn

could be calculated directly from the overlaps (3.16). At this point, the discrete
contribution to the transform, Ld(σR, σI), is known and this term can be sub-
tracted from the computed L(σR, σI). As a result, we are left with the contribution
Lc(σR, σI) in Eq. (3.20), an integral equation that should be solved for R(e). Later
in this work, we will deal only with the continuum part of the integral transform
and we will often refer to the function Lc(σR, σI) by omitting the subscript and the
σI dependence in the argument.
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A few comments are here in order about the choice of the real positive parameters
σR and σI relative to the Lorentzian kernel defined in Eq. (3.8) [27]. Due to the
fact that σI is actually the half–width of the Lorentzian kernel function employed,
a reasonable range of values for the parameter σR is eth − σI ≤ σR ≤ emax + σI ,
provided that eth ≤ e ≤ emax is the spectrum relative to the response function. In
this way the information contained in the response function R(e) is fully exploited
and encoded in the transform L(σR). Concerning the parameter σI , the smaller is
the width of the kernel function, the less is the “blurring” of the response function.
Intuitively, for very small values of σI , the Lorentz function approaches the delta
function, which is the ideal kernel to use, as we have already pointed out. Therefore,
by following this reasoning, one would conclude that it is better to choose a very
small σI value. This is partly true, because it is indeed preferable to do calculations
with small σI , although this choice has some drawbacks. First of all, with σI → 0
the LIT equations (3.15) approach the scattering regime, and under this condition
it is more difficult to obtain the LIT states |Ψ̃⟩ by using bound–state methods.
Secondly, in practical implementations, the rate of converge of the transform L(σR)
depends on the value of σI . Typically, the smaller is σI , the later the convergence is
reached. Based on this discussion, we conclude by saying that the chosen σI should
be therefore small enough in order not to lose the information about the structure
of the response function. At the same time, the computed L(σR) should be fully
convergent at the chosen σI , in order to get as good as possible results from the
inversion procedure.

3.3 Procedures for practical implementation

In the last Section we have seen how the calculation of the LIT can be reduced to the
evaluation of the overlap ⟨Ψ̃|Ψ̃′⟩, where the LIT states |Ψ̃⟩ and |Ψ̃′⟩ are the solutions
of a Schrödinger–like equation with a source term that depends on the specific
reaction. Moreover, we have deduced that these states are localized functions, and
therefore they can be calculated by employing bound–state techniques. One possible
strategy to proceed is to start by assuming an expansion of these LIT states over a
basis of localized functions. This approach is valid even when the number of particles
of the system increases, and it has been used in a large number of applications.
Then, one can directly solve the LIT equations (3.15) for different values of the
parameter σR. However, the disadvantage of this approach is that, in order to have
a good reconstruction of the transform L(σR, σI) at fixed σI , one may need a large
number of σR values, and this corresponds to solve the LIT equations each time.
In this Section we will present two better strategies to calculate L(σR, σI), namely
the eigenvalue method and the Lanczos method.

3.3.1 The eigenvalue method

The eigenvalue method entails the full diagonalization of the nuclear Hamiltonian
represented on a basis set of localized functions. By assuming a basis with finite
dimension NΛ, the resulting eigenvectors and eigenvalues are |Ψl⟩ and El, respec-
tively, with Ĥ |Ψl⟩ = El |Ψl⟩, l = 1, . . . , NΛ. The LIT states in Eq. (3.14) can then
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be expanded as

|Ψ̃⟩ =
NΛ∑
l=1

⟨Ψl| Ô |Ψ0⟩
El − E0 − σR − iσI

|Ψl⟩ , (3.21a)

|Ψ̃′⟩ =
NΛ∑
l=1

⟨Ψl| Ô′ |Ψ0⟩
El − E0 − σR − iσI

|Ψl⟩ , (3.21b)

and, as a consequence, the overlap in Eq. (3.13) assumes the form

L(σR, σI) =
NΛ∑
l=1

⟨Ψ0| Ô
† |Ψl⟩ ⟨Ψl| Ô′ |Ψ0⟩

(El − E0 − σR)2 + σ2
I

. (3.22)

It is clear that the contribution to the continuum part of the integral transform,
Lc(σR, σI), comes from the eigenvalues such that El > Eth, with Eth defined as the
energy threshold to the continuum. Then, from the inversion, the continuum part
of the response function (3.17) can be recovered. When Ô = Ô′, which is our case
of study, the LIT reduces to

L(σR, σI) =
NΛ∑
l=1

|⟨Ψl| Ô |Ψ0⟩|
2

(El − E0 − σR)2 + σ2
I

. (3.23)

The equation above shows that, essentially, the LIT can be reconstructed as a sum
of Lorentz functions with half–width σI , whose center depends on each eigenvalue
El. Moreover, this sum is weighted with the overlap factors |⟨Ψl| Ô |Ψ0⟩|

2, which
depend on the transition operator Ô [57]. We conclude the discussion about this
method with a remark. The spacing between the eigenvalues El located above
the energy threshold to the continuum depends on NΛ, the dimension of the basis
employed in the calculation. If the density of such eigenvalues is sufficiently high
within the extension of the Lorentzian function, i.e. within σI , then the inversion
procedure can be said to be reliable.

3.3.2 The Lanczos method

The Lanczos method is a procedure used to calculate the LIT, which is essentially
based on the Lanczos algorithm [58]. More details about this technique can be found
in Appendix B. As seen in the last Section, when we use the eigenvalue method,
it is necessary to perform a full diagonalization of the nuclear Hamiltonian. This
calculation can be computationally demanding, especially with an increasing num-
ber of particles, as the number of basis functions rapidly increases as well. The
reformulation of the LIT method via the Lanczos algorithm seems to overcome
these difficulties [59]. In fact, by applying this technique, the computational time
decreases. Moreover, it allows to obtain accurate results that are in excellent agree-
ment with the calculations carried out with other methods.

It is not difficult to demonstrate that the LIT in Eq. (3.13), with the LIT states
expressed as in (3.14), can be rewritten in the following form

L(σR, σI) = − 1
σI

Im
{〈

Ψ0

∣∣∣∣ Ô† 1
−Ĥ + z

Ô

∣∣∣∣Ψ0

〉}
, (3.24)
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where we have restricted the case to Ô = Ô′, and we have defined z = E0 +σR + iσI .
We start by introducing the following normalized vector

|ϕ0⟩ = Ô |Ψ0⟩√
⟨Ψ0| Ô

†
Ô |Ψ0⟩

, (3.25)

which can be used as a pivot for the Lanczos basis of vectors |ϕi⟩, with i =
0, . . . , NLanc. This yields to a new expression for the LIT

L(σR, σI) = − 1
σI
⟨Ψ0| Ô

†
Ô |Ψ0⟩ Im{x00} , (3.26)

where the matrix element x00 is defined as

x00 =
{〈

ϕ0

∣∣∣∣ 1
−Ĥ + z

∣∣∣∣ϕ0

〉}
. (3.27)

In the following we will demonstrate how the calculation of the matrix element
x00 can be reduced to the evaluation of a continued fraction written in terms of
the so–called Lanczos coefficients { ai, bi } (see Appendix B). The operator identity
(−Ĥ + z)(−Ĥ + z)−1 = 1 written in matrix form on the Lanczos basis is∑

n

(−Ĥ + z)ij xj0 = δi0 , (3.28)

and x00 can be calculated by applying the Cramer’s rule to this linear system [59].
Therefore the following relation is valid

x00 = det(M00)
det(M) , (3.29)

where the matrices M and M00 are explicitly

M =


−a0 + z −b1 0 . . .
−b1 −a1 + z −b2 . . .

0 −b2 −a2 + z . . .
...

...
... . . .

 , M00 =


1 −b1 0 . . .
0 −a1 + z −b2 . . .
0 −b2 −a2 + z . . .
...

...
... . . .

 .
(3.30)

If we proceed by defining Di as the matrix obtained by removing the first i rows
and i columns from the matrix M , then it can be demonstrated that the following
recursive relation between determinants is valid [27]

det(Di) = (−ai + z) det(Di+1)− b2
i+1 det(Di+2) . (3.31)

As a consequence, by exploiting the following results for the determinant of the
matrices D0 and D1

det(D0) = (−a0 + z) det(D1)− b2
1 det(D2) , det(D1) = det(M00) , (3.32)

since D0 = M , x00 in Eq. (3.29) becomes

x00 = 1
−a0 + z − b2

1
det(D2)
det(D1)

. (3.33)
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At this point the recursive relation (3.31) can be repeatedly used to calculate first
the determinant det(D1), and so on. Finally, the whole procedure leads to the
following expression for x00

x00 = 1

−a0 + z − b2
1

−a1 + z − b2
2

−a2 + z − b2
3
. . .

. (3.34)

In this way we have completely determined the LIT in Eq. (3.26). The main advan-
tage of using this reformulation is that the continued fraction above converges after a
certain number of steps of the Lanczos algorithm, let’s say NLanc, and this number is
always lower than the full dimension of the Hamiltonian matrix, i.e. NLanc ≪ NΛ−1.

3.4 Inversion of the LIT
As repeatedly stated, the last step to be done in order to recover the continuum
part of the response function, Eq. (3.17), is to perform the inversion of the inte-
gral transform. As a consequence, this step is somehow crucial. The problem of
inverting the LIT represents one of the so–called ill–posed problems, whose main
mathematical aspects are thoroughly analysed in Ref. [60]. However, as also dis-
cussed in Ref. [56], the term ill–posed could be misleading and its origin is mainly
historical. In fact there is no relation between this expression and the accuracy of
the results, and the approaches used are well–founded instead. In the following we
will expose one “standard” technique used to perform the inversion of the LIT [27].

We start by assuming that the response function can be written as a linear
combination ofNmax functions χn(x, αi) that depend on some non–linear parameters
{αi }. Typically, this basis set of functions is defined in the following form

χn(x, αi) = xα1 exp
{
−α2x

n

}
, (3.35)

and therefore the ansatz for the response function is

R(e′) =
Nmax∑
n=1

cnχn(e′, αi) . (3.36)

In the definition above we have used the variable e′ = e − eth, with eth the energy
threshold to the continuum, and the coefficients cn have to be determined. By in-
serting the linear combination (3.36) in the continuum part of the integral transform
already defined in Eq. (3.20), we easily obtain

Lc(σR, σI) =
Nmax∑
n=1

cnχ̃n(σR, σI , αi) , (3.37)

where the new set of functions χ̃n(σR, σI , αi) is formally defined as

χ̃n(σR, σI , αi) =
∫ ∞

0
de′ χ(e′, αi)

(e′ − σR)2 + σ2
I

. (3.38)
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For every fixed set of non–linear parameters {α1, α2 }, the coefficients cn of the
expansion in Eq. (3.37) are determined by performing a least–square fit to the
computed LIT Lc(σR, σI). The chosen value of the parameter α1 has to do with the
energy dependence of the response function in the vicinity of the energy threshold,
and therefore it is somehow constrained by the characteristics of the nuclear system
and of the reaction under study. Conversely, the parameter α2 typically varies over
a wide range of values. Once the best fit has been computed for Nmax, the procedure
is repeated for Nmax + 1 and so on, each time increasing the dimension of the basis
by one unit. This is done for a certain number of steps, until the converge of the
computed response function (3.36) is achieved. We point out that the parameter
Nmax is always kept inside a range that is characterized by the stability of the
results. A further increase of Nmax outside this range would lead to an unstable
result for the response function, in which random oscillations appear. Typically, it is
not difficult to find the aforementioned range of stability for the resulting response
function. However, it is also possible that the inversion procedure does not lead
to stable results. In this case, one could try either to calculate the LIT with more
accuracy or to work with a basis of functions that is more flexible [27]. For instance,
when a narrow resonance structure is present in the response function, an additional
function should be included in the basis set of Eq. (3.35) [61]. The new basis element
could be of the form [62]

χ1(x, αi) = 1
(x− α1)2 + α2

2

[(
1 + e−1)−1 −

(
1 + e

x−α3
α3
)−1]

, (3.39)

where an explicit resonance structure with center Eres and half–width Γ has been
introduced explicitly through the non–linear parameters α1 ≡ Eres and α2 ≡ Γ.
The other basis functions are now

χn(x, αi) = xα4 exp
{
− α5x

n− 1

}
, n ≥ 2 . (3.40)

If the LIT is computed with a sufficiently small value of σI , then, by using this new
basis of functions, the position, width, and strength of the resonance can be better
determined in the inversion process.



Chapter 4

Cluster Effective Field Theory

This Chapter is devoted to the explicit derivation of the interactions between our
effective degrees of freedom, neutrons and α–particles. In Section 4.1 the general
form of the two–body potentials is derived within a halo/cluster EFT framework.
The power counting procedure relative to each two–body system α–n and α–α is
described in Section 4.2. The effective potentials are defined in momentum space
as a series of contact terms parametrized by the Low Energy Constants (LECs).
A momentum–regulator function is also introduced, which depends on a cut–off
parameter. In this work we use an implicit renormalization procedure, by keeping
the cut–off finite [63] and expressing the LECs in terms of observable quantities. In
Sections 4.3 and 4.4 this procedure is shown explicitly, by focussing first on the α–n
and then on the α–α system. Finally, a three–body potential is also introduced in
Section 4.5.

4.1 Potentials from Effective Field Theory
We write the effective Langrangian L as a sum of terms

L = L1 +L2 +L3 , (4.1)

where L1 is the free Lagrangian, while L2 and L3 represent the two–body and three–
body interaction terms, respectively. We will first focus on the term L2, leaving the
discussion about the three–body term to Section 4.5.

If we start by considering the simple system composed of two spinless particles
of one species, represented by the non–relativistic field operator ψ, then the relative
low–energy theory can be described by the following effective Lagrangian [64, 65]

L2 = ã0(ψψ)†(ψψ) + ã1
[
(ψψ)†(ψ←→∇ 2ψ) + H.c.

]
+ . . . , (4.2)

where ←→∇ is the Galilean invariant derivative defined as ←→∇ ≡ ←−∇ − −→∇ , and H.c.
stands for Hermitian conjugate. In writing the term L2 above, the EFT “paradigm”
has been followed: the most general effective Lagrangian should contain all the
contact interactions constrained by the symmetries of the strong interaction at low–
energies, which are Galilean invariance and the discrete symmetries of parity and
time reversal. Other terms in the expansion (4.2) include operators with a different

31
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combination of field derivatives as well as derivatives of higher order. Relativistic
corrections will not be taken into account. The set { ãn } in (4.2) is the set of the Low
Energy Constants (LECs), which depend on the details of the short–range physics.
In the literature different parametrization can be found to express these constants.
Feynman rules from the Lagrangian (4.2) lead to the following interaction potential
defined in momentum space [64, 66]

V (p,p′) = a0 + a1(p2 + p′2) + . . . , (4.3)

where p (p′) is the relative momentum between the two particles in the center–
of–mass frame before (after) the interaction. Furthermore, the explicit expression
of the constants { an } depends on the specific parametrization adopted, and they
are equal or at most proportional to the corresponding { ãn } appearing in the
Lagrangian (4.2). Specifically, the potential in Eq. (4.3) represents a S–wave in-
teraction. Possible corrections as well as terms related to higher partial waves can
be derived from the terms omitted in the expansion (4.2). In coordinate space,
the potential V (p,p′) in (4.3) corresponds to a sum of delta functions and their
derivatives [67].

The approach that we have described so far, which is also characteristic of a
pionless EFT involving nucleons, can be generalized to include other particles as
well. Under certain energy conditions, for example, also clusters of nucleons, such
as α–particles, can be considered as effective degrees of freedom. In this case, a so–
called halo/cluster EFT can be constructed by following the same formalism. Since
in this work we will study 9Be and 12C nuclei in a three–body approach and in the
low–energy regime, we are interested in analysing the α–n and α–α subsystems.
If now n and ψ are the non–relativistic field operators relative to the neutron and
the α–particle, respectively, then the relevant low–energy α–n Lagrangian terms
are [29]

LS
nα =λ̃S

0,nα(ψn)†(ψn) + λ̃S
1,nα

[
(ψn)†(ψ←→∇ 2n) + H.c.

]
+ . . . , (4.4)

LP
nα =λ̃P

0,nα(ψ←→∇ n)†(ψ←→∇ n) + λ̃P
1,nα

[
(ψ←→∇ n)†(ψ←→∇ 2←→∇ n) + H.c.

]
+ . . . , (4.5)

where we have written explicitly the lowest S– and P–wave contributions, which
are parametrized by the LECs λ̃S

0,nα, λ̃S
1,nα and λ̃P

0,nα, λ̃P
1,nα, respectively. Here the

left and right derivative is defined as ←→∇ ≡
(−→m←−∇ −←−m−→∇)/(←−m +−→m

)
, where ←−m (−→m)

is the mass of the field on which ←−∇ (−→∇) operates. For the α–α case we have

LS
αα =λ̃S

0,αα(ψψ)†(ψψ) + λ̃S
1,αα

[
(ψψ)†(ψ←→∇ 2ψ) + H.c.

]
+ . . . . (4.6)

whose characteristic LECs are λ̃S
0,αα, λ̃S

1,αα. The term above includes only the
strong component of the α–α interaction, whose long–range part is driven by the
Coulomb interaction. More details about low–energy α–n and α–α theories can
be found in Refs. [23, 25]. In these works the effective two–body Lagrangians are
also reformulated in terms of the dimeron, an auxiliary operator field describing the
two–particle state [68].

Following from Eqs. (4.4) and (4.5) or (4.6), as a generalization of the expression
already given in (4.3), we write the most general non–relativistic two–body effective
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potential in momentum space in the following compact form

V (p,p′) =
∞∑

ℓ=0
(2ℓ+ 1)Pℓ(p̂ · p̂′)Vℓ(p, p′) , (4.7)

which is valid for both α–n and α–α systems. Pℓ is the Legendre polynomial of
degree ℓ due to the partial wave expansion, for which we have the definition

Vℓ(p, p′) = 1
2

∫
d(p̂ · p̂′)Pℓ(p̂ · p̂′)V (p,p′) . (4.8)

Moreover, the ℓ–component of the interaction can be written explicitly as follows

Vℓ(p, p′) =
[
λ

(ℓ)
0 + λ

(ℓ)
1 (p2 + p′2) + . . .

]
pℓp′ℓ . (4.9)

Here we adopt the standard notation in which ℓ = 0 refers to S–wave while ℓ = 1
denotes the P–wave. In order to avoid divergences due to the contact terms, the
effective potential (4.9) is regularized by introducing a momentum–regulator func-
tion g(p). This function “regulates” the short–distance behaviour of the interaction
by introducing a cut–off parameter Λ on the momenta. The regulator satisfies

g(p = 0) = 1 , g(p) p→∞−−−→ 0 . (4.10)

In this work, the following expression for the ℓ–component of the potential will be
used

Vℓ(p, p′) =
[ 1∑

i,j=0
p2iλ

(ℓ)
ij p

′2j

]
pℓp′ℓg(p)g(p′) , λ(ℓ) =

(
λ

(ℓ)
0 λ

(ℓ)
1

λ
(ℓ)
1 0

)
, (4.11)

where we have also included the regulator functions. λ(ℓ) is the matrix of the LECs,
which will be determined through renormalization conditions, by relating them to
the Effective Range Expansion (ERE) scattering parameters [69]. By keeping the
cut–off Λ finite, we will in fact perform an implicit renormalization by expressing the
constants in terms of some observable quantities. In principle, in the most general
case, additional higher–order two–body interaction terms with higher powers of
momentum could have been included in the theory, corresponding to an upper limit
for the indices i, j greater than 1. Since here, as we will see, we need to reproduce
the ERE of the low–energy on–shell T–matrix up to the effective range parameter
term, we only need i, j = 0, 1.

4.2 Power counting
Separation of scales is an essential feature required for an EFT approach. It also
allows to select the relevant degrees of freedom, which is a necessary step to de-
velop the effective theory. Here we will work in the low–energy regime, where also
clusters of nucleons can be taken as elementary degrees of freedom. In this case,
the high momentum scale Mhi can be thought of as related to the energy neces-
sary to separate the cluster structures. Mhi is also considered as the breakdown
scale of the theory. On the contrary, the low momentum scale Mlow is such that
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Mlow ≪ Mhi and can be associated to the energy required to remove the effective
particles, i.e. nucleons and α–particles. In this framework, observables can be ex-
panded in a series of powers (Mlow/Mhi)ν , whose truncation introduces an error
that is characterised by a power of a small ratio.

In order to give a physical meaning to the effective Lagrangian and its truncation,
it is also essential to formulate a power counting scheme for each different interaction
involved in the theory. As already mentioned, the LECs will be determined upon the
experimental values of the scattering parameters, which appear in the low–energy
ERE of the on–shell T–matrix.

α–n system

We start by considering the case of the α–n interaction. With our effective theory
we want to reproduce [23]

T on
ℓ (k) = −2π

µ

1
k cot δℓ − ik

= −2π
µ
k2ℓ

[
− 1
aℓ

+ rℓ

2 k
2 − Pℓ

4 k4 +O(k6)− ik2ℓ+1
]−1

,

(4.12)
where µ is the reduced mass of the system, k is the on–shell momentum and δℓ is
the phase–shift. By adopting for ℓ > 0 the same notation used in the ℓ = 0 case, aℓ

is the scattering length, rℓ is the effective range and Pℓ the shape parameter. The
relevant partial waves to be considered in the α–n scattering at low energies are
the S–wave S1/2, and the two P–waves P3/2, P1/2. The experimental scattering pa-
rameters are collected in Tab. 4.1, where we have written explicitly also the relative
dimensions. At low energy, the P3/2 partial wave exhibits a resonant behaviour.
The enhancement of a partial wave of higher order between a nucleon and a cluster
or between clusters is rather common in halo/cluster EFTs [22]. From physical
considerations one would expect the following relevant momentum scales

Mhi =
√

2µSp(4He) ≈ 170 MeV , Mlo =
√

2µER ≈ 30 MeV≪Mhi , (4.13)

where Sp(4He) = 19.81 MeV is the proton separation energy of 4He while ER is the
resonance energy of 5He, ER = Qα-decay(5He) = 0.798 MeV [71]. Unlike Mhi, the
low momentum scale Mlo arises from a fine–tuning. This means that the parameters
of the underlying theory have to combine in a specific way in order to realize this
unnatural scenario. This can be discussed also by looking at the P3/2 scattering

α–n

ℓj aexp
ℓ [fm2ℓ+1] rexp

ℓ [fm−2ℓ+1]

S1/2 2.4641 fm 1.385 fm
P3/2 −62.951 fm3 −0.8819 fm−1

P1/2 −13.821 fm3 −0.419 fm−1

Table 4.1: Scattering observables (scattering length and effective range) related to
the α–n system in the partial waves ℓ = 0 and ℓ = 1. The experimental values are
from Ref. [70].
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length. In general, the simplest case is the one in which only a single scale Mhi is
present. This is commonly called a natural scenario, where the scaling of all the
parameters is associated to Mhi, according to their mass dimension, i.e. on the basis
of a naive dimensional analysis. In this case we would expect 1/a1 ∼M3

hi, which is
in contrast with the large experimental value of a1. As a consequence, a different
power counting must be adopted in order to account for the existing shallow P–wave
resonance. In principle different choices can be made. One is the power counting
presented by Bertulani, et al. in Ref. [23], in which 1/a1 ∼M3

lo and r1 ∼Mlo while
the higher effective range parameters scale with Mhi in a natural way. Here, we
adopt instead the power counting suggested in Ref. [24] by Bedaque, et al. which is

1
a1
∼M2

loMhi , r1 ∼Mhi . (4.14)

The successive parameters naively depend on Mhi with the appropriate power. In
contrast to the former, where two fine–tunings are present, the latter power counting
requires only one fine–tuning, and it also supports a narrower resonance. In the
framework (4.14), the first two terms in (4.12), related to the scattering length a1
and the effective range r1, give rise to a contribution of the same order for low
momentum k ∼ Mlo. As a consequence, they must be retained at Leading Order
(LO) calculations. This justifies the terms of the effective potential taken into
account in Eq. (4.11). Contributions due to the successive terms in (4.12) are of
higher order. As an example, the shape parameter term P1, scaling as P1 ∼ 1/Mhi,
enters at Next–to–Next–to Leading Order (N2LO). By using the experimental values
aexp

1 and rexp
1 in Tab. 4.1, from (4.14), we obtain Mhi ≈ 170 MeV and Mlo ≈ 30 MeV.

The remaining partial waves, S1/2 and P1/2, can be treated by following the naive
power counting based on dimensional analysis

1
a0
∼Mhi , r0 ∼

1
Mhi

,
1
a1
∼M3

hi , r1 ∼Mhi . (4.15)

Among these non–enhanced partial waves, for momenta k ∼ Mlo, the main contri-
bution is due to the a0 term, while r0 and a1 enter at N2LO. Notice that, although
formally the a0 term enters at LO, in this work we will retain as “LO” only the
enhanced P3/2 partial wave [20, 72], treating the contributions due to the non–
enhanced S1/2 and P1/2 partial waves as “NLO”. By using the experimental values,
the lowest Mhi obtained from (4.15) is ≈ 80 MeV. The expansion parameter can
therefore be represented by the ratio Mlo/Mhi ≈ 0.3, which is also an estimate for
the order of the errors at LO.

When a natural scenario is assumed, a perturbative approach to calculate the
T–matrix is implied [64]. The description of low–energy scattering data can be
improved in a systematic way by including in the effective Lagrangian additional
terms with derivatives of higher order. These are in fact in correspondence with the
k/Mhi expansion terms of the T–matrix. An EFT of this kind can only describe
scattering, since possible bound–states are outside the range of validity of the ex-
pansion, their typical momenta being ∼ Mhi. The situation is different when a
fine–tuning of the underlying theory is present, inducing inside the theory a second
scale Mlo ≪ Mhi. For momenta k ∼ Mlo a perturbative approach is not suitable
anymore, and a resummation of the diagrams is needed. In this way a real or virtual
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bound–state can arise at threshold as a pole of the T–matrix. In Section 4.3, we
will derive the effective α–n potentials in the partial waves ℓ = 1 and ℓ = 0. For the
enhanced P3/2 wave the non–perturbative treatment of both a1 and r1 is required,
and we will proceed by solving the Lippmann–Schwinger equation. Although not
necessary, we will calculate the other subleading potentials by following the same
non–perturbative approach. This is due to the fact that, given the effective poten-
tials as an input, we will calculate observables, such as binding energies and cross
sections, in an ab initio approach by solving the Schrödinger equation, and therefore
in a non–perturbative way.

α–α system

Now we focus on the α–α interaction. This deserves a different treatment, since also
the Coulomb interaction between the two α–particles must be taken into account.
The Coulomb–modified ERE for the low–energy on–shell matrix T SC

ℓ in the partial
wave ℓ = 0 is the following [25]

T SC,on
ℓ=0 (k) = −2π

µ

e2iσ0

k cot δ0 − ik
,

= −2π
µ
C2

ηe
2iσ0

[
− 1
a0

+ r0
2 k

2 − P0
4 k4 +O(k6)− 2kCH(η)

]−1
,

(4.16)

where σ0 is the Coulomb phase–shift and δ0 are the Coulomb–corrected phase–
shifts. The definitions of the Sommerfeld parameter η, the Sommerfeld factor Cη,
and the function H(η) will be given later in Section 4.4. The quantity kC is defined
as kC = Z2

ααemµ, and therefore we have kC ≈ 60 MeV. The relevant momentum
scales arising from physical considerations are now

Mhi =
√

2µSp(4He) ≈ 270 MeV , Mlo =
√

2µER ≈ 20 MeV≪Mhi , (4.17)

where µ is the reduced mass of the α–α system. Sp(4He) = 19.81 MeV is the
proton separation energy of 4He and ER is the 8Be resonance energy taken as
ER = Qα-decay(8Be) = 91.8 keV [73]. The lower momentum scale Mlo set by the 8Be
resonance is due to a fine–tuning mechanism of the underlying theory. Basically, the
α–α interaction consists of the attractive short–range strong part and the repulsive
long–range Coulomb interaction, whose interplay facilitates quantum tunnelling and
sustains the extremely shallow resonance between the two α–particles. In the low–
energy regime, the former can be represented by contact terms, the latter is non–
perturbative in the momentum range below kC , and the central issue is represented
by the relative importance of the two contributions [25]. In fact, in addition to Mhi

and Mlo also kC is a relevant scale of the theory. The power counting is associated
to the way in which the parameters scale with Mhi and Mlo. In this case we have,
by following Higa et al. [25],

1
a0
∼ M3

lo

M2
hi

, r0 ∼
1
Mhi

(Mhi ∼ 3kC) . (4.18)

The a0 and r0 terms in (4.16) enters at LO. By using the relations in Eq. (4.18),
the experimental values aexp

0 and rexp
0 , which we have also listed in Tab. 4.2, give
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α–α

ℓj aexp
ℓ [fm2ℓ+1] rexp

ℓ [fm−2ℓ+1]

S0 −1920 fm 1.099 fm

Table 4.2: Scattering observables (scattering length and effective range) relative to
the α–α system in the partial wave ℓ = 0. The values are taken from Ref. [25],
being an ERE fit of the experimental data from Table II of Ref. [74].

approximately Mhi ≈ 180 MeV and Mlo ≈ 20 MeV. The expansion parameter is now
Mlo/Mhi ≈ 0.1. The LO α–α potential in the partial wave ℓ = 0 will be derived in
Section 4.4 by following a non–perturbative approach.

4.3 Two–body α–n effective potential
In order to derive the LECs of the effective potentials given in Eq. (4.11), we adopt
a non–perturbative approach, and therefore our aim is to calculate the T–matrix by
solving the Lippmann–Schwinger equation. Here we follow the derivation already
carried out in Refs. [75, 76].

For the α–n system, interacting only through the strong force, we start from the
relation T̂ = V̂ + V̂ Ĝ

(+)
0 T̂ , where Ĝ(+)

0 is the free Green’s function. In its projected
form, it reads

T (p,p′;E) = V (p,p′) +
∫

d3q

(2π)3V (p, q) 1
E − q2

2µ + iε
T (q,p′;E) . (4.19)

This equation is derived in Appendix C [see (C.10)], where also more details about
the formalism are introduced. In this Section, we will use the symbol µ to denote
the reduced mass of the α–n system, i.e. µ = µαn. By analogy with the expansion
of the potential given in Eq. (4.7), we make the following ansatz for the T–matrix

T (p,p′) =
∞∑

ℓ=0
(2ℓ+ 1)Pℓ(p̂ · p̂′)Tℓ(p, p′) , (4.20)

where Pℓ is a Legendre polynomial. The partial–wave components Tℓ(p, p′) are
formally defined as

Tℓ(p, p′) = 1
2

∫
d(p̂ · p̂′)Pℓ(p̂ · p̂′)T (p,p′) , (4.21)

and they are parametrized as follows

Tℓ(p, p′;E) =
[ 1∑

i,j=0
p2iτ

(ℓ)
ij (E)p′2j

]
pℓp′ℓg(p)g(p′) , τ (ℓ) =

(
τ

(ℓ)
00 τ

(ℓ)
01

τ
(ℓ)
10 τ

(ℓ)
11

)
. (4.22)

In the equation above, τ (ℓ) is the matrix of the parameters τ ℓ
ij(E), and g(p) is a

momentum–regulator function, whose properties have been already given in (4.10).
By inserting in the Lippmann–Schwinger equation (4.19) the potential in the form of
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Eqs. (4.7) and (4.11) and the T–matrix as in (4.20) and (4.22), we get the following
relation between the parameters τ (ℓ)

ij (E) and λ
(ℓ)
ij :

τ
(ℓ)
ij (E) = λ

(ℓ)
ij +

1∑
n,m=0

λ
(ℓ)
im

∫
d3q

(2π)3
q2n+2m+2ℓ

E − q2

2µ + iε
g2(q)τ (ℓ)

nj (E) . (4.23)

This relation can be rewritten in matrix form by making use of the 2 × 2 matrices
of the parameters defined in Eqs. (4.11) and (4.22). Solving for τ (ℓ) we obtain

τ (ℓ)(E) =
[
1− λ(ℓ)ϕ(ℓ)(E)

]−1
λ(ℓ) , (4.24)

where we have also rearranged the loop integrals in (4.23) with an additional 2 × 2
matrix, ϕ(ℓ), whose elements are defined as

ϕ
(ℓ)
2n =

∫
d3q

(2π)3
q2n+2ℓ

E − q2

2µ + iε
g2(q) , ϕ(ℓ) =

(
ϕ

(ℓ)
0 ϕ

(ℓ)
2

ϕ
(ℓ)
2 ϕ

(ℓ)
4

)
. (4.25)

The formal solution of Eq. (4.24) is the following

τ (ℓ) = 1

ϕ
(ℓ)
0 ϕ

(ℓ)
4 + λ0

λ2
1
ϕ

(ℓ)
0 −

(
ϕ

(ℓ)
2 −

1
λ1

)2

−
λ0
λ2

1
− ϕ(ℓ)

4 − 1
λ1

+ ϕ
(ℓ)
2

− 1
λ1

+ ϕ
(ℓ)
2 −ϕ(ℓ)

0

 , (4.26)

which allows us to write a first expression for the on–shell T–matrix T on
ℓ (k)

k2ℓ

T on
ℓ (k) = 1

g2(k)


ϕ

(ℓ)
0 ϕ

(ℓ)
4 + λ0

λ2
1
ϕ

(ℓ)
0 −

(
ϕ

(ℓ)
2 −

1
λ1

)2

−λ0
λ2

1
− ϕ(ℓ)

4 + 2k2
(
− 1
λ1

+ ϕ
(ℓ)
2

)
− k4ϕ

(ℓ)
0

 , (4.27)

where k is the on–shell momentum, k = p = p′, and the energy is E = k2

2µ . To
make the notation easier, we have dropped the superscript (ℓ) relative to the LECs.
Before making a direct comparison between the calculated low–energy T–matrix
and its ERE, the expression (4.27) needs to be manipulated further.

The integrals in Eq. (4.25) satisfy the following recursive relation

ϕ
(ℓ)
2n = I2n+2ℓ+1 + k2ϕ

(ℓ)
2n−2 , (4.28)

In being defined as
In = − µ

π2

∫ ∞

0
dq qn−1g2(q) . (4.29)

The recursive relation (4.28) can be employed to rewrite the integrals ϕ(ℓ)
0 , ϕ(ℓ)

2 and
ϕ

(ℓ)
4 as a sum of terms

ϕ
(ℓ)
4 =I2ℓ+5 + k2I2ℓ+3 + k4ϕ

(ℓ)
0 , (4.30a)

ϕ
(ℓ)
2 =I2ℓ+3 + k2ϕ

(ℓ)
0 , (4.30b)

ϕ
(ℓ)
0 =I2ℓ+1 + k2I2ℓ−1 + · · ·+ k2ℓI1 + k2ℓ+2ϕ

(ℓ)
−2ℓ−2 , (4.30c)
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where ϕ(ℓ)
−2ℓ−2 denotes

ϕ
(ℓ)
−2ℓ−2 = − µ

π2

∫ ∞

0
dq

g2(q)
q2 − k2 − iε

, (4.31)

which does not actually depend on the value of ℓ. Finally, by using the expressions
in (4.30), Eq. (4.27) can be rewritten as

k2ℓ

T on
ℓ (k) = 1

g2(k)

−ϕ(ℓ)
0 +

(
I2ℓ+3 −

1
λ1

)2

I2ℓ+5 + λ0
λ2

1
− k2

(
I2ℓ+3 −

2
λ1

)
 . (4.32)

We assume a cut–off dependence of the LECs that preserves renormalizability, mean-
ing that the contribution of higher–order loops is at most equal to the tree–diagram
one [75]. A natural choice is therefore λij ∼ Λ−2i−2j−2ℓ−1, from which we have the
following scaling

λ0 ∼
1

Λ2ℓ+1 , λ1 ∼
1

Λ2ℓ+3 . (4.33)

This is also consistent with a naive dimensional analysis of Eq. (4.32). At this point,
an expansion of Eq. (4.32) in powers of k/Λ can be carried out, leading to

k2ℓ

T on
ℓ (k) = 1

g2(k)

−ϕ(ℓ)
0 +

(
I2ℓ+3 −

1
λ1

)2

I2ℓ+5 + λ0
λ2

1

+k2

(
I2ℓ+3 −

1
λ1

)2 (
I2ℓ+3 −

2
λ1

)
(
I2ℓ+5 + λ0

λ2
1

)2 +O(k4)

.
(4.34)

It is useful to extract the cut–off dependence from the integrals In and from the
LECs λ0,1. We start by studying the divergence pattern of In, already defined in
Eq. (4.29). To this purpose we introduce the following quantity

fn,m = n

Λn

∫ ∞

0
dq qn−1g2(q) , g(q) = e−( q

Λ )2m

, (4.35)

where we have chosen to use a momentum–regulator function of Gaussian form. A
regulator of this kind behaves as a sharp cut–off in the limitm→∞. In fact, we have
that g(q) m→∞−−−−→ θ(Λ− q), where θ(x) is the Heaviside step function. Furthermore,
by looking at Eq. (4.34), it can be noticed that, in order to suppress the effect of the
regulator function in the expansion up to k2, g(k) must satisfy g(k) ∼ 1− (k/Λ)2m

in the limit k → 0, with the condition m ≥ 2. The quantity fn,m in (4.35) is of
natural size O(1), it is finite and it can be expressed in terms of the Gamma function
as follows

fn,m =
(1

2

) n
2m

Γ
(
n

2m + 1
)
. (4.36)

As a consequence, we can write the integral In as

In = − µ

π2
Λn

n
fn,m . (4.37)
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By expressing the LECs in terms of the dimensionless coefficients c0 and c1, we have

λ0 = −π
2

µ

c0
Λ2ℓ+1 , λ1 = −π

2

µ

c1
Λ2ℓ+3 . (4.38)

These last three relations allows to rewrite Eq. (4.34) in the alternative form

k2ℓ

T on
ℓ (k) = 1

g2(k)

− ϕ
(ℓ)
0 −

µ

π2 Λ2ℓ+1


(
f2ℓ+3,m

2ℓ+ 3 −
1
c1

)2

f2ℓ+5,m

2ℓ+ 5 + c0
c2

1

− k2

Λ2

(
f2ℓ+3,m

2ℓ+ 3 −
1
c1

)2 (f2ℓ+3,m

2ℓ+ 3 −
2
c1

)
(
f2ℓ+5,m

2ℓ+ 5 + c0
c2

1

)2 +O
(
k4

Λ4

)
 ,

(4.39)

whose terms up to order O(k2) can be matched directly with the following ERE [23]

k2ℓ

T on
ℓ (k) = − µ

2π

[
− 1
aℓ

+ rℓ

2 k
2 +O(k4)− ik2ℓ+1

]
. (4.40)

aℓ denotes the scattering “length”, while rℓ is the effective range.
Before specializing the calculation to ℓ = 0 and ℓ = 1, which are the relevant

partial waves involved in the α–n interaction, we remark that, by assuming m ≥ 2,
we can take g2(k) ∼ 1 in the expansion (4.39), if terms beyond rℓ are omitted
in (4.40). Moreover, we write here the integral ϕ(ℓ)

−2ℓ−2, already defined in Eq. (4.31),
in the form [67]

ϕ
(ℓ)
−2ℓ−2 = IP − i

µ

2πkg
2(k) IP = − µ

π2 P
∫ ∞

0
dq

g2(q)
q2 − k2 (4.41)

where the term IP contains a principal value integral denoted as P. For later
purposes, by using the definition (4.35), we also notice that IP can be expressed as
an expansion:

IP = µ

π2
1
Λf−1,m +O(k2) . (4.42)

4.3.1 P–wave interaction

In this Subsection we focus on the derivation of the LECs relative to the α–n effective
potential in the partial wave ℓ = 1. To this purpose, each term of the low–energy
result derived in Eq. (4.39) must be compared with the ERE (4.40) specialized to
the case ℓ = 1:

k2

T on
1 (k) = − µ

2π

[
− 1
a1

+ r1
2 k

2 +O(k4)− ik3
]
. (4.43)

First, by restricting Eq. (4.30c) to the value ℓ = 1, the term ϕ
(1)
0 in (4.39) assumes

the form

ϕ
(1)
0 = I3 + k2I1 + k4ϕ

(1)
−4

= − µ

π2 Λ3
(
f3,m

3 + k2

Λ2 f1,m

)
− i µ2πk

3g2(k) +O(k4) ,
(4.44)
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where we have also used the definitions (4.37) and (4.41). Notice that the term
in ϕ

(1)
0 proportional to ik3, reproduces the pole term in the expansion (4.43), and

therefore they cancel out. Then, by directly matching Eq. (4.39) with (4.43) we
obtain the following relations between the dimensionless coefficients c0, c1 and the
observables a1, r1:

µ

2πa1
= µ

π2 Λ3

f3,m

3 −

(
f5,m

5 − 1
c1

)2

f7,m

7 + c0
c2

1

 , (4.45)

µ

4πr1 = µ

π2 Λ

−f1,m +

(
f5,m

5 − 1
c1

)2 (f5,m

5 − 2
c1

)
(
f7,m

7 + c0
c2

1

)2

 . (4.46)

We now focus on the equation involving the effective range r1. By making use
of (4.45), it can be rewritten as

r1 = −4Λ
π
f1,m + 4Λ

π

(
f3,m

3 − π

2Λ3a1

)2 5
f5,m

[
1−

(
c1
f5,m

5 − 1
)−2]

. (4.47)

By taking the limit for high cut–off Λ→∞, we obtain

r1 ≤
4
π

(
5
9
f2

3,m

f5,m
− f1,m

)
Λ ≡ w1Λ , (4.48)

with w1 < 0, which is an effective range that goes to negative infinity. Therefore,
we deduce that in order to have r1 finite, the cut–off must be kept finite as well.
This is the implicit renormalization procedure. If we use for the effective range an
experimental value, say rexp

1 , and we take into account the sign, then Eq. (4.48) can
be inverted, leading to the following maximum value for the cut–off

Λ ≤ Λmax = rexp
1
w1

, (4.49)

where in the limit m → ∞, the constant w1 assumes the value w1 = − 16
9π . This

is an expression of the so–called Wigner bound [77], which is a constraint on the
effective range parameter due to the range of the interaction, relying on causality
and unitarity. Originally defined for ℓ = 0, it can be generalized also to higher
partial waves [78]. Given Eqs. (4.45) and (4.46), we can solve for the dimensionless
quantities c0 and c1, obtaining

c0 = c2
1

−f7,m

7 +

(
f5,m

5 − 1
c1

)2

f3,m

3 − π

2Λ3a1

 , (4.50)

c1 = 5
f5,m

± 5
f5,m

1− f5,m

5

πr1
4Λ + f1,m(

f3,m

3 − π

2Λ3a1

)2


−1/2

. (4.51)



42 Chapter 4. Cluster Effective Field Theory

By imposing a reality condition on c0 and c1, the Wigner bound already expressed
in Eq. (4.48) is recovered.

From now on, we will fix m = 2 for the Gaussian momentum–regulator func-
tion (4.35). By following Eq. (4.11), we write here the explicit form of the α–n
P–wave effective potential

Vℓ=1(p, p′) =
[
λ0 + λ1(p2 + p′2)

]
p p′ e−

(
p
Λ

)4

e−
(

p′
Λ

)4

, (4.52)

where the LECs are related to the dimensionless coefficients c0 and c1 by Eqs. (4.38).
Their explicit expression as a function of the scattering length, the effective range
and the cut–off, i.e. c0,1 = c0,1(a1, r1,Λ), is given in Eqs. (4.50) and (4.51). Basically,
they can be entirely determined by using the experimental values aexp

1 and rexp
1

and by fixing the cut–off parameter Λ, such that Λ ≤ Λmax, thus allowed by the
Wigner bound (4.49). The experimental values of the scattering observables used
throughout this work are listed in Tab. 4.1.

By specializing the calculation to the α–n P3/2 partial wave, we show the vari-
ation of c0 and c1 as a function of the cut–off Λ in Fig. 4.1a. In this case, the
limit set by the Wigner bound is Λmax ≈ 330 MeV. In Fig. 4.1a, the superscript
(±) denotes the pairs of coefficients c(+)

0,1 and c
(−)
0,1 corresponding to the ± solutions

in Eqs. (4.50) and (4.51). In principle, both pairs are valid solutions, since they
are able to reproduce the low–energy T -matrix expansion. Here we choose to use
the one with most natural size, which is the minus–solution c

(−)
0,1 , providing also a

weakly attractive potential at large distance. By following Ref. [79], we can also
provide another argument in support of this choice. If one looks at the equation
for c1 (4.51), being f5,m=2 > 0, then we can say that the c(−)

1 branch is the only
one that contains the zero. As a consequence, only the minus–solution would be
compatible with a theory in which only the LEC λ0 is present in the ansatz of the
effective potential (4.52), i.e. with a theory in which c1 = 0. This can be visu-
alized by plotting c

(±)
1 as a function of r1, as done in Fig. 4.1b, for a fixed value

of the cut-off. It can be noticed that, when Λ = 300 MeV, only the “physical”
branch c

(−)
1 crosses zero at r1 = −1.475 fm−1. This numerical value corresponds

to r1 = −4f1,mΛ/π. It can be demonstrated that this relation can be obtained by
assuming a theory in which the effective potential is parametrized with only one
LEC: Vℓ=1(p, p′) = λ0 p p

′g(p)g(p′), with g(p) the Gaussian momentum–regulator
function in (4.35) with m = 2. The potential Vℓ=1(p, p′) in Eq. (4.52) constructed
from the solutions c(−)

0,1 is plotted in Fig. 4.2 with p′ = p, for three fixed values of
the cut–off Λ. Finally, in Fig. 4.3 we show the results of the calculated low–energy
α–n phase–shifts. With a cut–off Λ = 90 MeV the range in which the results agree
with the experimental data [80] is very small. By increasing Λ, the agreement is
better. When Λ = 200− 300 MeV almost all the experimental data are reproduced
up to laboratory energies ≈ 3 MeV, corresponding to a relative momentum in the
center–of–mass frame of about ≈ 60 MeV.

The α–n interaction in the partial wave P1/2 has the same form as the one
shown in Eq. (4.52). The associated LECs can be calculated through the relative
dimensionless coefficients c0 and c1 with the same procedure explained above. The
experimental values of the scattering observables to be inserted in the relations
c0,1 = c0,1(a1, r1,Λ) of Eqs. (4.50) and (4.51) are those relative to the partial wave
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Figure 4.1: (a) Dimensionless coefficients c(+)
0,1 and c

(−)
0,1 relative to the α–n P3/2–

wave effective interaction as a function of the cut–off Λ. The superscript refers to
the plus– or minus–solution of Eqs. (4.50) and (4.51). (b) Dimensionless coefficients
c

(+)
1 and c

(−)
1 calculated with Λ3 = 300 MeV as a function of the effective range r1.
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The parameter of the Gaussian momentum–regulator function (4.35) is fixed to
m = 2. The LECs are calculated from the minus–solution of the dimensionless
coefficients c(−)
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Figure 4.3: Figure taken from Ref. [76] showing the calculated α–n low–energy
phase–shifts δ2j

ℓ = δ3
1 , relative to the partial wave P3/2, calculated as a function of

the neutron energy En, and for different values of the cut–off parameter Λ. The
experimental data are from Ref. [80]. By fixing Λ = 300 MeV, the cross section
σ3

1(En) is calculated in the inset, where the 5He resonance is visible.

P1/2, and they are listed in Tab. 4.1. The estimated Λmax from Eq. (4.49) results
to be ≈ 150 MeV. However, the coefficients c0 and c1 satisfy the reality condition
for cut–off values up to ≈ 270 MeV. The calculated low–energy phase–shifts are
plotted in Fig. 4.5 as a function of the neutron energy in the laboratory frame, for
different values of the cut–off. Already at Λ = 150 MeV, we notice a good agreement
with the experimental data [80] up to relative momenta in the center–of–mass frame
≈ 50 MeV.

4.3.2 S–wave interaction

Here we focus on the calculation of the LECs relative to the α–n effective potential
in the partial wave ℓ = 0, which assumes the form

Vℓ=0(p, p′) =
[
λ0 + λ1(p2 + p′2)

]
e−
(

p
Λ

)4

e−
(

p′
Λ

)4

. (4.53)

As done in the ℓ = 1 case, we start by writing an explicit expression for the
term ϕ

(0)
0 in Eq. (4.39). From the relations (4.30), (4.37) and (4.41), we obtain

ϕ
(0)
0 = I1 + k2ϕ

(0)
−2

= − µ

π2 Λ
(
f1,m −

k2

Λ2 f−1,m

)
− i µ2πkg

2(k) +O(k4) .
(4.54)

Notice that, unlike the ℓ = 1 case, here the integral ϕ(0)
−2 enters at order k2, and

therefore we have also inserted the first term in the expansion of Eq. (4.42). More-
over, the term ∝ ik cancels out with its counterpart in the T–matrix ERE

1
T on

0 (k) = − µ

2π

[
− 1
a0

+ r0
2 k

2 +O(k4)− ik
]
. (4.55)
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By matching the terms up to order k2 with the corresponding ones in Eq. (4.39),
we obtain, for ℓ = 0, the following relations involving the scattering length a0 and
the effective range r0:

µ

2πa0
= µ

π2 Λ

f1,m −

(
f3,m

3 − 1
c1

)2

f5,m

5 + c0
c2

1

 , (4.56)

µ

4πr0 = µ

π2
1
Λ

f−1,m +

(
f3,m

3 − 1
c1

)2 (f3,m

3 − 2
c1

)
(
f5,m

5 + c0
c2

1

)2

 . (4.57)

Finally, solving for the dimensionless coefficients, we get the following expressions

c0 = c2
1

−f5,m

5 +

(
f3,m

3 − 1
c1

)2

f1,m −
π

2Λa0

 , (4.58)

c1 = 3
f3,m

± 3
f3,m

1− f3,m

3

πΛr0
4 − f−1,m(

f1,m −
π

2Λa0

)2


−1/2

. (4.59)

The values assumed by the coefficients above, taking into account both the plus–
and minus–solutions, are plotted in Fig. 4.4a as a function of the cut–off Λ. The
Wigner bound [77] in this case can be expressed through the relation [79]

r0 ≤
w0
Λ , w0 = 4

π

(
3
f2

1,m

f3,m
+ f−1,m

)
, (4.60)

with w0 a positive–definite constant. In this case the high cut–off limit Λ → ∞
leads to the result r0 ≤ 0 [67, 81], which is in contrast with the experimental data
(see Tab. 4.1). By keeping Λ finite, the expression above also sets a limit on the
maximum value allowed for the cut–off, which is ≈ 840 MeV. However, by using aexp

0
and rexp

0 in Eqs. (4.58) and (4.59), the upper bound turns out to be ≈ 540 MeV.
Also in this case, we choose to use in the calculations the LECs obtained from
the pair of solutions c(−)

0,1 . The corresponding effective α–n S–wave potential can
be seen in Fig. 4.4b, for three different values of the cut–off Λ. Notice that a
repulsive core is present only for Λ = 100 MeV, the effective potential associated
with Λ = 200 − 300 MeV being attractive. The calculated low–energy phase–shifts
are reported in Fig. 4.5. By choosing Λ = 100 MeV, the results are in agreement
with the experimental data points [82] up to laboratory energies ≈ 1 MeV. However,
above these values the calculated phase–shifts start to rise. Also in this case, by
increasing the cut–off Λ to the values 200 − 300 MeV the results are in complete
agreement with all the experimental data inside the showed range of energies.
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Figure 4.4: (a) Dimensionless coefficients c(+)
0,1 and c

(−)
0,1 relative to the α–n S1/2–

wave effective interaction as a function of the cut–off Λ. The superscript refers to
the plus– or minus–solution of Eqs. (4.58) and (4.59). (b) α–n effective “diagonal”
potential in the partial wave S1/2 as a function of the momentum p, for different
values of the cut–off Λ. The LECs are calculated from the minus–solution of the
dimensionless coefficients c(−)
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4.4 Two–body α–α effective potential
When we study the system composed of two α–particles with electromagnetic charge
Zα, we must take into account the Coulomb force in addition to the short–range
strong interaction. The derivation presented here has been already developed in
Ref. [75]. By using a procedure similar to the one employed in Section 4.3, we start
from the following Lippmann–Schwinger equation

TSC(p,p′;E) = ⟨ψ(−)
p |V |ψ

(+)
p′ ⟩−2µ

∫
d3q

(2π)3 ⟨ψ
(−)
p |V |ψ(−)

q ⟩
TSC(q,p′;E)

q2 − 2µE − iε , (4.61)

where TSC(p,p′;E) represents the Coulomb–distorted strong term of the T–matrix,
and V is the strong potential acting between the two α–particles. Here the reduced
mass is defined as µ ≡ µαα. The states |ψ(±)

p ⟩ in Eq. (4.61), i.e. the Coulomb
wave functions, are solutions of the Schrödinger equation (Ĥ − E) |ψ⟩ = 0, where
the Hamiltonian Ĥ is the sum of the free Hamiltonian and the Coulomb potential,
Ĥ = Ĥ0 + V̂C. They can be formally constructed as follows

|ψ(±)
p ⟩ =

(
1 + Ĝ

(±)
C V̂C

)
|p⟩ , (4.62)

where the Coulomb Green’s function Ĝ
(±)
C is

Ĝ
(±)
C (E) = 1

E − Ĥ ± iε
. (4.63)

More details about the formalism as well as the derivation of Eq. (4.61) can be
found in Appendix C.

First we focus on the matrix elements ⟨ψ(−)
p |V |ψ(±)

p′ ⟩. In our case, the strong
potential V is the α–α effective interaction taken in the form of Eqs. (4.7) and (4.11)
for the partial wave ℓ = 0, which reads

Vℓ=0(p, p′) =
[ 1∑

i,j=0
p2iλijp

′2j

]
g(p)g(p′) , (4.64)

g(p) being a momentum–regulator function. Throughout this Section, we will use
a regulator in the Gaussian form g(q) = e−( q

Λ )2m

, with m = 1. When we consider
the S–wave Coulomb functions, the solutions denoted with (±) differ by the phase
factor e±iσ0 [see Eq. (C.20) and Ref. [83]]. This property allows us to write, for the
ℓ = 0 case,

⟨ψ(−)
p |V |ψ

(+)
p′ ⟩ = e2iσ0(p) ⟨ψ(+)

p |V |ψ
(+)
p′ ⟩ , (4.65a)

⟨ψ(−)
p |V |ψ

(−)
p′ ⟩ = e2iσ0(p) ⟨ψ(+)

p |V |ψ
(+)
p′ ⟩ e−2iσ0(p′) , (4.65b)

In the relations above, σ0 = σ0(p) is the Coulomb phase–shift. From the general
definition (C.18), it can be written as

e2iσ0 = Γ(1 + iη)
Γ(1− iη) , (4.66)
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where η = η(p) is the Sommerfeld parameter

η = Z2
α

αemµ

p
, (4.67)

and αem = e2

4π is the fine–structure constant. In the present calculation, we use the
Coulomb scattering wave functions ψ(+)

p (q) defined in momentum space and in the
partial wave representation [84]

ψ(+)
p (q) =

∞∑
ℓ=0

(2ℓ+ 1)Pℓ(q̂ · p̂)ψ(+)
p,ℓ (q) . (4.68)

The ℓ–component is expressed through the Legendre polynomials Pℓ(q̂ ·p̂) as follows

ψ
(+)
p,ℓ (q) = 1

2

∫
d(q̂ · p̂)Pℓ(q̂ · p̂)ψ(+)

p (q) . (4.69)

Moreover, it can be written in the following general form

ψ
(+)
p,ℓ (q) = −2πe

πη
2

qp
lim

γ→0+

d

dγ


[
q2 − (p+ iγ)2

2qp

]iη

(ζ2 − 1)− iη
2 Qiη

ℓ (ζ)

 , (4.70)

where ζ = q2+p2+γ2

2qp , and the functions Qiη
ℓ (ζ) are associated Legendre functions of

second kind. Following Ref. [84], after some steps, the Coulomb wave functions for
the partial wave ℓ = 0 reduce to

ψ
(+)
p,ℓ=0(q) = −4π

q
eiσ0(p)Cη(p)

1
q2 − p2 lim

γ→0+
Im
{(

q + p

q − p+ iγ

)iη
}
, (4.71)

where the Sommerfeld factor Cη = Cη(p) has been introduced. Its definition is given
by

C2
η = 2πη

e2πη − 1 . (4.72)

The expression of the S–wave effective potential in Eq. (4.64) and the functions (4.71)
can be used to rewrite the matrix element on the r.h.s of Eqs. (4.65), obtaining

⟨ψ(+)
p,0 |Vℓ=0 |ψ

(+)
p′,0⟩ =

1∑
i,j=0

X∗
2i(p)λijX2j(p′) . (4.73)

In the equation above, λij are the LECs relative to the contact interaction, while
the integrals X2i(p) are defined as follows

X2i(p) = 1
2π2

∫
dq q2i+2g(q)ψ(+)

p,0 (q) . (4.74)

Since both indices i, j assume the values 0 or 1, explicitly we can have

X0(p) = γ0(p)eiσ0(p)Cη(p) , (4.75a)
X2(p) = [−γ1(p) + γ2(p)]eiσ0(p)Cη(p) , (4.75b)
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where we have introduced the following set of definitions for γ0(p), γ1(p) and γ2(p):

γ0(p) = 2
π

∫
dq

q

p2 − q2 g(q) lim
γ→0+

Im
{(

q + p

q − p+ iγ

)iη
}
, (4.76a)

γ1(p) = 2
π

∫
dq q g(q) lim

γ→0+
Im
{(

q + p

q − p+ iγ

)iη
}
, (4.76b)

γ2(p) = p2γ0(p) . (4.76c)

The factor eiσ0(p)Cη(p) in Eqs. (4.75) will often appear in our calculations, and
therefore it is convenient to use the rescaled quantities

X̃2i(p) = X2i(p)
eiσ0(p)Cη(p)

. (4.77)

We now make the following ansatz for the ℓ = 0 component of the Coulomb–
corrected T–matrix element:

T SC
ℓ=0(p, p′;E) = eiσ0(p)Cη(p)

[ 2∑
i,j=0

γi(p)τij(E)γj(p′)
]
eiσ0(p′)Cη(p′) , (4.78)

where γi(p), i = 0, 1, 2, is the set of integrals already given in (4.76). The rescaled
Coulomb–corrected T–matrix is

T̃ SC
ℓ=0(p, p′;E) =

2∑
i,j=0

γi(p)τij(E)γj(p′) . (4.79)

At this point we are able to rewrite the Lippmann–Schwinger equation (4.61) by
making explicitly use of the relations in (4.65), (4.73) and (4.74). In terms of the
rescaled quantities in Eqs. (4.77) and (4.79), we obtain

T̃ SC
ℓ=0(p, p′;E) =

[ 1∑
i,j=0

X̃∗
2i(p)λijX̃2j(p′)

]

− 2µ
∫

d3q

(2π)3

[ 1∑
i,j=0

X̃∗
2i(p)λijX̃2j(q)

]
C2

η(q)
T̃ SC

ℓ=0(q, p′;E)
q2 − 2µE − iε .

(4.80)

By analogy with what done in the α–n case, we employ also here a matrix formalism.
In order to solve Eq. (4.80) for the coefficients τij relative to the matrix T̃ SC

ℓ=0, we
use the relation

T = (1−ΛΦ)−1Λ , (4.81)

in which all the matrices have dimension 3 × 3. The matrix T is explicitly T =
[τij(E)], while Φ = [Φij(E))] is the matrix of the integrals

Φij(E) = − µ

π2

∫
dq q2γi(q)

C2
η(q)

q2 − 2µE − iεγj(q) ≡ − µ

π2 Φ̃ij . (4.82)



50 Chapter 4. Cluster Effective Field Theory

Moreover, Λ contains the LECs of the two–body effective potential

Λ =

 λ0 −λ1 λ1
−λ1 0 0
λ1 0 0

 ≡ −π2

µ

 λ̃0 −λ̃1 λ̃1
−λ̃1 0 0
λ̃1 0 0

 . (4.83)

If k is the on–shell momentum, i.e. p = p′ = k, and therefore 2µE = k2, then each
coefficient τij(k) can be expressed in terms of the quantities λ̃0,1 and Φ̃ij(k) defined
in Eqs. (4.83) and (4.82), respectively. We remark that in deriving Φ̃ij(k), when
one of the two indices is equal to 2, the integral can be related to Φ̃00(k) as follows

Φ̃02 = I3 + k2Φ̃00 , (4.84a)
Φ̃12 = J3 + k2Φ̃00 , (4.84b)
Φ̃22 = I5 + k2I3 + k4Φ̃00 , (4.84c)

where I2n+1 and J2n+1 have been defined as

I2n+1 =
∫ ∞

0
dq q2nC2

η(q)γ
2
0(q) , (4.85)

J2n+1 =
∫ ∞

0
dq q2nC2

η(q)γ0(q)γ1(q) . (4.86)

The complete calculation is omitted here, and we give only the final result for the
on–shell Coulomb–corrected strong T–matrix in the partial wave ℓ = 0:

1
T̃ SC

ℓ=0(k)
= − µ

π2
1

γ2
0(k)

−Φ̃00 +
λ̃2

1

(
1
λ̃1
− I3 + Φ̃01 −

γ1(k)
γ0(k)Φ̃00

)2

U(k)

 . (4.87)

The symbol U(k) has been used to denote the quantity

U(k) = λ̃2
1

[
I5 − 2J3 + λ̃0

λ̃2
1

+ 2γ1(k)
γ0(k)

(
− 1
λ̃1

+ I3 − Φ̃01 + γ1(k)
γ0(k)Φ̃00

)

+
(

Φ̃11 −
γ2

1(k)
γ2

0(k)
Φ̃00

)
− k2

(
I3 −

2
λ̃1

)]
.

(4.88)

In order to easily match each term of 1/T̃ SC
ℓ=0(k) with the ERE modified by the

presence of the Coulomb potential, we need to work further on Eq. (4.87). We start
by assuming that the functions γi(k), with i = 0, 1, 2, already defined in Eq. (4.76),
have the following form

γ0(k) ≈ γ0(0)eθ0
k2
Λ2 ≈ γ0(0)

(
1 + θ0

k2

Λ2

)
, (4.89a)

γ1(k) ≈ γ1(0)eθ1
k2
Λ2 ≈ γ1(0)

(
1 + θ1

k2

Λ2

)
. (4.89b)
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In this way the terms in Eq. (4.87) containing Φij can be expressed as expansions
in powers of the on–shell momentum k

Φ̃01 −
γ1(k)
γ0(k)Φ̃00 = u1 + k2

(
u−1 −

γ1(0)
γ0(0)

θ1 − θ0
Λ2 I1

)
, (4.90a)

Φ̃11 −
γ2

1(k)
γ2

0(k)
Φ̃00 = s1 + k2

(
s−1 − 2γ

2
1(0)
γ2

0(0)
θ1 − θ0

Λ2 I1

)
, (4.90b)

with I2n+1 given in Eq. (4.85), and with the following definitions for un and sn

un =
∫ ∞

0
dq qn−1

[
γ1(q)
γ0(q) −

γ1(0)
γ0(0)

]
C2

η(q)γ
2
0(q) , (4.91)

sn =
∫ ∞

0
dq qn−1

[
γ2

1(q)
γ2

0(q)
− γ2

1(0)
γ2

0(0)

]
C2

η(q)γ
2
0(q) . (4.92)

Moreover, the explicit expression of the integral Φ̃00 is

Φ̃00 = I1 + k2g−1 + k2γ2
0(k)

∫ ∞

0
dq

C2
η(q)

q2 − k2 . (4.93)

In the equation above g−1 is defined as

gn =
∫ ∞

0
dq qn−1[γ2

0(q)− γ2
0(0)

]
C2

η(q) , (4.94)

and the integral in last term can be expressed by means of the function H(η):∫ ∞

0
dq

C2
η(q)

q2 − k2 = π

k2kCH(η) . (4.95)

H(η) is commonly defined in terms of the digamma function ψ(z), i.e. the loga-
rithmic derivative of the Gamma function, as H(η) = ψ(iη) + 1

2iη − ln(iη) [83].
Moreover, the definition of kC is kC = Z2

ααemµ = kη(k). The combination kCH(η)
is an expression that also appears in the Coulomb–modified ERE of the T–matrix.
At this point, by using the expansions introduced in Eqs. (4.89) and (4.90) we can
rewrite (4.87) as follows

1
T̃ SC

ℓ=0(k)
= − µ

π2
1

γ2
0(k)

[
−I1 − k2g−1 +

(
A− k2B

)2
C − k2D

]
+ µ

π
kCH(η) (4.96)

where, to simplify the notation, we have introduced the quantities A, B, C and D:

A = − 1
λ̃1

+ I3 − u1 , (4.97)

B = u−1 −
γ1(0)
γ0(0)

θ1 − θ0
Λ2 I1 , (4.98)

C = λ̃0

λ̃2
1

+ I5 − 2J3 + s1 + 2γ1(0)
γ0(0)A , (4.99)

D = 2
(

1− γ1(0)
γ0(0)

θ1 − θ0
Λ2

)
A− I3 + 2u1 + 2γ1(0)

γ0(0)u−1 − s−1 . (4.100)
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Finally, an EFT expansion of Eq. (4.96) leads to the expression

1
T̃ SC

ℓ=0(k)
= − µ

π2
1

γ2
0(0)

{
− I1 + A

2

C
− k2

[
g−1 + 2AB

C
− A

2D
C2 + 2 θ0

Λ2

(
−I1 + A

2

C

)]

+O(k4)
}

+ µ

π
kCH(η) ,

(4.101)

with which we can perform a direct match with the following Coulomb–modified
ERE [25, 83] up to terms ∝ k2

1
T̃ SC

ℓ=0(k)
= − µ

2π

[
− 1
a0

+ r0
2 k

2 +O(k4)− 2kCH(η)
]
. (4.102)

The implicit relations obtained between the LECs λ̃0, λ̃1 and the observable scat-
tering parameters a0, r0 are the following:

− π

2a0
γ2(0) = A

2

C
− I1 , (4.103)

− πr0
4 γ2(0) = g−1 + 2AB

C
− A

2D
C2 + 2 θ0

Λ2

(
A2

C
− I1

)
. (4.104)

We conclude this Section by briefly describing the procedure adopted to fully de-
termine λ̃0 and λ̃1. First we notice that the equation for the effective range (4.104)
can be rewritten in terms of a0 and A as follows

A2
[
g−1 + π

4 γ
2
0(0)

(
r0 −

4θ0
a0Λ2

)]
+

+2A
(
I1 −

π

2a0
γ2(0)

)[
u−1 − I1 + π

2a0
γ2(0)

(
1− γ1(0)

γ0(0)
θ1 − θ0

Λ2

)]
+

−
(
I1 −

π

2a0
γ2(0)

)2 (
−I3 + 2u1 − s−1 + 2γ1(0)

γ0(0)u−1

)
= 0

(4.105)

This equation is quadratic in A, and therefore, by inserting the experimental values
of the scattering parameters aexp

0 , rexp
0 , we obtain a pair of solutions for A, say A(±).

With these two solutions, we can calculate λ̃1 directly from Eq. (4.97):

λ̃1 = 1
I3 − u1 −A

. (4.106)

At this point, the calculation of λ̃0 is rather straightforward: by using (4.99), the
equation for the scattering length (4.103) leads to

λ̃0 = λ̃2
1

[
−I5 + 2J3 − s1 − 2γ1(0)

γ0(0)A+
(
I1 −

π

2a0
γ2

0(0)
)−1
A2
]
. (4.107)

By inserting aexp
0 , since λ̃1 and A are known, the r.h.s. is completely determined.

In this work we use the experimental values of the scattering parameters listed
in Tab. 4.2. The calculated values of the LECs λ0 and λ1 are plotted in Fig. 4.6a
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as a function of the cut–off Λ, where we have taken into account both plus– and
minus–solutions of Eq. (4.105). The resulting α–α two–body effective “diagonal”
potential is shown in Fig. 4.6b, for two values of the cut–off, Λ = 100 MeV and
Λ = 190 MeV. These potentials have been calculated by using Eq. (4.64) and the
pair of coefficients λ(−)

0,1 , the one of most natural size, which will be used throughout
this work, as also done in Ref. [29]. The low–energy phase–shifts calculated by
using the α–α effective potential are represented in Fig. 4.7, as a function of the
laboratory energy and for different values of the cut–off Λ. Due to the Wigner
bound [77], the maximum value allowed for Λ is ≈ 230 MeV. By inspecting Fig. 4.7,
it can be noted that the phase–shifts reproduced by the effective potential with
Λ = 100 MeV or Λ = 190 − 210 MeV are in close agreement with the experimental
data [74] up to laboratory energies Elab ≈ 12 MeV, corresponding to a quite large
center–of–mass relative momentum ≈ 150 MeV. In Fig. 4.7 a close up of the same
phase–shifts is given, showing better the agreement up to energies corresponding
to a relative momentum ≈ 80 MeV. Finally, in Fig. 4.8, by fixing the cut–off at
Λ = 100 MeV, we show a comparison of our results with the work by Higa, et
al. [25], where a different approach has been used in the calculation involving an
expansion up to NLO in k/kC , with kC ≈ 60 MeV. However, in comparison with
their LO calculation, which is based on a0 and r0, our results align more closely
with the experimental data.
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Figure 4.6: (a) LECs λ(+)
0,1 and λ

(−)
0,1 relative to the α–α effective interaction in the

partial wave ℓ = 0 as a function of the cut–off Λ. The superscript refers to the plus–
or minus–solution of Eq. (4.105). (b) α–α effective “diagonal” S–wave potential as
a function of the relative momentum p, for two different values of the cut–off Λ. It
is calculated by using the minus–solution LECs λ(−)

0,1 .
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Figure 4.7: α–α phase–shifts in the partial wave ℓ = 0 as a function of the laboratory
energy Elab calculated by using the α–α effective potential for different values of
the cut–off Λ (a), and the same low–energy phase–shifts calculated in the energy
range up to 3.5 MeV for Λ = 100, 150, 190 MeV (b). The experimental points are
taken from Ref. [74].

Figure 4.8: Figure taken from Ref. [85] showing the α–α scattering phase–shifts
δ0 (ℓ = 0) calculated by using the α–α effective potential with fixed cut–off
Λ = 100 MeV, in comparison with the experimental data from Ref. [74] and with
another Halo EFT calculation [25] at Leading Order (LO) and Next–to–Leading
Order (NLO). The fit to the experimental data (ERE fit) is also shown.
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4.5 Three–body potential
The EFTs constructed in this Chapter are capable of reproducing the T–matrix ERE
relative to the two–body α–n and α–α systems. However, since we are dealing here
with effective three–body nuclei, i.e. 9Be and 12C, a much richer physics emerges
compared to the physics of the two–body subsystems. An example is provided by
the Efimov effect [86].

In a description at LO, the three–body system is not completely determined
by including only two–body potentials. This can be seen from the fact that the
three–body observables show a mild dependence on the cut–off associated to the
two–body interactions. This dependence can be cured by including a three–body
force in the model. This situation often occurs in pionless EFTs, where a contact
three–body interaction is added at LO [87].

In our effective theory, we consider a three–body interaction Lagrangian term
given by

L3 = λ̃3,ααn(ψ†ψ)(ψ†ψ)(n†n) , (4.108)

in case of 9Be, or by
L3 = λ̃3,ααα(ψ†ψ)(ψ†ψ)(ψ†ψ) , (4.109)

for the 12C system, where the field operators are defined as in Section 4.1. The
three–body potential defined in momentum space is therefore

V (Q,Q′) = λ̃3 e
−
(

Q
Λ3

)2

e
−
(

Q′
Λ3

)2

. (4.110)

The quantity Q (Q′) is defined in terms of the momenta p12, p13 and p23 (p′
12, p′

13
and p′

23), which are the two–particle relative momenta before (after) the interaction.
Explicitly we have

Q =
3∑

i<j=1

mr
M

(mi +mj)2

mimj
p2

ij , (4.111)

and Q′ is defined accordingly. In the equation above, mi is the mass of the particle
i, with i = 1, 2, 3, M is the total mass of the system, while mr is a reference
mass. Q is commonly known as the hypermomentum of the three–body system.
The interaction in Eq. (4.110) is parametrized by a new LEC. For every value of
the cut–off parameter Λ3, λ̃3 can be fixed on a three–body observable, such as the
three–body binding energy.





Chapter 5

The Hyperspherical Harmonics
basis and the Non–Symmetrized
Hyperspherical Harmonics
method for the A–body system

In this Chapter the Non–Symmetrized Hyperspherical Harmonics method is intro-
duced both in coordinate space and in momentum space.

We consider a system composed of A interacting particles of mass mi, which is
described by the position vectors ri and the momenta pi, with i = 1, . . . , A. The
Hamiltonian operator is the sum of the kinetic energy and the potential [88]

Ĥ = T̂ + V̂ =
A∑

i=1

p2
i

2mi
+

A∑
i<j

Vij +
A∑

i<j<k

Vijk , (5.1)

where we have inserted explicitly the two–body and three–body contributions to
the interaction.

5.1 The basis in coordinate space

Our aim is to solve the Schrödinger equation

Ĥ |ΦA⟩ = Etot |ΦA⟩ , (5.2)

by finding a solution for the A–body wave function in coordinate space, which
we write as ⟨r1, . . . , rA|ΦA⟩ = ΦA(r1, . . . , rA). The most important result of Sec-
tion 5.1.1 is the complete separation of the kinetic energy operator between the
center–of–mass and the internal degrees of freedom. This will allow us to focus only
on the internal motion, and to construct a proper basis to expand the internal wave
function. This will be done in Sections 5.1.2 and 5.1.3.
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5.1.1 Jacobi and Hyperspherical coordinates

We start by introducing the following set of N ≡ A − 1 mass–weighted Jacobi
coordinates in the reverse order convention, as in Ref. [89],

ηN+1−j =
√
Mjmj+1
mrMj+1

(
rj+1 −

1
Mj

j∑
i=1

miri

)
, j = 1, . . . , N , (5.3)

where mr is a reference mass. Although in the text we will maintain the notation mr,
in practical calculations we will always set the reference mass equal to the nucleon
mass. In the definition above, Mj is the total mass of the subsystem composed of
the first j particles, whose center–of–mass is represented by 1

Mj

∑j
i=1miri. We add

to this set of coordinates also the following vector

η0 =
√
M

mr
Rcm , (5.4)

which is a rescaled center–of–mass coordinate relative to the whole A–body system.
Rcm is explicitly Rcm = 1

M

∑A
i=1miri, where M is the total mass M =

∑A
i=1mi.

The set of Jacobi coordinates, together with η0, will allow us separate the internal
from the center–of–mass degrees of freedom in the kinetic energy operator.

In addition to the vector of the Jacobi coordinates η⃗ = (ηN , . . . ,η1,η0) and the
vector of the position coordinates r⃗ = (r1, . . . , rA), we also introduce the rescaled
position coordinates y⃗ = (y1, . . . ,yA). The following relations hold

y⃗ = Mr⃗ , η⃗ = 1
√
mr

B y⃗ . (5.5)

M is the diagonal matrix of the square root of the masses, whose elements are
explicitly [90]

Mij =
√
miδij , (5.6)

while B is an orthogonal matrix, BBt = BtB = 1, of dimension A× A. The latter
can be also separated into the product

B = AM , (5.7)

where A is the following matrix

A =



−
√

m2
M2m1

√
m1

M2m2
0 . . . 0

−
√

m3
M3M2

−
√

m3
M3M2

√
M2

M3m3

. . . 0

...
... . . . . . . 0

−
√

mN+1
MN+1MN

. . . . . . −
√

mN+1
MN+1MN

√
MN

MN+1mN+1
1√
M

1√
M

1√
M

1√
M

1√
M


. (5.8)

The kinetic energy term in Eq. (5.1) can be rewritten first by using the definition of
the rescaled coordinates y⃗ given in (5.5), and then by exploiting the relation between
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the vectors of the gradients ∇⃗y = (∇y1 , . . . ,∇yA
) and ∇⃗η = (∇ηN

, . . . ,∇η1 ,∇η0).
We have

∇⃗y = 1
√
mr

Bt∇⃗η , (5.9)

and therefore the kinetic energy (5.1) reads

T = −ℏ2
A∑

i=1

∇2
ri

2mi
(5.10a)

= −ℏ2

2 ∇⃗t
y∇⃗y = − ℏ2

2mr
∇⃗t

η BBt ∇⃗η = − ℏ2

2mr

N∑
i=0
∇2

ηi
, (5.10b)

where we have used the orthogonality property of the matrix B. If now one makes
use of the definition of the Jacobi vector η0 given in Eq. (5.4), it is straightforward
that the kinetic energy in Eq. (5.10b) reduces to the sum of two terms: the center–
of–mass kinetic energy (i = 0) and the internal one

T = − ℏ2

2M∇
2
Rcm −

ℏ2

2mr

N∑
i=1
∇2

ηi
. (5.11)

The 3N–dimensional space of the internal Jacobi coordinates {η1, . . . ,ηN } can
alternatively be described by using another set: the hyperspherical coordinates
{ ρ,ΩN }. The quantity ρ is called hyperradius, and it is defined by the squared
modulus of the N Jacobi vectors

ρj =
√
η2

1 + · · ·+ η2
j , ρN ≡ ρ . (5.12)

The symbol ΩN denotes collectively the remaining 3N − 1 angular coordinates. It
is in fact a shorthand notation for the set

ΩN = (η̂1, . . . , η̂N , φ2, . . . , φN ) , (5.13)

where each η̂i = (θi, ϕi), i = 1, . . . , N , represents the pair of spherical polar angles
related to the Jacobi vector ηi (0 ≤ θi ≤ π and 0 ≤ ϕi ≤ 2π), while φj are N − 1
hyperangles defined as

φj = arcsin ηj

ρj
, j = 2, . . . , N , (5.14)

with ρj as in (5.12) and 0 ≤ φj ≤ π
2 . The inverse transformation is explicitly:

ηN = ρ sinφN ,
...
ηj = ρ cosφN . . . cosφj+1 sinφj , j = 2, . . . , N − 1 ,
...
η1 = ρ cosφN . . . cosφ2 .

(5.15)

In the equations above we have defined the hyperspherical coordinates relative to
the set of Jacobi vectors in Eq. (5.3). In principle, given a system of A particles, this
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η1 η2 . . . ηN−1 ηN

φ2

. . .

φN−1

φN

Figure 5.1: Tree diagram relative to the standard definition of the hyperspherical
coordinates in Eq. (5.15).

choice is not unique. A useful tool that provides a visual representation of the chosen
set is the so–called tree diagram, which was first introduced by Vilenkin, et al. [91].
In Fig. 5.1 we have represented the tree diagram relative to the coordinates defined
in (5.15). Each hyperangle φj is associated to a node. If the segment joining the
j–node to the upper one extends to the right (left), a factor sinφj (cosφj) appears.
Then, each ηj can be obtained by the product of ρ with the sine or cosine factors
associated to each node, starting from the lowest vertex and following the path to
the ηj termination. An example of an alternative scheme of coordinates can be
found in Ref. [92].

Finally, the volume element relative to the Jacobi vectors written in terms of
the hyperspherical coordinates is

d3η1 . . . d
3ηN = dΩN dρ ρ3N−1 , (5.16)

where we have used the following definition

dΩN =
[

N∏
i=1

dη̂i

][
N∏

j=2
dφj (cosφj)3j−4(sinφj)2

]
. (5.17)

As a further step, we want to rewrite the internal kinetic energy in Eq. (5.11)
in terms of the variables { ρ,ΩN }. If we first use the expression of the Laplace
operator ∇2

ηi
in spherical coordinates (ηi, η̂i), and then we adopt the hyperspherical

coordinates introduced above, we can write

− ℏ2

2mr

N∑
i=1
∇2

ηi
= − ℏ2

2mr

N∑
i=1

[
∂2

∂η2
i

+ 2
ηi

∂

∂ηi
− ℓ̂2

i (η̂i)
η2

i

]
, (5.18a)

= − ℏ2

2mr

[
∂2

∂ρ2 + 3N − 1
ρ

∂

∂ρ
− K̂2

N (ΩN )
ρ2

]
, (5.18b)

where ℓ̂i(η̂i) is the angular momentum operator related to the Jacobi vector ηi, and
K̂N is the grand–angular momentum or generalized angular momentum operator.
At fixed N , it can be demonstrated that the latter operator can be defined recur-
sively, starting from the trivial case j = 1, for which K̂2

1(Ω1) = ℓ̂2
1(η̂1), and then
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from j = 2 up to j = N as follows [28]

K̂2
j (Ωj) = − ∂2

∂φ2
j

+Aj
∂

∂φj
+

ℓ̂2
j (η̂j)

sin2 φj
+

K̂2
j−1(Ωj−1)
cos2 φj

, j = 2, . . . , N , (5.19)

where the coefficient Aj is explicitly Aj = (3j−6)−(3j−2) cos 2φj

sin 2φj
.

5.1.2 The Hyperspherical Harmonics functions

As already stated, we want to solve the Schrödinger equation (5.2) by finding a
solution for the A–body wave function in coordinate space, ΦA(r1, . . . , rA). Our
starting point is the Hamiltonian operator in Eq. (5.1) with the kinetic energy term
expressed as in (5.11), where we have separated explicitly the center–of–mass from
the internal part. We write the total energy in (5.2) as Etot = Ecm +E. Moreover,
we separate the wave function relative to the center–of–mass from the one relative to
the internal degrees of freedom by writing ΦA(r1, . . . , rA) = ϕ(Rcm)Φ(η1, . . . ,ηN ).
In this way the Schrödinger equation (5.2) splits into two distinct equations. The
first one is the equation for ϕ(Rcm)[

− ℏ2

2M∇
2
Rcm

]
ϕ(Rcm) = Ecmϕ(Rcm) , (5.20)

whose explicit solutions are essentially plane waves, ϕ(Rcm) ∝ e
i
ℏP cm·Rcm and the

energy is explicitly Ecm = P 2
cm

2M . The second equation is the following[
− ℏ2

2mr

N∑
i=1
∇2

ηi
+ V

]
Φ(η1, . . . ,ηN ) = E Φ(η1, . . . ,ηN ) , (5.21)

and it is the one of main interest to us. The function Φ(η1, . . . ,ηN ) is the wave
function relative to the internal motion of the nuclear system and in the following
we will rewrite this function in terms of the hyperspherical coordinates { ρ,ΩN }.

Having in mind the expression of the kinetic energy in Eq. (5.18b), we start by
searching for the eigenfunctions of the grand–angular momentum operator K̂2

N (ΩN ),
which we have already defined recursively in Eq. (5.19). In practice, this is achieved
by solving the following equation[

K̂2
N (ΩN )−K(K + 3N − 2)

]
Y K

[K](ΩN ) = 0 . (5.22)

Y K
[K](ΩN ) are the so–called Hyperspherical Harmonics (HH) functions, where K ≡
KN is the grand–angular momentum quantum number and the symbol [K] denotes
a set of quantum numbers that completely specifies the state.

Before proceeding, we say here very briefly how the relation in Eq. (5.22) can
be derived [90]. We consider a homogeneous polynomial in the 3N–cartesian coor-
dinates relative to the N Jacobi vectors ηi, say h[K], where K is the order of the
polynomial. Due to the definition of homogeneous polynomial, the angular part can
be completely separated, and the function ρ−Kh[K] ≡ Y[K](ΩN ) does not depend
on the hyperradius ρ. Since the polynomial is harmonic, we have ∆h[K] = 0, where
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∆ =
∑N

i=1∇2
ηi

. Finally, by making use of the equality in Eq. (5.18b), we can write
the following relations

0 = ∆h[K] = ∆
(
ρKY[K](ΩN )

)
=
[
K(K + 3N − 2)− K̂2

N (ΩN )
]
ρK−2Y[K](ΩN ) ,

(5.23)
from which we deduce the validity of Eq. (5.22).

We recall that the trivial case N = 1 corresponds to the two–body system. In
this case, the grand–angular momentum operator is essentially the orbital angular
momentum, K̂2

1(Ω1) = ℓ̂2
1(η̂1). From (5.22), it follows that

K̂2
1(Ω1)Y K

[K](Ω1) = K(K + 1)Y K
[K](Ω1) , (5.24)

and the eigenfunctions Y K
[K](Ω1) correspond to the standard spherical harmonics

Yℓ1m1(η̂1). In this specific case, K can be identified with the orbital angular mo-
mentum quantum number ℓ1, and the set of quantum numbers that completely
specifies the state is [K] = [ℓ1,m1].

Now we focus on the general case N > 1, where each eigenfunction Y
Kj

[Kj ](Ωj),
can be calculated recursively in terms of the previous Y Kj−1

[Kj−1](Ωj−1), j = 2, . . . , N .
Here we mainly follow Refs. [28, 90, 93] and the calculation also shown in Ref. [94].
We start by writing the HH functions in the following form

Y
Kj

[Kj ](Ωj) = F (cos 2φj)(sinφj)ℓj (cosφj)Kj−1Yℓjmj
(η̂j)Y Kj−1

[Kj−1](Ωj−1) . (5.25)

The function F (cos 2φj) can be determined by inserting the ansatz (5.25) in

K̂2
j (Ωj)Y Kj

[Kj ](Ωj) = Kj(Kj + 3j − 2)Y Kj

[Kj ](Ωj) . (5.26)

The above equation is essentially Eq. (5.22) written for a generic Kj . In order
to obtain a differential equation for the function F (cos 2φj), we use the following
relations: the recursive definition of K̂2

j (Ωj) in (5.19), the equation

K̂2
j−1(Ωj−1)Y Kj−1

[Kj−1](Ωj−1) = Kj−1(Kj−1 + 3j − 5)Y Kj−1
[Kj−1](Ωj−1) , (5.27)

valid for Y Kj−1
[Kj−1](Ωj−1), and the well–known relation for the usual spherical harmon-

ics functions Yℓjmj
(η̂j)

ℓ̂2
j (η̂j)Yℓjmj

(η̂j) = ℓj(ℓj + 1)Yℓjmj
(η̂j) . (5.28)

By putting together these ingredients, we finally obtain

(1− z2)F ′′(z) + (α− zβ)F ′(z) + γ F (z) = 0 , z = cos 2φj , (5.29)

where the constants α, β and γ are defined in terms of the quantum numbers
characterizing the state:

α = Kj−1 − ℓj + 3j
2 − 3 , (5.30a)

β = Kj−1 + ℓj + 3j
2 , (5.30b)

γ = 1
4Kj(Kj + 3j − 2)− 1

4(ℓj +Kj−1)(ℓj +Kj−1 + 3j − 2) . (5.30c)
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Since Eq. (5.29) resembles the differential equation satisfied by the Jacobi Polyno-
mials P (a,b)

n (z) of order n (n = 0, 1, 2, . . . , −1 ≤ z ≤ 1) with

b− a = α , b+ a+ 2 = β , n(n+ b+ a+ 1) = γ , (5.31)

the function F (z) can be expressed as

F (z) ∝ P (ℓj+ 1
2 ,Kj−1+ 3j−5

2 )
nj (z) , nj = 0, 1, 2, . . . , (5.32)

provided that Kj = Kj−1 + ℓj + 2nj with K1 = ℓ1. More details about the Jacobi
polynomials are reported in Appendix D.1.

Once the function F (z) has been determined, the ansatz in Eq. (5.25) leads to
the following complete expression for the HH functions

Y K
[K](ΩN ) =

[
N∏

i=1
Yℓimi

(η̂i)
][

N∏
j=2
NKj ;ℓj ,Kj−1

nj

× (sinφj)ℓj (cosφj)Kj−1P
(ℓj+ 1

2 ,Kj−1+ 3j−5
2 )

nj (cos 2φj)
]
.

(5.33)

The coefficients NKj ;ℓj ,Kj−1
nj follow from the normalization of the Jacobi polynomials

(see Appendix D.1), and they are given explicitly by

NKj ;ℓj ,Kj−1
nj =

√√√√√nj !(2Kj + 3j − 2) Γ
(
nj +Kj−1 + ℓj + 3j−2

2

)
Γ
(
nj + ℓj + 3

2

)
Γ
(
nj +Kj−1 + 3j−3

2

) . (5.34)

The HH functions constructed as in Eq. (5.33) are completely specified by the set
of 3N − 1 quantum numbers

[K] = [ℓ1,m1, . . . , ℓN ,mN , n2, . . . , nN ] , (5.35)

with the definition K ≡ KN . Moreover, they represent a complete and orthonormal
set of functions [93]∑

[K]

[
Y K

[K](Ω
′
N )
]∗
Y K

[K](ΩN ) = δ3N−1(ΩN − Ω′
N ) , (5.36)

∫
dΩN

[
Y K

[K](ΩN )
]∗
Y K′

[K′](ΩN ) = δ[K][K′]δKK′ , (5.37)

with the volume element dΩN already defined in Eq. (5.17). As a consequence, the
HH functions represent a proper basis that can be used to expand a regular function
of the hyperangular variables ΩN . Specifically, as anticipated at the beginning
of this Section, we will use this basis to expand a generic function of the Jacobi
coordinates {η1, . . . ,ηN }, such as the internal wave function Φ(η1, . . . ,ηN ) relative
to the A–nucleon system

Φ(η1, . . . ,ηN ) =
∑
[K]

a[K](ρ)Y K
[K](ΩN ) , (5.38)

where the coefficients depend uniquely on the hyperradius ρ.
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5.1.3 The spatial, spin and isospin basis

To properly construct a basis that describes an A–body nuclear system, in addition
to the spatial degrees of freedom, also the spin and the isospin of the constituents
must be taken into account. If si and ti are the spin and the isospin of the i–particle,
respectively, then the total spin angular momentum operator is S = s1 + · · ·+ sA,
and T = t1 + · · · + tA is the total isospin. The total angular momentum operator
is defined as J = L + S. The operator L denotes the total orbital momentum
L = ℓ1 + · · ·+ ℓN , i.e. the sum of the orbital angular momenta operators relative to
the N Jacobi coordinates. The definitions of the operators projected on the z–axis
are easily understood.

In the most general case, the wave function of the nuclear many–body system
is an eigenfunction of the operators J2, Jz and the parity Π. As a consequence,
we need first to couple the angular momenta relative to the single particles, and
then to recouple the total orbital momentum and the total spin. The particular
case in which a central interaction potential acts between the particles is easier to
implement, because the quantum numbers relative to L and S can be still considered
good quantum numbers.

Focussing on the spin (isospin), we define the eigenfunctions of the operators ŝ2
i

and ŝiz (t̂2
i and t̂iz) as χsimsi

(i) = ⟨σi|simsi⟩ (ξtimti
(i) = ⟨τ i|timti⟩), i = 1, . . . , A,

satisfying the following eigenvalues equations

ŝ2
iχsimsi

(i) = si(si + 1)χsimsi
(i) ŝziχsimsi

(i) = msiχsimsi
(i) , (5.39)

t̂2
i ξtimti

(i) = ti(ti + 1)ξtimti
(i) t̂ziξtimti

(i) = mtiξtimti
(i) . (5.40)

The eigenfunctions of the total spin are constructed by following the reverse order
convention:

χSMS

[S] =
[[
. . .
[[
χsA(A)χsA−1(A− 1)

]
S2
χsA−2(A− 2)

]
S3
. . .
]
SN
χs1(1)

]
SMS

. (5.41)

In the scheme above, the coupling starts from the last two particles, A and A− 1,
giving S2. Then, the spin of each successive particle is added until the first particle
is reached, and the last coupling gives SA ≡ S. In fact the set of quantum numbers
involved is

{S} ≡ [S]S = [S2, . . . , SN ]S . (5.42)

These eigenfunctions satisfy the eigenvalues equations

Ŝ2 χSMS

[S] = S(S + 1)χSMS

[S] Ŝz χ
SMS

[S] = MS χ
SMS

[S] . (5.43)

The eigenfunctions of the total isospin are constructed by following the same re-
versed scheme

ξT MT

[T ] =
[[
. . .
[[
ξtA(A) ξtA−1(A− 1)

]
T2
ξtA−2(A− 2)

]
T3
. . .
]
TN
ξt1(1)

]
T MT

, (5.44)

where TA ≡ T , and they satisfy

T̂ 2 ξT MT

[T ] = T (T + 1) ξT MT

[T ] T̂z ξ
T MT

[T ] = MT ξ
T MT

[T ] , (5.45)
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with the definition
{T} ≡ [T ]T = [T2, . . . , TN ]T . (5.46)

Based on the derivation carried out in the last Section, specifically Eq. (5.33),
the HH functions Y K

[K](ΩN ), with [K] ≡ [ℓ1,m1, . . . , ℓN ,mN , n2, . . . , nN ], are con-
structed from a product of spherical harmonics Yℓimi

(i = 1, . . . , N). As a conse-
quence, they are eigenfunctions of the operators ℓ̂2

i and ℓ̂zi with eigenvalues ℓi(ℓi+1)
and mi, respectively. By applying the general rules of angular momentum recou-
pling, we can write [28]

YKLML

[K] (ΩN ) =
[[
. . .
[[
Yℓ1(η̂1)Yℓ2(η̂2)

]
L2
Yℓ3(η̂3)

]
L3
. . .
]
LN−1

YℓN
(η̂N )

]
LML

×
N∏

j=2

jPℓj ,Kj−1
nj (φj) ,

(5.47)

where now YKLML

[K] (ΩN ) are eigenfunctions of L̂2 and L̂z. The symbol [K] here
denotes the new set of quantum numbers

[K] ≡ [ℓ1, . . . , ℓN , L2, . . . , LN−1, n2, . . . , nN ] , (5.48)

with the definition LN ≡ L and

{K} ≡ [K]L , (5.49)

Moreover, we have introduced the HH polynomial jPℓj ,Kj−1
nj (φj) as a compact no-

tation for the expression

jPℓj ,Kj−1
nj (φj) = NKj ;ℓj ,Kj−1

nj (sinφj)ℓj (cosφj)Kj−1P
(ℓj+ 1

2 ,Kj−1+ 3j−5
2 )

nj (cos 2φj) ,
(5.50)

where the normalization coefficients NKj ;ℓj ,Kj−1
nj are the same as in Eq. (5.34). We

remark that the brackets notation used in Eq. (5.47) to represent the angular mo-
menta recoupling [also used in the spin and isospin formalism (5.41) and (5.44)], is
a compact form to denote the summation

YKLML

[K] (ΩN ) =
∑

m1...mN

(ℓ1m1ℓ2m2|L2M2) (L2M2ℓ3m3|L3M3) . . .

× . . . (LN−1MN−1ℓNmN |LML)Y K
[K](ΩN ) ,

(5.51)

where the Clebsch–Gordan coefficients appear and the quantum number Mj is ex-
plicitly Mj =

∑j
i=1mi for j = 2, . . . , N − 1. The recoupled HH functions in (5.47)

satisfy the following eigenvalues equations [88]

K̂2
N (ΩN )YKLML

[K] (ΩN ) = K(K + 3N − 2)YKLML

[K] (ΩN ) , (5.52)

L̂2(ΩN )YKLML

[K] (ΩN ) = L(L+ 1)YKLML

[K] (ΩN ) , (5.53)

L̂z(ΩN )YKLML

[K] (ΩN ) = ML YKLML

[K] (ΩN ) . (5.54)

In the most general case, a L–S recoupling is needed. By considering Eqs. (5.47)
and (5.41), and the isospin dependence as in (5.44), we define the functions

YJMπ
[K][S][T ]KLST (ΩN ) =

[
YKL

[K] (ΩN )χS
[S]

]
JM

ξT MT

[T ] , (5.55)
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which are simultaneously eigenfunctions of the operators Ĵ2 and Ĵz [88]

Ĵ2 YJMπ
[K][S][T ]KLST (ΩN ) = J(J + 1)YJMπ

[K][S][T ]KLST (ΩN ) , (5.56)

Ĵz Y
JMπ
[K][S][T ]KLST (ΩN ) = M YJMπ

[K][S][T ]KLST (ΩN ) , (5.57)

in addition to the parity operator Π̂

Π̂YJMπ
[K][S][T ]KLST (ΩN ) = (−1)K YJMπ

[K][S][T ]KLST (ΩN ) . (5.58)

From this last equation, it can be deduced that the parity π = (−1)K is entirely
due to the value of the grand–angular momentum quantum number K.

If the total orbital momentum L and the total spin S are good quantum numbers,
then the final expression of the basis is much less complicated. In fact, we can
use the direct product of the HH functions, the spin and the isospin functions as
constructed in Eqs. (5.47), (5.41) and (5.44), respectively. In this way, the functions
in Eq. (5.55) reduce to

Y
JMπ,KLST
[K][S][T ] (ΩN ) = YKLML

[K] (ΩN )χSMS

[S] ηT MT

[T ] . (5.59)

In the process of constructing the basis, it is obvious that the quantum numbers K,
L and S must always be compatible with a given total spin and parity Jπ.

Finally, the complete basis in coordinate space

⟨η1, . . . ,ηN |Φκ⟩ = ⟨ρΩN |Φκ⟩ ≡ Φκ(ρ,ΩN ) (5.60)

is the following

Φκ(ρ,ΩN ) = fm(ρ)YJMπ
µ (ΩN ) , κ ≡ [m,µ] . (5.61)

It is often useful to employ the index κ to refer collectively to all the quantum
numbers involved. In the formulation above, the HH, spin and isospin dependence
is entirely contained in the functions YJMπ

µ (ΩN ), defined either as in Eq. (5.55)
or (5.59), which are characterized by the collective index µ = [K][S][T ]KLST .
Conversely, the functions fm(ρ) depend completely on the hyperradius, and they
can be written as follows

fm(ρ) =
( 1
β

) 3N
2
√

m!
(m+ 3N − 1)! L

(3N−1)
m

(
ρ

β

)
e− ρ

2β . (5.62)

In constructing fm(ρ), we use the generalized Laguerre polynomials L(α)
m (x) of order

α = 3N − 1, which are a orthonormal set (see Appendix D.2). Moreover, a decreas-
ing exponential factor is present, regulating the asymptotic behaviour of fm(ρ) as
follows: fm(ρ) → 0 for ρ → ∞. β is a non–linear parameter. The normalization
factor in Eq. (5.62) is such that the following orthonormality relation is valid [see
also Eq. (D.5)] ∫ ∞

0
dρ ρ3N−1fm(ρ)fm′(ρ) = δmm′ . (5.63)

We would like to point out that in the following we will often use the term “HH
basis” to refer to the complete spatial, spin and isospin basis, thus including also
the hyperradial part.
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The internal wave function relative to the A–body nuclear system can be written
in terms of the basis constructed in Eq. (5.61) as follows

Φ(η1, . . . ,ηN ) =
∑

κ

cκΦκ(ρ,ΩN ) , (5.64)

where the coefficients cκ have to be determined. In the following Sections we will
see how this can be achieved variationally and by means of the so–called Non-
Symmetrized Hyperspherical Harmonics method.

5.2 The Non–Symmetrized Hyperspherical Harmonics
method

5.2.1 The symmetry of the Hyperspherical Harmonics basis

The HH basis that we have constructed so far does not possess any particular
symmetry under the permutations of the A particles. On the other hand, the
wave function of a nuclear system must have a well–defined behaviour under the
operation of particles permutation. As a consequence, a procedure to perform
a proper symmetrization must be taken into account. This is one of the main
difficulties that arise in using this method, since the symmetrization procedure
becomes more and more sophisticated as the number of particles increases.

One approach to this problem is the following: the HH functions are constructed
recursively by realizing irreducible representations not only of the orthogonal group
O(3N) but also of the group O(N), accordingly to the chain O(3N) ⊃ O(3) ⊗
O(N) [95]

O(3N − 3) ⊃ O(3) ⊗ O(N − 1) ⊃ O(N − 2) . . . ⊃ O(2)
∪ ∪ ∪
SN SN−1 . . . ⊃ S3 ⊃ S2 .

(5.65)

Almost three decades ago, this has been developed by Barnea [96] through an effi-
cient technique that allowed ab initio calculations for A > 4 nucleon systems [97]
and up to A = 7 using semi–realistic potentials [98]. Once the wave functions are
properly symmetrized, also due to the recursive construction of the basis functions,
the evaluation of the matrix elements of a two–body operator such as the interaction
potential

V =
∑
i<j

Vij , (5.66)

is simplified. In fact the calculation can be reduced to that of a matrix element
involving only one pair of particles

⟨ΦA|
∑
i<j

Vij |ΦA⟩ = A(A− 1)
2 ⟨ΦA|V12|ΦA⟩ , (5.67)

where ΦA is the antisymmetrized wavefunction. Other developments of this method
are also due to the Pisa Group, whose calculations, performed by using a properly
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symmetrized HH basis, have led to successful results up to A = 6 nucleons with the
most recent interaction potentials [88, 93, 99].

The method mentioned above represents a powerful tool to study systems of
A identical fermionic particles, such as the nucleons. However, in our cluster EFT
framework, since we are studying effective nuclear systems made up of non–identical
components, where the pairs of particles have different masses and different symme-
tries under permutations, this approach is rather difficult to implement. Instead, a
suitable method to use is the one first introduced by Gattobigio, et al. in Ref. [100].
The basic idea is that the previous symmetrization procedure of the basis is not
strictly necessary, and one can use in the calculation a basis that does not possess
a well–defined behaviour under the permutations of the particles. In the following
Sections we will analyse this so–called Non–Symmetrized Hyperspherical Harmonics
(NSHH) method. In this work, in order to determine the physical bound state of
the nuclear system, i.e. the lowest eigenvalue of the nuclear Hamiltonian with the
correct symmetry, we will use a variation on the original NSHH method introduced
in Ref. [28] by Deflorian, et al.. The same method has also been further developed
in Refs. [92, 101] to study hypernuclear systems as well.

5.2.2 The rotation coefficients

The Jacobi coordinates defined in Section 5.1.1 depend on the ordering of the A
particles of the system, as Eq. (5.3) explicitly shows. By taking the initial ordering
(1, . . . , A) as a reference, if we consider a generic permutation p = (p1, . . . , pA) of the
A particles, then the effect is a redefinition of the Jacobi coordinates in Eq. (5.3),
where we must replace each pair (mi, ri) by the corresponding one in the specific
permutation, i.e. (mpi , rpi) [100]. This also affects the corresponding HH functions,
for which we can write

YKLML

[K]
(
Ω(p)

N

)
=
∑
[K′]
CKL(p,p̄)

[K][K′] Y
KLML

[K′]
(
Ω(p̄)

N

)
. (5.68)

This relation reflects the fact that any HH function in a given permutation p can
be expressed as a linear combination of HH functions in the reference permutation
p̄. In the equation above the sum runs over the set of quantum numbers [K ′] with
the constraint K ′ = K, and LML are conserved. The coefficients in Eq. (5.68) are
sometimes called Transformation Coefficients (TC). For A = 3 the TC coincide with
the Raynal–Revai coefficients [102], and they are calculated by using recurrence
relations. However, in the general case of A particles, their evaluation could be
challenging (see for example [93] and other References therein).

For a less demanding computation of the matrix elements of the two–body po-
tential operator Vij , we exploit two facts: its dependence on the relative distance
between the particles on which it acts, and the fact that the last Jacobi coordinate
ηN is always proportional to a distance between two particles (1 and 2 in the ref-
erence ordering). For these reasons, in order to perform the calculation, the most
advantageous choice is the set of Jacobi vectors such that η′

N ∝ (rj − ri). If we
take for example the case A = 3, then the interaction terms V12, V23 and V13 should
be calculated by using different sets of Jacobi vectors, in which η′

N ∝ (r2 − r1),
η′

N ∝ (r3 − r2) and η′
N ∝ (r3 − r1), respectively. The first set is exactly the
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one defined in Eq. (5.3), corresponding to the particles ordering (1, 2, 3), which we
take as reference. The second and the third ones correspond to the particles or-
derings (2, 3, 1) and (1, 3, 2), respectively. Furthermore, it is not difficult to show
that both orderings can be achieved by elementary transpositions between adjacent
particles. Since this can be generalized to a number of particles A > 3, basically we
are interested in combinations of transposition operators interchanging only adja-
cent particles: (r1, . . . , rA, rA−1), (r1, . . . , rA−1, rA−2, rA) and so on [100]. These
transpositions belong to the type of transformations that are called kinematic rota-
tions [92, 103]. The interchange between the particles k and k+1, with k = 2, . . . , N ,
involves a redefinition of the Jacobi vectors ηN+1−k and ηN+1−k+1, while the others
remain unchanged. As a consequence, the associated transformation matrix pk,k+1
has a block structure made of identity matrices and the following block of dimension
2 × 2 (

η′
N+1−k

η′
N+1−k+1

)
=
(
− cosβk sin βk

sin βk cosβk

)(
ηN+1−k

ηN+1−k+1

)
, (5.69)

with the definition of the kinematic angle βk

cosβk =
√

mkmk+1
Mk(Mk−1 +mk+1) . (5.70)

The hyperradius ρ is invariant because these transformations have the following
property: η′2

N+1−k + η′2
N+1−k+1 = η2

N+1−k + η2
N+1−k+1. If YKLML

[K]
(
Ω(k)

N

)
are the HH

functions associated to the transformed Jacobi set, then, by following the general
relation in Eq. (5.68), we can also write

YKLML

[K]
(
Ω(k)

N

)
=
∑
[K′]
PKL(k)

[K][K′]Y
KLML

[K′]
(
ΩN

)
. (5.71)

Essentially, the matrix of the coefficients PKL(k)
[K][K′] is the representation of the kine-

matic rotation pk,k+1 on the HH basis. The HH functions are a complete and
orthonormal set of functions, and therefore the coefficients can be calculated by
means of the following relation

PKL(k)
[K][K′] =

∫
dΩN

[
YKLML

[K′]
(
ΩN

)]∗ YKLML

[K]
(
Ω(k)

N

)
. (5.72)

The operator PKL(k), also denoted simply as P(k), is unitary and it satisfies [92]

P(k)P(k) = 1 , P(ab) =
b−1∏
k=a

P(k)
a∏

k=b−2
P(k) , a < b , (5.73)

where P(ab) is the transposition between the generic non–adjacent particles (ma, ra)
and (mb, rb). As discussed above, in the practice we will only deal with transposition
matrices of the type

P(12,ij) ≡ P(2j)P(1i) , (5.74)

and we remark that they always correspond to the product of elementary transpo-
sitions P(k) between adjacent particles. In this way P(12,ij) is a product of block
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diagonal matrices that can be calculated with no particular issues [28]. In a more
extended notation we can write [100]

YKLML

[K]
(
Ω(ij)

N

)
=
∑
[K′]

P
KL(ij,12)
[K][K′] Y

KLML

[K′]
(
Ω(12)

N

)
, (5.75)

and it is straightforward that

P
KL(ij,12)
[K][K′] =

∫
dΩN

[
YKLM

[K′]
(
Ω(12)

N

)]∗ YKLM
[K]

(
Ω(ij)

N

)
, (5.76)

where the HH functions denoted as YKLML

[K]
(
Ω(12)

N

)
and YKLML

[K]
(
Ω(ij)

N

)
are related

to the set of Jacobi vectors in which ηN ∝ (r2 − r1), i.e. the reference set, and
η′

N ∝ (rj − ri), respectively.
For completeness, following Refs. [92, 100], we report here the explicit form of

the TC relative to the elementary transpositions. The trivial case k = 1 corresponds
to the action of the operator p1,2 and the result is a change of sign of the last Jacobi
vector: η′

N = −ηN . This leads to a phase factor

PKL(1)
[K][K′] = (−1)ℓN δ[K][K′] . (5.77)

The case k = N involves the transformation of the Jacobi coordinates η1 and
η2, which are already coupled in the grand–angular and angular space, and the
coefficients PKL(N)

[K][K′] are the Raynal–Revai coefficients [102]

PKL(N)
[K][K′] = δKK′

[
N∏

a=3
δℓaℓ′

a
δLa−1L′

a−1
δKa−1K′

a−1

]
RK2, L2

ℓ1ℓ2, ℓ′
1ℓ′

2
(βN ) , (5.78)

where βN is the kinematic angle defined in Eq. (5.70). Finally, in the general case
1 < k < N , where the transformation involves the pair of vectors ηN+1−k ≡ ηi−1
and ηN+1−k+1 ≡ ηi with 3 ≤ i ≤ N , the coefficients are

PKL(k)
[K][K′] =

[
i−2∏
a=1

δℓaℓ′
a

i−2∏
b=2

δLbL′
b
δKbK′

b

]

× (k)P̃Li−2Ki−2, LiKi

ℓi−1ℓ′
i−1, ℓiℓ′

i, Li−1Ki−1, L′
i−1K′

i−1

 N∏
a=i+1

δℓaℓ′
a

N∏
b=i

δLbL′
b
δKbK′

b

 (5.79)

where the matrices (k)P̃, after an angular and a hyperangular recoupling represented
by the T– and T –coefficients, respectively, can be written again in terms of the
Raynal–Revai coefficients [102] as follows

(k)P̃Li−2Ki−2, LiKi

ℓi−1ℓ′
i−1, ℓiℓ′

i, Li−1Ki−1, L′
i−1K′

i−1
=

∑
Li,i−1

T
Li−2ℓi−1ℓi

Li−1Li,i−1Li
T

Li−2ℓ′
i−1ℓ′

i

L′
i−1Li,i−1Li

×
∑

Ki,i−1

T
αKi−2 αℓi−1 αℓi

Ki−1Ki,i−1Ki
T

αKi−2 αℓ′
i−1

αℓ′
i

K′
i−1Ki,i−1Ki

×RKi,i−1, Li,i−1
ℓi−1ℓi, ℓ′

i−1ℓ′
i

(βk) .

(5.80)
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In the relation above, the indices αℓi
and αKi are explicitly αℓi

= ℓi + 1
2 and

αKi = Ki + 3i
2 − 1. More details about the T– and T – coefficients as well as their

definition can be found in Refs. [92, 100, 104].
In order to generalize the formalism including also the spin and the isospin of

the particles, we define the following operator [92]

Q(12,ij) = P(12,ij) ⊗ S(12,ij) ⊗ I(12,ij) , (5.81)

where P(12,ij) is the transposition matrix already defined in Eq. (5.74), while S(12,ij)

and I(12,ij) are the operators relative to the spin and isospin spaces, respectively.
In order to calculate the matrix elements of the most general potential operator
V̂ij , also the total spin Sij , the total isospin Tij and the total Jij of the ij–pair
are needed. As one can see from Eqs. (5.41) and (5.44), the quantum numbers Sij

and Tij do not appear in the spin and isospin reference coupling schemes, with the
exception of the pair i, j = A − 1, A. In this sense, the operator S(12,ij) represents
all the spin recouplings needed to change the reference scheme into a new one in
which the single particle spins si and sj , initially related to the positions i and j,
are moved to 1 and 2 as follows[

. . .
[[
. . .
[[
. . .
]
SA−j

χsj (j)
]
SA−j+1

. . .
]
SA−i

χsi(i)
]
SA−i+1

. . .
]

SMS

→
[[[
. . .
]
S′

A−2
χsj (2)

]
S′

A−1
χsi(1)

]
SMS

.
(5.82)

Then the total spin of the pair Sij can be extracted by using the Wigner 6j symbols[[[
. . .
]
S′

A−2
χsj (2)

]
S′

A−1
χsi(1)

]
SMS

→
[[
. . .
]
S′

A−2

[
χsi(1)χsj (2)

]
Sij

]
SMS

. (5.83)

Of course, the same procedure can be used for the isospin basis to extract Tij .
Essentially, in the most general case, the operator Q(12,ij) moves the two interacting
particles in the first positions and changes the spin and the isospin bases so that
Sij and Tij become good quantum numbers.

A few comments are here in order [92]. Since the spin (isospin) and the spatial
basis are independent, one is free to choose a certain scheme for the initial spin
(isospin) coupling, in order to reduce the number of recoupling operations needed
to calculate a specific matrix element. This fact can also be exploited, for example,
in an A–body system containing two particles of one species and A− 2 particles of
another species. Moreover, when the particles involved belong to the same species,
the spatial part of the operator in Eq. (5.81) is a true spatial permutation that
exchanges the particles i and j with 1 and 2. As a consequence, the fermionic or
bosonic nature of the particles must be taken into account.

Notice that for the most general case of a non–central potential, an additional
recoupling involving the Wigner 9j symbols must be applied in the construction of
the correct spatial–spin basis:[ [

YKN−1LN−1
[KN−1] (ΩN−1)YℓN

(η̂N )
]

L

[
χ

SA−2
[SA−2] χSij

]
S

]
JM

→
[ [
YKN−1LN−1

[KN−1] (ΩN−1)χSA−2
[SA−2]

]
JA−2

[
YℓN

(η̂N )χSij

]
Jij

]
JM

,

(5.84)
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where the spin function χSijMSij
has been defined as χSijMSij

=
[
χsiχsj

]
SijMSij

and
the HH functions are those in Eq. (5.47).

We conclude with a few observations. The spin and isospin operators S(12,ij) and
I(12,ij) can be constructed, just like the spatial one, as the product of the elementary
operators S(k) and I(k), representing the permutations between two adjacent spin
and isospin, respectively. S(k) and I(k) are defined in analogy to Eq. (5.71), and
they are combinations of Wigner 6j symbols. We also point out that, for the most
generic permutation p of particles, similarly to the general transformation defined
in Eq. (5.68), the following relations are valid

χ
SMS(p)
[S] =

∑
[S′]
CS(p,p̄)

[S][S′] χ
SMS(p̄)
[S′] , ξ

T MT (p)
[T ] =

∑
[T ′]
CT (p,p̄)

[T ][T ′] ξ
T MT (p̄)
[T ′] , (5.85)

with the prescriptions S′ = S and T ′ = T , in which the spin and isospin functions
in the reference permutation p̄ are those defined in Eq. (5.41). More details about
this can be found in Ref. [92].

Application: the two–body local potential

As already stated, the term of the two–body potential that enters in the Hamiltonian
is of the form

V =
A∑

i<j

Vij . (5.86)

In order to see explicitly how the operators in Eq. (5.81) enter in the calculation of
the two–body interaction, for simplicity we consider here a local potential of central
type. Moreover, we focus first on the spatial part. If one takes the HH basis defined
from the Jacobi vectors in the reference permutation, Eq. (5.3), then the matrix
elements of the operator Vij are

V ij
[K][K′](ρ) =

〈
YKLML

[K]
(
Ω(12)

N

) ∣∣∣V (rij)
∣∣∣YKLML

[K′]
(
Ω(12)

N

)〉
, (5.87)

where rij ≡ rj − ri and, specifically for i, j = 1, 2, we have

V 12
[K][K′](ρ) =

〈
YKLML

[K]
(
Ω(12)

N

) ∣∣∣V (r12)
∣∣∣YKLML

[K′]
(
Ω(12)

N

)〉
. (5.88)

If we rewrite Eq. (5.87) by making use of the TC defined in Eqs. (5.75), then we
obtain [100]

V ij
[K][K′](ρ) =

∑
[K′′]

∑
[K′′′]

〈
YKLML

[K′′]
(
Ω(ij)

N

) ∣∣∣PKL(12,ij)†
[K′′][K] V (rij)PKL(12,ij)

[K′][K′′′]

∣∣∣YKLML

[K′′′]
(
Ω(ij)

N

)〉
.

(5.89)
Moreover, by using the expression in Eq. (5.88), together with the following equiv-
alence 〈

YKLML

[K′′]
(
Ω(ij)

N

) ∣∣∣V (rij)
∣∣∣YKLML

[K′′′]
(
Ω(ij)

N

)〉
=
〈
YKLML

[K′′]
(
Ω(12)

N

) ∣∣∣V (r12)
∣∣∣YKLML

[K′′′]
(
Ω(12)

N

)〉
,

(5.90)
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we can also write

V ij
[K][K′](ρ) =

∑
[K′′]

∑
[K′′′]

〈
YKLML

[K′′]
(
Ω(12)

N

) ∣∣∣PKL(12,ij)†
[K′′][K] V (r12)PKL(12,ij)

[K′][K′′′]

∣∣∣YKLML

[K′′′]
(
Ω(12)

N

)〉
.

(5.91)
In a NSHH basis framework, when we work with a potential of a more general

type, by taking into account also the spin and the isospin dependence, the equations
above can be generalized to〈

ΨNSHH
∣∣∣Vij

∣∣∣ΨNSHH
〉

=
〈
ΨNSHH

∣∣∣Q(12,ij)† V12 Q
(12,ij)

∣∣∣ΨNSHH
〉

(5.92)

where we have used the operators Q(12,ij) already introduced in Eq. (5.81).

5.2.3 Bound–state problem

The bound–state problem relative to the A–body nuclear system described by the
Schrödinger equation (5.21) is solved by means of a variational method, and in
conjunction with the NSHH basis constructed in Section 5.1.3. We use as trial
wave function the truncated expansion over a basis in configuration space as in
Eq. (5.64), whose coefficients are determined by solving δ ⟨Φ |T + V − E |Φ⟩ = 0.
By performing explicitly the variation over the set of real expansion coefficients
{ cκ }, we obtain ∑

κ′

⟨Φκ |T + V − E |Φκ′⟩ cκ′ = 0 , (5.93)

with κ ≡ [mµ]. By using this variational procedure, namely the Rayleigh–Ritz
variational principle [105], the whole problem is essentially reduced to finding a
solution to the above eigenvalues equation.

The fact that we do not impose any symmetry condition on the basis employed
leads to the diagonalization of matrices with large dimension. As a consequence,
also the number of eigenfunctions, whose symmetry have to be analysed, is large.
In order to search for the true ground state with the correct symmetry, a method
has been developed in Ref. [28], which uses the transposition class sum operator of
the permutation group SA, i.e. the Casimir operator. The advantage of using this
approach is that, since the physical ground state is somehow shifted to coincide with
the lowest eigenstate, the full diagonalization of the Hamiltonian matrix is not re-
quired, and one can use in the calculations, for instance, the Lanczos algorithm [58].
In this way the computational time is considerably reduced (see Appendix B).

If we start by considering a system of A identical particles, then the physical
ground state with the desired symmetry can be selected by means of the Casimir
operator Ĉ(A). This operator is defined as a summation of all the transposition
operators between the particles i and j, as follows

Ĉ(A) =
A∑

i<j=1
P̂ij . (5.94)

Since it commutes with the Hamiltonian
[
Ĥ, Ĉ(A)

]
= 0, the two operators can be

diagonalized simultaneously. More mathematical details about the Casimir oper-
ators can be found in Ref. [106]. Here we only mention the following important
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property: given a generic symmetric |Φs⟩, mixed–symmetry |Φm⟩ and antisymmet-
ric |Φa⟩ eigenstate, then we have

Ĉ(A) |Φs⟩ = λs |Φs⟩ , Ĉ(A) |Φm⟩ = λm |Φm⟩ , Ĉ(A) |Φa⟩ = λa |Φa⟩ , (5.95)

with λs > λm > λa, where the eigenvalues relative to the symmetric and the
antisymmetric states assume the extreme values

λs = A(A− 1)
2 , λa = −A(A− 1)

2 . (5.96)

We proceed by defining a pseudo–Hamiltonian Ĥ as follows [28]

Ĥ = Ĥ + γĈ(A) , (5.97)

where γ is a real parameter. The corresponding eigenvalues are

Ex
n = Ex

n + γλx , (5.98)

with Ex
n the eigenvalues of the Hamiltonian operator Ĥ with symmetry x = s,m, a.

The index n runs from 0 to nmax(x), and
∑

x nmax(x) gives the total dimension of the
basis. For instance, if our aim is to calculate Ea

0 , which is the lowest antisymmetric
eigenvalue of the Hamiltonian Ĥ, then we must choose a value for the parameter γ
such that Ea

0 results to be, by far, the lowest eigenvalue of the pseudo–Hamiltonian
Ĥ. This requirement corresponds to the following inequality

Ea
0 = Ea

0 + γλa < Ex
n + γλx , n = 0, 1, . . . , nmax(x), x = s,m , (5.99)

from which a condition on the parameter γ follows

γ >
Ea

0 − Ex
n

λx − λa
. (5.100)

If one now notes that λx − λa ≥ A, by assuming Ea
0 < 0, it is sufficient to impose

γ >
|Emin|
A

, (5.101)

with Emin the lowest eigenvalue of the Hamiltonian, Emin = min{Es
0, E

m
0 , E

a
0}. This

method allows to obtain the lowest physical antisymmetric state of the Hamiltonian
in terms of the lowest state of the pseudo–Hamiltonian. At the end of the procedure,
the eigenvalue Ea

0 can be recovered by subtraction: Ea
0 − γλa. With the same

technique, one can also calculate the physical totally symmetric lowest state.
If we are studying a system composed of A non–identical particles, then the

generalization of the method is quite straightforward [92]. The definition of the
Casimir operator must be generalized to include different species of particles. In
this case, Ĉ(A) is the sum of σmax Casimir operators relative to each different
subsystem of Aσ particles of the same species σ

Ĉ(A) =
σmax∑
σ=1

bxσ Ĉσ(Aσ) , Ĉσ(Aσ) =
Aσ∑

i<j=1
P̂ij , (5.102)
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where the coefficients bxσ depend on the symmetry of each subsystem (bxσ = 1 for
x = a,m and bxσ = −1 for x = s) and

∑σmax
σ=1 Aσ = A. Moreover, Ĉσ(Aσ = 1) = 0.

The Casimir operator still commutes with the hamiltonian Ĥ. The eigenvalues of
the pseudo–Hamiltonian Ĥ defined as in Eq. (5.97) are now

Ex
n = Ex

n + γ
σmax∑
σ=1

bxσλ
xσ , (5.103)

with n = 0, 1, . . . , nmax(x). If we want to find the lowest eigenvalue Ex̄
0 with symme-

try x̄ = s, a, then γ must be chosen large enough so that Ex̄
0 is the lowest eigenvalue

of the pseudo–Hamiltonian, and therefore we must have

Ex̄
0 = Ex̄

0 + γ
σmax∑
σ=1

bx̄σλ
x̄σ < Ex

n + γ
σmax∑
σ=1

bxσλ
xσ , n = 0, 1, . . . , nmax(x), x ̸= x̄ .

(5.104)

From this relation, we obtain a condition for the parameter γ similar to Eq. (5.100)

γ >
Ex̄

0 − Ex
n∑σmax

σ=1 (bxσλ
xσ − bx̄σλ

x̄σ ) , (5.105)

as well as the following lower limit

γ >
|Emin|∑σmax
σ=1 Aσ

, (5.106)

where Aσ ̸= 1.
In the rest of this Section, we will explicitly compute the matrix elements of the

operators involved in the eigenvalues equation (5.93).

Norm and kinetic energy matrix elements

The norm and the internal kinetic energy matrix elements are defined as

⟨Φmµ|Φm′µ′⟩ = δmm′δµµ′ , ⟨Φmµ|T |Φm′µ′⟩ = Tmm′δµµ′ , (5.107)

where the delta on the Laguerre basis indices, δmm′ , comes from the orthonormality
relation (5.63) while the deltas on the HH, spin and isospin collective indices, δµµ′ ,
are due to the orthonormality of the functions YJMπ

µ (ΩN ) in Eq. (5.61). The matrix
Tmm′ is explicitly

Tmm′ = − ℏ2

2mref

∫
dρ ρ3N−1fm(ρ)

[
∂2

∂ρ2 + 3N − 1
ρ

∂

∂ρ
− K(K + 3N − 2)

ρ2

]
fm′(ρ) .

(5.108)

The two–body local potential matrix elements

Concerning the calculation of the matrix elements of the two–body local potential
operator V , first we apply the rotation operators Q(12,ij) as in Eq. (5.92)

V =
A∑

i<j=1
Vij =

A∑
i<j=1

Q(12,ij)† V12 Q
(12,ij) (5.109)
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then, we are left with the calculation of the matrix elements ⟨Φmµ|V12|Φm′µ′⟩. The
proper NSHH basis to use is the one in Eq. (5.55) but constructed with different
coupling schemes. We define Φ̃mµ

(
ρ,ΩN

)
= fm(ρ)ỸJMπ

µ (ΩN ), where the functions
ỸJMπ

µ (ΩN ) follow the orbital–spin recoupling defined in Eq. (5.84), together with
the isospin recoupling defined by analogy with Eq. (5.83). Notice that the new
scheme is related to the old one by the Wigner 6j and 9j coefficients. Then, it can
be demonstrated that the matrix elements of the potential operator of local type
can be written as

⟨Φ̃mµ|V12|Φ̃m′µ′⟩ = δ{KN−1}{K′
N−1}δ{SA−2}{S′

A−2}δ{TA−2}{T ′
A−2}

×
∫
dρN−1 ρ

3(N−1)−1
N−1

∫
dηN η2

N
NPℓN ,KN−1

nN
(φN )fm(ρ)

× V J12
KN ℓN S12T12,K′

N ℓ′
N S′

12T ′
12

(r12) NPℓ′
N ,KN−1

n′
N

(φN ) fm′(ρ) .

(5.110)

In the equation above we have already performed the integration in the variables
dΩN−1, the HH polynomials are those defined in Eq. (5.50) and explicitly we have
ηN = ρ sinφN . Moreover, the matrix elements V J12

KN ℓN S12T12,K′
N ℓ′

N S′
12T ′

12
(r12) are

V J12
KN ℓN S12T12,K′

N ℓ′
N S′

12T ′
12

(r12) =
∫
dη̂N

[
YℓN

(η̂N )χS12

]†
J12
V (r12)

[
Yℓ′

N
(η̂N )χS′

12

]
J12

.

(5.111)

Notice that r12 ≡ r2−r1 and, from the definition of the Jacobi vectors in Eq. (5.3),
we have

r2 − r1 =
√
mrM2
m1m2

ηN ≡ C
η
12ηN , (5.112)

from which we deduce that the proportionality factor Cη
12 between the quantity r12

and the last Jacobi coordinate ηN depends entirely on the masses of the first two
particles. Further details about the calculation of the potential matrix elements can
be found in Ref. [92].

5.3 Momentum space
Here we want to study the nuclear problem of A interacting particles by finding a
solution of the Schrödinger equation (5.1) in momentum space,

Ĥ |ΨA⟩ = Etot |ΨA⟩ , (5.113)

where the wave function is ⟨p1, . . . ,pA|ΨA⟩ = ΨA(p1, . . . ,pA). We will mainly
follow the formalism already developed in Section 5.1 for the solution in coordinate
space. In Section 5.3.1 we will introduce the Jacobi momenta and the corresponding
set of hyperspherical coordinates, and we will perform a separation of the center–of–
mass motion from the internal one. By taking into account only the internal degrees
of freedom, in Section 5.3.2 we will construct a proper basis in momentum space
to expand the wave function. The last Section 5.3.3 is dedicated to the solution
of the bound–state problem, by means of the NSHH method already introduced in
Section 5.2 for the configuration space case.
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5.3.1 Jacobi and Hyperspherical coordinates

Starting from the set of Jacobi coordinates in Eq. (5.3), the Jacobi momenta are
defined by means of the following relation

πN+1−j = −iℏ∇ηN+1−j
= −iℏ

N∑
i=1

∂ri

∂ηN+1−j

∂

∂ri
=

N∑
i=1

∂ri

∂ηN+1−j

pi . (5.114)

By making use of the vector–matrix notation already introduced in 5.1.1, the re-
lation above can be written as π⃗ = √mr A p⃗, where π⃗ = (πN , . . . ,π1,π0) is the
vector of the Jacobi momenta, p⃗ = (p1, . . . ,pA) is the vector of the momenta of
the particles and the matrix A is the one defined in Eq. (5.8). The mass mr is a
reference mass, and in the practical calculations we will set it equal to the nucleon
mass. With the construction procedure above, ηi and πi are conjugate variables[

ηi
k, π

i′
k′

]
= iℏδkk′δii′ , (5.115)

where the indices k and k′ refer to the cartesian components, while i, i′ = 0, 1, . . . , N .
In a more extended way we write

πN+1−j =
√

mrMj

Mj+1mj+1

(
pj+1 −

mj+1
Mj

j∑
i=1

pi

)
, j = 1, . . . , N , (5.116)

π0 =
√
mr
M

A∑
i=1

pi , (5.117)

where Mj is the sum of the masses up to particle j, and M is the total mass. We
underline that the Jacobi vector π0 is simply proportional to the center–of–mass
momentum of the system P cm. Within this formalism the total kinetic energy in
Eq. (5.1) assumes the simple form

T = 1
2mr

π⃗tπ⃗ = P 2
cm

2M + 1
2mr

N∑
j=1

π2
N+1−j , (5.118)

where we have used the definition of the vector π0 in (5.117). The last term cor-
responds to the internal kinetic energy, and it results to be completely separated
from the kinetic energy of the center–of–mass.

If we focus on the internal Jacobi vectors, in order to describe the space of vectors
{π1, . . . ,πN } of dimension 3N , we can use the alternative set of hyperspherical
coordinates

{Q,Ω(Q)
N } = {Q, π̂1, . . . , π̂N , φ2, . . . , φN } . (5.119)

The hypermomentum Q is defined as

Qi =
√
π2

1 + · · ·+ π2
i , QN ≡ Q , (5.120)

and the superscript (Q) on the angular and hyperangular part Ω(Q)
N is a reminder

that the hyperspherical coordinates are defined in momentum space. With π̂i we
denote the direction of each Jacobi vector πi, and φi are the N − 1 hyperangles

φi = arcsin πi

Qi
, i = 2, . . . , N , (5.121)
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with 0 ≤ φi ≤ π
2 . The modulus of each Jacobi momentum is related to the hyper-

spherical coordinates as follows

πN = Q sinφN ,
...
πi = Q cosφN . . . cosφi+1 sinφi , i = 2, . . . , N − 1 ,
...
π1 = Q cosφN . . . cosφ2 .

(5.122)

The volume element relative to the Jacobi vectors d3π1 . . . d
3πN in the hyper-

spherical formalism is

d3π1 . . . d
3πN = dΩ(Q)

N dQQ3N−1 , (5.123)

with the definition

dΩ(Q)
N =

[
N∏

i=1
dπ̂i

][
N∏

j=2
dφj (cosφj)3j−4(sinφj)2

]
. (5.124)

By using the definition of the hypermomentum Q given in Eq. (5.120), the
internal kinetic energy of the system, already calculated in Eq. (5.118), assumes the
very simple form

Tint = 1
2mr

N∑
i=1

π2
i = Q2

2mr
. (5.125)

As a consequence, the Schrödinger equation relative to the internal degrees of free-
dom of the A–body nuclear system, in momentum space, reads[

Q2

2mr
+ V

]
Ψ(π1, . . . ,πN ) = EΨ(π1, . . . ,πN ) . (5.126)

In the following we will expand the internal wave function written above on a proper
basis, including the spatial, the spin and the isospin degrees of freedom.

5.3.2 The p–spatial, spin and isospin basis

The formalism already developed in configuration space to construct the basis of
the HH functions, including the spin and the isospin degrees of freedom, remains
valid also in momentum space (see Sections 5.1.2 and 5.1.3).

We write the internal wave function of the system as

Ψ(π1, . . . ,πN ) =
∑

κ

cκΨκ(Q,Ω(Q)
N ) , (5.127)

with the coefficients cκ to be determined variationally. The basis that we use in
momentum space is explicitly

⟨π1, . . . ,πN |Ψκ⟩ = ⟨QΩ(Q)
N |Ψκ⟩ ≡ Ψκ(Q,Ω(Q)

N ) , (5.128)
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with the definition

Ψκ(Q,Ω(Q)
N ) = N fm(Q)YJMπ

µ (Ω(Q)
N ) , κ ≡ [m,µ] , (5.129)

where N is a normalization factor.
In the most general case, the functions YJMπ

µ (Ω(Q)
N ), with µ = [K][S][T ]KLST ,

are eigenfunctions of the total angular momentum operator Ĵ , Ĵz and of the parity
operator Π̂ [see Eq. (5.55)]. Due to the form of the interaction potentials employed,
in this work we will use these basis functions in the form

Y
JMπ,KLST
[K][S][T ] (Ω(Q)

N ) = YKLML

[K] (Ω(Q)
N )χSMS

[S] ξT MT

[T ] , (5.130)

where also the total orbital angular momentum L and total spin S are good quantum
numbers [see Eq. (5.59)].

The HH functions in momentum space are constructed as

YKLML

[K] (Ω(Q)
N ) =

[[
. . .
[[
Yℓ1(π̂1)Yℓ2(π̂2)

]
L2
Yℓ3(π̂3)

]
L3
. . .
]
LN−1

YℓN
(π̂N )

]
LML

×
N∏

j=2

jPKj−1,ℓj
nj (φj) ,

(5.131)

with the HH polynomial jPKj−1,ℓj
nj (φj) defined as in Eq. (5.50). The spin and the

isospin functions in (5.130) are the same as those reported in Eqs. (5.41) and (5.44),
respectively.

Concerning the definition of the “hypermomental” functions fm(Q) that appear
in Eq. (5.129), we follow the formalism developed in Ref. [107]. Although other
choices are possible, we take these functions in the form

fm(Q) =
( 1
β

) 3N
2
√

m!
(m+ 3N − 1)! L

(3N−1)
m

(
Q

β

)
e− Q

2β . (5.132)

Essentially, by analogy with the definition in configuration space, Eq. (5.62), we
use also here a Laguerre polynomials basis set L(α)

m (x) to express fm(Q). The
exponential decreasing factor regulates the behaviour of the functions at large Q,
and β is a non–linear parameter. Due to the normalization factor inserted in the
definition (5.132), we also have∫ ∞

0
dQQ3N−1fm(Q)fm′(Q) = δmm′ . (5.133)

Further details about the Laguerre polynomials are reported in Appendix D.2.

5.3.3 Bound–state problem

By using the Rayleigh–Ritz variational principle [105], the bound–state problem is
reduced to finding a solution of the following eigenvalues equation∑

κ′

⟨Ψκ |T + V − E |Ψκ′⟩ cκ′ = 0 , (5.134)
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with the collective index κ defined as κ = [m,µ].
As thoroughly discussed in Section 5.2, our approach is based on the use of

a NSHH basis. The whole formalism of the pseudo–Hamiltonian, together with
the procedure developed in 5.2.3, which is necessary to select the physical ground
state, can be extended to the problem in momentum space with no particular issues.
Therefore, in the rest of this Section, we will only focus on the detailed calculation
of the matrix elements appearing in Eq. (5.134).

Norm and kinetic energy matrix elements

The matrix elements of the norm and the internal kinetic energy to be calculated
are the following

⟨Ψmµ|Ψm′µ′⟩ = δmm′δµµ′ , ⟨Ψmµ|T |Ψm′µ′⟩ = Tmm′δµµ′ , (5.135)

where the delta function δmm′ on the Laguerre indices follows from the orthonormal-
ity of the basis functions defined in Eq. (5.132), as explicitly shown in Eq. (5.133);
the delta functions δµµ′ comes from the orthonormality of the HH, spin and isospin
functions YJMπ

µ (Ω(Q)
N ), just as in the coordinate space case. The explicit expression

of the matrix elements of the internal kinetic energy follows from Eq. (5.125), and
they are simply given by

Tmm′ = ℏ2

2mr

∫
dQQ3N+1fm(Q)fm′(Q) . (5.136)

To obtain these results, the normalization factor in Eq. (5.129) has been chosen as
N = (2π)3N/2, following from the convention

ΩN
∫
d3π1
(2π)3 . . .

d3πN

(2π)3 |π1 . . .πN ⟩ ⟨π1 . . .πN | = 1 , (5.137)

which will be used throughout this work, specifically with the normalization volume
set to Ω = 1.

The two–body potential matrix elements

The computation of the potential matrix elements is a little more involved. Here we
will specialize the calculation to a central potential that does not depend on the spin
or isospin of the particles involved. The effective potentials derived in Chapter 4
are in fact of this type. Moreover, they depend on the relative momenta between
the two particles before and after the interaction. Specifically, we will follow the
calculation entirely developed in Ref. [107].

First we apply the rotation coefficients as in Eq. (5.92)

V =
A∑

i<j=1
Vij =

A∑
i<j=1

P(12,ij)† V12 P
(12,ij) , (5.138)

and then we calculate the matrix elements ⟨Ψmµ|V12|Ψm′µ′⟩ in momentum space by
making use of the basis (5.130). By assuming that the potential does not depend
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on the spin and the isospin of the particles, both spin and isospin parts of the basis
give rise to delta functions, and therefore we can consider only

Ψmµ(Q,Ω(Q)
N ) = N fm(Q)YKLML

[K] (Ω(Q)
N ) . (5.139)

The HH functions are those defined in Eq. (5.131), which we rewrite here as

YKLML

[K] (Ω(Q)
N ) =

[
YKN−1LN−1

[KN−1] (Ω(Q)
N−1)YℓN

(π̂N )
]

LML

NPℓN ,KN−1
nN

(φN ) . (5.140)

The two–body interaction operator V12 represented in momentum space assumes
the form V (p12,p

′
12), where the relative momentum between the particles 1 and 2

is explicitly
p12 ≡

m1p2 −m2p1
m1 +m2

, (5.141)

and we have the following proportionality relation between p12 and πN

p12 =
√
m1m2
mrM2

πN ≡ Cπ
12πN . (5.142)

The equation above follows from the definition of the Jacobi momentum πN given
in Eq. (5.116). The dependence of the potential on the quantity p′

12 is taken into
account by introducing a second set of Jacobi momenta {π1, . . . ,πN−1,π

′
N }, in

which only the last vector is changed. In this way, the matrix elements can be
written explicitly as

⟨Ψmµ|V12|Ψm′µ′⟩ = 1
(2π)3

∫
d3π1 . . . d

3πN−1 d
3πN d3π′

N

[
YKLML

[K] (Ω(Q)
N )

]†
× fm(Q)V

(
p12,p

′
12
)
fm′(Q′)YKLML

[K′] (Ω′(Q)
N ) .

(5.143)

The set of hyperspherical coordinates {Q′,Ω′(Q)
N } is the one constructed from the

new set of Jacobi momenta, hence we have that

Q′ =
√
π2

1 + · · ·+ π2
N−1 + π′2

N , π′
N = Q′ sinφ′

N . (5.144)

By making use of the relation

cos2 φ′
N = Q2

Q′2 cos2 φN , (5.145)

which follows from the identity Q2−π2
N = Q′2−π′2

N , the volume element d3π′
N can

be written as
d3π′

N = dπ̂′
N dπ′

N π′2
N = dπ̂′

N dQ′Q′2 sinφ′
N . (5.146)

At the same time, from the expression of the volume element in Eq. (5.123) it can
be deduced that

d3π1 . . . d
3πN−1 d

3πN = dΩ(Q)
N−1 dQN−1Q

3N−4
N−1 dπ̂N dπN π2

N (5.147a)

= dΩ(Q)
N−1 dπ̂N dφN (cosφN )3N−4(sinφN )2 dQQ3N−1

(5.147b)
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Starting from Eq. (5.143), as a first step, we use the expression of the HH functions
given in (5.140), and we perform the integration in dΩ(Q)

N−1, obtaining

I1 =
∫
dΩ(Q)

N−1

[
YKN−1LN−1

[KN−1] (Ω(Q)
N−1)YℓN

(π̂N )
]†

LML

[
Y

K′
N−1L′

N−1
[K′

N−1] (Ω(Q)
N−1)Yℓ′

N
(π̂N )

]
LML

=
∑

mN MLN−1
m′

N M ′
LN−1

(
ℓNmNLN−1MLN−1 |LML

) (
ℓ′Nm

′
NL

′
N−1M

′
N−1|LML

)
× Y ∗

ℓN mN
(π̂N )Yℓ′

N m′
N

(π̂′
N )

× δ[KN−1][K′
N−1]δKN−1K′

N−1
δLN−1L′

N−1
δMLN−1 M ′

LN−1
,

(5.148)

where we have extracted the part dependent on the angular variables Ω(Q)
N−1 with the

help of the Clebsch–Gordan coefficients. The second step regards the calculation of
the integral in the angular variables dπ̂N dπ̂′

N . As shown in detail in Ref. [107], in
order to perform this integral, we use the technique described in Ref. [108], which
leads to

I2 =
∫
dπ̂N dπN π2

N dπ̂′
N dπ′

N π′2
N Y ∗

ℓN mN
(π̂N )V

(
πN ,π

′
N

)
Yℓ′

N m′
N

(π̂′
N )

= δℓN ℓ′
N
δmN m′

N

8π2

2ℓN + 1

∫
dt dπN π2

N dπ′
N π′2

N

×
ℓN∑

m=−ℓN

Y ∗
ℓN m(π̂′′

N )V
(
πN , π

′
N , t

)
YℓN m(π̂′′′

N ) (5.149a)

= δℓN ℓ′
N
δmN m′

N
4π
∫
dπN π2

N dπ′
N π′2

N VℓN

(
πN , π

′
N

)
. (5.149b)

In performing the explicit calculation of the spherical harmonics functions appearing
in Eq. (5.149a), we have used the following standard definition

Yℓm(θ, ϕ) = (−1)m

√
2ℓ+ 1

4π

√
(ℓ−m)!
(ℓ+m)!Pℓm(cos θ)eimϕ , (5.150)

where Pℓm(cos θ) are the associated Legendre polynomials. As a consequence,
YℓN m(π̂′′

N ), where π̂′′
N = (θ′′

N , ϕ
′′
N ) = (0, 0), is simply proportional to the delta func-

tion δm0; the calculation of YℓN m(π̂′′′
N ) in the direction π̂′′′

N = (θ′′′
N , ϕ

′′′
N ) = (arccos t, 0)

gives rise to the factor PℓN m(t) instead. By combining these results, and by using
the definition

VℓN

(
πN , π

′
N

)
= 1

2

∫
dt V

(
πN , π

′
N , t

)
PℓN

(t) , (5.151)

with PℓN
(t) the Legendre polynomial, the final result in Eq. (5.149b) is easily ob-

tained.
The partial calculations carried out in Eqs. (5.148) and (5.149) lead to the
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following expression for the two–body potential matrix elements

⟨Ψmµ|V12|Ψm′µ′⟩ =
∑

mN MLN−1
m′

N M ′
LN−1

(ℓNmNLN−1MLN−1 |LML)(ℓ′Nm′
NL

′
N−1M

′
LN−1 |LML)

× δ[KN−1][K′
N−1]δKN−1K′

N−1
δLN−1L′

N−1
δMLN−1 M ′

LN−1
δℓN ℓ′

N
δmN m′

N

× 1
(2π)3 N

KN ;ℓN ,KN−1
nN

N
K′

N ;ℓ′
N ,K′

N−1
n′

N

×
∫
dφN (cosφN )3N−4(sinφN )2

∫
dQQ3N−1

∫
dQ′Q′2 sinφ′

N

× (sinφN )ℓN (cosφN )KN−1 P
(ℓN + 1

2 ,KN−1+ 3N−5
2 )

nN (cos 2φN )

× fm(Q) 4π VℓN

(
p12, p

′
12
)
fm′(Q′)

× (sinφ′
N )ℓ′

N (cosφ′
N )K′

N−1 P
(ℓ′

N + 1
2 ,K′

N−1+ 3N−5
2 )

n′
N

(cos 2φ′
N ) .

(5.152)

By exploiting the delta functions in the equation above, and the validity of the
relation

∑
mN MLN−1

(
ℓNmNLN−1MLN−1 |LML

) (
ℓNmNLN−1MLN−1 |LML

)
= 1, it

is not difficult to obtain

⟨Ψmµ|V12|Ψm′µ′⟩ = δ[KN−1][K′
N−1]NKN ;ℓN ,KN−1

nN
NK′

N ;ℓN ,KN−1
n′

N

× 1
(2π)3

∫
dφN

∫
dQQ3N−1

∫
dQ′Q′2

× (sinφN )ℓN +2 (cosφN )KN−1+3N−4 P
(ℓN + 1

2 ,KN−1+ 3N−5
2 )

nN (cos 2φN )

× fm(Q) 4π VℓN

(
p12, p

′
12
)
fm′(Q′)

× (sinφ′
N )ℓN +1 (cosφ′

N )KN−1 P
(ℓN + 1

2 ,KN−1+ 3N−5
2 )

n′
N

(cos 2φ′
N ) ,

(5.153)

where, from Eqs. (5.142) and (5.122), we have the equivalence p12 = Cπ
12Q sinφN

and p′
12 = Cπ

12Q
′ sinφ′

N . Moreover, the hyperangle φ′
N is still implicitly defined as

in Eq. (5.145).
In our cluster EFT framework also charged particles are present. In this case, in

addition to the two–body effective potential, we have to consider a Coulomb term
as well. In momentum space, the Coulomb potential assumes the form

VC

(
p12 − p′

12
)

= Z2
α4παem

(p12 − p′
12)2 = Z2

α4παem
(p2

12 + p′2
12 − 2p12p′

12t)
, t = π̂N · π̂′

N . (5.154)

Specifically, in the calculations we will consider the S–wave component, which is
defined as

VC,0
(
p12, p

′
12
)

= 1
2

∫
dt VC

(
p12 − p′

12
)
P0(t) . (5.155)

Of course, the matrix elements of this additional Coulomb term can also be calcu-
lated with the procedure shown above.
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The three–body potential matrix elements

As derived in Section 4.5, the three–body interaction employed in this work is a
hypercentral non–local potential, depending entirely on the hypermomentum as
follows

V3(Q,Q′) = e
−
(

Q
Λ3

)2

λ̃3 e
−
(

Q′
Λ3

)2

(5.156)

where λ̃3 is a constant and Λ3 is a cut–off parameter. The matrix elements of this
term can therefore be calculated in the following way

⟨Ψmµ|V3|Ψm′µ′⟩ = δµµ′

∫
dQQ3N−1

∫
dQ′Q′3N−1

× fm(Q) e−
(

Q
Λ3

)2

λ3 e
−
(

Q′
Λ3

)2

fm′(Q′) ,
(5.157)

where the delta function δµµ′ is due to the orthonormality property of the functions
YJMπ

µ (Ω(Q)
N ).

5.4 The Fourier transform of the basis
In Sections 5.1.3 and 5.3.2 we have defined a basis both in coordinate space,
Eq. (5.61), and in momentum space, Eq. (5.129), with which we calculate the matrix
elements of the nuclear Hamiltonian, in order to solve variationally the Schrödinger
equation relative to the bound–state problem. We write again the bases here

⟨η⃗ |Φκ⟩ = fm(ρ)YJMπ
µ (Ω(ρ)

N ) , (5.158)

⟨π⃗ |Ψκ⟩ = N fm(Q)YJMπ
µ (Ω(Q)

N ) , (5.159)

remarking that both functions fm(ρ) and fm(Q) are constructed by means of a
Laguerre polynomials basis.

As done in the previous works in Refs. [107] and [29], here we will mainly
use the basis defined in Eq. (5.159) to diagonalize the Hamiltonian matrix. As
already pointed out, the reason for this choice is the fact that the effective potentials
employed are born in momentum space. Moreover, the Laguerre polynomials basis is
a quite manageable set for performing calculations. Since, within this framework, we
will also have to calculate matrix elements of operators that are defined in coordinate
space, it is useful to construct a basis in coordinate space that is consistent with
the choice (5.159). This point will be further developed in Section 5.4.1, by making
an extensive use of the formalism presented in Ref. [109].

We also mention that, in order to solve the variational problem in momentum
space, another strategy is possible. In fact, an alternative way to proceed is to
define a proper basis in momentum space starting from the one in Eq. (5.158). In
Section 5.4.2 we will briefly discuss also this approach, whose development started
in the work that can be found in Ref. [110].
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5.4.1 From the basis in momentum space
to the basis in coordinate space

Our starting point is basis in momentum space defined in Eq. (5.159). We remark
that the “hypermomental” functions fm(Q), given in Eq. (5.132), contain the La-
guerre polynomials. The consistent basis in coordinate space can be constructed as
follows

⟨η⃗ |Ψκ⟩ =
∫

d3N π⃗

(2π)3N
⟨η⃗ | π⃗⟩ ⟨π⃗ |Ψκ⟩ , (5.160)

where η⃗ and π⃗ are shorthand notations for the vectors of the Jacobi coordinates
η⃗ = (η1, . . . ,ηN ) and Jacobi momenta π⃗ = (π1, . . . ,πN ), respectively, and the
volume element is defined as d3N π⃗ = d3π1 . . . d

3πN . The factor ⟨η⃗ | π⃗⟩ can be
rewritten by using the following expression for the plane wave expansion in the
3N–dimensional space [111, 112]

⟨η⃗ | π⃗⟩ = eiπ⃗·η⃗ = (2π)3N/2

(Qρ)
3N
2 −1

∑
[K]

iK
[
YKLML

[K] (Ω(Q)
N )

]∗YKLML

[K] (Ω(ρ)
N )JK̄+ 1

2
(Qρ) ,

(5.161)

where the dot product is explicitly π⃗ · η⃗ ≡
∑N

i=1 πi · ηi and the function JK̄+ 1
2
(Qρ)

is a Bessel function [45] with the definition K̄ = K+ 3N−3
2 . Notice that, in the case

N = 1, corresponding to A = 2, we have only one Jacobi coordinate η1 and one
Jacobi momentum π1, with ρ = η1 and Q = π1, and Eq. (5.161) reproduces the
usual expansion for a plane wave in three–dimensional space

eiπ1η1 = 4π
∑
ℓm

iℓY ∗
ℓm(π̂1)Yℓm(η̂1)jℓ(π1η1) . (5.162)

In this case the HH functions reduce to the spherical harmonics functions and, in
the relation above, jℓ(π1η1) is the spherical Bessel function defined from the ordi-
nary Bessel function as jℓ(x) =

√
π
2xJℓ+ 1

2
(x) [45]. By using explicitly Eqs. (5.159)

and (5.161) in Eq. (5.160), and by exploiting the orthogonality property of the HH
functions, we obtain the following result for the basis in coordinate space

Ψκ(ρ,Ω(ρ)
N ) = gmK(ρ)YJMπ

µ (Ω(ρ)
N ) , (5.163)

where the functions gmK(ρ) are defined through the following integral

gmK(ρ) = iK
∫
dQ

Q3N−1

(Qρ)
3N
2 −1

JK̄+ 1
2
(Qρ)fm(Q) . (5.164)

By looking at the bases defined consistently in momentum and in coordinate space,
Eqs. (5.159) and (5.164), respectively, we can make two comments. The form of
the HH, spin and isospin part is the same, YJMπ

µ (Ω(Q)
N ) → YJMπ

µ (Ω(ρ)
N ), with the

replacement π⃗ → η⃗. Moreover, the hyperradial basis functions gmK(ρ), which
are calculated essentially as a Fourier transform of the functions fm(Q), depend
explicitly on the grand–angular momentum quantum number K of the HH function
YKLML

[K] (Ω(ρ)
N ) to which they are associated.
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When the functions fm(Q) are constructed by means of the Laguerre polynomi-
als as in Eq. (5.132), the integral (5.164) can be calculated analytically [109]. We
conclude this section with the derivation of the complete expression for the func-
tions gmK(ρ). As a first step, we write the generalized Laguerre polynomials by
using the expansion [113]

L(3N−1)
m

(
Q

β

)
=

m∑
n=0

(−1)n

(
m+ 3N − 1
m− n

)
1
n!

(
Q

β

)n

, (5.165)

which leads to

gmK(ρ) = iK
( 1
β

) 3N
2
√

m!
(m+ 3N − 1)!

m∑
n=0

(−1)n

n!

(
m+ 3N − 1
m− n

)
1
βn

×
∫
dQ

Q3N−1+n

(Qρ)
3N
2 −1

JK̄+ 1
2
(Qρ) e− Q

2β .

(5.166)

The result for the integration of a Bessel function combined with a power and an
exponential [113]∫

dx Jν(γx)xµ−1e−αx = (α2 + γ2)− µ
2 Γ(ν + µ)P−ν

µ−1

[
α(α2 + γ2)− 1

2
]
, (5.167)

where P a
b (z) are the associated Legendre functions, yields to the following expression

gmK(ρ) = iKβ
3N
2

√
m!

(m+ 3N − 1)!

m∑
n=0

(−1)n

n!

(
m+ 3N − 1
m− n

)

× Γ(K + 3N + n) (2u)3N+n

(1− u2)
3N
4 − 1

2
P

1−K− 3N
2

3N
2 +n

(u) ,
(5.168)

with the definition u ≡ [1 + (2βQ)2]−
1
2 . The associated Legendre functions can be

written in terms of the Hypergeometric functions 2F1(A,B;C; z) as [113]

P a
b (z) = 1

Γ(1− a)

(
z + 1
z − 1

)a
2

2F1

(
−b, b+ 1; 1− a; 1− z

2

)
, (5.169)

leading to the following final expression for the basis functions gmK(ρ)

gmK(ρ) = iKβ
3N
2

√
m!

(m+ 3N − 1)!

m∑
n=0

(−1)n

n!

(
m+ 3N − 1
m− n

)

× Γ(K + 3N + n)
Γ(K + 3N

2 )
(2u)3N+n

(1− u2)
3N
4 − 1

2

(
u+ 1
u− 1

) 1
2 − K

2 − 3N
4

× 2F1

(
−3N

2 − n,
3N
2 + n+ 1;K + 3N

2 ; 1− u
2

)
.

(5.170)
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5.4.2 From the basis in coordinate space
to the basis in momentum space

A basis in momentum space which is consistent with the definition (5.158) can be
constructed as

⟨π⃗ |Φκ⟩ =
∫
d3N η⃗ ⟨π⃗ | η⃗⟩ ⟨η⃗ |Φκ⟩ , (5.171)

where ⟨π⃗ | η⃗⟩ = e−iπ⃗·η⃗. By using the definition of ⟨η⃗ |Φκ⟩ given in (5.158), together
with the expansion of the plane wave in the 3N–dimensional space, Eq. (5.161), we
obtain the result

Φκ(Q,Ω(Q)
N ) = N gmK(Q)YJMπ

µ (Ω(Q)
N ) , (5.172)

with N = (2π)
3N
2 . The functions gmK(Q) are explicitly

gmK(Q) = (−i)K
∫
dρ

ρ3N−1

(Qρ)
3N
2 −1

JK̄+ 1
2
(Qρ)fm(ρ) , (5.173)

where K̄ = K + 3N−3
2 and the functions fm(ρ) are constructed from a Laguerre

polynomials set as in Eq. (5.62). Notice that the functions gmK(Q) above differ from
those defined in configuration space in Eq. (5.164) essentially by a phase factor.

Within this framework, the matrix elements of the norm and kinetic energy can
be computed as well, and they are similar in form to the ones reported in Eq. (5.135).
In fact we have

⟨Φmµ|Φm′µ′⟩ = NmK,m′K′ δµµ′ , ⟨Φmµ|T |Φm′µ′⟩ = TmK,m′K′ δµµ′ , (5.174)

where now the delta functions δµµ′ comes from the orthonormality property of the
functions YJMπ

µ (Ω(Q)
N ) and NmK,m′K′ and TmK,m′K′ can be calculated as

NmK,m′K′ =
∫
dQQ3N−1 g∗

mK(Q) gm′K′(Q) , (5.175)

TmK,m′K′ = ℏ2

2mref

∫
dQQ3N+1 g∗

mK(Q) gm′K′(Q) . (5.176)

The matrix elements of a two–body central potential are

⟨Φmµ|V12|Φm′µ′⟩ = 1
(2π)3

∫
d3π1 . . . d

3πN−1 d
3πN d3π′

N

[
YKLML

[K] (Ω(Q)
N )

]†
× g∗

mK(Q)V
(
p12,p

′
12
)
gm′K′(Q)YKLML

[K′] (Ω′(Q)
N ) ,

(5.177)

whose calculation can be developed by following the approach discussed in Sec-
tion 5.3.3. Finally, for the three–body hypercentral potential we have

⟨Φmµ|V3|Φm′µ′⟩ = δµµ′

∫
dQQ3N−1

∫
dQ′Q′3N−1

× g∗
mK(Q) e−

(
Q
Λ3

)2

λ3 e
−
(

Q′
Λ3

)2

gm′K′(Q) .
(5.178)





Chapter 6

The Beryllium–9
photodisintegration reaction

6.1 The reaction cross section: detailed derivation

Our aim is to compute the reaction cross section of the 9Be photodisintegration

γ + 9Be→ α+ α+ n . (6.1)

In order to evaluate the response function defined in Eq. (2.20), first we calculate
the LIT by means of the method thoroughly described in Chapter 3, and then we
perform an inversion.

6.1.1 The E1 transition operator

The operator of interest to us is the nuclear current operator Jλ, as defined in
Eq. (2.38). In the multipole expansion we neglect the electric multipoles with J > 1,
retaining only the first term J = 1. Moreover, in order to calculate T el

1λ(q), we
apply the Siegert theorem (i.e. the continuity equation). Due to the fact that
we are studying the 9Be photodisintegration reaction in the low–energy regime
of astrophysical relevance, our calculations can be performed in the limit of low–
momentum transfer by the real photon. As a consequence, we are allowed to use only
the Siegert operator T el,S

1λ (q) in the long–wavelength approximation, which has been
derived in (2.55). Furthermore, in this work we neglect all the contributions due
to the magnetic multipole operators. The lowest term in the expansion, Tmag

1λ (q),
is the subject of a different study. Based on these assumptions, the operator of
interest is the following

Jλ(q) ≃ −
√

6πT el,S
1λ (q) ≃ −i

√
4π
3 ωqdλ , (6.2)

where we have defined

dλ =
∫
d3xxρ(x)Y1λ(x̂) . (6.3)
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Since we are working in a cluster framework, when we consider a system made up
of A components, the nuclear charge operator assumes the general form

ρ(x) =
A∑

i=1
Ziδ

3(xi − r′
i) , (6.4)

where Zi is the electromagnetic charge of the particle in the position r′
i, and the

unit charge factor e has been extracted. Specifically, when dealing with 9Be nucleus,
the particles involved are neutrons and α–particles, so the charge Zi is either zero
or Zα = 2. By substituting the definition of the nuclear charge and performing the
integral in Eq. (6.3) we obtain

dλ =
A∑

i=1
Zir

′
iY1λ(r̂′

i) . (6.5)

Notice that dλ is proportional to the spherical component of the dipole operator D,
and in fact Eq. (6.2) can be written alternatively as

Jλ(q) ≃ −iωqDλ . (6.6)

In Eq. (6.5), the vectors r′
i, i = 1, . . . , A, are the position vectors defined with respect

to the center–of–mass coordinate, r′
i = ri −Rcm. If we consider the A = 3 case,

the relations between the position vectors { r1, r2, r3 } and the Jacobi coordinates
{η2,η1,η0 } are explicitly

r1 = −
√
mrm2
M2m1

η2 −
√
mrm3
MM2

η1 +
√
mr
M

η0 , (6.7a)

r2 =
√
mrm1
M2m2

η2 −
√
mrm3
MM2

η1 +
√
mr
M

η0 , (6.7b)

r3 =
√
mrM2
Mm3

η1 +
√
mr
M

η0 , (6.7c)

where we have defined with M the total mass of the system, M2 = m1 +m2 and mr
is a reference mass. The expressions above can be easily calculated starting from
the general definition of the Jacobi coordinates in Eq. (5.3). Being η0 =

√
M
mr

Rcm

[see Eq. (5.4)], it is straightforward that the coordinates r′
i can be obtained from

Eqs. (6.7) by dropping each term proportional to η0. We therefore define

r′
1 = −Aη2 − Bη1 , (6.8a)

r′
2 = Cη2 − Bη1 , (6.8b)

r′
3 = Dη1 , (6.8c)

where the values of the mass factors A,B, C and D can be easily deduced from
Eqs. (6.7):

A =
√
mrm2
M2m1

, B =
√
mrm3
MM2

, C =
√
mrm1
M2m2

, D =
√
mrM2
Mm3

. (6.9)
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As shown in detail in Appendix E.1, in the most general case in which A = 3, the
above expressions of r′

i allow to rewrite the sum (6.5) in terms of the Jacobi vectors
as follows

dλ = (−Z1A+ Z2C) η2 Y1λ(η̂2) + [− (Z1 + Z2)B + Z3D] η1 Y1λ(η̂1) . (6.10)

Clearly, in this form, the operator dλ depends on the choice of the ordering of
the particles. In the reference permutation, when the positions (123) are occupied
by the particles (nαα), we have Z1 = 0 and Z2 = Z3 = Zα, and the masses are
explicitly m1 = mn and m2 = m3 = mα. In this case the coefficients of Eq. (6.10)
reduce to

Z2C = Zα
µ√
µ+ 1 , − Z2B + Z3D = Zαµ

√
µ

(µ+ 2)(µ+ 1) . (6.11)

In the equations above we have set the reference mass equal to the nucleon mass,
mr = mn, and we have defined the dimensionless factor µ ≡ mn/mα. The final
complete form of the operator is

d
(12=nα)
λ = Zα

(
µ√
µ+ 1η2 Y1λ(η̂2) + µ

√
µ

(µ+ 2)(µ+ 1)η1 Y1λ(η̂1)
)
. (6.12)

From a practical point of view, the alternative ordering (123) = (ααn) is quite
convenient. By imposing Z1 = Z2 = Zα, Z3 = 0 in addition to m1 = m2 = mα and
m3 = mn, we obtain for the coefficients of Eq. (6.10)

− Z1A+ Z2C = 0 , − (Z1 + Z2)B = −2Zα
µ√

2(µ+ 2)
, (6.13)

and therefore the operator dλ only depends on the Jacobi vector η1 as follows

d
(12=αα)
λ = −2Zα

µ√
2(µ+ 2)

η1 Y1λ(η̂1) . (6.14)

6.1.2 Calculation of the LIT

By using explicitly the electric E1 operator defined in Eq. (6.2), the response func-
tion given in (2.20) becomes

R(ωq) =
ω2

q

2(2J0 + 1)
4π
3
∑

λ=±1

∑
M0

∑
Mf

Rd(ωq) , (6.15)

with Rd(ωq) defined as

Rd(ωq) =
∑

f

∫ ∣∣∣⟨Ψf |d̂λ|Ψ0⟩
∣∣∣2δ(Ef − E0 − ωq) , (6.16)

which we want to calculate by following an integral transform approach. We there-
fore proceed by focussing on the calculation of the LIT. Specifically, we use the
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procedure shown in Section 3.3.1, i.e. the eigenvalue method, referring mainly to
Eq. (3.23), which we rewrite here for convenience

L(σR, σI) =
NΛ∑
l=1

|⟨Ψl|d̂λ|Ψ0⟩|
2

(El − E0 − σR)2 + σ2
I

. (6.17)

By exploiting the existing codes, also used in the previous works [29, 76, 107], the
eigenvalue E0 and the wave function relative to the 9Be ground state are obtained by
using a variational method in conjunction with a NSHH basis defined in momentum
space (Section 5.3). Basically, the calculation is reduced to solving the eigenvalue
problem shown in Eq. (5.134) for the state Jπ = 3/2−, from which one can calculate
E0 and the vector of the coefficients { c0

κ }. The latter allows to construct easily the
bound–state wave function by means of the basis defined in momentum space in
Eq. (5.129):

⟨π⃗ |Ψ0⟩ =
∑

κ

c0
κ ⟨π⃗ |Ψκ⟩ = N

∑
mµ

c0
mµ fm(Q)YJMπ

µ (Ω(Q)
N ) . (6.18)

As already said in Section 3.3.1, the energies El and the states |Ψl⟩ are such that
Ĥ |Ψl⟩ = El |Ψl⟩, and therefore they can be calculated as well by solving an eigen-
value problem of the same type but characterized by different quantum numbers.
Due to the selection rules imposed by the nature of the operator employed, i.e. the
dipole operator, concerning the parity, the total orbital angular momentum and the
total spin of the initial and final states, we must have

πf = −πi , ∆L = 0,±1 , ∆S = 0 . (6.19)

As a consequence, in order to obtain the eigenvalues El (l = 1, . . . , NΛ) and the
coefficients { cl

κ }, the allowed quantum numbers to give as an input in the diago-
nalization of the Hamiltonian are the following: Jπ = 1/2+, 3/2+, 5/2+. By analogy
with Eq. (6.18), we write for each l eigenstate

⟨π⃗ |Ψl⟩ =
∑

κ

cl
κ ⟨π⃗ |Ψκ⟩ = N

∑
mµ

cl
mµ fm(Q)YJMπ

µ (Ω(Q)
N ) . (6.20)

Looking back at Eq. (6.17), since we have defined the rescaled dipole operator
entirely in terms of the internal Jacobi coordinates {η2,η1 }, the calculation of
the matrix elements ⟨Ψl|d̂λ|Ψ0⟩ should be carried out in configuration space. By
considering the case of a general operator Ô, we start by introducing some sets of
complete states as follows

⟨Ψl| Ô |Ψ0⟩ =
∫
d3N η⃗

∫
d3N η⃗′

∫
d3N π⃗

(2π)3N

∫
d3N π⃗′

(2π)3N

×
〈
Ψl

∣∣ π⃗′〉 〈π⃗′ ∣∣ η⃗′〉 ⟨η⃗′| Ô |η⃗ ⟩
〈
η⃗
∣∣ π⃗ 〉

⟨π⃗ |Ψ0⟩ ,
(6.21)

where for the states in momentum space we have followed the convention (5.137).
Since the dipole operator is local, we can restrict to the case

⟨η⃗′| Ô |η⃗ ⟩ = O(η⃗) δ3N (η⃗′ − η⃗) . (6.22)
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Moreover, by using Eq. (6.18), we can write∫
d3N π⃗

(2π)3N
⟨η⃗ | π⃗⟩ ⟨π⃗ |Ψ0⟩ =

∑
κ

c0
κ

∫
d3N π⃗

(2π)3N
⟨η⃗ | π⃗⟩ ⟨π⃗ |Ψκ⟩ (6.23a)

=
∑
mµ

c0
mµ gmK(ρ)YJMπ

µ (Ω(ρ)
N ) , (6.23b)

where in (6.23b), we have used the basis consistently defined in configuration space
as in Eq. (5.163). Since we can write similar relations for each l eigenstate∫

d3N π⃗

(2π)3N
⟨η⃗ | π⃗⟩ ⟨π⃗ |Ψl⟩ =

∑
mµ

cl
mµ gmK(ρ)YJMπ

µ (Ω(ρ)
N ) , (6.24)

the explicit calculation of the matrix elements in Eq. (6.21) reduces to the following
integral in configuration space

⟨Ψl| Ô |Ψ0⟩ =
∫
dΩ(ρ)

N dρ ρ3N−1
[ ∑

m′µ′

cl
m′µ′ gm′K′(ρ)YJ ′M ′π′

µ′ (Ω(ρ)
N )
]†

× O(ρ,ΩN )
[∑

mµ

c0
mµ gmK(ρ)YJMπ

µ (Ω(ρ)
N )
]
.

(6.25)

As shown in Section 5.4.1, the basis functions gmK(ρ) can be expressed either in
terms of the associated Legendre functions P a

b (z), Eq. (5.168), or by means of the
hypergeometric functions 2F1(A,B;C; z), Eq. (5.170) [109]. In the literature, a
Fortran package is available to compute the Hypergeometric functions, which is
based on Ref. [114] by Michel and Stoitsov. Unfortunately, as mentioned in the
paper itself, numerical instabilities arise in the calculation for increasing values of
the parameters A, B and C, which in our case corresponds especially to enlarging
the dimension of the basis through the index m. This Fortran package was used in
Ref. [110], where the limit mmax = 24 was set, in order to ensure an accuracy of the
calculated basis functions up to the sixth decimal place. We have tried to perform
calculations in quadrupole precision; in this case the limit can be extended up to
mmax = 30 or mmax = 35 but in most cases these values are not sufficient to obtain
convergent results. Another attempt has been made, which arranges to calculate
the functions 2F1(A,B;C; z) with Python libraries, leading again to numerical in-
stabilities. As a consequence, in order to perform calculations, we employ another
strategy, which consists in using the defining integral in Eq. (5.164). Basically,
starting from Eq. (6.21), once the vectors of coefficients { c0

mµ } and { cl
mµ } have

been determined by diagonalizing the Hamiltonian represented on a basis defined
in momentum space, we proceed by summing over the index m as follows∑

mµ

c0,l
mµ gmK(ρ)YJMπ

µ (Ω(ρ)
N ) =

∑
µ

G0,l
µ (ρ)YJMπ

µ (Ω(ρ)
N ) , (6.26)

where we have defined the functions G0,l
µ (ρ) as

G0,l
µ (ρ) =

∑
m

c0,l
mµ gmK(ρ) . (6.27)
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The summation above allows us to work with G0,l
µ (ρ), which are rather smooth,

avoiding the highly oscillatory behaviour of the basis functions gmK(ρ) for increasing
m. Then, from the defining integral given in Eq. (5.164), we can write

G0,l
µ (ρ) = iK

∫
dQ

Q3N−1

(Qρ)
3N
2 −1

JK̄+ 1
2
(Qρ)F 0,l

µ (Q) , (6.28)

with
F 0,l

µ (Q) =
∑
m

c0,l
mµ fm(Q) . (6.29)

Due to the explicit form of the functions fm(Q), Eq. (5.132), the integrals in
Eq. (6.28) can be calculated parametrically for a grid of fixed values of ρ, for in-
stance, by using a Laguerre quadrature method. At this point, one is able to fully
determine the matrix elements of the desired operator in Eq. (6.25).

The actual matrix elements to be calculated here are those obtained by special-
izing Eq. (6.25) for N = 2 (A = 3) and for the dipole operator d̂λ:

⟨Ψl|d̂λ|Ψ0⟩ =
∫
dΩ(ρ)

2 dρ ρ5
[ ∑

m′µ′

cl
m′µ′ gm′K′(ρ)YJMπ

µ′ (Ω(ρ)
2 )
]†

× dλ(ρ,Ω2)
[∑

mµ

c0
mµ gmK(ρ)YJMπ

µ (Ω(ρ)
2 )
]
.

(6.30)

The computation strategy proposed above, in which the direct calculation of the
basis functions gmK(ρ) is avoided, can be applied as well. Since the explicit expres-
sion of the operator depends on the chosen ordering of the particles, the rotation
coefficients should also be taken into account for the correct evaluation of the matrix
elements. By following Eq. (5.92) we write〈

Ψl

∣∣∣ d̂(ij)
λ

∣∣∣Ψ0
〉

=
〈
Ψl

∣∣∣ [Q(12,ij)]† d̂(12=ij)
λ Q(12,ij)

∣∣∣Ψ0
〉
, (6.31)

where one can choose to use in the calculation the operator represented in coordinate
space either in the form (ij) = (12) = (nα), with d

(12=nα)
λ defined as in Eq. (6.12),

or in the form (ij) = (23) = (αα), with d
(12=αα)
λ as in Eq. (6.14). Notice that for

the case (ij) = (13) = (nα) the operator to use is again d
(12=nα)
λ .

There exists another formulation for the dipole operator d̂λ, in which it is con-
structed as a sum over three terms, each depending on the distances r12 ≡ r2− r1,
r23 ≡ r3 − r2 and r13 ≡ r3 − r1. In fact, starting from the reference ordering
(123) = (nαα), it can be demonstrated that

r2 + r3 = mn

mn +mα
r12 + mn

mn + 2mα

(
mα

mn +mα
r23 + mn

mn +mα
r13

)
. (6.32)

Similarly to the construction of the potential operator, by using the rotation coeffi-
cients, each term can then be related to the Jacobi coordinate η2. In this way the
complete expression for d̂λ turns out to be

〈
Ψl

∣∣∣ d̂λ

∣∣∣Ψ0
〉

=
3∑

i<j=1

〈
Ψl

∣∣∣ [Q(12,ij)]†D̂(12=ij)
λ Q(12,ij)

∣∣∣Ψ0
〉
, (6.33)
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with D̂
(12=ij)
λ represented in configuration space as

D
(12=ij)
λ = ZαMij η2 Y1λ(η̂2) . (6.34)

The mass coefficients are expressed by means of the parameter µ = mn/mα as

M12 = µ√
µ+ 1 M23 = µ

√
2µ

(µ+ 1)(µ+ 2) M13 = µ2
√
µ+ 1(µ+ 2) . (6.35)

Although all the expressions analysed for the calculation of the dipole matrix
elements ⟨Ψl|d̂λ|Ψ0⟩ are equivalent, from the point of view of the computational
strategy discussed above, the most convenient calculation is the one presented in
Eq. (6.31) with the form of the dipole operator as in Eq. (6.14). In the following we
will derive the explicit expression for the matrix elements in this specific case. After
the application of the rotation coefficients (c0,l

mµ → c
0,l(αα)
mµ ), by following Eq. (6.30),

the matrix elements to be calculated are explicitly

⟨m′, J ′M ′|d(12=αα)
λ |m,JM⟩ = −2Zα

µ√
2(µ+ 2)

⟨m′, J ′M ′|ρ cosφ2 Y1λ(η̂1)|m,JM⟩ ,

(6.36)

where we have used the relation η1 = ρ cosφ2. The detailed calculation of the
integral above can be found in Appendix F. Basically, it can be separated into a
hyperradial (F.17a), a hyperspherical (F.17b) and an angular part (F.17c) as follows

⟨m′, J ′M ′|d(12=αα)
λ |m,JM⟩ = −2Zα

µ√
2(µ+ 2)

∫
dρ ρ6g∗

m′K′(ρ)gmK(ρ)

×
∫
dφ2N

K′
2;ℓ′

2,ℓ′
1

n′
2

P
(ℓ′

2+ 1
2 ,ℓ′

1+ 1
2 )

n′
2

(cos 2φ2)

× (sinφ2)ℓ′
2+ℓ2+2(cosφ2)ℓ′

1+ℓ1+3

×NK2;ℓ2,ℓ1
n2 P

(ℓ2+ 1
2 ,ℓ1+ 1

2 )
n2 (cos 2φ2)

× (−1)J ′−M ′
(

J ′ 1 J
−M ′ λ M

)
⟨J ′∥Y1(η̂1)∥J⟩ ,

(6.37)

where the reduced matrix element is [see (F.22)]〈
J ′ ∥∥Y1(η̂1)

∥∥ J〉 = δℓ′
2,ℓ2 δ{S′},{S} (−1)L′

2+ℓ2+L2+S+J

× L̂′
2 Ĵ

′ L̂2 Ĵ

{
ℓ′1 L′

2 ℓ2
L2 ℓ1 1

}{
L′

2 J ′ S
J L2 1

}

×
√

3
4π ℓ̂

′
1 ℓ̂1

(
ℓ′1 1 ℓ1
0 0 0

)
.

(6.38)

We have reported in Appendix F also the detailed derivation of the matrix elements
⟨m′, J ′M ′|ρ sinφ2 Y1λ(η̂2)|m,JM⟩, which are useful when the alternative forms of
the dipole operator, Eqs. (6.12) and (6.34), are used in the calculation.

Once the matrix elements ⟨Ψl|d̂λ|Ψ0⟩ have been computed, it is not difficult to
reconstruct the LIT as in Eq. (6.17). The response function Rd(ωq) in Eq. (6.16) is
then calculated by performing an inversion.
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6.1.3 The photodisintegration cross section

We conclude this Section by deriving explicitly the expression of the photodisinte-
gration reaction cross section, starting from the definition given in Eq. (2.19), with
the response function as in Eq. (6.15) and (6.16). The cross section reads

σ(ωq) = 4αωq

2(2J0 + 1)
4π3

3
∑

λ=±1

∑
M0

∑
Mf

(−1)2Jf −2Mf

×
(

Jf 1 J0
−Mf λ M0

)(
Jf 1 J0
−Mf λ M0

)
Rred

d (ωq) ,
(6.39)

where, since we have extracted the 3j symbol appearing in Eq. (6.37), the response
Rred

d (ωq) contains the reduced dipole operator matrix elements ⟨Ψf∥d̂∥Ψ0⟩ squared.
Due to the symmetry properties of the 3j symbols we can write [115](

Jf 1 J0
−Mf λ M0

)
=
(
J0 Jf 1
M0 −Mf λ

)
, (6.40)

and this allows us to exploit the orthogonality relation [115]

∑
M0

∑
Mf

(2j + 1)
(
J0 Jf j
M0 −Mf λ

)(
J0 Jf j′

M0 −Mf λ′

)
= δjj′δλλ′ , (6.41)

for j = j′ = 1 and λ = λ′. Moreover, the sum over the orthogonal polarizations
gives a factor 2, since the whole expression has become λ–independent. This leads
to the following final result for the cross section

σ(ωq) = αωq
4π3

9 Rred
d (ωq) , (6.42)

where we have inserted the value J0 = 3/2 for the spin of 9Be nucleus in its ground
state.

6.2 Results
9Be provides a Borromean nuclear system that is loosely bound, since it is charac-
terized by a Jπ = 3/2− ground state with binding energy B3 = 1.5736 MeV [73].
A scheme of the energy levels is shown in Fig. 6.1, where also the states Jπ =
1/2+, 5/2+, 3/2+ are visible, which are connected with the ground state through
E1 transitions. According to Ref. [73], they correspond to the energies 1.684 MeV,
3.049 MeV and 4.704 MeV, respectively. The major contribution to the total low–
energy cross section is due to the 1/2+ resonance, being ≈ 0.11 MeV above the
three–body threshold; the 5/2+ and 3/2+ resonances occur at higher energies. In
Fig. 6.1 also the first states with negative parity are shown, representing magnetic
M1 transitions from the ground state. As already stated, they will not be included
in the calculation of the final cross section. The 5/2− resonance at 2.429 MeV [73] is
very narrow; the other resonances, 1/2− and 3/2−, have a small effect on the final
low–energy cross section.
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Figure 6.1: 9Be level scheme taken from Ref. [5]. Energy threshold for three–body
α+ α+ n breakup occurs at incident photon energy 1.573 MeV. The threshold for
the two–body breakup is also shown, arising at 1.665 MeV, which also corresponds
to the neutron separation energy Sn(9Be).

As discussed in Section 6.1.2, the calculation of the LIT assumes the knowledge
of the bound state of the nuclear system under study. As a consequence, large
part of this work is also devoted to 9Be bound–state calculations. In the following
Sections we will compute the photodisintegration cross section at Leading Order
(LO) and beyond, by using different values of the EFT parameters and discussing
how the results depend on the different inputs.

6.2.1 Calculations at Leading Order

The 9Be ground state

We perform our calculations at LO by including the following interactions:

VLO = V S
αα(ΛS

αα) + V P
αn(ΛP

αn) , (6.43)

namely an α–α S–wave effective potential as defined in Eq. (4.64), characterized by
the cut–off parameter ΛS

αα of the Gaussian regulator function, in addition to an α–n
effective potential in the partial wave P with cut–off ΛP

αn , in the form of Eq. (4.52).
The calculation of the 9Be ground–state energy has been performed by using an

existing Fortran code. The code, first developed for the work presented in Ref. [92],
was later adapted to work with a HH basis defined in momentum space [107], includ-
ing also the two–body α–α and α–n effective potentials already derived in Ref. [76].
Since we are diagonalising the Hamiltonian matrix represented on the basis (5.129)
defined in momentum space, the matrix elements to be calculated are those reported
in Section 5.3.3. Specifically, the matrix elements of the two–body effective poten-
tials are computed by following the calculation derived in Eq. (5.153), and also
the Coulomb potential between the two α–particles must be taken into account.
Since the latter term is defined as in Eq. (5.155), it presents a logarithmic divergent
character, as well as a highly oscillatory behaviour near the divergence. For this
reason, as also pointed out in Ref. [29], a Gauss–Legendre quadrature integration is
adopted, giving more accurate and stable results in comparison with the standard
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Gauss–Laguerre method [45]. An alternative integration method has also been de-
veloped, whose details and associated tests can be found in Ref. [29]. The original
Gauss–Legendre formula designed for the integration range [−1,+1] [45] has been
adapted to [0,+∞), in order to properly perform the integrations in Q and Q′ of
Eq. (5.153). The required change of variable is the following

x→ c

(
x+1

2

)a

(
1− x+1

2

)b
, (6.44)

where a, b and c are real parameters. Then, the integration in the hyperangle φ2 is
carried out by means of a Gauss–Jacobi quadrature method [45].

We start by showing some convergence studies relative to the computation of
the ground–state energy for the two–body cut–offs fixed to ΛS

αα = 190 MeV and
ΛP

αn = 300 MeV. In Tab. 6.1 we have reported the calculated E0 for different
values of the dimension of the grids relative to the integration in the hypermomenta
and in the hyperangle, NQ (NQ′ = NQ) and Nφ, respectively. This is done while
keeping all the basis parameters fixed. Concerning the Laguerre basis relative to
the “hypermomental” part, we have fixed the non–linear parameter β to the value
β = 0.05 fm−1, and we have considered a dimension NL = 30; for the maximum
grand–angular momentum, which is associated to the hyperspherical part of the
basis, we have used Kmax = 17. Notice that, due to the characteristics of the
potentials that we are integrating, the “hypermomental” and the hyperangular grids
are deeply connected. With the parameters in Eq. (6.44) set to a = b = 0.6 and
c = 10, for NQ, Nφ ≈ 500 we get an error in E0 at the order of keV. The convergence
is therefore rather slow. Due to the large number of integration points needed, the
computational time of the original Fortran code is quite long. For this reason, in this
work, we have opted for a first–level parallelization by using an OpenMP approach.
Then, having fixed the dimension of the integration grids to NQ/Nφ = 550/500, we
have studied the variation of the energy by increasing the dimension of the Laguerre
basis, from 20 to 40. In this case, as shown in Tab. 6.1, the results are stable up to
the fifth digit for NL ≥ 30.

NQ/Nφ E0 NL E0

450/400 −1.948391 20 −1.948322
500/450 −1.955997 25 −1.948374
550/500 −1.962331 30 −1.948391
600/550 −1.967669 35 −1.948396

40 −1.948398

Table 6.1: 9Be ground state energies (in MeV) calculated for Kmax = 17 and β =
0.05 fm−1 as a function of NQ/Nφ, the number of points relative to the integration
grids in the hypermomentum Q (Q′) and in the hyperangle φ2, respectively. On
the right, the variation of E0 by increasing NL, the dimension of the Laguerre
polynomials basis. The two–body potential cut–off parameters are fixed to ΛS

αα =
190 MeV and ΛP

αn = 300 MeV.
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Figure 6.2: 9Be ground–state energy calculated with NL = 30 as a function of the
non–linear parameter β (a), and of Kmax (b). In panel (a) the number of integration
points is fixed to NQ/Nφ = 450/400 and Kmax = 17. In panel (b) the results have
been obtained with NQ/Nφ = 550/500 and β = 0.05. In both cases the two–body
potential cut–off parameters are fixed to ΛS

αα = 190 MeV and ΛP
αn = 300 MeV. The

experimental three–body binding energy is B3 = 1.573 MeV [73].

In Fig. 6.2a we have tested the stability of the results by varying the non–
linear parameter β. It can be deduced that any value inside the range of stability
β = 0.03 − 0.06 fm−1 can be employed to speed–up the convergence. Finally, we
have studied the variation of the ground–state energy with respect to the maximum
grand–angular momentum quantum number. The convergence pattern is shown in
Fig. 6.2b. For Kmax = 17, 19 the error in the computed energy is of about a few
keV units, while Kmax = 23, 25 ensures an accuracy up to the third or even fourth
decimal place. The rather fast convergence in Kmax to the value E0 = −1.965 MeV
is mainly due to the smoothness of the two–body effective potentials employed in
the calculation. The typical values used to perform convergent calculations are
therefore β = 0.05 fm−1, NQ/Nφ = 550/500, NL = 30 and Kmax = 25.

The square points in Fig. 6.3 show the calculated 9Be ground state energy for
fixed ΛS

αα = 190 MeV and for three different values of the cut–off ΛP
αn allowed by

the Wigner bound ΛP
αn < 330 MeV. On the right panel we have also put the results

for E0 computed with ΛP
αn = 300 MeV and for different values of ΛS

αα, such that
ΛS

αα < 230 MeV. As also discussed in Ref. [29], a variation of the cut–off ΛP
αn gives

rise to a broader range of values for the calculated E0 (≈ 1.8 MeV) with respect to
the range originated by varying ΛS

αα (≈ 0.7 MeV). However, the plotted behaviour
is different: while by increasing ΛP

αn at fixed ΛS
αα = 190 MeV the results obtained

show somehow a convergence for ΛP
αn = 200 − 300 MeV, the energy E0 obtained

by varying ΛS
αα at fixed ΛP

αn = 300 MeV shows an oscillation. In any case, all the
plotted results are theoretically allowed.

As explicitly shown in Fig. 6.3, the three–body ground–state energy depends on
the choice of the two–body cut–off parameters ΛS

αα and ΛP
αn . In order to avoid such
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Figure 6.3: 9Be ground–state energies calculated with fixed ΛS
αα = 190 MeV for

different values of the cut–off ΛP
αn (left panel) and with fixed ΛP

αn = 300 MeV for
different ΛS

αα (right panel). The green and blue symbols represent a correction
to the LO calculation with VLO = V S

αα(ΛS
αα) + V P

αn(ΛP
αn) (red squares) due to the

additional terms V P 1/2
αn (ΛP1/2

αn = 150 MeV) and V S
αn (ΛS

αn = 100 MeV), respectively
(see Section 6.2.2). The experimental three–body binding energy is taken from
Ref. [73] as B3 = 1.573 MeV.

a situation, we include in the calculation at LO also a three–body potential in the
form of Eq. (5.156). This will allow us to fix ΛS

αα and ΛP
αn , while leaving the three–

body parameters free. The matrix elements relative to the three–body potential
can be evaluated as in Eq. (5.157) and the implementation of this interaction in
the original Fortran code was first done in the work of Ref. [29]. With the notation
VLO+3 we will therefore refer to the following potential:

VLO+3 = V S
αα(ΛS

αα) + V P
αn(ΛP

αn) + V3(Λ3, λ3) . (6.45)

Typically we will choose as two–body cut–offs ΛS
αα = 190 MeV and ΛP

αn = 300 MeV,
being one of the pairs that best reproduce the α–α and α–n low–energy phase–
shifts (see Figs. 4.5 and 4.7b). When doing bound–state calculations, once also
Λ3 has been fixed, the strength of the three–body force λ3 is adjusted in order to
ensure that the effective theory reproduces the correct energy of the 9Be ground
state. Fig. 6.4 shows the values of the constant λ3/2−

3 needed in order to obtain
the energy E0 = −1.573 MeV of the 3/2− ground state by varying the three–body
cut–off Λ3 in the range of values from 100 to 600 MeV. Basically, by tuning the
strength of the three–body potential, the dependence of the observable E0 on the
cut–offs associated to the two–body forces is cancelled, and the experimental energy
of the ground state is reproduced for all the values of Λ3. In Fig. 6.4 we have also
plotted the behaviour of the dimensionless parameter c3/2−

3 by varying Λ3 in the
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3 (lower panel) as a function of the three–body cut–off Λ3. The
strength λ3/2−

3 is tuned to reproduce the 9Be experimental ground–state energy. The
LO potential in Eq. (6.45) has been used in the calculations, with ΛS

αα = 190 MeV
and ΛP

αn = 300 MeV.

same range of values. For purely dimensional reasons, we have defined c3 = λ3Λ5
3.

In principle, since other scales are present in the theory, one could have defined c3
differently, for example by inserting a mass parameter in the relation, thus reducing
the power relative to the dependence on Λ3 (∼ Λ4

3). This is in fact what Fig. 6.4
suggests. Finally, by fixing Λ3 = 300 MeV, we have studied the behaviour of the
ground state energy E0 as a function of the maximum grand–angular momentum
Kmax. The convergence pattern has been plotted in Fig. 6.5 and, essentially, it is
very similar to the one already shown in Fig 6.2b, which was obtained without the
contribution of the three–body force.

The 9Be photodisintegration cross section

By exploiting the results obtained for the 9Be ground state, we compute the LIT
associated to the E1 transition 3/2− → 1/2+, as in Eq. (6.17). In calculating the
dipole matrix elements ⟨Ψl|d̂λ|Ψ0⟩, due to the quite large degeneracy in the index
l, we have performed a parallelization of the code on the loops involving this index
by using an OpenMP approach. In order to solve the eigenvalue problem for the
final state Jπ = 1/2+, we use the same Hamiltonian as the one employed for the
ground state, including the potential VLO+3 in Eq. (6.45) with ΛS

αα = 190 MeV,
ΛP

αn = 300 MeV and Λ3 = 300 MeV.
In Fig. 6.6, we show the calculated LIT L(σR, σI), with fixed σI = 0.2 MeV, for

different values of the strength of the three–body potential λ1/2+

3 . By using the same
strength employed to calculate the ground state, i.e. λ1/2+

3 = λ
3/2−

3 = 0.013045 fm5,
we obtain a rather large resonance peak located above 2 MeV. The position of
the latter is adjusted by varying the parameter towards negative values, until the
experimental location ≈ 1.7 MeV is reached. Notice that a 1/2+ bound state starts
to appear already for λ1/2+

3 = −0.1140 fm5, which is unphysical. This mechanism
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Figure 6.5: Convergence study of the 9Be ground–state energy with respect to the
maximum grand–angular momentum Kmax. E0 is calculated at LO by including a
three–body potential [V S

αα(190) +V P
αn(300) +V3(300, 0.013045), see Eq. (6.45)]. We

take B3 = 1.573 MeV [73].

suggests that the three–body potential is state–dependent. Actually a similar result
was obtained also in Refs. [18, 116]. In [116], for example, Odsuren, et al. have
investigated the same 9Be 1/2+ resonance by using the complex scaling method in a
three–body cluster framework. Even though the potentials employed are of different
type, and the three–body force is defined in coordinate space, 1/2+ calculations
agree with the experimental data by choosing an appropriate strength for the three–
body potential, which is different from the one used for the 3/2− bound–state.

In Fig. 6.6, when computing the LIT, we have used a “hypermomental” (hyper-
radial) basis of dimension NL = 30 with a non–linear parameter fixed to β = 0.05
and a maximum grand–angular momentum Kmax = 26. By taking as a starting
point the result represented with the red solid line, i.e. the LIT with the resonance
peak in the correct position at ≈ 1.7 MeV, we have carried out different calculations
by varying β, Kmax and NL. The LIT for σI = 0.2 MeV is quite stable for β in
the range of values from 0.03 fm−1 to 0.06 fm−1, as it can be deduced from Fig. 6.7.
An increasing value of the grand–angular momentum quantum number K slightly
affects the position and the width of the resonance peak, and convergent results
can be obtained for Kmax = 26 as shown in Fig. 6.8a. A different behaviour can be
noticed if one varies the dimension of the “hypermomental” (hyperradial) basis, as
reported in Fig. 6.8b. The effect of an increasing NL can be seen mainly outside
the peak region at energies above ≈ 2.5 MeV, where the visible oscillations present
at NL = 30 are smoothed by taking 60 ≤ NL ≤ 90. Since a LIT with a smooth
behaviour is preferable in order to obtain more accurate results during the inversion
procedure, a value of at least NL = 60 is recommended. The reason for such a highly
oscillatory behaviour of the LIT, and therefore for such a slow rate of convergence,
can be traced back to the small value chosen for σI , namely 0.2 MeV. This parame-
ter is closely related to the width of the Lorentzian kernel used in defining the LIT
itself. As also discussed in Section 3.2, the smaller is σI , the later the convergence



6.2 Results 103

0 1 2 3 4 5
σ

R
 [MeV]

0

0.5

1

1.5

2

L
IT

 [
fm

2
 M

e
V

-2
]

λ
3

1/2+
 = λ

3

3/2-

λ
3

1/2+
 = -0.1000 fm

5

λ
3

1/2+
 = -0.1112 fm

5

λ
3

1/2+
 = -0.1140 fm

5

σ
I
 = 0.2 MeV

Figure 6.6: LIT relative to the E1 transition 3/2− → 1/2+ calculated for σI =
0.2 MeV, Kmax = 26 and NL = 30. The LO potential used is V S

αα(190)+V P
αn(300)+

V3(300, λ1/2+

3 ) [see Eq. (6.45)], where the strength of the three–body force is varied
to have a resonance peak located in the correct position.

0 1 2 3 4
σ

R
 [MeV]

0

0.5

1

1.5

2

L
IT

 [
fm

2
 M

e
V

-2
]

β = 0.02 1/fm

β = 0.03 1/fm

β = 0.04 1/fm

β = 0.05 1/fm

β = 0.07 1/fm

σ
I
 = 0.2 MeV

Figure 6.7: Same as Fig. 6.6 with the three–body strength fixed to λ
1/2+

3 =
0.1112 fm5. The LIT is calculated for different values of the non–linear parame-
ter β relative to the “hypermomental” (hyperradial) basis employed.



104 Chapter 6. The Beryllium–9 photodisintegration reaction

0 1 2 3 4
σ

R
 [MeV]

0

0.5

1

1.5

2
L

IT
 [

fm
2
 M

e
V

-2
]

K
max

 = 14

K
max

 = 18

K
max

 = 22

K
max

 = 24

K
max

 = 26

K
max

 = 28

σ
I
 = 0.2 MeV

(a)

0 1 2 3 4
σ

R
 [MeV]

0

0.5

1

1.5

2

L
IT

 [
fm

2
 M

e
V

-2
]

N
L
 = 30

N
L
 = 40

N
L
 = 50

N
L
 = 60

N
L
 = 90

σ
I
 = 0.2 MeV

(b)

Figure 6.8: Same as Fig. 6.6 with fixed λ1/2+

3 = 0.1112 fm5. The convergence pattern
of the LIT is shown both with respect to the maximum grand–angular momentum
Kmax (NL = 30) (a) and with respect to the dimension of the “hypermomental”
(hyperradial) basis NL (Kmax = 26) (b).

is reached. However, in studying the narrow resonance associated to the 9Be 1/2+

state, we are somehow forced to take σI ≲ 0.2 MeV, because this is a value that is
comparable with the experimental width of the peak. By taking σI > 0.2 MeV the
convergence will be faster but, at the same time, the information on the resonance
peak is lost. This can be visualized in Fig. 6.9, where we have calculated the LIT
for increasing σI . With respect to the case σI = 0.2 MeV, the resulting LITs are
smaller in height; the peak starts to “blur” for σI = 0.5 MeV while it completely
disappears for σI = 1 MeV, not allowing to perform a good inversion.

Finally, we have calculated L(σR, σI) for σI = 0.2 MeV by varying the cut–off
relative to the three–body potential, which so far has been kept fixed at Λ3 =
300 MeV. The LIT for Λ3 = 400 MeV is in Fig. 6.10a, showing an increased height
of about 8%. The results are therefore slightly dependent on the variation of Λ3.

The LIT relative to the E1 transition 3/2− → 5/2+ is shown in Fig. 6.10b. In
order to obtain this result, we have used again Eq. (6.17), with Jπ = 5/2+ as the final
state. With a cut–off Λ3 = 400 MeV relative to the three–body force, the strength
λ

5/2+

3 = 0.0125 fm5 produces a resonance peak located at the experimental energy
≈ 3 MeV. Furthermore, also in this case, we have used the value σI = 0.2 MeV, since
the experimental width of the 5/2+ resonance is ≈ 0.2 MeV. The result shown in
Fig. 6.10b has been obtained with Kmax = 26 and NL = 40. Due to the resonance
position at ≈ 3 MeV, on the basis of the results obtained for the 1/2+ state, we
expect that these values do not assure a full convergence of the calculated LIT.

Starting from the fully convergent 1/2+ LIT results given Fig. 6.10a, we have
performed an inversion to obtain the associated response functions [117]. Then, from
Eq. (6.42), we have computed the 9Be photodisintegration cross–section relative to
the transition 3/2− → 1/2+, which is shown in Fig. 6.11. The results are plotted
as a function of the incident photon energy ω. In the 1/2+ resonance region, our
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Figure 6.10: (a) LIT relative to the transition 3/2− → 1/2+ calculated at con-
vergence (Kmax = 26, NL = 90) for two different values of the cut–off Λ3.
(b) LIT relative to the transition 3/2− → 5/2+ calculated for Λ3 = 400 MeV
(Kmax = 26, NL = 40). Both results have been obtained with the LO poten-
tial V S

αα(190) + V P
αn(300) + V3(Λ3, λ
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3 ) [see Eq. (6.45)] and for σI = 0.2 MeV.
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Figure 6.11: 9Be photodisintegration cross section relative to the E1 transition
3/2− → 1/2+ as a function of the incident photon energy ω. The three–body energy
threshold is located at 1.573 MeV. The results correspond to the LITs calculated in
Fig. 6.10a for two different values of the three–body cut–off parameter. The set of
experimental data is taken from Ref. [5].

calculated cross sections overestimate the experimental data of Ref. [5] by a factor
of almost 2. In addition, the 1/2+ resonance has a high tail at energies above
≈ 2 MeV, which would also affect the cross section in the 5/2+ resonance region
with a contribution of ≈ 1 mb. Although these final results are rather acceptable
from a EFT point of view, as they slightly depend on a variation of the cut–off
associated to the three–body interaction, we have decided to proceed by including
in the calculation, not only the LO interactions in Eq. (6.43), but also other partial
wave components of the effective two–body potentials. This study will be developed
in the next Sections.

6.2.2 Calculations beyond Leading Order

Driven by the results obtained in the last Section, we have also performed calcula-
tions by adding other partial waves to the LO effective interactions of Eq. (6.43).
In this Section we will use the following potentials

VLO + V P 1/2
αn (ΛP1/2

αn ) , (6.46)
VLO + V S

αn(ΛS
αn) , (6.47)

eventually adding also a three–body force term. We will often refer to these inter-
action as Next–to–Leading Order (NLO) potentials. In the equations above, V S

αn is
the effective α–n interaction in the partial wave S with associated cut–off ΛS

αn , as
derived in Eq. (4.53), while V P 1/2

αn is the P1/2–wave component, with cut–off ΛP1/2
αn ,

which we will consider in the form of Eq. (4.52). Our aim is to analyse the effect of
these additional terms, first by calculating the 9Be ground–state energy, and then
the LIT.
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The 9Be ground state

We start by studying the case in which no three–body interaction is present in the
model. We choose as cut–off parameters ΛP1/2

αn = 150 MeV and ΛS
αn = 100 MeV,

both allowed by each associated Wigner bound. The effect of the additional terms
V

P 1/2
αn and V S

αn on the 9Be ground–state energy is shown in Fig. 6.3, for different
values of the cut–off ΛP

αn at fixed ΛS
αα, and vice versa. In most cases, E0 is smaller

with respect to the LO calculations: the P1/2–wave induces a difference of about
≈ 70 keV, while the S–wave contribution is of ≈ 17 keV.

By adding the three–body potential term, i.e. by considering the NLO interac-
tions

VLO+3 + V P 1/2
αn (ΛP1/2

αn ) , (6.48)
VLO+3 + V S

αn(ΛS
αn) , (6.49)

where VLO+3 is defined as in Eq. (6.45), the value of the strength λ3/2−

3 is adjusted in
order to obtain the experimental ground state energy of 9Be nucleus for each value
of Λ3. In Figs. 6.12a and 6.12b, we have studied the convergence of the calculated
E0 with respect to the grand–angular momentum Kmax. With the addition of the
α–n effective interaction in the P1/2–wave, the converge pattern is essentially the
same as the one obtained at LO (see Fig 6.5), while the inclusion of the term V S

αn

seems to lead to a faster convergence in Kmax.
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Figure 6.12: Convergence study of 9Be ground–state energy with respect to the
maximum grand–angular momentum quantum number Kmax. E0 is calculated by
adding to VLO+3 [V S

αα(190) + V P
αn(300) + V3(300, λ3/2−

3 )] either the α–n effective
potential V P 1/2

αn (150) (a) or the interaction V S
αn(100) (b). In both cases, the cho-

sen strength of the three–body potential, λ3/2−

3 , allows to obtain the experimental
ground state energy −1.573 MeV [73].
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The α–n S–wave effective potential

So far ΛS
αn = 100 MeV has been used in the calculations but the value of this parame-

ter should be increased, in order to work with an α–n S–wave effective potential that
better describes the experimental low–energy phase–shifts. This can be deduced,
for example, by looking at Fig. 4.5. Unfortunately, already at ΛS

αn = 200 MeV, a
two–body bound–state of energy e0 = −5.615 MeV appears, which is unphysical. In
Tab. 6.2 we have collected the calculated energies of the existing bound–states by
increasing the cut–off ΛS

αn up to 525 MeV. All these values are theoretically allowed
by the Wigner bound. Being a result of the T–matrix resummation procedure em-
ployed to determine the LECs of the effective potential V S

αn (see Section 4.3), these
bound–states are forbidden by the Pauli principle. In fact, a ℓ = 0 state is not
admitted for the neutron, since it is already fully occupied by the internal nucleons
of the α–particles, which are not treated explicitly in the theory. Being forbidden,
these bound–states must be projected out. This can be achieved [118] by adding to
the effective potential V S

αn the following “projection” term

VP R = |ψS
αn⟩Γ ⟨ψS

αn| , (6.50)

where Γ is a constant and |ψS
αn⟩ is the eigenstate relative to the deep bound–state

with energy e0. This method has been used also in Ref. [119] by Deltuva. There,
it is applied to project out the forbidden states relative to the n–18C potentials
employed to study the low–energy n–19C scattering in a three–body model. In
momentum space the projection potential reads

VP R(p,p′) = Γ ΨS∗
αn(p) ΨS

αn(p′) . (6.51)

Being p (p′) a relative momentum between the neutron and the α–particle, the ma-
trix elements of the interaction above can be calculated as in Eq. (5.153), where the
2π–factors have been included in the constant Γ. The exact value of this parameter
is not important, since, as also stated in Ref. [119], formally Γ → ∞ but basically
it is sufficient to use a value for which the three–body bound–state and scattering
calculations turn out to be Γ–independent.

In the calculations we will mainly employ the effective potential V S
αn with a

fixed cut–off ΛS
αn = 300 MeV, which has been also plotted in Fig. 6.13a. This

ΛS
αn e0

200 −5.615
250 −20.83
300 −12.25
400 −13.35
500 −13.85
525 −13.97

Table 6.2: Energies e0 (MeV) of the α–n bound–states that exist in correspondence
to some values of ΛS

αn (MeV), the cut–off parameter relative to the α–n effective
potential in the partial wave S.
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Figure 6.13: α–n “diagonal” S–wave effective potential V S
αn calculated with a cut–off

fixed to the value ΛS
αn = 300 MeV (a) and the wave–function relative to the existing

deeply bound–state with energy E0 = −12.25 MeV (b).
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Figure 6.14: Effect of the addition of the “diagonal” projection potential term VP R

to the α–n S–wave “diagonal” effective interaction (ΛS
αn = 300 MeV) for different

values of the projection parameter Γ.

interaction produces a forbidden bound state with energy e0 = −12.25 MeV, whose
wave function has been calculated [117] and is showed in Fig. 6.13b. The total
interaction resulting from the sum of the effective potential and the projection
term (6.51) is represented in Fig. 6.14, for different values of the parameter Γ.
Essentially, by increasing Γ a repulsive core arises, which is supposed to project out
the Pauli–forbidden two–body bound–state.

We have also studied the effect of the projection potential on the low–energy
spectrum of the subsystem α–n. In Tab. 6.3 we have collected the first calculated
eigenvalues by varying the projection parameter. As the latter increases, the for-
bidden bound–state becomes less bound until it disappears for values of Γ in the
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Γ e0 e1 e2 e3 e4 e5

0 −12.25 0.3149 1.266 2.871 5.168 8.212
1 −11.25 0.3149 1.266 2.871 5.168 8.212
5 −7.245 0.3149 1.266 2.871 5.168 8.212

10 −2.245 0.3149 1.266 2.871 5.168 8.212
15 0.3149 1.266 2.871 5.168 8.212
20 0.3149 1.266 2.871 5.168 8.212
50 0.3149 1.266 2.871 5.168 8.212

250 0.3149 1.266 2.871 5.168 8.212
2000 0.3149 1.266 2.871 5.168 8.212

Table 6.3: Discretized low–energy spectrum (MeV) for the channel 1/2+ relative to
the subsystem α–n for different values of the projection parameter Γ (MeV).

0 1 2 3 4
E

lab
 [MeV]

-50

-40

-30

-20

-10

0

δ
α

n

S
  

[d
eg

]

Exp.

Γ = 0 MeV
Γ = 20 MeV
Γ = 50 MeV
Γ = 250 MeV

Figure 6.15: α–n S–wave low–energy phase–shifts calculated with the projection
potential VP R in addition to the two–body effective interaction V S

αn(300), for differ-
ent values of the projection parameter Γ. The experimental data are from Ref. [82].

range Γ ≥ 15 MeV; meanwhile, the rest of the discretized low–energy spectrum is
completely unaffected. As a last check, we have calculated the α–n low–energy
phase–shifts for different values of the parameter Γ. Also in this case, as Fig. 6.15
shows, no significant differences arise in the results when the projection potential is
added and the constant Γ is varied.

The phase–shifts in Fig. 6.15 have been computed by using a method based on
integral relations, which was first introduced in Refs. [120, 121] by Kievsky, et al..
Essentially, this technique provides a way to calculate scattering parameters, such
as phase–shifts and mixing angles, making use of bound–state–like wave functions.
A feasibility test of the method has been done in Ref. [94], for systems composed
of A = 2 and 3 nucleons, in conjunction with a symmetrized HH method, and by
employing both phenomenological and realistic NN potentials [122]. The results
obtained here show that the method is also well suited to work with the two–body
α–n system described by effective potentials defined in momentum space, such as
those used in this work.

We conclude this Section by including some results regarding the effect of the
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0 = −1.965 MeV is

the lowest eigenvalue obtained by using only the VLO term.

additional projection potential term (6.51) in the three–body sector. By using the
interaction in Eq. (6.47) including VP R,

VLO + V S
αn(300) + VP R(Γ) , (6.52)

we have calculated the three–body discretized low–energy spectrum relative to the
9Be system for Kmax = 25 and NL = 30, and we have collected the results in
Fig. 6.16. When the projection potential is missing, in diagonalizing the Hamilto-
nian matrix, 7 negative eigenvalues show up, in which the lower is at about 11 MeV.
By increasing the value of the projection parameter Γ, the number of negative
eigenvalues decreases until only one survives around 2 MeV, for Γ in the range from
about 15 MeV to 30 MeV. Above this range, no negative eigenvalue exists. Notice
that for Γ ≃ 20 MeV the lowest eigenvalue of the Hamiltonian approaches the value
ELO

0 = −1.965 MeV, which is the lowest eigenvalue obtained at LO (see Fig. 6.2b).
By using a non–zero Γ, the absence of deeply bound three–body states is therefore
ensured.

By including the three–body force in the calculation, namely by using the in-
teraction

VLO+3 + V S
αn(300) + VP R(Γ) , (6.53)

with VLO+3 defined as in Eq. (6.45), we have studied the variation of the strength
λ

3/2−

3 for fixed Λ3 = 300 MeV, as a function of the projection parameter Γ. The
results are plotted in Fig. 6.17. We recall here that, by tuning the constant λ3/2−

3 ,
one manages to obtain the experimental ground–state energy of 9Be for every value
of the cut–off Λ3 given in input. By including also the projection term VP R in the
theory, it is interesting to observe that, for fixed Λ3 = 300 MeV, the dependence
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3
(lower panel) as a function of three–body cut–off Λ3. By tuning the strength λ3/2−

3
the experimental ground state energy is always reproduced. The NLO potential
used is the same as Fig. 6.17 with Γ = 2000 MeV.

of the strength λ
3/2−

3 on Γ reaches a plateau in the region above Γ ≈ 500 MeV. A
value of Γ taken in this region should therefore ensure that the three–body results
are independent on Γ itself. Within this range, this constant can also no longer
be considered as a free parameter. By fixing Γ = 2000 MeV, we have then studied
the behaviour of the strength of the three–body potential λ3/2−

3 by varying the
cut–off Λ3. The results are reported in Fig. 6.18, where the dependence of the
dimensionless parameter c3/2−

3 on Λ3 is also shown. Natural values of c3/2−

3 around
unit arise for cut–offs Λ3 ∼ 300 − 400 MeV. We point out again that c3 is defined
here as c3 = λ3Λ5

3.
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Figure 6.19: Convergence study of the 9Be ground state energy with respect to the
maximum grand–angular momentum quantum number Kmax. The NLO potential
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chosen strength λ
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3 the experimental ground state energy [73] is reproduced.

With fixed Γ = 2000 MeV and Λ3 = 300 MeV, in Fig. 6.19 we have also studied
the convergence of the 9Be ground–state energy E0 with respect to Kmax. Due to
the presence of a more repulsive core, the convergence is slower in comparison with
calculations done without the projection potential. However, by taking a maximum
grand–angular momentum equal to 25, the error is still of the order of a few keV.

The 9Be photodisintegration cross section

Here we will expose some results at NLO obtained by computing the LIT as in
Eq. (6.17). We start by showing some calculations relative to the E1 transition
3/2− → 1/2+. In order to evaluate the total cross section of 9Be photodisintegra-
tion, we will also discuss the cases 3/2− → 5/2+ and 3/2− → 3/2+.

Jπ = 1/2+ state

For the LIT results presented in Fig. 6.20, we have worked with the potentials given
in Eqs. (6.48) and (6.49), comparing the NLO results with the ones already obtained
at LO (see Fig. 6.6). The three–body force is included in the calculation. The
addition of the P1/2–wave α–n interaction leads to a slightly more pronounced peak
located at ≈ 1.7 MeV, whose strength is equal to that obtained at LO, as expected.
However, by adding the S–wave α–n effective potential, we obtain a peak with about
half the strength of the LO result, leading to the conclusion that, in the 1/2+ case,
this partial wave assumes an important role in our calculations. Moreover, with
this additional interaction term, we are going in the right direction, since the cross
section results obtained at LO overestimate the experimental data. In Fig. 6.20 we
have employed a cut–off ΛS

αn = 100 MeV for the S–wave α–n effective potential.
However, this gives rise to a high tail in the energy region 3− 4 MeV, which, after
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αn , with a cut–off fixed to ΛP

αn = 150 MeV (dashed
dotted green), and of the term V S
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the inversion of the LIT, leads to an unphysical result for the cross section. As a
consequence, we have chosen to use a larger cut–off parameter, ΛS

αn = 300 MeV,
which also better reproduces the experimental low–energy phase–shifts. In this
case, we are forced to add also a projection potential term (6.51), as discussed in
Section 6.2.2. In the following, we will therefore analyse the results for the LIT
obtained with the NLO potential of Eq. (6.53):

VLO+3 + V S
αn(300) + VP R(Γ) . (6.54)

The term VLO+3 will be kept fixed, VLO+3 = V S
αα(190) + V P

αn(300) + V3(Λ3, λ3). We
remark here again that, in order to solve the eigenvalue problem for the final state
Jπ = 1/2+, we use the same Hamiltonian as the one employed for the ground state
Jπ = 3/2−, with the exception of the strength λ3. This parameter is in fact used
to locate the resonance in the correct position.

In Figs. 6.21 we show the LIT calculated with σI = 0.2 MeV by varying the
values of the projection parameter Γ and with the cut–off of the three–body force
fixed to Λ3 = 300 MeV. The results are convergent for Γ ≈ 1000 − 2000 MeV,
and this is consistent with what was obtained for the bound–state calculations (see
Fig. 6.17). As a consequence, by choosing a value in this range also the LITs should
not depend on the projection parameter Γ.

The procedure of varying the three–body potential strength λ
1/2+

3 in order to
obtain a resonance peak located at the correct energy ≈ 1.70 MeV can be visualised
in Figs. 6.22. We point out that by taking λ1/2+

3 = λ
3/2−

3 , i.e. the same value used
for the ground state, a 1/2+ bound–state is present. As a consequence, λ1/2+

3 must
be changed towards less–attractive values. In Figs. 6.23 the convergence of the
LIT with respect to the dimension of the “hypermomental” (hyperradial) basis is
analysed. By taking, as an example, the values Γ = 250 MeV and Γ = 2000 MeV
for the projection parameter, the LIT in the region up to about ≈ 2.5 MeV is
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Figure 6.21: LIT calculated with the NLO potential of Eq. (6.54), with Λ3 =
300 MeV, by varying the projection potential Γ in the range 20− 40 MeV (a) and in
the range 250− 2500 MeV (b).
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Figure 6.22: LIT calculated by using the NLO potential of Eq. (6.54), with Λ3 =
300 MeV and Γ = 250 MeV (a) or Γ = 2000 MeV (b). The strength of the three–
body potential λ1/2+

3 is adjusted to have a resonance peak located at the correct
energy ≈ 1.70 MeV. In panel (a) λ3/2−

3 = −0.09554 fm5, while in (b) we have used
λ
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Figure 6.23: LIT calculated with the NLO potential of Eq. (6.54), with Λ3 =
300 MeV and Γ = 250 MeV (a) or Γ = 2000 MeV (b). The chosen parameters of
the HH basis are β = 0.05 fm−1, Kmax = 26. Moreover, the convergence in NL is
shown.

already convergent at NL = 30. By increasing NL the oscillations appearing above
≈ 2.5 MeV tend to vanish. This is due to the fact that we are including more basis
functions in the calculation.

So far the dipole matrix elements ⟨Ψl|d̂λ|Ψ0⟩ that enter in the computation
of the LIT (6.17) have been calculated in coordinate space, following Eq. (6.30).
In performing the integral, instead of using the basis functions gmK(ρ) directly,
we have applied the procedure discussed in Section 6.1.2, in which the functions
G0,l

µ (ρ) are computed by following Eq. (6.28). This has led to all the results shown
in this Chapter. As already mentioned in Section 5.4, we could have followed another
strategy. Essentially, by using this alternative procedure the dipole matrix elements
⟨Ψl|d̂λ|Ψ0⟩ are computed in terms of basis functions constructed from a Laguerre
polynomials basis in coordinate space. This alternative calculation provides a test
of the results obtained in this Chapter. Since this entails also the use of a different
Fortran code, we have included all the details in Appendix G, where the outcome
of the test is also reported.

As already done for the LO calculation, we have also checked the behaviour of
our results by varying the cut–off relative to the three–body potential. The LIT
calculated for three different values of Λ3 can be seen in Fig. 6.24. The shape of
the resonance remains almost the same. The main difference lies in the tail of the
LIT calculated with Λ3 = 200 MeV, which is rather high in comparison with the
major peak. This “background” could lead to a considerable contribution also in
the response function, and therefore in the final cross section. By focussing on
the region of the main resonance peak, the LITs calculated with Λ3 = 200 MeV and
Λ3 = 400 MeV are approximately 10% and 6% smaller compared to the LIT obtained
with Λ3 = 300 MeV. Thus, our results slightly depend on Λ3. In the following, we
will perform an inversion of the Λ3 = 300 MeV result. By excluding the calculation
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Figure 6.24: 1/2+ LIT calculated with the NLO potential of Eq. (6.54), with
Γ = 2000 MeV and for different values of the cut–off Λ3 relative to the three–body
potential. σI is fixed to 0.2 MeV.

with the lower value of the three–body cut–off, it might be interesting to invert also
the LIT obtained with Λ3 = 400 MeV, taking any difference in the final results as
an error due to EFT model employed.

The response function obtained by inversion of the LIT in Fig. 6.24 with cut–off
Λ3 = 300 MeV can be seen in Fig. 6.25. The main characteristics of the inversion
procedure have been already included in Section 3.4. Specifically, here we have
employed the following set of basis functions [117]

χ1(x, αi) = 1
(x− α1)2 + α2

2

(
1− e−x)α3 , (6.55a)

χn(x, αi) = xα4 exp
{
− α5x

n− 1

}
, n = 2, . . . , N . (6.55b)

In the n = 1 element, an explicit structure with a Lorentzian form has been intro-
duced through the non–linear parameters α1 and α2. Moreover, with the additional
factor the behaviour near the threshold is better under control through α3. These
parameters are treated as free during the inversion procedure. In Fig. 6.25 the re-
sults relative to an increasing number of basis functions, N = 4, 8, 12, are shown.
In the lower panel also the ratio

rN (ω) = 100 · R
(N̄)(ω)−R(N)(ω)

R(N̄)(ω)
, N̄ = 12 (6.56)

is represented, which is the percentage difference of each result R(N)(ω) with respect
to the one obtained with a basis of dimension N̄ = 12. The results are rather stable.
The major source of error lies in the lower part of the peak region, around energy
≈ 1.68 MeV, where a percentage ∼ 18% is found for N = 4, decreasing to ∼ 6%
for N = 8. In the latter case, an error of at most 3% is found in the tail. The
difference between the response functions obtained with N = 8 and N = 12 is thus
an estimate of the error due to the inversion procedure.
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Figure 6.26: 1/2+ contribution to the 9Be photodisintegration cross section in com-
parison with different sets of experimental data from Refs. [5, 8–10]. The shade rep-
resents the assumed error due to the inversion procedure. The three–body threshold
energy corresponds to 1.573 MeV.

Finally, from the calculated response function, we have computed the cross
section as a function of the photon energy by means of Eq. (6.42) obtaining the
results in Fig. 6.26. The shade represents the assumed error due to the inversion
procedure. By inspection of the plot, we can see that our results are in fair agreement
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with the set of experimental data from Ref. [5] by Arnold, et al.. The calculated
cross section σ shows a peak at energy ∼ 1.69 MeV, which is the experimental
location of the 1/2+ resonance. 1.85 mb can be taken as the maximum value of σ,
with an estimated error ±0.05 from the inversion procedure. The width is small if
compared with the distribution of the experimental data points coming from the
different measurements, leading to a underestimation in the energy region ≈ 1.74−
1.84 MeV. However, in the region above 2 MeV our result slightly overestimates all
the experimental data. As already mentioned, it could be interesting to calculate
the cross section by using a different value of the three–body cut–off relative to the
EFT employed. In this way, also an estimate of the error due to the model can be
obtained.

The total cross section

In order to be able to compare our theoretical results with the experimental data
at higher energies, the contributions due to the E1 transitions 3/2− → 5/2+ and
3/2− → 3/2+ must be included in the calculation of the cross section. The associ-
ated resonances occur at energies ≈ 3 MeV and ≈ 4.7 MeV, respectively.

By focussing first on the 5/2+ LIT calculations, we have reported in Fig. 6.27a
the integral transforms obtained for σI = 0.2 MeV by using a HH basis with
Kmax = 26 and NL = 40. Different values of the cut–off Λ3 relative to the three–
body potential has been employed. As usual, the strength λ

5/2+

3 has been tuned
to reproduce a resonance in the correct energy region. For Λ3 = 200 MeV we man-
age to obtain a resonance peak in the correct position, however also a 5/2+ bound
state is present, which gives rise to the extremely high peak occurring at photon
energy ≈ 1.5 MeV (see Fig. 6.27a). Probably, this value of the three–body cut–off
is not large enough. Two peaks of almost the same size and width are produced
by the cut–off values Λ3 = 300 MeV and Λ3 = 400 MeV. However, the latter choice
is preferable, as it gives rise to a more pronounced peak. As a consequence, we
have decided to proceed by fixing Λ3 = 400 MeV. In Fig. 6.27b the convergence in
the basis parameter NL is shown, with fixed Kmax = 26. As expected, in order to
obtain convergent results for the state 5/2+, a large number of “hypermomental”
(hyperradial) functions is needed. At least NL = 80 should be taken, in order to
obtain results as good as possible from the inversion procedure.

Concerning the 3/2+ resonance, since its experimental width is rather large
compared to both 1/2+ and 5/2+ cases, a LIT calculated with σI > 0.2 MeV can be
taken for the inversion. A good choice is represented by σI = 1.4 MeV. For such a
value, the HH basis parameters Kmax = 26 and NL = 30 ensure convergent results.

In Fig. 6.28, we show the 5/2+ and 3/2+ LITs used to perform the final inversions
as well as the associated response functions. We point out that, in the 5/2+ case,
we have chosen a LIT calculated with Kmax = 28 and NL = 80. By increasing Kmax

from 26 to 28, the 5/2+ LIT decreases of about 8% in the peak region, meaning
that these parameters do not ensure full convergence. However a calculation with
Kmax = 30 and NL = 80 is computationally demanding, so for the moment we have
chosen to use Kmax = 28, bearing in mind that any final result obtained can be
improved.

The 5/2+ and 3/2+ contributions to the 9Be photodisintegration cross section
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Figure 6.27: LIT relative to the E1 transition 3/2− → 5/2+ calculated by using the
NLO potential of Eq. (6.54), with Γ = 2000 MeV. In panel (a) the LIT is calculated
for different values of the cut–off Λ3. The basis parameters used are β = 0.05 fm−1,
NL = 40 and Kmax = 26. In panel (b) the convergence in NL is shown at fixed
Λ3 = 400 MeV. σI is always 0.2 MeV.
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3/2− → 3/2+ (solid green) calculated at NLO with Λ3 = 400 MeV, Kmax = 28,
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Figure 6.30: Total 9Be photodisintegration cross section from our ab initio three–
body calculation in comparison with different set of experimental data from Refs. [5,
7–10].

are represented in Fig. 6.29. Given the response functions, each contribution has
been computed separately by using Eq. 6.42. In order to get the full picture, we have
also added the calculated 1/2+ resonance. The total cross section can be obtained
by summing the three individual contributions. Near the three–body threshold at
1.573 MeV and up to energy ≈ 2 MeV the entire cross section is given by the 1/2+

resonance. Then, the 5/2+ contribution begins to appear, peaking at ≈ 3 MeV.
The resonance due to the 3/2+ state is broader, whose maximum contribution is
≈ 0.35 mb at higher energies around 5 MeV.

Finally, in Fig. 6.30 our cross section result is shown, in comparison with different
set of experimental data. In the energy region around ≈ 3 MeV and above, an
overestimation of the data is present. This could be ascribed entirely to the 5/2+

resonance. As already mentioned, the calculation relative to the 3/2− → 5/2+

transition can be improved, probably leading to a smaller height of the resonance
peak.
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6.2.3 Comparison of the results with the one–body current calcu-
lations

All the cross section results presented in Sections 6.2.1 and 6.2.2 have been obtained
by using the Siegert operator T el,S

1λ (q; ρ̃) derived in Eq. (2.55) in the long–wavelength
approximation. As explained in Section 2.4, this allows to implicitly include in the
calculation the contribution due to the one–body and the many–body currents. The
one–body current operator has been derived in a covariant form in Ref. [29], where it
has been also implemented in the calculation of the LITs associated to the 9Be pho-
todisintegration cross section. Since our effective potentials defined in momentum
space have non–commuting terms with the nuclear charge [see Eq. (2.68)], we could
expect non–vanishing many–body currents, which may contribute to the total cross
section. By comparing the calculations carried out with the Siegert operator and
with J̃

[1], i.e. the convection current, we should be able to quantify this contribution
due to the many–body terms of the nuclear current.

An indication of the existence of such a contribution is given by the behaviour
of the LIT calculated at LO with the matrix elements ⟨Ψl|Ĵ

[1]
λ |Ψ0⟩ by varying the

three–body cut–off Λ3. Unlike the results obtained by using the dipole matrix ele-
ments ⟨Ψl|d̂λ|Ψ0⟩, which are rather stable by varying Λ3 (see Figs. 6.10a and 6.11),
the LIT calculated by using the one–body current strongly depends on Λ3, as can
be seen in Fig. 6.31a. A variation of Λ3 from 300 MeV to 400 MeV gives rise to a
cross section that almost doubles, as Fig. 6.31b shows. This could be seen as an
effect due to the missing contribution of the many–body currents in the calculation.
We remind that at LO only the α–n P3/2–wave and α–α S0–wave are present in the
calculation, in addition to a three–body interaction.

We have calculated the LIT by using the one–body current matrix elements
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Figure 6.31: (a) Same as Fig. 6.10a but the LIT is calculated at LO with the
one–body current operator ⟨Ψl|Ĵ

[1]
λ |Ψ0⟩, i.e. the convection current. (b) 9Be photo-

disintegration cross section relative to the E1 transition 3/2− → 1/2+ as a function
of the incident photon energy. The results correspond to the LITs calculated in
panel (a). The experimental data are taken from Ref. [5].
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Figure 6.32: (a) Same as Fig. 6.24 but the 1/2+ LIT is calculated at NLO with
the one–body current operator ⟨Ψl|Ĵ

[1]
λ |Ψ0⟩, i.e. the convection current, for Λ3 =

300 MeV. (b) Response function relative to the LIT shown in panel (a).
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Figure 6.33: 1/2+ contribution to the 9Be photodisintegration cross section calcu-
lated by using the the dipole operator (as in Fig. 6.26) and the one–body current
operator. The three–body threshold energy corresponds to 1.573 MeV. The experi-
mental data are from Refs. [5, 8–10].

also at NLO, i.e. by adding in the model an α–n S1/2–wave effective potential as
well as a projection term (see Section 6.2.2). The results relative to the transition
3/2− → 1/2+ are reported in Fig. 6.32a, whose associated response function can
be seen in Fig. 6.32b. The calculated contribution to the cross section is shown in
Fig. 6.33. To make the comparison easier, also the 1/2+ result obtained by means of
the Siegert operator, i.e. with the dipole matrix elements ⟨Ψl|d̂λ|Ψ0⟩, is shown. We
remark that all the EFT parameters have been kept identical in both calculations.
The calculated cross sections differ in the resonance peak region and in the tail,
i.e. at higher energies. This can be ascribed to a non–vanishing contribution due
the many–body currents.
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Figure 6.35: Comparison between the 5/2+ (a) and 3/2+ (b) contributions to the
9Be photodisintegration cross section calculated by using the dipole operator and
the one–body current operator. The results relative to the the dipole operator are
those already shown in Fig. 6.29.

By means of the the one–body current operator, we have also calculated the
LITs relative to the transitions 3/2− → 5/2+ and 3/2− → 3/2+. The results are
summarized in Fig. 6.34, where also the associated response functions are shown.
The cross section results have been put in Figs. 6.35a and 6.35b, highlighting the
difference with respect to the calculations carried out by using the dipole matrix ele-
ments ⟨Ψl|d̂λ|Ψ0⟩. Interestingly, the two results relative to the 5/2+ contribution are
very different, as the cross section obtained from the calculations with ⟨Ψl|Ĵ

[1]
λ |Ψ0⟩

almost vanishes in the region around the resonance peak. This seems to indicate
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that the contribution of the many–body currents is higher in this case, with respect
to the 1/2+ case. The 1/2+ resonance is mainly due to 8Be, and therefore to the
α–α S–wave effective interaction; in the 5/2+ resonance, the α–n P3/2–wave should
be dominant. By examining the form of these two effective potentials, the results
appear to be consistent. With respect to the S–wave interaction, in the P–wave
potential the additional factor p p′ is present. Being more momentum–dominated,
this potential could generate a higher contribution in terms of many–body currents.

As done in the previous Section, in order to visualize the total cross section
obtained by means of the one–body convection current operator, we have collected
all the partial contributions in one plot, given in Fig. 6.36. Finally, in Fig. 6.37
the total cross section can be seen in comparison with the results obtained with
the Siegert operator and the experimental data. As already mentioned, the major
difference between the two theoretical calculations lies in the energy region ≈ 3 MeV.





Chapter 7

The Carbon–12
photodisintegration reaction

7.1 The reaction cross section: detailed derivation

In this Section we want to derive the cross section relative to the following reaction

γ + 12C→ α+ α+ α , (7.1)

proceeding through the Jπ
n = 2+

1 bound state of 12C nucleus to the 0+
2 state in the

continuum. In order to study this photodisintegration process, we will follow the
analysis already carried out in Section 6.1 for the 9Be, by specialising to the 12C
nucleus. The nuclear response function is evaluated by means of the LIT method
discussed in Chapter 3.

7.1.1 The E2 transition operator

Since the process (7.1) is represented by an electric quadrupole transition to the
continuum, the operator of interest is the J = 2 term in the multipole expansion
of the nuclear current of Eq. (2.38), T el

2λ(q). We study the reaction in the low–
energy limit, and therefore it is sufficient to consider the Siegert operator in the
long–wavelength approximation given in Eq. (2.55)

Jλ(q) ≃ −
√

10πT el,S
2λ (q) ≃ −

√
π

15ω
2
quλ . (7.2)

The operator uλ here is defined as

uλ =
∫
d3xx2ρ(x)Y2λ(x̂) =

3∑
i=1

Zi(r′
i)2Y2λ(r̂′

i) , (7.3)

where, in deriving the last expression, we have used the definition of the nuclear
charge given in Eq. (6.4). The summation above runs over the three α–particles.
The vectors r′

i, being defined as the position of each α–particle with respect to the
center–of–mass coordinate, are explicitly r′

i = ri−Rcm. The relations (6.8) between
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the vectors { r′
1, r

′
2, r

′
3 } and the internal Jacobi coordinates {η1,η2 } remain valid,

and they can be exploited to rewrite the operator uλ, obtaining

uλ =
(
Z1A2 + Z2C2

)
η2

2 Y2,λ(η̂2) +
[
(Z1 + Z2)B2 + Z3D2

]
η2

1 Y2,λ(η̂1)

+

√
10(4π)

3 (Z1AB − Z2CB) η2η1
∑

µ′=0,±1
⟨1, λ− µ′, 1, µ′|2, λ⟩Y1,λ−µ′(η̂2)Y1,µ′(η̂1) ,

(7.4)

where the mass coefficients A, B, C and D are defined as in Eq. (6.9). A detailed
derivation of the expression above can be found in Appendix E.2. In the specific
case of three α–particles, by imposing Zi = Zα and mi = mα, for i = 1, 2, 3, since
the following relations are valid

Z1A2 + Z2C2 = Zα
mr
mα

, (7.5a)

(Z1 + Z2)B2 + Z3D2 = Zα
mr
mα

, (7.5b)

Z1AB − Z2CB = 0 , (7.5c)

the term proportional to η2η1 vanishes, and the final form of the E2 operator uλ is
simply

uλ = Zαµ
(
η2

2 Y2λ(η̂2) + η2
1 Y2λ(η̂1)

)
. (7.6)

Since our reference mass corresponds to the nucleon mass, in the equation above µ
is the dimensionless parameter defined as µ = mn/mα.

7.1.2 Calculation of the LIT

Our aim is to calculate the cross section already derived in Eq. (2.19), with the
response function defined as

R(ωq) =
ω4

q

2(2J0 + 1)
π

15
∑

λ=±1

∑
M0

∑
Mf

Ru(ωq) , (7.7)

where Ru(ωq) is given explicitly by the following expression

Ru(ωq) =
∑

f

∫
|⟨Ψf |ûλ|Ψ0⟩|2δ(Ef − E0 − ωq) . (7.8)

To avoid the direct calculation of the nuclear response function above, we use the
LIT method discussed in Chapter 3. Specifically, the eigenvalue method of Sec-
tion 3.3.1 provides the following expression for evaluating the LIT

L(σR, σI) =
NΛ∑
l=1

|⟨Ψl|ûλ|Ψ0⟩| 2

(El − E0 − σR)2 + σ2
I

, (7.9)

where E0 (|Ψ0⟩) is the eigenvalue (eigenstate) relative to the 2+
1 bound state of

12C, while El and |Ψl⟩ are such that Ĥ |Ψl⟩ = El |Ψl⟩, and therefore they can be
calculated as well by employing bound–state methods. By inverting the function
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L(σR, σI) above at a fixed value of the parameter σI , the nuclear response function
of interest is recovered.

Essentially, the procedure to compute E0 and El as well as the quadrupole
matrix elements ⟨Ψl|ûλ|Ψ0⟩ is the same as that discussed in Section 6.1.2 for the
9Be case. We diagonalize the Hamiltonian matrix represented on a NSHH basis
defined in momentum space [see Eq. (5.134)] by using different quantum numbers
in input: for the initial bound state we insert Jπ = 2+, while for the final state
we use Jπ = 0+, according to the electric quadrupole transition selection rules.
The most general expression to evaluate the matrix elements of a local operator
represented in configuration space, Eq. (6.25), can be specialized to the calculation
of the quadrupole matrix elements for a system with N = 2 as follows

⟨Ψl|ûλ|Ψ0⟩ =
∫
dΩ(ρ)

2 dρ ρ5
[ ∑

m′µ′

cl
m′µ′ gm′K′(ρ)YJ ′M ′π′

µ′ (Ω(ρ)
N )
]†

× uλ(ρ,Ω2)
[∑

mµ

c0
mµ gmK(ρ)YJMπ

µ (Ω(ρ)
2 )
]
.

(7.10)

The expression for uλ(ρ,Ω2) in hyperspherical coordinates can be easily derived
from Eq. (7.6) by using the relations η2 = ρ sinφ2 and η1 = ρ cosφ2, obtaining

uλ(ρ,Ω2) = Zαµ
(
ρ2 sinφ2

2 Y2λ(η̂2) + ρ2 cos2 φ2 Y2λ(η̂1)
)
. (7.11)

By denoting the two contributions as u(2)
λ (ρ,Ω2) and u

(1)
λ (ρ,Ω2), respectively, the

matrix elements to be calculated are explicitly

⟨m′, J ′M ′|û(2)
λ |m,JM⟩ = Zαµ

∫
dρ ρ7g∗

m′K′(ρ)gmK(ρ)

×
∫
dφ2N

K′
2;ℓ′

2,ℓ′
1

n′
2

P
(ℓ′

2+ 1
2 ,ℓ′

1+ 1
2 )

n′
2

(cos 2φ2)

× (sinφ2)ℓ′
2+ℓ2+4(cosφ2)ℓ′

1+ℓ1+2

×NK2;ℓ2,ℓ1
n2 P

(ℓ2+ 1
2 ,ℓ1+ 1

2 )
n2 (cos 2φ2)

× (−1)J ′−M ′
(

J ′ 2 J
−M ′ λ M

)
⟨J ′∥Y2(η̂2)∥J⟩ ,

(7.12)

where we have performed a separation into a hyperradial, a hyperspherical and an
angular part, as explicitly shown also in Appendix F [Eqs. (F.6a), (F.6b) and (F.6c)].
The expression of the reduced matrix element is [see Eq. (F.15)]〈

J ′ ∥∥Y2(η̂2)
∥∥ J〉 = δℓ′

1,ℓ1 δ{S′},{S} (−1)ℓ1+ℓ2+S+J+1

× L̂′
2 Ĵ

′ L̂2 Ĵ

{
ℓ′2 L′

2 ℓ1
L2 ℓ2 2

}{
L′

2 J ′ S
J L2 2

}

× (−1)ℓ′
2

√
5

4π ℓ̂
′
2 ℓ̂2

(
ℓ′2 2 ℓ2
0 0 0

)
.

(7.13)

By using once again the results reported in Appendix F, one can also calculate the
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contribution to the matrix elements due to the second term in Eq. (7.11). We obtain

⟨m′, J ′M ′|û(1)
λ |m,JM⟩ = Zαµ

∫
dρ ρ7g∗

m′K′(ρ)gmK(ρ)

×
∫
dφ2N

K′
2;ℓ′

2,ℓ′
1

n′
2

P
(ℓ′

2+ 1
2 ,ℓ′

1+ 1
2 )

n′
2

(cos 2φ2)

× (sinφ2)ℓ′
2+ℓ2+2(cosφ2)ℓ′

1+ℓ1+4

×NK2;ℓ2,ℓ1
n2 P

(ℓ2+ 1
2 ,ℓ1+ 1

2 )
n2 (cos 2φ2)

× (−1)J ′−M ′
(

J ′ 2 J
−M ′ λ M

)
⟨J ′∥Y2(η̂1)∥J⟩ ,

(7.14)

where the reduced matrix element is now of the form〈
J ′ ∥∥Y2(η̂1)

∥∥ J〉 = δℓ′
2,ℓ2 δ{S′},{S} (−1)L′

2+ℓ2+L2+S+J+1

× L̂′
2 Ĵ

′ L̂2 Ĵ

{
ℓ′1 L′

2 ℓ2
L2 ℓ1 2

}{
L′

2 J ′ S
J L2 2

}

×
√

5
4π ℓ̂

′
1 ℓ̂1

(
ℓ′1 2 ℓ1
0 0 0

)
.

(7.15)

7.1.3 The photodisintegration cross section

We conclude by writing the expression of the reaction cross section relative to the
process (7.1) proceeding through the states 2+

1 → 0+
2 . We use the definition given

in Eq. (2.19) as well as the response function in Eqs. (7.7) and (7.8), obtaining

σ(ωq) =
4αω3

q

2(2J0 + 1)
π3

15
∑

λ=±1

∑
M0

∑
Mf

(−1)2Jf −2Mf

×
(

Jf 2 J0
−Mf λ M0

)(
Jf 2 J0
−Mf λ M0

)
Rred

u (ωq) ,
(7.16)

where the response Rred
u (ωq) contains the square of the reduced matrix elements

⟨Ψf∥d̂∥Ψ0⟩. The Wigner 3j symbols comes from the expressions (7.12) and (7.14)
derived in the last Section. By making use of the orthogonality relation in Eq. (6.41),
together with the value J0 = 2 relative to the initial bound state of 12C nucleus,
the final result for the cross section is

σ(ωq) = αω3
q

4
25
π3

15R
red
u (ωq) . (7.17)

7.2 Results
A scheme of the energy levels of 12C nucleus is depicted in Fig. 7.1. From the three–
α threshold, the energy of the ground state corresponds to Eexp(0+

1 ) = −7.275 MeV,
the energy of the first excited bound state is Eexp(2+

1 ) = −2.875 MeV, while the
Hoyle state is located at Eexp(0+

2 ) = 0.379 MeV [123].
Since we are interested in the transition 2+

1 → 0+
2 , we will start by studying

the bound state 2+
1 , which also enters in the calculation of the LIT. Then, we will
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Figure 7.1: 12C level scheme taken from Ref. [11]. At incident photon energy
7.275 MeV the three–body α+α+α breakup occurs. The 8Be +α threshold is also
shown. The possible electromagnetic transitions between the Hoyle state (0+

2 ) and
the ground state (0+

1 ) and between the Hoyle state and the first excited bound state
(2+

1 ) are represented with different colours.

show some results about the calculation of the cross section relative to the 12C
photodisintegration.

7.2.1 Calculations at Leading Order

The 12C(2+
1 ) bound state

In order to perform the calculation we use the LO α–α S–wave effective potential
defined in Eq. (4.64), as well as a three–body potential in the form of Eq. (5.156)

VLO+3 = V S
αα(ΛS

αα) + V3(Λ3, λ3) . (7.18)

In the expression above ΛS
αα is the cut–off parameter relative to the two–body

potential. In this Section we will always use ΛS
αα = 190 MeV, one of the values for

which the α–α low–energy phase–shifts are better reproduced (see Fig. 4.7b). The
parameters Λ3 and λ3 are the cut–off and the strength of the three–body interaction,
respectively.

A study of the ground state 0+
1 has been carried out in Ref. [29]. For fixed

ΛS
αα = 190 MeV, if no three–body force is employed, the calculated energy of the

ground state of the system results to be E(0+) = −0.91 MeV. This bound state
is shallow in comparison with the experimental value Eexp(0+

1 ). By including a
three–body interaction in the model, for every fixed cut–off Λ3 inside the range
allowed by the Wigner bound, the constant λ3 is chosen so that the calculated
energy corresponds to the experimental one. For example, with Λ3 = 130 MeV and
λ0+

3 = −8.422 fm5 the experimental energy Eexp(0+
1 ) is obtained. With these values

for Λ3 and λ0+
3 , a 2+ bound state is found. However, its energy is different from

the experimental one, Eexp(2+
1 ). This suggests that also in this case the three–body

force is state–dependent.
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Figure 7.2: Convergence study relative to the 12C(2+
1 ) bound–state energy with

respect to the maximum grand–angular momentum quantum number Kmax.
The effective potential VLO+3 (7.18) is used, with Λ3 = 200 MeV and λ2+

3 =
−0.9401736 fm5. With the chosen strength λ2+

3 the experimental energy Eexp(2+
1 ) =

−2.875 MeV [123] is reproduced.

By focussing on the study of the 2+
1 state, we have found that a three–body

force must be included in the calculation, otherwise no 2+ bound states exist. The
typical values of the parameters of the basis used to perform convergent calculations
are in this case β = 0.02 fm−1, NQ/Nφ = 550/500, NL = 30 and Kmax = 20. The
convergence pattern of the lowest eigenvalue with respect to the variation of the
maximum grand–angular momentum Kmax is shown in Fig. 7.2, for fixed Λ3 =
200 MeV and λ2+

3 = −0.9401736 fm5. As expected, the convergence is very fast,
due to the smooth character of the α–α S–wave effective potential. The difference
in the calculated energy between Kmax = 18 and Kmax = 20 is of ∼ 0.5 keV. As a
consequence, Kmax = 20 is a good value to take in our bound–state calculations.

We have also analysed the variation of the strength λ2+
3 as a function of the cut–

off Λ3 in the range of values from 70 to 400 MeV, obtaining the behaviour reported
in Fig. 7.3. As a comparison, we have added in the plot also the variation of the
strength λ0+

3 with Λ3. As already explained, λ3 is chosen so that the experimental
energy of the bound state is reproduced for all the values of Λ3. In Fig. 7.3 the
behaviour of the combination λ3Λ4

3 is also reported. The result for Λ3 = 400 MeV
suggests that the scaling of λ3 with the cut–off may involve a lower power.

The 12C photodisintegration cross section

By making use of the results obtained for the 2+
1 bound state, the LIT relative to

the transition 2+
1 → 0+

2 can be computed by means of Eq. (7.9), which depends on
the quadrupole matrix elements ⟨Ψl|ûλ|Ψ0⟩. In solving the eigenvalue problem for
the final state 0+

2 , we use the same Hamiltonian as the one employed for the 2+
1

bound state, with the exception of the strength λ3 relative to the three–body term
in Eq. (7.18).
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Figure 7.3: Values of the strengths λ2+
3 , λ0+

3 (upper panel) and of the relative
combination c3 = λ3Λ4

3 (lower panel) as a function of the three–body cut–off Λ3. The
potential VLO+3 (7.18) has been used in the calculations. The constant λ2+

3 (λ0+
3 ) is

tuned so that the experimental energy Eexp(2+
1 ) = −2.875 MeV [123] (Eexp(0+

1 ) =
−7.275 MeV [123]) is reproduced.

The calculated LIT can be seen in Fig. 7.4, for fixed σI = 0.05 MeV and Kmax =
20, where also the convergence in NL is visible. This parameter is related to the
dimension of the “hypermomental” (hyperradial) basis employed. A few comments
about Fig. 7.4 are here in order. For the moment, we have decided to restrict the LIT
calculation to one single value of the three–body cut–off parameter, Λ3 = 200 MeV.
By varying the strength of the three–body force in a wide range of values, at least
one 0+ bound state is always present. As a consequence, we have chosen a value for
λ0+

3 that produces a resonance peak in the expected location of the Hoyle state, at
energy ∼ 3.255 MeV. When λ0+

3 = −0.70918 fm5 is fixed, the calculated energy of
the 0+ bound state is E(0+) = −1.792 MeV. By looking at Fig. 7.4, this 0+ bound
state can be associated to the high peak on the left occurring at around ≈ 1 MeV.
Moreover, it can also be identified with the ground state of the system, even though
the calculated energy differs from the experimental value Eexp(0+

1 ) = −7.275 MeV
by a factor of about 4. A possible explanation is that our effective theory at LO is
not able to reproduce the 0+

1 and 0+
2 states simultaneously. The description could

be improved by including in the calculation an α–α effective potential in the partial
wave ℓ = 2. As a matter of fact, by using the effective potential in Eq. (7.18) most
of the binding is due to the three–body interaction, since there are no bound states
without this term. By including a D–wave in the two–body effective potential,
the contribution of the three–body interaction would probably be reduced, leading
to a better description of the whole system. In Fig. 7.4 we have chosen to use
Kmax = 20, which is the same value employed for the 2+ bound–state calculations.
From a preliminary study, we have seen that this value gives convergent results
concerning the peak on the left around ≈ 1 MeV. On the other hand, with Kmax =
20 the resonance peak above 3 MeV is not fully convergent. As a consequence, there
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Figure 7.4: LIT relative to the quadrupole transition 2+
1 → 0+

2 for σI = 0.05 MeV.
The potential VLO+3 is used in the calculation with cut–off Λ3 = 200 MeV and
strength λ3 = −0.70918 fm5. The value of the maximum grand–angular momentum
is fixed at Kmax = 20, while the convergence by increasing the basis parameter NL

is shown.

is room for improvement. By increasing the dimension of the “hypermomental”
(hyperradial) basis through the parameter NL, the results are visibly convergent
at NL = 50 up to energies ≈ 3.4 MeV. However, since the experimental width
of the state 0+

2 in the continuum is extremely small, Γexp(0+
2 ) = 8.5 eV [123], a

value NL > 50 is recommended, in order to perform an inversion as accurate as
possible. Due to the small Γexp(0+

2 ), a value of the parameter σI lower than the one
employed in Fig. 7.4 is also required. Figs. 7.5 show the same LIT calculated for
σI = 0.01 MeV and σI = 0.0001 MeV, respectively. As expected, other peaks emerge
in addition to the principal ones, due to the fact that the resolution is higher.

Since a proper inversion procedure is not possible at this stage, by looking at
Fig. 7.5b, we have tried to proceed by considering the highest peak located at energy
3.25617 MeV as a single “LIT state”. By imposing for the width of the Lorentzian
kernel the experimental value Γexp(0+

2 ) = 8.5 eV, we obtain the response function
in Fig. 7.6a (solid line). Our result for the cross section calculated by means of
Eq. (7.17) is shown in Fig. 7.6b (solid line). The maximum value of the cross
section occurring at photon energy ω = 3.25617 MeV is σ = 8.26 fm2.

In order to be able to make a first comparison of our results with other theoreti-
cal calculations, we have computed the response function also by assuming the width
Γth(0+

2 ) = 15.8 eV, corresponding to the one reported in Ref. [33]. The obtained
result is visible in Fig. 7.6a (dashed line), and the corresponding calculated cross
section is in Fig. 7.6b (dashed line). In this case, at photon energy ω = 3.25617 MeV
the computed cross section corresponds to σ = 5.69 fm2. In Ref. [33] Suno et al. have
calculated the reaction rates relative to the triple–α process with the transmission–
free complex absorbing potential method by using a α–α local phenomenological
potential, in addition to a three–body force. They have also computed the pho-
todisintegration cross section from the 12C(2+

1 ) state to the 0+
2 in the continuum.
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Figure 7.5: Same as Fig. 7.4 but here the LIT is calculated also for σI = 0.01 MeV
(a) and σI = 0.0001 MeV (b.)
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Figure 7.6: (a) Response function obtained by imposing for the width of the
Lorentzian kernel the experimental value Γexp(0+

2 ) = 8.5 eV (solid line) and the
value obtained in Ref. [33] Γth(0+

2 ) = 15.8 eV (dashed line). (b) Calculated cross
sections for the E2 transition 2+

1 → 0+
2 . In both panels ω is the energy of the photon

and the three–α threshold is located at 2.875 MeV.
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Figure 7.7: 12C photodisintegration cross section through the states 2+
1 → 0+

2 as a
function of the energy E = Eγ +Q with Q = −2.836 MeV taken from Ref. [33]. A
comparison with our results in Fig. 7.6b can be made. More details can be found
in the text.

This is reported in Fig. 7.7, being denoted with the label “Present”. By assuming
a Breit–Wigner (BW) shape for the cross section near the Hoyle resonance, they
have also derived the BW estimates by inserting as parameters both their theo-
retical results (Γth(0+

2 ) = 15.8 eV, among the others) and the experimental ones.
These approximations are shown in Fig. 7.7, labelled with “theor. BW” and “expt.
BW”, respectively. At this point, a direct comparison between our calculations in
Fig. 7.6b and the results in Fig. 7.7 can be done. The position of the resonance is
almost the same, since our peak is located at energy 0.381 MeV above the three–α
threshold. Concerning the height of the peaks, our results overestimate both theo-
retical and experimental BW approximations in Fig. 7.7. By considering our cross
section obtained by assuming Γexp(0+

2 ) = 8.5 eV, the factor is ≈ 3.93, while in the
other case our result is 1.98 times bigger. As anticipated, this could be possibly
ascribed to the lack of a D–wave term in the effective α–α potential.

Finally, both our results for the 12C photodisintegration cross section are repre-
sented in Fig. 7.8, where the photon energy ω is taken from the three–α threshold
2.875 MeV. The sharp peak that is characteristic of the Hoyle state is clearly visible.
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Figure 7.8: Same as Fig. 7.6b. Here the 12C photodisintegration cross section
proceeding through the states 2+

1 → 0+
2 is represented as a function of the photon

energy taken in a range starting from the three–α threshold located at 2.875 MeV.





Chapter 8

Conclusions

In this Thesis we have presented the theoretical study of the following photodisin-
tegration reactions

γ + 9Be→ α+ α+ n , γ + 12C→ α+ α+ α , (8.1)

in a fully three–body ab initio approach and in the regime of low energy. The inverse
reactions relative to the two processes above are of astrophysical relevance, since,
under certain astrophysical conditions, they are capable of bridging the mass gaps
at A = 5 and A = 8.

Different theoretical calculations of 9Be photodisintegration cross section can be
found in the literature, where the nucleus is represented as a three–body system
interacting through phenomenological potentials. Here, the separation of scales
exhibited by 9Be (the three–body binding is much smaller compared to the α–
particle binding) is exploited, leading to a description of this nuclear system in
terms of interactions derived from a halo/cluster EFT. This approach is based on
a more solid theoretical background. 12C is analysed on the same footing.

In Chapter 2, the photodisintegration reaction cross section has been derived in
detail. A key quantity that determines this observable is represented by the Nu-
clear Current matrix element (NCme), which encodes all the information about the
nuclear structure. At low energies, when the continuity equation is used explicitly,
the transverse electric multipoles of the nuclear current operator can be related to
the Coulomb multipoles of the nuclear charge. In this way, the exact form of the
nuclear current is not needed in the calculations, since the NCme can be computed
by using only the nuclear charge, i.e. by using the so–called Siegert operator. How-
ever, there is an alternative way to determine the NCme. Since the nuclear current
can be decomposed as the sum of a one–body and many–body terms, one can take
into account only the one–body current in order to compute the NCme. This has
been done in Ref. [29]. By proceeding in this way, the contribution due to the
many–body currents is lost. On the other hand, by using the Siegert operator, this
is automatically included in the calculation. As a consequence, by comparing the
results of the reaction cross section obtained from these two different calculations,
the contribution due to the many–body currents can be quantified. Basically, this
Thesis has been developed to move in this direction.

In Chapter 3 we have introduced the LIT method, which belongs to the more
general context of calculating reactions cross sections by using integral transforms.
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The direct calculation of the response function of inclusive processes involves the
explicit wave functions belonging to the continuum spectrum of the nuclear system,
and therefore it is not an easy task. By means of the LIT method, the problem is
reformulated as a typical bound–state problem in terms of an integral transform.
Then, the response function is recovered by means of an inversion procedure. The
practical calculation of the LIT can be implemented in different ways. Here, we
have mainly used the eigenvalue method, whose derivation has been presented in
detail.

Chapter 4 contains a thorough derivation of the two–body α–n and α–α effective
potentials within the context of halo/cluster EFT. These potentials are defined in
momentum space as a series of contact terms, and they are regularized by the inclu-
sion of a momentum–regulator function of Gaussian form. The LECs are determined
by means of an implicit renormalization procedure: by requiring that the EFT re-
produces the low–energy T–matrix ERE, the LECs are fixed on the experimental
values of the scattering length and the effective range. For each of the two–body sys-
tems α–n and α–α, this is achieved by solving the Lippmann–Schwinger equation,
i.e. in a non–perturbative way, using the multipole decomposition of the effective
potential. With respect to the α–n system, the α–α case is more involved, as the
Coulomb potential must be taken into account in addition to the strong force. In
this case, the Coulomb–modified ERE is considered. Our effective potentials are
therefore able to reproduce the low–energy phase–shifts of these systems. Due to
the adopted power counting for 9Be, the relevant partial waves to be considered at
LO calculations are represented by the α–n P3/2–wave and the α–α S0–wave, both
enhanced by the presence of a resonance in each two–body system. Concerning
the α–n pair, also the non–enhanced waves S1/2 and P1/2 are taken into account as
“NLO” contributions. In addition, a three–body force is introduced in the model, in
order to cure the mild dependence of the three–body observables on the two–body
cut–offs. The 12C is described at LO by means of an α–α S0–wave and a three–body
interaction term.

The bound–state problem is solved by employing a variational method in con-
junction with a NSHH basis. In Chapter 5, the NSHH method has been thoroughly
analysed, giving a formulation both in coordinate and in momentum space. The
main characteristic of this method is the expansion of the wave function over a
basis with no symmetry imposed. Clearly, the dimension of the basis is larger but
the symmetrization procedure typical of the HH method in its standard version
for A identical particles is avoided, and this might well be advantageous for cal-
culations involving systems with a number of components A ≥ 4. In particular,
this constitutes a suitable framework to study systems composed of non–identical
particles.

The original contribution of this Thesis lies in Chapters 6 and 7. This entails
the code implementation of the Siegert operator, in the long–wavelength approxi-
mation, in order to carry out photodisintegration cross section calculations. The
effective potentials that we use are born in momentum space, and the basis on which
we diagonalize the Hamiltonian to perform bound–state calculations is defined in
the same space. On the other hand, the Siegert operator is defined in coordinate
space. Consequently, much work has been devoted to implementing a suitable and
consistent basis to calculate the matrix elements in coordinate space. The technique
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employed is explained in Chapter 6. Since the effective interactions are non–local,
the computational time for calculating the integrals of the potential matrix elements
is quite long, so a first–level parallelization has been implemented in the existing
code. In our cross sections calculations, we have used different values of the EFT
parameters, discussing how the results depend on the different inputs, always in
connection with the experimental data available in the literature. Among other
results, we have also included the calculation of the nuclear binding energies, which
however has been carried out by employing an existing code.

In Chapter 6 we have presented all the results relative to the calculation of the
9Be photodisintegration cross section. In this work we have focused on E1 dipole
transitions, which are dominant at low energies. The calculation of the magnetic
transitions could be implemented as well. At LO we have mainly analysed the
contribution to the cross section due to the 1/2+ resonance. Our results at LO
show a clear overestimation of the experimental data. However, the EFT model
employed is rather good, as we have verified the relatively small dependence on the
cut–off associated to the three body force. No significant difference arises in the
results when a α–n P1/2–wave effective potential is added in the model. However,
the α–n S1/2 partial wave plays an important role in the calculation of the cross
section. In fact, by considering also this contribution, the final results are more
consistent with the experimental data. Effects of further partial waves are expected
to be small. For some values of the cut–off relative to the α–n S1/2 interaction,
also a projection potential term is needed, as two–body deep bound states arise.
The associated parameter has been fixed to a value inside a range of stability of the
results, thus this procedure does not add new parameters in the theory. The NLO
results of the cross section are in fair agreement with the experimental measurements
by Arnold et al. [5]. The resonance due to the 1/2+ state shows a smaller width than
the one seen in the experiment. However, our calculations slightly overestimate the
data in the maximum of the peak. The LEC relative to the three–body force is
fixed to have a resonance peak located in the correct position. This should not be
seen as a loss of predictive power of the theory, since width and height are fairly
reproduced. In the final calculation we have considered also the contributions due
to the states 5/2+ and 3/2+. Also in the 5/2+ case there is an overestimation
of the data around 3 MeV and above. However, this calculation can be improved
by enlarging the dimension of the basis and new results will be added in the near
future. It would be interesting to add also the cross section results obtained by
using a different value of the three–body cut–off. In this way also an error due to
the EFT can be evaluated. Moreover, since here a S–wave three–body potential
has been used, the effect due to higher order terms could be explored.

By comparing our cross section results with those obtained by using the one–
body convection current operator of Ref. [29], we can say that a non–negligible
contribution of the many–body currents is present in the resonance associated to
the 1/2+ state. However, concerning the 5/2+ case, the cross section calculated by
using only the one–body current operator almost vanishes in the resonance peak
region. This seems to indicate that the contribution of the many–body currents is
higher in this case. This could be ascribed to the different potentials that contribute
the most in creating the resonance peak associated to the 1/2+ and 5/2+ states.
The first is mainly due to the 8Be, therefore the α–α S0–wave interaction plays the
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major role. The latter is dominated by the α–n P3/2–wave interaction. The two
potentials differ by a relative factor p p′. Since the P–wave interaction is more–
momentum dominated, a higher contribution in terms of many–body currents is
generated in this case.

Our calculations of 12C photodisintegration cross section, at a very early stage,
can be found in Chapter 7. We have analysed the E2 quadrupole transition pro-
ceeding through the states 2+

1 → 0+
2 . As a consequence, also 12C(2+

1 ) binding
energy calculations have been included in the Chapter. Our LO EFT is not able
to reproduce simultaneously the 12C(0+

1 ) ground state and the 12C(0+
2 ) state in the

continuum. In fact, by using the three–body LEC to locate the Hoyle state in the
correct position, the 0+

1 state results to be underbound. This indicates that probably
a calculation beyond LO is necessary. Our first result for 12C photodisintegration
cross section, obtained by considering only one “LIT state” and by imposing the
experimental width of the resonance during the inversion procedure, overestimates
the experimental BW approximation by a factor 4. Our computation at LO in-
volves a α–α S–wave interaction as well as a three–body force. Calculations can be
refined possibly by including in the model a D–wave interaction. Improvements can
also be made by enlarging the dimension of the basis in describing the Hoyle state.
Also in this case a one–body current operator can be implemented to calculate the
cross section, in order to make a comparison with the results obtained with the
quadrupole operator. At LO, since only a S–wave interaction is present, we expect
a small contribution due to the many–body currents. However this needs to be
validated.

With a view to extending the formalism to the study of other nuclear clustering
systems, even with A > 3 components, some improvements could be considered
to start with: the inclusion of a n–n effective potential in the calculations, and
the implementation of a three–body force that takes into account the particles
permutations. At this point, with an adequate parallelization of the codes, also
other nuclear reactions will become accessible for studies in the low–energy regime.
An example is provided by the following process: γ + 16O → α + α + α + α. One
of the most significant reactions in astrophysics is in fact 12C(α, γ)16O, and in this
connection the study of the 16O photodisintegration into four α–particles is of great
interest. The final goal of this project could therefore be the study of the 16O
formation.



Appendix A

The vector spherical harmonics
functions

In this Appendix we report some of the properties of the vector spherical harmonics
functions, which are useful to derive the relations in Section 2.2. For the notations
and the definitions, we will make large use of Ref. [44] as well as Ref. [43].

The vector spherical harmonics are defined as follows

Y
(ℓ1)
JM (x̂) =

∑
mλ

CJM
ℓm,1λYℓm(x̂)ε̂λ , (A.1)

where x̂ is the generic pair of spherical polar angles x̂ = (θx, ϕx) and the coeffi-
cients CJM

ℓm,1λ = ⟨ℓm1λ|(ℓ1)JM⟩ are the Clebsch–Gordan coefficients. The functions
Yℓm(x̂) are the usual spherical harmonics and the unit vectors ε̂λ, with λ = 0,±1,
are defined on a spherical basis as

ε̂0 = ε̂z ,

ε̂±1 = ∓ 1√
2

(ε̂x ± iε̂y) .
(A.2)

The complex conjugate vectors and the scalar products are

ε̂∗
λ = (−1)λε̂−λ , ε̂∗

λ · ε̂λ′ = δλλ′ . (A.3)

The vector spherical harmonics are eigenfunctions of the total angular momen-
tum operator J2 and of its projection on the z–axis Jz with eigenvalues J(J + 1)
and M , respectively, and the following relation is valid

LYJM (x̂) =
√
J(J + 1)Y (J1)

JM (x̂) , (A.4)

with L the orbital angular momentum operator. These functions have also the
orthonormality property∫

dx̂Y
(ℓ1)∗
JM (x̂) Y

(ℓ′1)
J ′M ′(x̂) = δJJ ′δMM ′δℓℓ′ . (A.5)

To simplify the notation, from now on we will drop one of the superscripts in
definition of Eq. (A.1), Y

(ℓ)
JM (x̂) ≡ Y

(ℓ1)
JM (x̂), and we will use these functions in

momentum space.
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The vector spherical harmonics can be generated by applying the unit vector q̂
as follows

q̂ YJM (q̂) =
√

J

2J + 1Y
(J−1)
JM (q̂)−

√
J + 1
2J + 1Y

(J+1)
JM (q̂) . (A.6)

By applying the operator q̂×, they can be expressed as a linear combination of
vector spherical harmonics with the same J and M but different parity

q̂ × Y
(J+1)
JM (q̂) = i

√
J

2J + 1Y
(J)
JM (q̂) , (A.7a)

q̂ × Y
(J)
JM (q̂) = i

√
J + 1
2J + 1Y

(J−1)
JM (q̂) + i

√
J

2J + 1Y
(J+1)
JM (q̂) , (A.7b)

q̂ × Y
(J−1)
JM (q̂) = i

√
J + 1
2J + 1Y

(J)
JM (q̂) . (A.7c)

By combining Eqs. (A.6) and (A.7b) we obtain the relations

Y
(J−1)
JM (q̂) =

√
J

2J + 1 q̂ YJM (q̂)− i
√
J + 1
2J + 1 q̂ × Y

(J)
JM (q̂) , (A.8a)

Y
(J+1)
JM (q̂) = −

√
J + 1
2J + 1 q̂ YJM (q̂)− i

√
J

2J + 1 q̂ × Y
(J)
JM (q̂) . (A.8b)

By assuming that the unit vector q̂ is oriented along the z–axis, q̂ = ε̂z = ε̂0, we
also calculate the quantities q̂ Y ∗

JM (q̂), q̂ × Y
(J)∗
JM (q̂) and Y

(J)∗
JM (q̂), which are used

in the text. The first and the last are explicitly

q̂ Y ∗
JM (q̂) =

√
2J + 1

4π ε̂0 , (A.9)

Y
(J)∗
JM (q̂) =

√
2J + 1

4π CJM
J0,1M ε̂∗

M , (A.10)

where we have used the definition of the vector spherical harmonics in Eq. (A.1)
and the relation Yℓm(ε̂z) =

√
2ℓ+1

4π δm0. Then q̂ × Y
(J)∗
JM (q̂) can be calculated from

Eq. (A.10) by taking into account that ε̂0 × ε̂∗
M = iM ε̂∗

M , and the final result is

q̂ × Y
(J)∗
JM (q̂) = iM

√
2J + 1

4π CJM
J0,1M ε̂∗

M . (A.11)

The Clebsch–Gordan coefficients in Eqs. (A.10) and (A.11) are CJM
J0,1M = −M/

√
2.

In the rest of this Appendix we will derive Eqs. (2.28) and (2.29). We start from
the expression of the electric and magnetic current operators in terms of the vector
spherical harmonics, Eqs. (2.26) and (2.27), which we rewrite here for convenience

J̃
el
JM (q) = JJ−1

JM (q)Y (J−1)∗
JM (q̂) + JJ+1

JM (q)Y (J+1)∗
JM (q̂) (A.12)

J̃
mag
JM (q) = JJ

JM (q)Y (J)∗
JM (q̂) , (A.13)
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where the coefficients are defined explicitly as

JJ−1
JM (q) =

∫
dq̂′ J̃(q′) · Y (J−1)

JM (q̂′) , (A.14a)

JJ+1
JM (q) =

∫
dq̂′ J̃(q′) · Y (J+1)

JM (q̂′) , (A.14b)

and
JJ

JM (q) =
∫
dq̂′ J̃(q′) · Y (J)

JM (q̂′) . (A.15)

By substituting Eqs. (A.8) in Eqs. (A.14) we obtain for the coefficients JJ±1
JM (q)

JJ−1
JM (q) =

∫
dq̂′ J̃(q′) ·

[√
J

2J + 1 q̂′ YJM (q̂′)− i
√
J + 1
2J + 1 q̂′ × Y

(J)
JM (q̂′)

]
,

(A.16a)

JJ+1
JM (q) =

∫
dq̂′ J̃(q′) ·

[
−

√
J + 1
2J + 1 q̂′ YJM (q̂′)− i

√
J

2J + 1 q̂′ × Y
(J)
JM (q̂′)

]
.

(A.16b)

Then, from the expressions above and from Eqs. (A.8), the electric multipole oper-
ators in Eq. (A.12) become explicitly

J̃
el
JM (q) = q̂ Y ∗

JM (q̂)
∫
dq̂′ q̂′ · J̃(q′) YJM (q̂′)

+ q̂ × Y
(J)∗
JM (q̂)

∫
dq̂′
(
q̂′ × Y

(J)
JM (q̂′)

)
· J̃(q′) .

(A.17)

By following the same reasoning, we can rewrite the magnetic multipole operators
in Eq. (A.12) as

J̃
mag
JM (q) = Y

(J)∗
JM (q̂)

∫
dq̂′ J̃(q′) · Y (J)

JM (q̂′) . (A.18)





Appendix B

The Lanczos algorithm

The Lanczos method is essentially a technique used to tridiagonalize matrices [58].
When the Hamiltonian operator Ĥ is represented on a suitable basis, the Lanczos
algorithm is often used to determine the lowest eigenvalue and eigenvector, i.e. the
ground state. The algorithm can be also applied in the calculation of the LIT (see
Section 3.3.2).

The idea is to construct a orthonormal basis of Lanczos vectors |ϕn⟩ with n =
0, . . . , NLanc, in a recursive way. On this basis, the matrix Hamiltonian results to be
tridiagonal, and therefore it can be diagonalized by making use of standard routines.
If the dimension of the Hamiltonian matrix is N ×N , then the maximum number
of possible Lanczos steps is Nmax

Lanc = N − 1. The advantage of the method lies in
the fact that convergent results can be obtained already for NLanc ≪ N − 1. As a
consequence, calculations are computationally less demanding with respect to the
full diagonalization of the Hamiltonian matrix. This method requires mainly the
evaluation of matrix–vector products.

The starting vector, also known as pivot, is an arbitrary normalized vector |ϕ0⟩.
Then, Ĥ |ϕ0⟩ is used to construct the first vector |ϕ1⟩ as follows

|ϕ̃1⟩ = Ĥ |ϕ0⟩ − a0 |ϕ0⟩ = b1 |ϕ1⟩ , (B.1)

where a0 = ⟨ϕ0|Ĥ|ϕ0⟩ and b2
1 = ⟨ϕ̃1|ϕ̃1⟩. In this way |ϕ0⟩ and |ϕ1⟩ are orthonormal.

Then one proceeds to construct another vector by taking Ĥ |ϕ1⟩, by orthogonalizing
with respect to the previous vectors, and then normalizing as follows

|ϕ̃2⟩ = Ĥ |ϕ1⟩ − a1 |ϕ1⟩ − b1 |ϕ0⟩ = b2 |ϕ2⟩ , (B.2)

with a1 = ⟨ϕ1|Ĥ|ϕ1⟩ and b2
2 = ⟨ϕ̃2|ϕ̃2⟩. As a consequence, the recursive formula to

construct the Lanczos basis of vectors is the following

|ϕ̃i+1⟩ = Ĥ |ϕi⟩ − ai |ϕi⟩ − bi |ϕi−1⟩ = bi+1 |ϕi+1⟩ , (B.3)

and the definition of the so–called Lanczos coefficients is

ai = ⟨ϕi|Ĥ|ϕi⟩ , b2
i = ⟨ϕ̃i|ϕ̃i⟩ (B.4)
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where, i = 0, 1, 2, . . . and b0 = 0, |ϕ−1⟩ = 0. On this basis the Hamiltonian matrix
is explicitly

HT =



a0 b1 0 0 . . . 0 0
b1 a1 b2 0 . . . 0 0
0 b2 a2 b3 0 0
0 0 b3 a3 0 0
...

... . . . ...
0 0 0 0 aNLanc−1 bNLanc

0 0 0 0 . . . bNLanc aNLanc


, (B.5)

where NLanc is the number of steps used. The eigenvalues of the tridiagonal matrix
HT are good approximations of the extreme eigenvalues of the Hamiltonian matrix,
and they converge already with a number of steps NLanc ≪ N − 1. We point
out that after a certain number of Lanczos steps, the Lanczos vectors loose their
orthogonality property, and this could lead to results that are not so accurate. For
this reason, an additional re–orthogonalization process is often needed [59].



Appendix C

Lippmann–Schwinger equation

In this Appendix we write the detailed derivation of the Lippmann–Schwinger equa-
tions (4.19) and (4.61) used as a starting point for the calculation of the coefficients
of the two–body α–n and α–α effective potentials. More details about the formalism
can be found in Refs. [25, 83, 124, 125].

C.1 General formalism
In relative coordinates, the system composed of two particles with reduced mass
µ is described by the free Hamiltonian Ĥ0 = p̂2

2µ and the Schrödinger equation
Ĥ0 |p⟩ = E |p⟩, where the energy is E = p2

2µ . The set of eigenstates |p⟩ is a complete
and orthogonal set, satisfying the following relations

Ω
∫

d3p

(2π)3 |p⟩ ⟨p| = 1 , ⟨p|p′⟩ = (2π)3

Ω δ3(p− p′) , (C.1)

representing also a complete set of plane wave solutions ⟨r|p⟩ = eipr/
√

Ω. In the
text the convention for which Ω = 1 is used. The free Green’s function relative to
the system is defined as [125]

Ĝ
(±)
0 (E) = 1

E − Ĥ0 ± iε
. (C.2)

By inserting a complete set of states |q⟩, we have

Ĝ
(+)
0 (E) = Ω

∫
d3q

(2π)3
|q⟩ ⟨q|

E − q2

2µ + iε
, (C.3)

which allows us to write for the free Green’s function matrix element

⟨p|Ĝ(+)
0 (E)|p′⟩ = (2π)3

Ω
δ3(p− p′)
E − q2

2µ + iε
. (C.4)

When we add a potential to the free Hamiltonian, the full Hamiltonian is Ĥ =
Ĥ0 + V̂ , and the solutions of the Schrödinger equation (Ĥ − E) |ψ⟩ = 0 can be
expressed formally as

|ψ(±)
p ⟩ = |p⟩+ Ĝ

(±)
0 V̂ |ψ(±)

p ⟩ , (C.5)
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where the prescription (±) reflects their asymptotic behaviour (incoming or outgo-
ing). The full Green’s function is now

Ĝ(±)(E) = 1
E − Ĥ ± iε

. (C.6)

Notice that by using the relation Ĝ(±)
0 = Ĝ(±)−Ĝ(±)V̂ Ĝ

(±)
0 between the free and the

full Green’s functions defined in Eqs. (C.2) and (C.6), respectively, we can rewrite
the solutions in Eq. (C.5) in terms of the free–solutions |p⟩ as follows

|ψ(±)
p ⟩ =

(
1 + Ĝ(±)V̂

)
|p⟩ . (C.7)

Another useful equivalence is Ĝ(±) = Ĝ
(±)
0 + Ĝ

(±)
0 V̂ Ĝ(±), whose iterative solution

for Ĝ(±) leads to the expansion Ĝ(±) =
∑∞

n=0(Ĝ(±)
0 V̂ )nĜ

(±)
0 and consequently to

|ψ(±)
p ⟩ =

[
1 +

∞∑
n=1

(Ĝ(±)
0 V̂ )n

]
|p⟩ . (C.8)

From the definition of the operator T̂ , (T̂ |p⟩ = V̂ |ψ(+)
p ⟩), by making use of

Eq. (C.5), we can write
T̂ = V̂ + V̂ Ĝ

(+)
0 T̂ , (C.9)

which is the Lippmann–Schwinger equation for T̂ in operator form. By inserting
different complete sets of states |p⟩ and using Eq. (C.4), we can write explicitly for
the T–matrix element

⟨p|T̂ (E)|p′⟩ = ⟨p|V̂ |p′⟩+ Ω
∫

d3q

(2π)3 ⟨p|V̂ |q⟩
1

E − q2

2µ + iε
⟨q|T̂ (E)|p′⟩ . (C.10)

The formalism presented above can be applied when the interaction between the
two particles of the system is given only by the strong interaction V̂ = V̂S. When
both the Coulomb potential V̂C and the strong short–range potential V̂S are present,
we have to proceed in a different way.

C.2 Coulomb and strong potential
We start by considering the repulsive Coulomb potential V̂C = Z1Z2αem/r acting
between the two particles of the system whose electromagnetic charges are Z1 and
Z2, αem = e2

4π being the fine–structure constant [25, 83]. In this case the Hamiltonian
is Ĥ = Ĥ0 + V̂C and the Green’s function can be written following Eq. (C.6) as

Ĝ
(±)
C (E) = 1

E − Ĥ ± iε
. (C.11)

As in Eq. (C.7), we write the incoming and outgoing solutions of the Schrödinger
equation (Ĥ − E) |ψ⟩ = 0, i.e. the Coulomb wave functions, in the form

|ψ(±)
p ⟩ =

(
1 + Ĝ

(±)
C V̂C

)
|p⟩ , (C.12)
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where the prescription (±) depends again on the chosen boundary conditions at
infinity. The solutions are normalized as in (C.1), and therefore, by analogy with
Eq. (C.3), we can write

Ĝ
(+)
C (E) = Ω

∫
d3q

(2π)3
|ψ(±)

q ⟩ ⟨ψ(±)
q |

E − q2

2µ + iε
. (C.13)

These solutions can also be calculated by solving the Schrödinger equation and
in coordinate space they are

ψ(±)
p (r) = ⟨r|ψ(±)

p ⟩ = e− π
2 ηΓ(1± iη)M(∓iη, 1;±ipr − ipr)eipr , (C.14)

where Γ(z) and M(a, b; z) are the Gamma function and the confluent hypergeomet-
ric function, respectively, [45] and η = η(p) is the Sommerfeld parameter, defined
as

η = Z1Z2
αemµ

p
. (C.15)

The Coulomb wave functions have the following properties [25]:

ψ(±)∗
p (0)ψ(±)

p (0) = e−πηΓ(1∓ iη)Γ(1± iη) = 2πη
e2πη − 1 ≡ C

2
η , (C.16)

ψ(∓)∗
p (0)ψ(±)

p (0) = e−πη[Γ(1± iη)]2 = C2
ηe

±2iσ0 , (C.17)

where we have introduced the Sommerfeld factor Cη = Cη(p) and the Coulomb
phase-shift σ0 = σ0(p) for the ℓ = 0 partial wave. The latter is defined in general as

σℓ = arg Γ(ℓ+ 1 + iη) = 1
2i ln

[Γ(ℓ+ 1 + iη)
Γ(ℓ+ 1− iη)

]
. (C.18)

By making an expansion of the Coulomb wave functions in partial waves, we write

ψ(±)
p (r) =

∞∑
ℓ=0

iℓ(2ℓ+ 1)R(±)
ℓ (pr)Pℓ(cos θ) , (C.19)

and the ℓ = 0 term is explicitly

R
(±)
0 (pr) = Cη(p)e

±iσ0M(1 + iη, 2;−2ipr)eipr . (C.20)

With the identity M(a, b; z) = M(b − a, b;−z), it can be demonstrated that the
ingoing and outgoing solutions differ only by the phase factor e±iσ0 [83].

When we add the strong interaction V̂S in the system we must consider the
complete Hamiltonian Ĥ = Ĥ0 + V̂C + V̂S and the Green’s function

Ĝ
(±)
SC (E) = 1

E − Ĥ ± iε
. (C.21)

By following the formalism developed above, we can construct the solutions of the
Schrödinger equation (Ĥ − E) |Ψ⟩ = 0 in terms of the free–solutions |p⟩

|Ψ(±)
p ⟩ =

(
1 + Ĝ

(±)
SC (V̂C + V̂S)

)
|p⟩ , (C.22)
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as well as those in terms of the Coulomb wave functions |ψ(±)
p ⟩

|Ψ(±)
p ⟩ = |ψ(±)

p ⟩+ Ĝ
(±)
C V̂S |Ψ(±)

p ⟩ . (C.23)

Finally, it can be demonstrated that the matrix element of the operator T̂ , formally
defined as

T̂ = (V̂C + V̂S)[1 + Ĝ
(+)
SC (V̂C + V̂S)] , (C.24)

can be expressed as a sum of two terms

⟨p|T̂ |p′⟩ = ⟨p|T̂C |p′⟩+ ⟨p|T̂SC |p′⟩ = ⟨p|V̂C |ψ(+)
p′ ⟩+ ⟨ψ(−)

p |V̂S |Ψ(+)
p′ ⟩ , (C.25)

⟨p|T̂C |p′⟩ being the pure Coulomb term and ⟨p|T̂SC |p′⟩ the strong term modified by
the Coulomb corrections. By making use of Eqs. (C.23) and (C.13), the Coulomb–
distorted strong term can be written as follows

⟨p|T̂SC(E)|p′⟩ = ⟨ψ(−)
p | V̂S |ψ

(+)
p′ ⟩+ Ω

∫
d3q

(2π)3 ⟨ψ
(−)
p | V̂S |ψ(−)

q ⟩
⟨q|T̂SC(E)|p′⟩
E − q2

2µ + iε
.

(C.26)



Appendix D

Orthogonal polynomials

D.1 Jacobi polynomials

The Jacobi polynomials P (a,b)
n (x) of order n = 0, 1, 2, . . . are the solution of the

following linear homogeneous differential equation of second order [45]

(1− x2)[P (a,b)
n ]′′ + [b− a− x(b+ a+ 2)][P (a,b)

n ]′ + n(n+ b+ a+ 1)P (a,b)
n = 0 , (D.1)

with a, b > −1 and −1 ≤ x ≤ 1. The symbols [P (a,b)
n ]′ and [P (a,b)

n ]′′ denote the
derivatives with respect to the argument: d

dxP
(a,b)
n (x) and d2

dx2P
(a,b)
n (x), respectively.

Note that the first two coefficients of Eq. (D.1) do not depend on the parameter n.
The Jacobi polynomials are a system of orthogonal polynomials in the interval

[−1, 1] and they satisfy the relation∫ 1

−1
dx (1 + x)b(1− x)aP (a,b)

n (x)P (a,b)
m (x) = δnm hn , (D.2)

where (1+x)b(1−x)a = w(x) is a weight function and the normalization coefficient
hn is explicitly

hn = 2b+a+1

2n+ b+ a+ 1
Γ(n+ b+ 1)Γ(n+ a+ 1)

n! Γ(n+ b+ a+ 1) . (D.3)

D.2 Generalized Laguerre polynomials

The generalized Laguerre polynomials L(α)
n (x) are the solution of the differential

equation of second order [45]

x[L(α)
n (x)]′′ + (α+ 1− x)[L(α)

n (x)]′ + nL(α)
n (x) = 0 (D.4)

with n = 0, 1, 2, . . . and α > −1. The notation [L(α)
n (x)]′ ≡ d

dxL
(α)
n (x) and

[L(α)
n (x)]′′ ≡ d2

dx2L
(α)
n (x) is adopted.

The generalized Laguerre polynomials are a system of orthogonal polynomials
in the interval [0,∞) with respect to the weight function w(x) = e−xxα, i.e.∫ ∞

0
dxxαe−xL(α)

n (x)L(α)
m (x) = δnm

(n+ α)!
n! (D.5)

153





Appendix E

Derivation of the E1 and E2
transition operators

E.1 The electric dipole transition operator
We want to rewrite the rescaled dipole operator dλ, which is defined in Eq. (6.5) as
a sum of A terms. For A = 3 the operator is

dλ =
3∑

i=1
Zir

′
iY1λ(r̂′

i) , (E.1)

where each position vector r′
i is a linear combination of the internal Jacobi coordi-

nates {η2,η1 }, as explicitly written in Eq. (6.8). To this aim we make use of the
following general relation [126]

vℓ Yℓm(v̂) =
∑
λ′µ′

√
4π(2ℓ+ 1)!

(2λ′ + 1)!(2ℓ− 2λ′ + 1)! ⟨ℓ− λ
′,m− µ′, λ′, µ′|ℓ,m⟩

×aℓ−λ′
Yℓ−λ′,m−µ′(â) bλ′

Yλ′,µ′(b̂) ,

(E.2)

which is valid when the vector v can be written as v = a + b. Specifically, we will
consider the case in which ℓ = 1 and m = λ. To rewrite the term r′

1Y1λ(r̂′
1) we use

Eq. (E.2) with

v = r′
1 , a = −Aη2 , b = −Bη1 , (E.3)

while for r′
2Y1λ(r̂′

2) we impose

v = r′
2 , a = Cη2 , b = −Bη1 . (E.4)

These choices follow directly from Eqs. (6.8). The operator dλ is then

dλ =
∑
λ′µ′

√
6(4π)

(2λ′ + 1)!(3− 2λ′)! ⟨1− λ
′, λ− µ′, λ′, µ′|1, λ⟩

×
[
Z1(−A)1−λ′(−B)λ′ + Z2C1−λ′(−B)λ′]

×η1−λ′

2 Y1−λ′,λ−µ′(η̂2) ηλ′
1 Yλ′,µ′(η̂1) + Z3D η1Y1,λ(η̂1) ,

(E.5)
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where the index λ′ runs from 0 to ℓ, while µ′ = −λ′, . . . , λ′. By calculating explicitly
the sum for λ′ = 0 (µ′ = 0) and for λ′ = 1 (µ′ = 0,±1), we obtain

dλ =
√

4π (−Z1A+ Z2C) η2 Y1,λ(η̂2)Y0,0(η̂1) + Z3D η1Y1,λ(η̂1)
+
√

4π
∑

µ′=0,±1
⟨0, λ− µ′, 1, µ′|1, λ⟩ [−(Z1 + Z2)B] η1 Y0,λ−µ′(η̂2)Y1,µ′(η̂1) . (E.6)

Then, we get the final result

dλ = (−Z1A+ Z2C) η2 Y1,λ(η̂2) + [−(Z1 + Z2)B + Z3D] η1Y1,λ(η̂1) , (E.7)

where we have used the properties of the Clebsch–Gordan coefficients that appear
in the sum of Eq. (E.6), in addition to the identities Y0,0(η̂1) = Y0,0(η̂2) = 1/

√
4π.

The most general definitions of the mass factors A, B, C and D that can be deduced
from Eqs. (6.7) and (6.8) are

A =
√
mrm2
M2m1

, B =
√
mrm3
MM2

, C =
√
mrm1
M2m2

, D =
√
mrM2
Mm3

. (E.8)

From these expressions, the coefficients in Eq. (E.7), relative to the dependence of
the operator on the Jacobi vectors η2 and η1, are explicitly

− Z1A+ Z2C = −
√
mr
M2

(
Z1

√
m2
m1
− Z2

√
m1
m2

)
, (E.9a)

− (Z1 + Z2)B + Z3D = − (Z1 + Z2)
√
mrm3
MM2

+ Z3

√
mrM2
Mm3

. (E.9b)

E.2 The electric quadrupole transition operator

In this Section we will explicitly derive the E2 operator written in Eq. (7.4), by
starting from the following expression

uλ =
3∑

i=1
Zi(r′

i)2Y2λ(r̂′
i) , (E.10)

where the vectors { r′
1, r

′
2, r

′
3 } are related to the set of Jacobi vectors {η2,η1 }

through the relations in Eq. (6.8). To this aim we employ Eq. (E.2) with ℓ = 2 and
m = λ, which leads to the following result

uλ =
∑
λ′µ′

√
5!(4π)

(2λ′ + 1)!(5− 2λ′)! ⟨2− λ
′, λ− µ′, λ′, µ′|2, λ⟩

×
[
Z1(−A)2−λ′(−B)λ′ + Z2(C)2−λ′(−B)λ′]

× η2−λ′

2 Y2−λ′,λ−µ′(η̂2) ηλ′
1 Yλ′,µ′(η̂1) + Z3D2 η2

1Y2,λ(η̂1) .

(E.11)
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Starting from the expression above, if we perform the explicit calculations for the
values λ′ = 0, 1, 2 and µ′ = −λ′, . . . , λ′, then we obtain

uλ =
√

4π
(
Z1A2 + Z2C2

)
η2

2 Y2,λ(η̂2)Y0,0(η̂1) + Z3D2 η2
1Y2,λ(η̂1)

+

√
5!(4π)
3!3!

∑
µ′=0,±1

⟨1, λ− µ′, 1, µ′|2, λ⟩ (Z1AB − Z2CB) η2 Y1,λ−µ′(η̂2) η1 Y1,µ′(η̂1)

+
√

4π
∑

µ′=0,±1,±2
⟨0, λ− µ′, 2, µ′|2, λ⟩

[
(Z1 + Z2)B2

]
Y0,λ−µ′(η̂2) η2

1 Y2,µ′(η̂1) ,

(E.12)

where the mass coefficients A, B, C and D are defined in Eq. (E.8), and the sym-
bols ⟨1, λ− µ′, 1, µ′|2, λ⟩ and ⟨0, λ− µ′, 2, µ′|2, λ⟩ denote the Clebsch–Gordan coeffi-
cients. By exploiting the properties of the latter, and by using Y0,0(η̂1) = Y0,0(η̂2) =
1/
√

4π we get

uλ =
(
Z1A2 + Z2C2

)
η2

2 Y2,λ(η̂2) +
[
(Z1 + Z2)B2 + Z3D2

]
η2

1 Y2,λ(η̂1)

+

√
10(4π)

3 (Z1AB − Z2CB) η2η1
∑

µ′=0,±1
⟨1, λ− µ′, 1, µ′|2, λ⟩Y1,λ−µ′(η̂2)Y1,µ′(η̂1) ,

(E.13)

whose coefficients can be calculated explicitly by means of the definitions in Eq. (E.8),
obtaining

Z1A2 + Z2C2 = mr
M2

(
Z1
m2
m1

+ Z2
m1
m2

)
, (E.14a)

(Z1 + Z2)B2 + Z3D2 = (Z1 + Z2) mrm3
M2M

+ Z3
mrM2
Mm3

, (E.14b)

Z1AB − Z2CB = mr
M2

√
m3
M

Z1m2 − Z2m1√
m1m2

, (E.14c)

where M is the total mass of the system and M2 is defined as M2 = m1 +m2.





Appendix F

Detailed calculation of some
matrix elements

In this Appendix we calculate explicitly the integrals in Eqs. (6.30) and (7.10), where
the operators d̂λ and ûλ, in configuration space, are constructed as a combination
of terms proportional to η1 Y1λ(η̂1) and η2 Y1λ(η̂2) or η2

1 Y2λ(η̂1) and η2
2 Y2λ(η̂2). In

the most general case, the basis functions YJMπ
µ (Ω(ρ)

2 ) are [see Eq. (5.55)]

YJMπ
[K][S][T ]KLST (Ω(ρ)

N ) =
[
YKL

[K] (Ω(ρ)
N )χS

[S]

]
JM

ξT MT

[T ] , (F.1)

with the HH term defined as in Eq. (5.47), which we rewrite here as

YKLML

[K] (Ω(ρ)
N ) =

[{
LN−1

}
, ℓN

]
LML

NPℓN ,KN−1
nN

(φN )
N−1∏
j=2

jPℓj ,Kj−1
nj (φj) . (F.2)

The expression of the basis functions that we will use is the following:

[[{
LN−1

}
, ℓN

]
L

{
S
}]

JM

NPKN−1,ℓN
nN

(φN )
N−1∏
j=2

jPKj−1,ℓj
nj (φj) . (F.3)

Basically, since η2 = ρ sinφ2 and η1 = ρ cosφ2, the whole calculation is reduced to
the computation of the following matrix elements

⟨m′, J ′M ′|ρa (sinφ2)b(cosφ2)c Yαλ(η̂2)|m,JM⟩ , (F.4)
⟨m′, J ′M ′|ρa (sinφ2)b(cosφ2)c Yαλ(η̂1)|m,JM⟩ . (F.5)

First we focus on the calculation of the integral (F.4) in configuration space.
The derivation that follows is valid for a generic value of N ≡ A− 1. By using the
volume element defined in Eqs. (5.16) and (5.17), the integral easily separates into
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a hyperradial, a hyperspherical and an angular part

⟨m′, J ′M ′|ρa (sinφN )b(cosφN )c Yαλ(η̂N )|m,JM⟩ =

=
∫
dρ ρ3N−1+ag∗

m′K′(ρ)gmK(ρ) (F.6a)

× δ{n′
N−1},{nN−1}

∫
dφN N

K′
N ;ℓ′

N ,K′
N−1

n′
N

P
(ℓ′

N + 1
2 ,K′

N−1+ 3N−5
2 )

n′
N

(cos 2φN )

× (sinφN )ℓ′
N +ℓN +2+b(cosφN )K′

N−1+KN−1+3N−4+c

×NKN ;ℓN ,KN−1
nN

P
(ℓN + 1

2 ,KN−1+ 3N−5
2 )

nN (cos 2φN ) (F.6b)

×
〈
J ′M ′ ∣∣Yαλ(η̂N )

∣∣ JM〉
. (F.6c)

Notice that in the equation above we have already performed the hyperspherical
integrals in the variables dφj , with j = 2, . . . , N−1, giving rise to the delta functions.
In order to calculate the last angular integral (F.6c), which is explicitly〈

J ′M ′ ∣∣Yαλ(η̂N )
∣∣ JM〉

≡
〈[
{L′

N−1}, ℓ′N
]
L′{S′}

]
J ′M ′

∣∣∣∣Yαλ(η̂N )
∣∣∣∣ [[{LN−1}, ℓN

]
L
{S}

]
JM

〉
,

(F.7)

the basis must be manipulated further, specifically as∣∣∣∣[[{LN−1}, ℓN
]
L
{S}

]
JM

〉
→
∣∣∣∣[ℓN [{LN−1}, {S}

]
j

]
JM

〉
. (F.8)

In order to achieve this, as a first step, we bring the single orbital angular mo-
mentum ℓN to the first position, and this operation gives rise to a phase factor
(−1)LN−1+ℓN −L. Then, we perform the L–S recoupling by making use of the gen-
eral relation [115]∣∣∣∣[[j1, j2]j12

j3
]

JM

〉
= (−1)j1+j2+j3+j

∑
j23

ĵ12 ĵ23

{
j1 j2 j12
j3 J j23

} ∣∣∣∣[j1[j2, j3]j23

]
JM

〉
,

(F.9)
obtaining the following result〈
J ′M ′ ∣∣Yαλ(η̂N )

∣∣ JM〉
= (−1)2L′

N−1+2ℓ′
N −L′

N +S′+J ′
(−1)2LN−1+2ℓN −LN +S+J

×
∑
j′j

L̂′
N ĵ′ L̂N ĵ

{
ℓ′N L′

N−1 L′
N

S′ J ′ j′

}{
ℓN LN−1 LN

S J j

}

×
〈[
ℓ′N
[
{L′

N−1}, {S′}
]
j′

]
J ′M ′

∣∣∣∣Yαλ(η̂N )
∣∣∣∣ [ℓN [{LN−1}, {S}

]
j

]
JM

〉
,

(F.10)

where the curl brackets denote the Wigner 6j symbols. Here and henceforth, the
hat symbol on a generic quantum number Ĵ stands for the expression Ĵ ≡

√
2J + 1.

Now we are allowed to employ the following expression [115]〈[
j′

1, j
′
2
]
J ′M ′

∣∣∣ P̂αβ(1)
∣∣∣ [j1, j2]JM

〉
= (−1)J ′−M ′

(
J ′ α J
−M ′ β M

)
δj′

2j2(−1)j′
1+j′

2+J+α

× Ĵ ′ Ĵ

{
j1 j′

2 J
J ′ α j′

1

}〈
j′

1

∥∥∥ P̂α(1)
∥∥∥ j1〉 ,

(F.11)
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which is valid whenever a generic operator P̂αβ(1) acts only on the subsystem 1. By
rewriting Eq. (F.10) as

〈
J ′M ′ ∣∣Yαλ(η̂N )

∣∣ JM〉
= (−1)J ′−M ′

(
J ′ α J
−M ′ λ M

)〈
J ′ ∥∥Yα(η̂N )

∥∥ J〉 , (F.12)

the complete expression of the reduced matrix elements results to be〈
J ′ ∥∥Yα(η̂N )

∥∥ J〉 = (−1)2L′
N−1+2ℓ′

N −L′
N +S′+J ′

(−1)2LN−1+2ℓN −LN +S+J

×
∑
j′j

L̂′
N ĵ′ L̂N ĵ

{
ℓ′N L′

N−1 L′
N

S′ J ′ j′

}{
ℓN LN−1 LN

S J j

}

× δj′j δ{L′
N−1},{LN−1} δ{S′},{S} (−1)J+ℓ′

N +j−α

× Ĵ ′ Ĵ

{
ℓN j J
J ′ α ℓ′N

}
⟨ℓ′N∥Yα(η̂N )∥ℓN ⟩ .

(F.13)

By exploiting the delta function δj′j the summations over j and j′ simplify, and one
can apply the following general property of the 6j symbols [115]

∑
x

(−1)a+b+c+d+e+f+p+q+r+x(2x+ 1)
{
a b x
c d p

}{
c d x
e f q

}{
e f x
b a r

}

=
{
p q r
e a d

}{
p q r
f b c

}
,

(F.14)

obtaining the final result〈
J ′ ∥∥Yα(η̂N )

∥∥ J〉 = δ{L′
N−1},{LN−1} δ{S′},{S} (−1)LN−1+ℓN +S+J+α+1

× L̂′
N Ĵ ′ L̂N Ĵ

{
ℓ′N L′

N LN−1
LN ℓN α

}{
L′

N J ′ S
J LN α

}
× ⟨ℓ′N∥Yα(η̂N )∥ℓN ⟩ .

(F.15)

The reduced matrix element of the spherical harmonics Yαλ(η̂N ) is explicitly [115]

⟨ℓ′N∥Yα(η̂N )∥ℓN ⟩ = (−1)ℓ′
N ℓ̂′N

α̂√
4π

ℓ̂N

(
ℓ′N α ℓN
0 0 0

)
. (F.16)

For the computation of the integral in Eq. (F.5) in configuration space one
can follow a very similar procedure. The whole integral factorizes again into a
hyperradial, a hyperspherical and an angular term

⟨m′, J ′M ′|ρa (sinφ2)b(cosφ2)c Yαλ(η̂1)|m,JM⟩ =

=
∫
dρ ρ5+ag∗

m′K′(ρ)gmK(ρ) (F.17a)

×
∫
dφ2N

K′
2;ℓ′

2,K′
1

n′
2

P
(ℓ′

2+ 1
2 ,K′

1+ 1
2 )

n′
2

(cos 2φ2)

× (sinφ2)ℓ′
2+ℓ2+2+b(cosφ2)K′

1+K1+2+cNK2;ℓ2,K1
n2 P

(ℓ2+ 1
2 ,K1+ 1

2 )
n2 (cos 2φ2) (F.17b)

×
〈
J ′M ′ ∣∣Yαλ(η̂1)

∣∣ JM〉
, (F.17c)
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with K1 ≡ ℓ1. The angular integral in (F.17c) is now explicitly

〈
J ′M ′ ∣∣Yαλ(η̂1)

∣∣ JM〉
≡
〈[[

ℓ′1, ℓ
′
2
]
L′{S′}

]
J ′M ′

∣∣∣∣Yαλ(η̂1)
∣∣∣∣ [[ℓ1, ℓ2]L{S}]JM

〉
.

(F.18)

By applying the recoupling relation in Eq. (F.9), we obtain〈
J ′M ′ ∣∣Yαλ(η̂1)

∣∣ JM〉
= (−1)ℓ′

1+ℓ′
2+S′+J ′(−1)ℓ1+ℓ2+S+J

×
∑
j′j

L̂′
2 ĵ

′ L̂2 ĵ

{
ℓ′1 ℓ′2 L′

2
S′ J ′ j′

}{
ℓ1 ℓ2 L2
S J j

}

×
〈[
ℓ′1
[
ℓ′2, {S′}

]
j′

]
J ′M ′

∣∣∣∣Yαλ(η̂1)
∣∣∣∣ [ℓ1[ℓ2, {S}]j]JM

〉
.

(F.19)

Since the spherical harmonic Yαλ(η̂1) only acts on the subsystem 1, Eq. (F.11) yields
to the result

〈
J ′M ′ ∣∣Yαλ(η̂1)

∣∣ JM〉
= (−1)J ′−M ′

(
J ′ α J
−M ′ λ M

)〈
J ′ ∥∥Yα(η̂1)

∥∥ J〉 , (F.20)

where the explicit expression of the reduced matrix element is〈
J ′ ∥∥Yα(η̂1)

∥∥ J〉 = (−1)ℓ′
1+ℓ′

2+S′+J ′(−1)ℓ1+ℓ2+S+J

×
∑
j′j

L̂′
2 ĵ

′ L̂2 ĵ

{
ℓ′1 ℓ′2 L′

2
S′ J ′ j′

}{
ℓ1 ℓ2 L2
S J j

}

× δj′j δℓ′
2,ℓ2 δ{S′},{S} (−1)J+ℓ′

1+j−α

× Ĵ ′ Ĵ

{
ℓ1 j J
J ′ α ℓ′1

}
⟨ℓ′1∥Yα(η̂1)∥ℓ1⟩ .

(F.21)

Finally, by using Eq. (F.14) we get the final result〈
J ′ ∥∥Yα(η̂1)

∥∥ J〉 = δℓ′
2,ℓ2 δ{S′},{S} (−1)L′

2+ℓ′
1+L2+ℓ2+S+J+α+1

× L̂′
2 Ĵ

′ L̂2 Ĵ

{
ℓ′1 L′

2 ℓ2
L2 ℓ1 α

}{
L′

2 J ′ S
J L2 a

}
× ⟨ℓ′1∥Yα(η̂1)∥ℓ1⟩ ,

(F.22)

where the reduced matrix element is defined as [115]

⟨ℓ′1∥Yα(η̂1)∥ℓ1⟩ = (−1)ℓ′
1 ℓ̂′1

α̂√
4π

ℓ̂1

(
ℓ′1 α ℓ1
0 0 0

)
. (F.23)
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LIT calculation: test

The dipole matrix elements that enter in the computation of the LIT (6.17) have
been calculated in coordinate space following Eq. (6.30). In performing the integral,
instead of using the basis functions gmK(ρ) directly, we have applied the procedure
discussed in Section 6.1.2, in which the functions G0,l

µ (ρ) are computed by following
Eq. (6.28). This has led to all the results shown in Section 6.2. As already mentioned
in Section 5.4, we could have followed another strategy. If one diagonalizes the
Hamiltonian matrix represented on a basis in momentum space as the one defined in
Eq. (5.172), which uses the functions gmK(Q), then it is allowed to use in coordinate
space the basis (5.158) defined in terms of fm(ρ). In this way, the dipole matrix
elements ⟨Ψl|d̂λ|Ψ0⟩ can be calculated as follows

⟨Ψl|d̂λ|Ψ0⟩ =
∫
dΩ(ρ)

2 dρ ρ5
[ ∑

m′µ′

cl
m′µ′ fm(ρ)YJMπ

µ′ (Ω(ρ)
2 )
]†

× dλ(ρ,Ω2)
[∑

mµ

c0
mµ fm(ρ)YJMπ

µ (Ω(ρ)
2 )
]
,

(G.1)

where the basis functions fm(ρ) are constructed by means of a Laguerre polynomials
basis. A Fortran code that makes use of the functions gmK(Q) to find the eigenval-
ues and eigenvectors of the Hamiltonian has started to be developed in Ref. [110].
There these functions are calculated by means of a Fortran package [114], and
the limiting value 24 was imposed on the index m to avoid instabilities in calcu-
lating gmK(Q). As already mentioned in Section 6.1.2, by doing calculations in
quadrupole precision, this limiting value can be increased. Therefore, we have ap-
plied some modifications to the original Fortran code in order to be able to run
with mmax = 30, as well as an OpenMP parallelization to reduce the computational
time. We have also introduced the three–body force, by implementing the inte-
grals necessary to calculate the relative matrix elements, as in Section 5.4.2. Since,
within this framework, the dipole matrix elements ⟨Ψl|d̂λ|Ψ0⟩ can be calculated as
in Eq. (G.1), this has provided a way to test the results presented in Section 6.2

Regarding the Fortran code that works with the gmK(Q) basis, by choosing the
parameters in Eq. (6.44) as a = b = 0.6 and c = 0.8, the typical values needed to
perform convergent bound–state calculations are β = 1.4 fm−1, NQ/Nφ = 550/500,
NL = 30 and Kmax = 25. We have then implemented the computation of the
dipole matrix elements as in (G.1). As anticipated, in order to perform the test,
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Figure G.1: LIT computed by using Eq. (6.30) and the functions G0,l
µ (ρ) in (6.28)

(solid blue) or Eq. (G.1) with fm(ρ) (dot–dashed green line) to evaluate the dipole
matrix elements ⟨Ψl|d̂λ|Ψ0⟩.

we must compare these results with those obtained by calculating ⟨Ψl|d̂λ|Ψ0⟩ with
the functions G0,l

µ (ρ) of Eq. (6.28). In both cases, we have employed the interaction
potential in Eq. (6.54) by setting the parameters to the same values: Λ3 = 300 MeV,
Γ = 2000 MeV, as well as the values of the strength of the three–body potentials
(see 6.22b). By focussing on the 1/2+ resonance, the outcome of this test is shown
in Fig. G.1. The results are in agreement, since the two calculated LIT have the
same shape and almost the same strength, with a slight difference in the height
of the tail. This could be ascribed to the different rate of convergence, since two
different set of bases have been used.

Within this framework, we have also carried out two other types of checks. The
first concerns the moment of order zero relative to the response function, which is
formally defined as

m0 =
∫
dωR(ω) . (G.2)

By using the definition of the response function (6.16), it can be demonstrated that
m0 can be calculated with the following expressions

m0 =
NΛ∑
l=0

∣∣∣⟨Ψl|d̂λ|Ψ0⟩
∣∣∣2 = ⟨Ψ0|d̂†

λd̂λ|Ψ0⟩ , (G.3)

where in the second equivalence we have exploited the completeness of the basis |Ψl⟩.
We have that ⟨Ψ0|d̂†

λd̂λ|Ψ0⟩|fm(ρ) = 0.18663284 fm2, while m0 calculated from the
summation over l of the dipole matrix elements ⟨Ψl|d̂λ|Ψ0⟩|fm(ρ) is 0.18663284 fm2,
which is in full agreement. By using ⟨Ψl|d̂λ|Ψ0⟩|G0,l

µ (ρ) the summation over l gives
0.16648564 fm2. However, this smaller value is consistent with the results shown in
Fig. G.1.
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As a second check, we have also exploited the behaviour of the LIT in the limit
σR →∞ as follows

L(σR, σI)→
∫
dω

R(ω)
σ2

R

, (G.4)

leading to the relation
σ2

R L(σR, σI)→ m0 . (G.5)

With σI fixed to 0.2 MeV, we have evaluated the expression above separately for
the LIT calculated with the functions G0,l

µ (ρ) and fm(ρ), and we have collected the
results in Tab. G.1. For σR = 108 MeV both calculations are in full agreement with
the relative m0 with a precision at the fifth digit.

σR σ2
R L(σR)

∣∣∣
G0,l

µ (ρ)
σ2

R L(σR)
∣∣∣
fm(ρ)

101 5.1551628 9.4621599
102 1.0312183 6.7717493
103 0.15610013 0.42814407
104 0.19039451 0.25308260
105 0.16804176 0.18822082
106 0.16663583 0.18678598
107 0.16650061 0.18664810
108 0.16648714 0.18663436
109 0.16648579 0.18663299

1010 0.16648566 0.18663285

Table G.1: Evaluation of the expression σ2
R L(σR, σI) (fm2) for increasing σR (MeV)

by using the functions G0,l
µ (ρ) or fm(ρ) to calculate the dipole matrix elements in

the LIT L(σR, σI). σI is fixed at 0.2 MeV. More details can be found in the text.
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section of 9Be up to 16 MeV in the α+α+n three–body model”, Phys. Rev.
C 93, 054605 (2016) doi: 10.1103/PhysRevC.93.054605.

[20] H.-W. Hammer, C. Ji, and D. R. Phillips, “Effective field theory description
of halo nuclei”, Journal of Physics G: Nuclear and Particle Physics 44, 103002
(2017) doi: 10.1088/1361-6471/aa83db.

[21] S. Weinberg, “Nuclear forces from chiral lagrangians”, Physics Letters B 251,
288–292 (1990) doi: 10.1016/0370-2693(90)90938-3.

[22] H.-W. Hammer, S. König, and U. van Kolck, “Nuclear effective field theory:
status and perspectives”, Rev. Mod. Phys. 92, 025004 (2020) doi: 10.1103/
RevModPhys.92.025004.

[23] C. Bertulani, H.-W. Hammer, and U. van Kolck, “Effective field theory for
halo nuclei: shallow p–wave states”, Nuclear Physics A 712, 37–58 (2002)
doi: 10.1016/S0375-9474(02)01270-8.

[24] P. Bedaque, H.-W. Hammer, and U. van Kolck, “Narrow resonances in ef-
fective field theory”, Physics Letters B 569, 159–167 (2003) doi: 10.1016/j.
physletb.2003.07.049.

https://doi.org/10.1007/s40766-023-00047-4
https://doi.org/10.1007/s40766-023-00047-4
https://doi.org/10.1103/RevModPhys.90.035004
https://doi.org/10.1016/0029-5582(66)90829-7
https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1143/PTPS.E68.464
https://doi.org/10.1016/j.ppnp.2014.06.001
https://doi.org/10.1007/s002180050010
https://doi.org/10.1007/s002180050010
https://doi.org/10.1007/s100500050079
https://doi.org/10.1103/PhysRevC.90.044304
https://doi.org/10.1103/PhysRevC.93.054605
https://doi.org/10.1088/1361-6471/aa83db
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1016/S0375-9474(02)01270-8
https://doi.org/10.1016/j.physletb.2003.07.049
https://doi.org/10.1016/j.physletb.2003.07.049


Bibliography 169

[25] R. Higa, H.-W. Hammer, and U. van Kolck, “αα Scattering in halo effective
field theory”, Nuclear Physics A 809, 171–188 (2008) doi: 10.1016/j.nuclphysa.
2008.06.003.

[26] S. Bacca and S. Pastore, “Electromagnetic reactions on light nuclei”, Journal
of Physics G: Nuclear and Particle Physics 41, 123002 (2014) doi: 10.1088/
0954-3899/41/12/123002.

[27] V. D. Efros, W. Leidemann, G. Orlandini, and N. Barnea, “The Lorentz Inte-
gral Transform (LIT) method and its applications to perturbation–induced
reactions”, Journal of Physics G: Nuclear and Particle Physics 34, R459
(2007) doi: 10.1088/0954-3899/34/12/R02.

[28] S. Deflorian, N. Barnea, W. Leidemann, and G. Orlandini, “Nonsymmetrized
Hyperspherical Harmonics with realistic NN potentials”, Few-Body Systems
54, 1879–1887 (2013) doi: 10.1007/s00601-013-0717-y.

[29] E. Filandri, “Effective field theory description of α cluster nuclei: the 9Be
ground state and 9Be photodisintegration”, PhD thesis (Università di Trento,
2022), doi: https://dx.doi.org/10.15168/11572_338316.

[30] H. Arenhövel, “Electroweak processes in few–nucleon systems”, Few–Body
Systems 26, 43–98 (1999) doi: 10.1007/s006010050105.

[31] A. J. F. Siegert, “Note on the interaction between nuclei and electromagnetic
radiation”, Phys. Rev. 52, 787–789 (1937) doi: 10.1103/PhysRev.52.787.

[32] F. Hoyle, “On nuclear reactions occuring in very hot stars. I. The synthesis
of elements from Carbon to Nickel.”, Astrophysical Journal Supplement 1,
121 (1954).

[33] H. Suno, Y. Suzuki, and P. Descouvemont, “Precise calculation of the triple–
α reaction rates using the transmission–free complex absorbing potential
method”, Phys. Rev. C 94, 054607 (2016) doi: 10.1103/PhysRevC.94.054607.

[34] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-
Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J. Ham-
mer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S.
Degl’Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli, C. Providencia, H.
Wolters, J. Soares, C. Grama, J. Rahighi, A. Shotter, and M. Lamehi Rachti,
“A compilation of charged–particle induced thermonuclear reaction rates”,
Nuclear Physics A 656, 3–183 (1999) doi: 10.1016/S0375-9474(99)00030-5.

[35] K. Ogata, M. Kan, and M. Kamimura, “Quantum three–body calculation
of the nonresonant triple–α reaction rate at low emperatures”, Progress of
Theoretical Physics 122, 1055–1064 (2009) doi: 10.1143/PTP.122.1055.

[36] E. Garrido, R. de Diego, D. V. Fedorov, and A. S. Jensen, “Direct and sequen-
tial radiative three–body reaction rates at low temperatures”, The European
Physical Journal A 47, 102 (2011) doi: 10.1140/epja/i2011-11102-8.

[37] N. B. Nguyen, F. M. Nunes, and I. J. Thompson, “Investigation of the triple–
α reaction in a full three–body approach”, Phys. Rev. C 87, 054615 (2013)
doi: 10.1103/PhysRevC.87.054615.

https://doi.org/10.1016/j.nuclphysa.2008.06.003
https://doi.org/10.1016/j.nuclphysa.2008.06.003
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/34/12/R02
https://doi.org/10.1007/s00601-013-0717-y
https://doi.org/https://dx.doi.org/10.15168/11572_338316
https://doi.org/10.1007/s006010050105
https://doi.org/10.1103/PhysRev.52.787
https://doi.org/10.1103/PhysRevC.94.054607
https://doi.org/10.1016/S0375-9474(99)00030-5
https://doi.org/10.1143/PTP.122.1055
https://doi.org/10.1140/epja/i2011-11102-8
https://doi.org/10.1103/PhysRevC.87.054615


170 Bibliography

[38] S. Ishikawa, “Three–body calculations of the triple–α reaction”, Phys. Rev.
C 87, 055804 (2013) doi: 10.1103/PhysRevC.87.055804.

[39] T. de Forest Jr. and J. Walecka, “Electron scattering and nuclear structure”,
Advances in Physics 15, 1–109 (1966) doi: 10.1080/00018736600101254.

[40] S. Bacca, “Study of electromagnetic reactions on light nuclei with the Lorentz
Integral Transform method”, PhD thesis (Johannes Gutenberg–Universität
Mainz, 2005), doi: 10.25358/openscience-1901.

[41] M. Miorelli, “Electromagnetic properties of medium–mass nuclei from
coupled–cluster theory”, PhD thesis (University of British Columbia, Van-
couver, 2017), doi: http://dx.doi.org/10.14288/1.0362379.

[42] J. Walecka, Theoretical Nuclear and Subnuclear Physics, 2nd ed. (Imperial
College Press, 2004).

[43] J. Golak, H. Kamada, H. Witała, W. Glöckle, J. Kuroś–Zołnierczuk, R.
Skibiński, V. V. Kotlyar, K. Sagara, and H. Akiyoshi, “Faddeev calculations
of proton–deuteron radiative capture with exchange currents”, Phys. Rev. C
62, 054005 (2000) doi: 10.1103/PhysRevC.62.054005.

[44] A. R. Edmonds, Angular Momentum in Quantum Mechanics, Investigations
in physics (Princeton University Press, 1957).

[45] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions
(Dover Publications, New York, 1972).

[46] J. L. Friar and S. Fallieros, “Gauge–invariant nuclear Compton amplitude
manifesting low–energy theorems”, Phys. Rev. C 34, 2029–2042 (1986) doi:
10.1103/PhysRevC.34.2029.

[47] J. Golak, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, H. Witała, V.
Efros, W. Leidemann, G. Orlandini, and E. Tomusiak, “Benchmark calcula-
tion of the three–nucleon photodisintegration”, Nuclear Physics A 707, 365–
378 (2002) doi: 10.1016/S0375-9474(02)00989-2.

[48] J. Carlson and R. Schiavilla, “Structure and dynamics of few–nucleon sys-
tems”, Rev. Mod. Phys. 70, 743–841 (1998) doi: 10.1103/RevModPhys.70.743.

[49] H. Arenhövel, “Exchange currents in electric transitions and the rôle of
Siegert’s theorem: a case study in deuteron photodisintegration”, Zeitschrift
für Physik A Atoms and Nuclei 302, 25–30 (1981) doi: 10.1007/BF01425099.

[50] V. D. Efros, W. Leidemann, and G. Orlandini, “Response functions from
integral transforms with a Lorentz kernel”, Physics Letters B 338, 130–133
(1994) doi: 10.1016/0370-2693(94)91355-2.

[51] V. D. Efros, W. Leidemann, and G. Orlandini, “Electromagnetic few–body
response functions with the Lorentz Integral Transform method”, Few–Body
Systems 26, 251–269 (1999) doi: 10.1007/s006010050118.

[52] V. D. Efros, “Computation of inclusive transition spectra and reaction cross
sections without use of the continuum wave functions”, Sov. J. Nucl. Phys.
41, 949 (1985).

[53] L. D. Faddeev, “Scattering theory for a three–particle system”, Soviet Physics
JETP 12, 1014–1019 (1961).

https://doi.org/10.1103/PhysRevC.87.055804
https://doi.org/10.1080/00018736600101254
https://doi.org/10.25358/openscience-1901
https://doi.org/http://dx.doi.org/10.14288/1.0362379
https://doi.org/10.1103/PhysRevC.62.054005
https://doi.org/10.1103/PhysRevC.34.2029
https://doi.org/10.1016/S0375-9474(02)00989-2
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1007/BF01425099
https://doi.org/10.1016/0370-2693(94)91355-2
https://doi.org/10.1007/s006010050118


Bibliography 171

[54] O. Yakubovsky, Soviet Journal of Nuclear Physics 5, 937–951 (1967).
[55] V. D. Efros, W. Leidemann, and G. Orlandini, “Electron scattering response

functions from their Stieltjes transforms”, Few–Body Systems 14, 151–170
(1993) doi: 10.1007/BF01080714.

[56] N. Barnea, V. D. Efros, W. Leidemann, and G. Orlandini, “The Lorentz
Integral Transform and its inversion”, Few–Body Systems 47, 201–206 (2010)
doi: 10.1007/s00601-009-0081-0.

[57] W. Leidemann, “Energy resolution with the Lorentz Integral Transform”,
Phys. Rev. C 91, 054001 (2015) doi: 10.1103/PhysRevC.91.054001.

[58] C. Lanczos, “An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators”, J. Research Nat. Bur. Standards
45, 255–282 (1950).

[59] M. A. Marchisio, N. Barnea, W. Leidemann, and G. Orlandini, “Efficient
method for Lorentz integral transforms of reaction cross sections”, Few–Body
Systems 33, 259–276 (2003) doi: 10.1007/s00601-003-0017-z.

[60] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill–posed problems (V. H.
Winston & Sons, Washington, D.C.: John Wiley & Sons, New York, 1977).

[61] S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini, “Isoscalar monopole
resonance of the alpha particle: a prism to nuclear Hamiltonians”, Phys. Rev.
Lett. 110, 042503 (2013) doi: 10.1103/PhysRevLett.110.042503.

[62] W. Leidemann, “Calculation of a narrow resonance with the LIT method”,
Few–Body Systems 42, 139–151 (2008) doi: 10.1007/s00601-008-0199-5.

[63] G. P. Lepage, “How to renormalize the Schrödinger equation”, in Nuclear
Physics: Proceedings of the VIII Jorge André Swieca Summer School, 1997,
edited by C. A. Bertulani, M. E. Bracco, B. V. Carlson, and M. Nielsen
(World Scientific, Singapore, 1998), doi: 10.1142/9789814529358.

[64] U. van Kolck, “Effective field theory of short–range forces”, Nuclear Physics
A 645, 273–302 (1999) doi: 10.1016/S0375-9474(98)00612-5.

[65] J. B. Habashi, S. Fleming, S. Sen, and U. van Kolck, “Effective field theory
for two–body systems with shallow S–wave resonances”, Annals of Physics
422, 168283 (2020) doi: 10.1016/j.aop.2020.168283.

[66] S. Beane, T. Cohen, and D. Phillips, “The potential of effective field theory in
NN scattering”, Nuclear Physics A 632, 445–469 (1998) doi: 10.1016/S0375-
9474(98)00007-4.

[67] D. R. Phillips, S. R. Beane, and T. D. Cohen, “Nonperturbative regulariza-
tion and renormalization: simple examples from nonrelativistic quantum me-
chanics”, Annals of Physics 263, 255–275 (1998) doi: 10.1006/aphy.1997.5771.

[68] D. B. Kaplan, “More effective field theory for non–relativistic scattering”,
Nuclear Physics B 494, 471–483 (1997) doi: 10.1016/S0550-3213(97)00178-8.

[69] H. A. Bethe, “Theory of the effective range in nuclear scattering”, Phys. Rev.
76, 38–50 (1949) doi: 10.1103/PhysRev.76.38.

https://doi.org/10.1007/BF01080714
https://doi.org/10.1007/s00601-009-0081-0
https://doi.org/10.1103/PhysRevC.91.054001
https://doi.org/10.1007/s00601-003-0017-z
https://doi.org/10.1103/PhysRevLett.110.042503
https://doi.org/10.1007/s00601-008-0199-5
https://doi.org/10.1142/9789814529358
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/j.aop.2020.168283
https://doi.org/10.1016/S0375-9474(98)00007-4
https://doi.org/10.1016/S0375-9474(98)00007-4
https://doi.org/10.1006/aphy.1997.5771
https://doi.org/10.1016/S0550-3213(97)00178-8
https://doi.org/10.1103/PhysRev.76.38


172 Bibliography

[70] R. A. Arndt, D. D. Long, and L. Roper, “Nucleon–alpha elastic scattering
analyses: (I). Low–energy n–α and p–α analyses”, Nuclear Physics A 209,
429–446 (1973) doi: 10.1016/0375-9474(73)90837-3.

[71] D. Tilley, C. Cheves, J. Godwin, G. Hale, H. Hofmann, J. Kelley, C. Sheu,
and H. Weller, “Energy levels of light nuclei A=5, 6, 7”, Nuclear Physics A
708, 3–163 (2002) doi: 10.1016/S0375-9474(02)00597-3.

[72] C. Ji, C. Elster, and D. R. Phillips, “6He Nucleus in halo effective field
theory”, Phys. Rev. C 90, 044004 (2014) doi: 10.1103/PhysRevC.90.044004.

[73] D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, and H.
Weller, “Energy levels of light nuclei A=8, 9, 10”, Nuclear Physics A 745,
155–362 (2004) doi: 10.1016/j.nuclphysa.2004.09.059.

[74] S. A. Afzal, A. A. Z. Ahmad, and S. Ali, “Systematic survey of the α − α
interaction”, Rev. Mod. Phys. 41, 247–273 (1969) doi: 10.1103/RevModPhys.
41.247.

[75] C. Ji, Private communication (2023).
[76] C. A. Manzata, “Ground state and photodisintegration of Beryllium–9 in

cluster Effective Field Theory” (Università di Trento, 2016).
[77] E. P. Wigner, “Lower limit for the energy derivative of the scattering phase

shift”, Phys. Rev. 98, 145–147 (1955) doi: 10.1103/PhysRev.98.145.
[78] H.-W. Hammer and D. Lee, “Causality and the effective range expansion”,

Annals of Physics 325, 2212–2233 (2010) doi: 10.1016/j.aop.2010.06.006.
[79] S. Beck, B. Bazak, and N. Barnea, “Removing the Wigner bound in non–

perturbative effective field theory”, Physics Letters B 806, 135485 (2020)
doi: 10.1016/j.physletb.2020.135485.

[80] G. L. Morgan and R. L. Walter, “Neutron–Helium interaction. II. Angular
distributions and phase shifts from 0.2 to 7.0 MeV”, Phys. Rev. 168, 1114–
1130 (1968) doi: 10.1103/PhysRev.168.1114.

[81] D. R. Phillips and T. D. Cohen, “How short is too short? Constraining zero–
range interactions in nucleon–nucleon scattering”, Physics Letters B 390, 7–
12 (1997) doi: 10.1016/S0370-2693(96)01411-6.

[82] G. M. Hale, Private communication (2021).
[83] X. Kong and F. Ravndal, “Coulomb effects in low energy proton–proton

scattering”, Nuclear Physics A 665, 137–163 (2000) doi: 10 . 1016 / S0375 -
9474(99)00406-6.

[84] V. Eremenko, N. Upadhyay, I. Thompson, C. Elster, F. Nunes, G. Arbanas,
J. Escher, and L. Hlophe, “Coulomb wave functions in momentum space”,
Computer Physics Communications 187, 195–203 (2015) doi: 10.1016/j.cpc.
2014.10.002.

[85] E. Filandri, P. Andreatta, C. A. Manzata, C. Ji, W. Leidemann, and G.
Orlandini, “Beryllium–9 in cluster effective field theory”, SciPost Phys. Proc.,
034 (2020) doi: 10.21468/SciPostPhysProc.3.034.

https://doi.org/10.1016/0375-9474(73)90837-3
https://doi.org/10.1016/S0375-9474(02)00597-3
https://doi.org/10.1103/PhysRevC.90.044004
https://doi.org/10.1016/j.nuclphysa.2004.09.059
https://doi.org/10.1103/RevModPhys.41.247
https://doi.org/10.1103/RevModPhys.41.247
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1016/j.aop.2010.06.006
https://doi.org/10.1016/j.physletb.2020.135485
https://doi.org/10.1103/PhysRev.168.1114
https://doi.org/10.1016/S0370-2693(96)01411-6
https://doi.org/10.1016/S0375-9474(99)00406-6
https://doi.org/10.1016/S0375-9474(99)00406-6
https://doi.org/10.1016/j.cpc.2014.10.002
https://doi.org/10.1016/j.cpc.2014.10.002
https://doi.org/10.21468/SciPostPhysProc.3.034


Bibliography 173

[86] V. Efimov, “Energy levels arising from resonant two–body forces in a three–
body system”, Physics Letters B 33, 563–564 (1970) doi: 10 . 1016 / 0370 -
2693(70)90349-7.

[87] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, “Renormalization of the
three–body system with short–range interactions”, Phys. Rev. Lett. 82, 463–
467 (1999) doi: 10.1103/PhysRevLett.82.463.

[88] L. E. Marcucci, J. Dohet-Eraly, L. Girlanda, A. Gnech, A. Kievsky, and
M. Viviani, “The Hyperspherical Harmonics method: a tool for testing and
improving nuclear interaction models”, Frontiers in Physics 8, 1–21 (2020)
doi: 10.3389/fphy.2020.00069.

[89] M. Gattobigio, A. Kievsky, M. Viviani, and P. Barletta, “Harmonic Hy-
perspherical basis for identical particles without permutational symmetry”,
Phys. Rev. A 79, 032513 (2009) doi: 10.1103/PhysRevA.79.032513.

[90] S. Rosati, “The Hyperspherical Harmonics method: a review and some re-
cent developments”, in A. Fabrocini, S. Fantoni, and E. Krotscheck, Intro-
duction to modern methods of quantum many–body theory and their appli-
cations, Vol. 7, Series on Advances in Quantum Many-Body Theory (World
Scientific, London, Singapore, Hong Kong, 2002), pp. 339–378, doi: 10.1142/
9789812777072_0009.

[91] N. Y. Vilenkin, G. I. Kuznetsov, and Y. A. Smorodinskii, Sov. J. Nucl. Phys.
2, 645 (1966).

[92] F. Ferrari Ruffino, “Non–Symmetrized Hyperspherical Harmonics method
applied to light hypernuclei”, PhD thesis (Università di Trento, 2017), url:
https://hdl.handle.net/11572/368323.

[93] A. Kievsky, S. Rosati, M. Viviani, L. E. Marcucci, and L. Girlanda, “A
high–precision variational approach to three– and four–nucleon bound and
zero–energy scattering states”, Journal of Physics G: Nuclear and Particle
Physics 35, 063101 (2008) doi: 10.1088/0954-3899/35/6/063101.

[94] Y. Capitani, “Theoretical description of few–nucleon scattering states in
terms of integral relations” (Università di Pisa, 2020), url: https://etd.adm.
unipi.it/t/etd-06252020-190237.

[95] W. Leidemann and G. Orlandini, “Modern ab initio approaches and applica-
tions in few–nucleon physics with A ≥ 4”, Progress in Particle and Nuclear
Physics 68, 158–214 (2013) doi: 10.1016/j.ppnp.2012.09.001.

[96] N. Barnea, “Exact solution of the Schrödinger and Faddeev equations for
few body systems”, PhD thesis (Hebrew University, Jerusalem, 1997).

[97] N. Barnea, W. Leidemann, and G. Orlandini, “Ground state wave functions
in the hyperspherical formalism for nuclei with A > 4”, Nuclear Physics A
650, 427–442 (1999) doi: 10.1016/S0375-9474(99)00113-X.

[98] S. Bacca, H. Arenhövel, N. Barnea, W. Leidemann, and G. Orlandini, “Ab
initio calculation of 7Li photodisintegration”, Physics Letters B 603, 159–164
(2004) doi: 10.1016/j.physletb.2004.10.025.

https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.3389/fphy.2020.00069
https://doi.org/10.1103/PhysRevA.79.032513
https://doi.org/10.1142/9789812777072_0009
https://doi.org/10.1142/9789812777072_0009
https://hdl.handle.net/11572/368323
https://doi.org/10.1088/0954-3899/35/6/063101
https://etd.adm.unipi.it/t/etd-06252020-190237
https://etd.adm.unipi.it/t/etd-06252020-190237
https://doi.org/10.1016/j.ppnp.2012.09.001
https://doi.org/10.1016/S0375-9474(99)00113-X
https://doi.org/10.1016/j.physletb.2004.10.025


174 Bibliography

[99] A. Gnech, M. Viviani, and L. E. Marcucci, “Calculation of the 6Li ground
state within the hyperspherical harmonic basis”, Phys. Rev. C 102, 014001
(2020) doi: 10.1103/PhysRevC.102.014001.

[100] M. Gattobigio, A. Kievsky, and M. Viviani, “Nonsymmetrized hyperspherical
harmonic basis for an A–body system”, Phys. Rev. C 83, 024001 (2011) doi:
10.1103/PhysRevC.83.024001.

[101] F. Ferrari Ruffino, D. Lonardoni, N. Barnea, S. Deflorian, W. Leidemann, G.
Orlandini, and F. Pederiva, “Benchmark results for few–body hypernuclei”,
Few-Body Systems 58, 113 (2017) doi: 10.1007/s00601-017-1273-7.

[102] J. Raynal and J. Revai, “Transformation coefficients in the hyperspherical
approach to the three–body problem”, Il Nuovo Cimento A (1965-1970) 68,
612–622 (1970) doi: 10.1007/BF02756127.

[103] V. Aquilanti and S. Cavalli, “Coordinates for molecular dynamics: orthogonal
local systems”, The Journal of Chemical Physics 85, 1355–1361 (1986) doi:
10.1063/1.451223.

[104] M. S. Kil’dyushov, Sov. J. Nucl. Phys. 15, 113 (1972).
[105] A. Messiah, Quantum mechanics, Quantum Mechanics (North-Holland Pub-

lishing Company, 1962).
[106] A. Novoselsky and J. Katriel, “Symmetry analysis of many–body wave func-

tions, with applications to the nuclear shell model”, Phys. Rev. C 51, 412–
415 (1995) doi: 10.1103/PhysRevC.51.412.

[107] P. Andreatta, “Beryllium–9 in Cluster Effective Field Theory”, PhD thesis
(Università di Trento, 2019), url: http://eprints-phd.biblio.unitn.it/3725/.

[108] V. D. Efros, “Elimination of rotational degrees of freedom in expansion
methods for three nucleons”, Few-Body Systems 32, 169–181 (2002) doi:
10.1007/s00601-002-0116-2.

[109] M. Viviani, L. E. Marcucci, S. Rosati, A. Kievsky, and L. Girlanda, “Vari-
ational calculation on A = 3 and 4 nuclei with non–local potentials”, Few-
Body Systems 39, 159–176 (2006) doi: 10.1007/s00601-006-0158-y.

[110] F. Bonaiti, “Application of the Lorentz Integral Transform method to 9Be
photodisintegration in a cluster effective model” (Università di Trento, 2019).

[111] J. Ballot and M. Fabre de la Ripelle, “Application of the hyperspherical
formalism to the trinucleon bound state problems”, Annals of Physics 127,
62–125 (1980) doi: 10.1016/0003-4916(80)90150-5.

[112] J. Avery, Hyperspherical harmonics, Applications in quantum theory
(Springer Dordrecht: Kluwer Academic Publishers 1989, 1989), doi: 10.1007/
978-94-009-2323-2.

[113] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products,
edited by A. Jeffrey and D. Zwillinger, 7th ed. (Academic Press, 2007).

[114] N. Michel and M. Stoitsov, “Fast computation of the Gauss hypergeo-
metric function with all its parameters complex with application to the
Pöschl–Teller–Ginocchio potential wave functions”, Computer Physics Com-
munications 178, 535–551 (2008) doi: 10.1016/j.cpc.2007.11.007.

https://doi.org/10.1103/PhysRevC.102.014001
https://doi.org/10.1103/PhysRevC.83.024001
https://doi.org/10.1007/s00601-017-1273-7
https://doi.org/10.1007/BF02756127
https://doi.org/10.1063/1.451223
https://doi.org/10.1103/PhysRevC.51.412
http://eprints-phd.biblio.unitn.it/3725/
https://doi.org/10.1007/s00601-002-0116-2
https://doi.org/10.1007/s00601-006-0158-y
https://doi.org/10.1016/0003-4916(80)90150-5
https://doi.org/10.1007/978-94-009-2323-2
https://doi.org/10.1007/978-94-009-2323-2
https://doi.org/10.1016/j.cpc.2007.11.007


Bibliography 175

[115] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory
of Angular Momentum (World Scientific Publishing Company, Singapore,
1988).
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