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Neutrino gases are expected to form in high-density astrophysical environments, and accurately
modeling their flavor evolution is critical to understanding such environments. In this work, we study a
simplified model of such a dense neutrino gas in the regime for which neutrino-neutrino coherent forward
scattering is the dominant mechanism contributing to the flavor evolution. We show evidence that the
generic potential induced by this effect is nonintegrable and that the statistics of its energy level spaces are
in good agreement with the Wigner surmise. We also find that individual neutrinos rapidly entangle with all
of the others present, which results in an equilibration of the flavor content of individual neutrinos. We
show that the average neutrino flavor content can be predicted utilizing a thermodynamic partition function.
A random phase approximation to the evolution gives a simple picture of this equilibration. In the case of
neutrinos and antineutrinos, processes like νeν̄e ⇆ νμν̄μ yield a rapid equilibrium satisfying nðνeÞnðν̄eÞ ¼
nðνμÞnðν̄μÞ ¼ nðντÞnðν̄τÞ in addition to the standard lepton number conservation in regimes where off-
diagonal vacuum oscillations are small compared to ν − ν interactions.
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I. INTRODUCTION

In hot and dense astrophysical environments such as core
collapse supernovae and binary neutron star mergers,
neutrinos are emitted in such large number fluxes that
the average flavor content is important to the dynamic and
chemical evolution. Through weak interactions with local
nucleons, electron flavor neutrinos and antineutrinos can
alter the local proton-to-neutron ratio in these environ-
ments, thereby affecting, for example, r-process nucleo-
synthesis [1–7]. It is therefore crucial to understand the
flavor content of the neutrinos if one wishes to perform
detailed studies of the evolution of these systems [8–15].
In regions of high density, neutrinos can undergo

coherent forward scattering, which is sensitive to the
quantum mechanical flavor state of the neutrino. When
scattering on charged leptons, a flavor-dependent relative
phase can develop between components of the flavor state.
The neutrinos can also exchange flavor content with other
neutrinos through neutral current coherent forward scatter-
ing. When the number density of neutrinos is sufficiently

large, this flavor exchange effect is expected to dominate
the flavor evolution of the neutrino gas, and novel coherent
effects such as flavor spectrum splits and swaps may occur
[2,8–12,16–18].
In this work, we will study the flavor evolution of such a

neutrino gas in the limit that the potential generated by
coherent ν − ν forward scattering is the dominant effect;
this is a regime known in the literature as the “fast” flavor
oscillation limit [14,19–33]. In this regime, the redistrib-
ution of flavor content among the neutrinos is expected to
occur on length scales of approximately a meter. We will
study this regime in a quantum many-body formalism with
a parametrization of the coherent forward scattering poten-
tial which does not impose any simplifying symmetries on
the momenta of the neutrinos.
In a core-collapse supernova, the neutrino density is

governed by nν ¼ L=ðĒ 4πR2Þ. Taking a total luminosity
L ¼ 1053 erg= sec, R ¼ 50 km and an average energy Ē ¼
10 MeV gives a total density nν ≈ 6.6 × 10−7 fm−3. For a
degenerate relativistic Fermi gas, the average energy is
given by Ē ¼ 3EF=4, where EF is the Fermi energy. For a
two-species Fermi gas (e and μ flavor neutrinos), the
number density is given by n ¼ E3

F=ð3π2Þ. Equating the
average neutrino energy to the Fermi energy, we find that
the density of a degenerate, zero-temperature two-compo-
nent Fermi gas is approximately 15 times greater than the
above estimated neutrino density. For six neutrino species
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(three neutrino and three antineutrino species) with roughly
equal fractions, the density is approximately 45 times lower
than a degenerate gas of the same average energy. As we
estimate the effects of degeneracy to be minimal, we use
Boltzmann statistics for both the neutrinos and antineu-
trinos. We will also work in the two-flavor approximation
such that a single neutrino’s flavor quantum state can be
written as an SU(2) spinor.
The ν − ν coherent forward scattering potential takes the

form of an all-to-all Heisenberg-like interaction, and such
Hamiltonians are generically expected to be nonintegrable
except in special cases. We will provide evidence that
this interaction is nonintegrable in the absence of simplifying
symmetries and that we observe a characteristic signature of
(non)integrabilitywhen simplifying symmetries are imposed
(relaxed). Furthermore, nonintegrable Hamiltonians are
hypothesized to “thermalize” in the sense that expectation
values of few-body operators are expected to equilibrate to a
value which can be predicted from an appropriate thermo-
dynamic partition function. For the generically parametrized
potential, we observe strong agreement between the one-
body flavor expectation values obtained in the exact many-
body evolution of the system and those predicted from a
grand-canonical Boltzmann distribution.

II. ENERGY SPECTRUM

The general Hamiltonian governing the coherent evolu-
tion of the neutrino flavor content is composed of three
parts (see, e.g., Ref. [34]). The first is the vacuum potential
which stems from the fact that the neutrino mass states are
linear combinations of flavor states. The second is the
matter potential [35,36], and it is generated by coherent
forward scattering through charged current interactions
with local charged leptons in the environment. Finally,
there is the ν − ν potential generated through neutral
current coherent forward scattering between neutrinos
[8,15]. For the rest of this work, we will assume that the
vacuum oscillation potential is negligibly small relative to
the other two potentials and that its primary effect is to
provide perturbation to an otherwise pure flavor product
state initial condition. We also assume that the matter
profile is uniform in the regions of the environment under
consideration, and as such, we may consider a corotating
frame to remove its overall effect on each neutrino.
After these modifications, only the ν − ν coherent for-

ward scattering Hamiltonian remains. For N neutrinos, it
has the form [15]

Ĥνν ¼
μ

2N

XN
i<j

ð1 − vi · vjÞ ˆσ⃗i · ˆσ⃗j: ð1Þ

Here, ˆσ⃗ is the usual vector of Pauli operators, and μ ¼ffiffiffi
2

p
GFnν is the scale of the ν − ν interaction. Given a typical

core-collapse supernova flux at a radius of 50 km, a simple

estimate gives μ ≈ 1 cm−1. As it is the only dimensionful
parameter in the problem, we hereafter measure all dis-
tances and times in units of μ and set μ ¼ 1.
We perform simple numerical simulations for small N in

periodic boundary conditions. This is a toy model because
an estimate using a typical flux for 20 neutrinos at this
density gives a box size of order 300 fm, much too small to
be realistic. This is a standard choice in the literature,
[13,14,31,37–52] but imposes a great deal more symmetry
than a more realistic case. Relaxing this condition would
only induce more decoherence in the simulations, a critical
ingredient as we discuss below. (For more discussion on the
role of decoherence, see, e.g., Refs. [37,38,46,53].)
We will address two commonly employed simplifying

symmetries in the literature. The first is the uniform
coupling symmetry, under which it is assumed that the
vi · vj term averages to zero under the action of the all-pairs
summation in Eq. (1). For this case, the total Hνν is
proportional to J2 and is straightforwardly diagonalized
in the absence of the other two relevant potentials. For some
choices of one-body potentials, the uniform couplings
Hamiltonian may be diagonalized with an algebraic
Bethe ansatz [41,51]. This simplification has been well
studied, so we will not consider it further.
Another simplifying assumption is to impose an axial

symmetry to the velocity coupling term such that the
velocity components orthogonal to the momentum sym-
metry axis (denoted z) average to zero. This is equivalent to
making the substitution

Ĥνν → Ĥax
νν ¼

μ

2N

X
i<j

ð1 − vz;ivz;jÞ ˆσ⃗i · ˆσ⃗j: ð2Þ

It was recently shown that this symmetry imposition leads
to an integrable Hamiltonian which can also be diagonal-
ized with an algebraic Bethe ansatz [52].
There is no known method for systematically diagonal-

izing the generic Hamiltonian of Eq. (1) through the use of an
extensive set of nontrivial conserved charges. A “nontrivial”
operator is an operator which is not simply proportional to a
projection operator into an eigenstate of the Hamiltonian.
The only obvious operators which commutewith Ĥνν are the
projections of the total angular momentum

Ĵa ¼
1

2

XN
i¼1

σ̂a;i ð3Þ

(where a∈ ½1; 3� is thevector index of the Pauli matrices) and
the square of the total angular momentum (Ĵ2 ¼P

3
a¼1 ĴaĴa). Because Ĥνν commutes with Ĵ2, Ĵ3, and the

ladder operators Ĵ�, the energy eigenstates can only be linear
combinations of jj; mi in these degenerate subspaces. To
obtain a the full energy spectrum, one can “brute force”
diagonalize Ĥνν in the lowest jmj subspace for each j.
Because Ĥνν commutes with the angular momentum ladder
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operators, the energy spectrum is 2jþ 1-fold degenerate for
each j, and eigenstates with higher values of jmj can be
systematically constructed from the minimal jmj states with
suitable applications of the ladder operators.
In the following, we construct the Hamiltonian by first

drawing the z components of the velocities on the interval
vz ∈ ½−1; 1� randomly from a Gaussian-like distribution
centered on vz ¼ 1 with a standard deviation of 1=2 such
that PðvzÞ ∝ e−2ðvz−1Þ2 . We choose this distribution to
approximate the forward-peaked-ness of the neutrino
momenta emitted from the proto-neutron star surface.
For the axially symmetric case, the x and y components
are chosen to be identically zero. For Ĥνν, which retains all
three components of the unit velocities, we choose vx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
cosðϕÞ and vy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
sinðϕÞ, where ϕ is a

chosen to be a random number uniformly drawn in the
interval ½0; 2π�.
Finally, we will solely treat the evolution of initial

product states. This necessarily assumes that the neutrinos
entering a given region of space have developed a negli-
gible correlation in their flavor evolution prior to the
interaction we consider herein. We make this approxima-
tion only in the interest of analyzing the salient dynamics of
the evolution under Ĥνν. More careful treatment of the
initial state will require a detailed study of the neutrino-
neutrino self-interaction in the presence of non-negligible
momentum changing scattering processes in the dense
matter of the proto-neutron star core.

A. Level spacings

We next consider the structure of the spectrum of Ĥνν in
its m and j symmetry sectors. In each sector, we sequen-
tially order the energy eigenvalues and investigate the
differences between the sequential energies which we
denote sα ≡ ðEαþ1 − EαÞ=s̄, where s̄ is chosen such that
the average over the energy differences is unity.
Integrable systems are characterized by an extensive set

of (nontrivial) operators which commute with the
Hamiltonian, and these conserved quantities permit sub-
stantial degeneracy in the energy spectrum. When consid-
ering the sequential energy differences for an integrable
system, the probability of two sequential energy eigenval-
ues having spacing s is a Poisson distribution, PðsÞ ¼ e−s.
In contrast, nonintegrable Hamiltonians demonstrate repul-
sion between energy levels, and the probability distribution
for spacing s is, in accordance with the Wigner surmise, of
the form PðsÞ ¼ π

2
se−πs

2=4 for a Gaussian orthogonal
ensemble (GOE) [54].
When extracting the distribution of energy differences

from a particular Hamiltonian, an unfolding procedure
must be performed in order to approximately remove the
effect arising from the fact that the Hamiltonian has a finite
density of states which may be sparser in some energy
regions than others [55]. Instead of considering directly the

distribution of level differences si, one can consider the
probability distribution for the ratio of sequential level
differences, defined as rα ≡ sαþ1

sα
, which is insensitive to the

local density of states. The new probability distribution,
PðrÞ, for the integrable (Poisson) case is

PðrÞ ¼ 1

ð1þ rÞ2 ; ð4Þ

while for nonintegrable (GOE) cases, PðrÞ is

PðrÞ ≈ 27

8

rð1þ rÞ
ð1þ rð1þ rÞÞ52 : ð5Þ

For the GOE case, the expression in Eq. (5) was derived as
an exact expression for 3 × 3 random matrices drawn from
a Gaussian orthogonal ensemble. It is in good agreement
with numerical studies of larger random matrices, and the
correction derived from fits to numerical distributions
extracted from larger random matrices can be found in
Ref. [55]. The approximate correction for the large matrix
case is Oð10−2Þ and is not visible on the scale plotted
in Fig. 1.
In Fig. 1, we compare the distribution of ri for the two

Hamiltonians we have discussed. The Hamiltonian, Ĥνν,
implements generic unit magnitude three velocities, while
the axially symmetric (abbreviated “ax”) Hamiltonian, Ĥax

νν,
implements the identical vz;i values as Ĥνν but takes the x
and y components of the velocities equal to zero by
construction. As previously mentioned, Ĥax

νν is known to
be integrable, and therefore the level spacings in its
spectrum are expected to obey Poisson-like statistics.

FIG. 1. Extracted statistics (black histogram) for the ratio of
sequential level spacings of the Hamiltonian for the nonintegrable
generic parametrization (Ĥνν, left panel) and for the integrable
axially symmetric simplification (Ĥax

νν, right panel) for N ¼ 16 in
the j ¼ 2, m ¼ 2 subspace. Overlaid as a red dashed line is the
predicted probability distribution for the ratio of sequential level
spacings for the nonintegrable (GOE, left panel) distribution and
the integrable (Poisson, right panel) distribution.
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For both cases, we use 16 neutrinos in the construction of
the Hilbert space.
We diagonalize Ĥνν and Ĥax

νν in the j ¼ 2 subspace and
plot the normalized histogram of ratios of level spacings
(rα). We also compare directly with the expected universal
probability distributions for the integrable and nonintegr-
able cases. This figure provides evidence that the generi-
cally parametrized Hamiltonian does not have an extensive
set of “hidden” conserved charges corresponding to some
hitherto unrecognized symmetry.
To validate that the level spacing statistics in the other j

subspaces behave similarly, we compute the average r̄α
with respect to the extracted probability distribution and
show the results for j ≤ 4 in Table I. The distribution of
ratios of level spacings should not depend on the subspace,
so this average value should take a universal value. For the
GOE case, it can be shown that the value is r̄α ≈ 1.7789
(see Table 1 of Ref. [55]). However, for the Poisson case,
the average diverges as rα → ∞, so for any finite distri-
bution of level spacings, the average can take arbitrary and
unbounded values.

III. ENERGY DEPHASING

The distribution of the ratio of level spacings is in good
agreement with the probability distribution one would
expect if the Hamiltonian under consideration were a
random matrix drawn from a GOE. The level repulsion
resulting from a lack of an extensive set of symmetries
implies that energy differences should not be expected to
vanish for the bulk of states in the spectrum. Furthermore,
the effective random nature of the Hamiltonian implies
that differences in energies should not generically be
simple rational numbers. As such, the time-dependent
phases of off-diagonal matrix elements of operators in
the energy basis should be expected to individually
average to zero over arbitrary time windows after the
state has evolved for a sufficiently long time. Thus, under
a time average over an arbitrary interval at late time, the
expectation value of σ̂3;i should be in good agreement
with the value predicted by computing the average with
respect to the incoherent energy diagonal distribution
which preserves the energy state probabilities of the
initial condition. Thus, we will compute and compare
the approximation

1

Δ

Z
teqþΔ

teq

dthσ̂3;iiðtÞ ¼
1

Δ

Z
teqþΔ

teq

dt
X
E;E0

e−iðE−E0ÞthEjψ0i

× hψ0jE0ihE0jσ̂3;ijEi
≈
X
E

jhEjψ0ij2hEjσ̂3;ijEi; ð6Þ

where jψ0i represents the initial quantum state and teq >
1=μ is the (as yet unknown) time it takes for the system to
reach its equilibrium value. The time window ½teq; teq þ Δ�
must also be selected such that the oscillations due to the
coherent evolution of the quantum system about the
average expectation value can be fully captured. We will
refer the value teq as the equilibration timescale, and we
will discuss our observations of it in the next section. We
refer to the incoherent probability weighted sum of
operator expectation values in the final line of Eq. (6)
as the energy mixed state distribution (EMSD).

A. Thermalization

Nonintegrable many-body Hamiltonians are widely
expected to obey the so-called Eigenstate Thermalization
Hypothesis (ETH) [56–58]; see Ref. [59] for a review. Many
numerical studies of ETHhave been conducted, and we refer
to Refs. [60–62] as a very incomplete list of examples for
when the system has an underlying lattice structure. For
systems with all-to-all interactions or no discernible lattice
structure, there is a less extensive literature, and we refer to
Refs. [63–65] as examples. Besides integrable systems, for a
generic Hamiltonian, ETH may only hold for the majority
of the eigenstates. Certain eigenstates (quantum scars)
embedded in the spectrum may have additional symmetries
beyond that of the Hamiltonian, invalidating ETH for that
state; see, for instance, Refs. [66,67]. However, these states
are expected to have measure zero in the density of states in
the thermodynamic limit, unless there is special symmetry
protection. Loading the Hamiltonian with additional sym-
metry, while not inducing integrability, results in the fractur-
ing of theHilbert space intomany block-diagonal subsectors,
with each subspace being simply too small for ETH [68].
The ETH is fundamentally a statement about the

structure of “few-body” operators that act on a subextensive
number of the local Hilbert spaces that tensor together to
form the full many-body Hilbert space. For a few-body
operator Ô, the matrix element between two eigenstates
jEαi; jEβi of the Hamiltonian is hypothesized to be given
by the ansatz,

hEαjÔjEβi ¼ ÔðEaveÞδαβ
þ e−SðEaveÞ=2fÔðEave;ωαβÞRαβ; ð7Þ

SðEaveÞ ¼ ln
X
α

EαδϵðEave − EαÞ: ð8Þ

TABLE I. Average ratios of consecutive level spacings for Ĥνν

and Ĥax
νν of 16 neutrinos in the subspaces with j ¼ 0;…; 4 and

m ¼ 0 which have 1430, 3432, 3640, 2548, and 1260 energy
levels, respectively.

j 0 1 2 3 4

r̄ðĤννÞ 1.6651 1.7126 1.7512 1.7707 1.8508

r̄ðĤax
ννÞ 3.7211 3.7741 3.8224 3.6091 3.8764
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where Eave ¼ EαþEβ

2
, and ωαβ ¼ Eα − Eβ. ÔðEaveÞ is the

microcanonical average of the operator Ô over states near
Eave, and S is the suitable microcanonical entropy, counting
the number of eigenstates near Eave within a small window
given by ϵ. Rαβ is an independent random number for each
α, β with average zero but variance 1. When the dimension
of the total Hilbert space is large, we can expect S to be
large even for very narrow windows, so in the thermody-
namic limit, we can take ϵ → 0 and have the matrix element
of the operator in eigenstates be dominated by the micro-
canonical average. Finally, the function fÔ is related to the
linear response correlation function of the thermodynamic
system when perturbed by the operator Ô [69] and, for
fixed Eave, decreases exponentially in the energy difference
ωαβ for such chaotic systems (see, e.g., Refs. [70,71]).
In general, we expect the ETH ansatz [Eq. (7)] for the

matrix elements to hold for a chaotic system but not for an
integrable one. As shown above, the neutrino Hamiltonian
Ĥνν in Eq. (1) we use can reproduce both behaviors
depending on the choice of the velocities. To test the
validity of ETH for our problem, we consider matrix
elements of σ̂3;i on the first neutrino in both the integrable
and nonintegrable regimes. We first show the diagonal
matrix elements hEαjÔjEαi in Fig. 2 for both the integrable
(red data in the right panel) and nonintegrable case (blue
data in the left panel). One can see that in the former
(integrable) case the diagonal matrix element has large
fluctuations over nearby frequencies throughout the whole
spectrum, while for the nonintegrable case, the expectation
value in the bulk of the spectrum is approximately a
function of energy alone as expected from the ansatz in
Eq. (7). Next, in Fig. 3, we show the magnitude of the off-
diagonal matrix elements of σ̂3;i on the first neutrino as a
function of the energy difference jωαβj for all states in a
narrow energy window of size ϵ ¼ 0.005½μ� around an
average energy Eave in the middle of the spectrum; for the

results shown here, we took Eave ¼ 2.4½μ�. One can clearly
see an exponential decay for large energy difference in the
nonintegrable case (left panel), while for the integrable
model (right panel), the size of the off-diagonal matrix
elements fluctuates by more than 6 orders of magnitude for
every value of jωαβj. To better visualize the importance of a
large number of outliers in the integrable case, which are
instead not present in the nonintegrable system on the left,
we also report in Fig. 3 the running average of the matrix
element size obtained by taking the median over a window
of 50 matrix elements. This is a direct estimate of the
absolute value of the function fÔðE;ωÞ in Eq. (7) for E in
the middle of the spectrum (cf. Refs. [59,72]).
All results shown in Figs. 2 and 3 were obtained for a

system with N ¼ 16 neutrinos and for states restricted to
j ¼ 2 and m ¼ 2 subspace.
The basic intuition behind eigenstate thermalization is

that few-body operators are unable to distinguish which
eigenstate the system is in, with nearby (in energy) eigen-
states displaying similar few-body behavior. When the
dimension of theHilbert space becomes large, the eigenstate
thermalization is often described using canonical or grand-
canonical ensembles, since the expectation values are
expected to be effectively equal in either ensemble. When
using the (grand-)canonical ensemble, the temperature (or
other chemical potentials) are tuned to match the energy and
other quantum numbers of the desired eigenstate of the
system. After this, the matrix elements of generic few-body
operators can be computed in the appropriate thermal
ensembles. When ETH holds, we can effectively claim that
up to small corrections the time-averaged spectrum of few-
body operators “thermalize” even in a single eigenstate and

FIG. 2. Diagonal matrix elements hEαjÔjEαi with Ô ¼ σ̂3 on
the first neutrino in the energy eigenbasis as a function of the
energy Eα (in units of μ). The left panel shows results for the
nonintegrable Hamiltonian Ĥνν, while the right panel shows
results for the integrable case Ĥax

νν; in both cases, we only look at
the j ¼ 2 and m ¼ 2 subspace.

FIG. 3. Magnitude of the off-diagonal matrix elements
jhEαjÔjEβij with Ô ¼ σ̂3 on the first neutrino in the energy
eigenbasis as a function of the absolute value of the energy
difference jEα − Eβj (in units of μ). The left panel shows results
for the nonintegrable Hamiltonian Ĥνν (blue data), while the right
panel shows results for the integrable case Ĥax

νν (red data); in both
cases, we only look at the j ¼ 2 andm ¼ 2 subspace. Also shown
is the running average of the matrix elements’ magnitude
obtained taking the median over a window of 50 matrix elements
(yellow curve on the left panel and black curve on the
right panel).
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are thus computable from thermal ensembles. One can
generalize the eigenstate thermalization to any state of the
system, provided the expectation value of the variance of the
energy for that state is appropriately small.
If our system thermalizes in this sense, then we can

predict the (time-averaged) expectation value of the indi-
vidual neutrinos at large times utilizing a grand-canonical
statistical distribution. As the system is time independent,
and Ĵ3 and Ĵ

2 commute with the Hamiltonian, we construct
a partition function using one temperature parameter (β)
and two chemical potentials (μ3 and μ2). For a given initial
condition, we find these parameters by fitting the expect-
ation values of the relevant operators calculated using the
partition function to the invariant expectation values calcu-
lated with respect to the initial condition. This amounts to
finding β, μ3, and μ2 such that

hψ0iÔjψ0i ¼
1

Z
TrðÔe−βĤννþμ3Ĵ3þμ2Ĵ

2Þ ð9Þ

for the conserved quantities Ô ¼ Ĥνν; Ĵ3; Ĵ
2 and Z ¼

Trðe−βĤννþμ3Ĵ3þμ2Ĵ
2Þ is the partition function. Once the

temperature and chemical potentials have been determined,
the (time-averaged) expectation value of the flavor content
for a given neutrino (i) can be predicted by comput-
ing hσ̂3;ii ≈ Trðσ̂3;ie−βĤννþμ3Ĵ3þμ2Ĵ

2Þ.
We next investigate the late-time behavior of an example

product state initial condition for 16 neutrinos. We employ
the same couplings in Ĥνν as in the previous sections, and
we order them from lowest to highest value of vz;i in
increasing values of the particle index i∈ ½1; 16�. We next
choose the first i∈ ½1; bN=2c þ 1� neutrinos to be electron
flavor (corresponding to the lowest 9 vz values for 16
neutrinos) and the remaining (highest vz) neutrinos to be τ
flavor. Finally, to mimic the effects of the neglected one-
body contributions to the Hamiltonian, we perturb the
initial flavor configuration by a small random polar rotation
away from initial pure flavor states as well as a random
rotation in the x-y plane of the flavor Bloch sphere. The first
rotation mimics the effect of the small effective mixing
angle induced by noncommutation of the dense matter and
vacuum potentials, while the second rotation mimics the
phase accumulation from the rapid rotations about the
flavor axis induced by the matter potential.
Once the couplings and initial conditions are specified,

we then evolve the 16 neutrino quantum state by numeri-
cally solving the many-body Schrödinger equation in the
interval t ¼ ½0; 103�μ−1. Using the time-evolved quantum
state, we compute the average of hσ̂3;ii over the interval
t ¼ ½101; 103�μ−1. We show this time-averaged quantity in
the top panel of Fig. 4 and we compare time-averaged
numerical predictions for hσ̂3;ii with the mixed state
predictions for each spin. The red squares represent the
time-averaged values of the evolved quantum state, and the
green circles (blue diamonds) show the expectation value

estimated using the EMSD (grand-canonical) approxima-
tion of Eq. (6) [Eq. (9)]. The bottom panel shows the
difference between the late-time averaged many-body
solution and the two energy diagonal predictions, while
the filled red region indicates the root-mean-square (RMS)
deviation of the time oscillations of the expectation value of
the many-body solution about its mean (as seen in Fig. 5).
We observe that both of the energy diagonal approxima-
tions for the estimation of hσ̂3;ii are fully within the RMS
oscillations of the many-body solution about its mean,
except one outlying point estimated using the grand-
canonical ensemble.
Its important to note that, while the interaction is SUð2Þ

invariant, we choose a particular spin direction along
which to quantize (which is informed by the initial
polarization) and denote it as e⃗3. Because Ĥνν commutes
with Ĵþ and Ĵ−, their expectation values are also conserved,
but these operators cannot be simultaneously diagonalized
with Ĵ3 and Ĵ2. Therefore, no mixed state which is energy
diagonal will be able to accurately predict their expect-
ation values. For the initial conditions we consider here,
hĴþi ≈ hĴ−i ≈ 0. As such, the energy-diagonal mixed
states we consider here are adequate for describing the

FIG. 4. In the top panel, we show the initial condition (black
squares) and the average over the late-time oscillations of hσ̂3;ii
obtained from the solution to the many-body Schrödinger
equation for each neutrino. The thin black dotted line indicates
the conserved value 2hĴ3i=N. Blue diamonds are the expectation
value predicted from the grand-canonical partition function fit
from the initial condition, while green circles indicate the EMSD
average. The lower panel shows the difference (Δhσ̂3;ii) between
the exact solution and the partition function fit (blue diamond)
and the numerical solution to the MB Schrödinger equation and
the microcanonical approximation (green circles). The filled red
area represents the RMS deviation of the oscillations of the exact
solution about its mean.
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polarization configurations. However, in the presence of
substantial orthogonal polarization (i.e., substantially non-
zero values of hĴ�i), a more careful treatment of the non-
Abelian conserved charges would be necessary [73].

B. Approach to equilibrium

In the previous sections, we have argued that in the
absence of simplifying symmetries the ν − ν interaction
Hamiltonian in its various symmetry sectors has a level
spacing distribution which is in good agreement with that
of a random Hamiltonian drawn from the GOE. We have
also argued that this implies generic product state initial
conditions should display substantial dephasing in energy
such that one-body expectation values can be computed
from an energy-diagonal distribution. Once dephased, the
one-body expectation values are expected to achieve an
equilibrium value from which they stray only transiently
and with small amplitude.
To investigate the approach to this equilibrium, we

evolved seven different systems each with N spins from
N ¼ 10 to N ¼ 16 in integer steps. For each system size,
we independently selected velocities and initial conditions
in the same manner as described for theN ¼ 16 case shown
in detail above. We then considered three simple measures
of the speed of the evolution. First, for each system size
(N), we consider the one-body von Neumann entropy
[Si ¼ −Trðρi log2ðρiÞÞ] of each neutrino, and we find the
earliest time for which Si > 0.95. We then take the average

of these times over all the spins for a given system size,
denote this average large entropy time as TS, and plot TS as
black diamonds in Fig. 6. We also computed the standard
deviation of TS over the spins for each system size;
however, in each case, the error bar would be too small
to resolve on the plotted scale of Fig. 6.
Next, we note the time dependent behavior Fig. 5 of

P3 ≡ hσ̂3i. After evolving away from the initial value, the
expectation value crosses the thermal prediction before
turning and approaching it again. We observe this behavior
across all of the chosen system sizes and for each spin. We
therefore consider, for each system size, the time at which
the value hσ̂3i for each spin reaches a turning point at which
its first time derivative vanishes. We then average these
turning-point times over all the spins, denote the average
time as TP3

, and plot it as black circles in Fig. 6, and we
indicate the standard deviation from the average value over
the spins in a given system size with error bars.
Finally, we consider the Loschmidt echo LðtÞ ¼

jhψ0je−iĤννtjψ0ij2 which quantifies the probability of meas-
uring the time-evolved state in the initial configuration. The
t ¼ 0 curvature of the Loschmidt echo is given by the
variance of the Hamiltonian, and the earliest time at which
it (the Loschmidt echo) can vanish is bounded by the
quantum speed limit [74]. For chaotic systems, the
Loschmidt echo is expected to saturate to an equilibrium
value which scales inversely proportionally to the size of
the system’s Hilbert space [75], a scaling behavior that we
have verified for Ĥνν. The dynamics of the echo at
intermediate times is an active area of study, but we

FIG. 5. Evolution of hσ̂3i for neutrino i ¼ 1 compared to the
prediction utilizing the grand-canonical partition function (black
dotted line) at early time. The line and arrow indicate when the
time-averaging begins for the evaluation of the data plotted in
Fig. 4. Inset: hσ̂3i as a function of time for every neutrino on the
entire considered time domain.

FIG. 6. Times for which the average time (TS, indicated by
black diamonds) the one-body entropies reach 95% of their
maximum, the Loschmidt echo (TL, black squares) reaches its
first local minimum, and the average time (TP3

, indicated by
black circles) the one-body hσ̂3i reaches its first turning point.

EQUILIBRATION OF QUANTUM MANY-BODY FAST NEUTRINO … PHYS. REV. D 108, 123010 (2023)

123010-7



investigate the time of the first minima in the echo as a
proxy to the equilibration timescale of the system.
For all of the calculations we have performed, we have

observed an approach to an equilibrium value in the one-
body flavor content with a timescale which appears
insensitive to the total number of spins. The equilibration
we observe in flavor content is subsequent to a develop-
ment of one-body entanglement on a timescale which is
similarly insensitive to N. Our numerical observations are
consistent with a time-to-equilibrium which scales simply
as Oðμ−1Þ. In Fig. 6, we show the timescales we extracted
for the equilibration of these quantities for a range of
system sizes. Because our computational method retains all
amplitudes, we are computationally limited in the system
sizes N we can investigate.
For states that are close to polarized product states in the

e⃗3 direction, we can argue that the timescale to equilibrium
cannot scale to zero asN ≫ 1. In theAppendix,we calculate
to quadratic order in the Taylor series expansion of the time
evolution of hσ̂3;iðtÞi about t ¼ 0. We find that, for the
typical states we consider here, the linear term in the
expansion vanishes, and the quadratic term scales as
μ2=N. We expect such a Taylor series to have a radius of
convergence scaling as μ−1. Noting hσ̂3;iðt ¼ 0Þi ≈�1, then
truncating the series at quadratic order, and estimating when
hσ̂3;iðtÞi ≈ 2hĴ3i=N ≪ 1, we would conclude t ∼

ffiffiffiffi
N

p
=μ.

However, such a timescale is outside the expected region of
convergence for our series, making such a conclusion not
self-consistent. We can, though, conclude that t → 0 as
N ≫ 1 is impossible; the smallness of the quadratic term,
and the suppression of higher orders as t → 0, would not
allow a self-consistent solution to the equilibrium condition
in arbitrarily small neighborhoods of the origin.We intend to
follow up these observations with investigations of these
timescales both analytically and with computational meth-
ods which may allow substantially larger system sizes, such
as tensor network methods.

C. Path integral description of time evolution
and equilibrium distributions

In the results presented in the previous section, it is striking
that at late times each individual neutrino flavor expectation
value is approximately given by hσ̂3;ii ≈ 2hĴ3i=N. We
observe this approximate flavor isotropy even when there
is substantial correlationbetween the initial flavor content and
momenta of the neutrinos (as in the initial split configuration
of Fig. 4). This is behavior we have observed across a variety
of system sizes and initial correlations between flavor and
momenta. The total hĴ3i is, of course, conserved by the
Hamiltonian, but there is no a priori reason to expect all the
spins to reach the sameequilibriumvalue. To clarify this point
and to define the equilibrium values for general systems of
neutrinos (and both neutrinos and antineutrinos), we consider
the time evolution in a path integral approach.

The time-evolved expectation value of an operator
expressed as an expansion of overlaps with the initial state
for a system described by the GOE produces random
phases in the off-diagonal elements that would normally be
present in Eq. (6). Rewriting the expectation value as a sum
over product states of νe and ντ spins jni, the amplitude of
the state in state jni as a function of time is

hnjψðtÞi ¼
X
α

e−iEαthnjEαihEαjψ0i; ð10Þ

where we have taken the initial state jψ0i as an arbitrary
state in the jni basis.
Equivalently, writing the state jψðtÞi as a sum over the

states jni,
jψðtÞi ¼

X
n

AnðtÞeiϕnðtÞjni; ð11Þ

where the AnðtÞ are the magnitudes of the overlaps (real and
positive) and the phases are ϕnðtÞ. The magnitudes and
phases are given by

AnðtÞeiϕnðtÞ ¼
X
α

e−iEαthnjEαihEαjψ0i: ð12Þ

The expectation value of σ̂3;i averaged over a time
window of size Δ is

1

Δ

Z
tþΔ

t
dthψðtÞjσ̂3;ijψðtÞi

≈
X
n;α

hniσ̂3;ijnijhnjEαihEαjψ0ij2; ð13Þ

and we have used the facts that σ̂3;i is diagonal in the jni
basis and that the average over nondiagonal energy
eigenstates over time goes to zero. This is a sum over
diagonal matrix elements in the jni basis, each with a
positive coefficient, suggesting the time-evolved state can
be written as an incoherent sum of the states jni.
For an initial state with overlaps with many eigenstates,

the random phases (e−iEαt) for a GOE would translate to
random phases in the νe − ντ product state basis ϕnðtÞ. This
would not be true near the ground state where the phases
cannot be random, but initial product states we wish to
describe are not near the ground state of this Hamiltonian.
Random phases also keep hσ̂�;ii ¼ hσ̂∓;ii ¼ 0 for all times
for an initial product state in jni.
The Hamiltonian can always be divided into diagonal

(Ĥd
νν) and off-diagonal (Ĥ

od
νν) pieces, where, in the jni basis,

the off-diagonal pieces are proportional to ð1−vi ·vjÞ ˆ⃗σi · ˆ⃗σj,
which is simply aweighted permutation operator exchanging
antiparallel flavor spins i and j. The full path integral
describing the propagation with exp½−iĤννt� is then a sum
over all paths with all-to-all two-body spin exchanges, while
the diagonal piece just reduces to pure phases, as do two-
body exchanges between parallel spins.
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We can write the path integral as a sum over all powers of Ĥod
νν operators. Summing over the number of nondiagonal

operators at random times, with diagonal evolution (pure phases) between the nondiagonal terms, we can rewrite the time
evolution with a path integral as

hnj exp½−iĤννt�jψ0i ¼
X
m

ð−iÞm
m!

X
ni���nm

Z
dt0 � � � dtmhnj exp½−iĤd

ννtm�Ĥod
νν jnmi

× hnmj exp½−iĤd
ννtm−1�Ĥod

νν jnm−1i � � � hn1j exp½−iĤd
ννt1�Ĥod

νν jn0ihn0jψ0i: ð14Þ

Here, we can see that Ĥd
νν introduces pure phases into

each term of the path integral, while the off-diagonal terms
Ĥod

νν induce transitions from one product state to another. In
this equation, the sum of all times ti has a resultant of t, and
we have separated the path integral into terms with a
specific number of insertions (indexed by m) of the off-
diagonal operators.
In principle, one could sample these paths by their

absolute magnitudes as is done in many quantum
Monte Carlo approaches, in particular diagrammatic
Monte Carlo [76]. If the initial product state connects to
many basis states and the Ĥd

νν introduces random phases,
the final state is an incoherent sum of product states. The
off-diagonal terms Ĥod

νν induce transitions as a series of spin
swaps between one product state and another. Such a
sampling of swaps conserves the expectation value of
Ĵ�; Ĵ3, and Ĵ2 of an initial product state since exchanges
of the original spins have the same expectation values of
total and projected spin as the original state.
All permutations of the original spins can be reached by

a series of two-body swaps. For an initial product state of
many neutrinos, we can easily calculate the expectation
value of hĤk

ννi for small k. These quantities must be
conserved by the time evolution. If the angular distributions
are similar, as they are deep inside a proto-neutron star, all
product states of permutations of the initial spins should,
when averaged over time, have equal magnitudes of over-
laps A. Each permutation of the initial product state will
have approximately the same hĤd

ννi, with a variance
inversely proportional to the number of neutrinos since
there are N2 terms in the Hamiltonian. Unitarity requires
that the average of the squared absolute magnitudes is
inversely proportional to the number of spins.
More generally the time-averaged magnitudes of the

amplitudes are expected to depend on the hĤd
ννi of the

individual permutations. These can arise, for example, from
interference between different insertions of off-diagonal
operators leading to the same final state. If we assume time-
averaged overlaps vary smoothly with hĤd

ννi, we can
calculate this dependence by requiring that the lowest N
moments of the Hamiltonian are conserved. The linear
dependence could be parametrized as a temperature as in
ETH because we also know that the absolute magnitudes of
the time-averaged amplitudes are real and positive. Higher-
order moments put further constraints on the evolution.

Example calculations for small numbers of neutrinos are
discussed below. Crucially, the low-order moments of Ĥνν

can be calculated exactly from the initial product state or
from an incoherent sum of physically reasonable product
states.
The path integral of Eq. (14) can be described as a

random walk in the basis states. For large times, we expect
the phases of individual νe − ντ product states to become
random if the initial product state is in the middle of the
spectrum. The short time evolution of an amplitude
of a particular state [anðtÞ≡ hnjψðtÞi] up to order δt is
governed by

anðtþ δtÞ ¼ exp½−iĤd
ννδt�anðtÞ

þ
X

m∈PðnÞ
hniĤod

νν jmiδt: ð15Þ

There are OðN2Þ terms in the sum over states m∈PðnÞ
where PðnÞ is the set all of the states which can be
produced by one pair permutation in Ĥod

νν , each matrix
element with a substantial random component.
Assuming phases of individual νe − ντ product states at

large enough time separations are random, the expression
for the path integral can be described as a random walk in
the basis states. The complex amplitude for a specific
state at a given large time will be distributed as a two-
dimensional Gaussian centered at zero describing its real
and imaginary parts. The average magnitude (squared) is
governed by unitarity. Integrating over times after equili-
bration should produce a constant absolute magnitude of
the overlap, with a variance decreasing approximately
inversely proportional to the square root of the time
integrated over. Expectation values are obtained as the
incoherent sum of expectation values in individual purely
νe − ντ product states.
We investigated the behavior of the time average of

jAnðtÞj at late times exactly for small N. The above
discussion suggests that we should expect jAnjt ∝ 1ffiffiffiffiffiffi

Nm

p
where the t subscript indicates a time average andN m is the
total number of states in the Hilbert space with quantum
number m ¼ hniĴ3jni. In Fig. 7, we show two cases. The
top panel represents

ffiffiffiffiffiffiffiffi
N m

p
× jAnjt for the quantum state

whose one-body expectation values are shown in Figs. 4

EQUILIBRATION OF QUANTUM MANY-BODY FAST NEUTRINO … PHYS. REV. D 108, 123010 (2023)

123010-9



and 5 for all states jni in the m ¼ 1 subspace, plotted
against the corresponding diagonal elements of Ĥνν. The
lower panel is similar but for an N ¼ 15 state which
initially had purely 10 νe and 5 ντ resulting in unit overlap
with them ¼ 2.5 subspace. For the lower panel, spins were
chosen as νe and ντ randomly, the vx=y components of
velocity were chosen with random azimuthal angles on the
unit sphere, and the vz components were chosen randomly
from the uniform interval [0, 1].

This figure shows that for both cases, in the respective m
subspaces, the time-averaged magnitudes jAnjt ≈Oð1Þ=ffiffiffiffiffiffiffiffi
N m

p
. Both of the considered cases show some structure in

the magnitudes versus hniĤννjni, as they must in order to
conserve all of the moments of the Hamiltonian. For a more
complex Hamiltonian with terms violating the conservation
of J2 or components of J or for time-varying Hamiltonians,
the symmetries are further reduced [77], making the
approximations considered here even more accurate.
Even for the case of a specific product initial state and a
static Hamiltonian with these symmetries, the behavior of
the absolute magnitudes A is smooth in energy.
The equilibrium distribution in energy and angle reached

by a pure neutrino system is simply the weighted average of
the initial distributions in energy and angle. For the simple
two-body interaction discussed here, the total number of
neutrinos of each flavor is conserved. This equilibration
would produce the horizontal dashed lines in Fig. 4 and is
reached quite quickly, as we discussed previously.
For an incoherent sum over orthogonal states, the path

integral can be modeled as a classical process including
exchanges of pairs of spins. A classical swap network can
be implemented for a large number of neutrinos. The
potential dependence of the amplitudes on hĤννi could be
implemented through a Metropolis Monte Carlo with the
parametrization of the energy dependence determining the
accept/reject probability. For cases with minimal depend-
ence, such as equal initial angular distributions, the accept/
reject probability could be fixed to 1.
Because of the lack of coherence, it could be that non-

forward scattering would also be important. The magnitude
of these amplitudes would be similar to the forward scatter-
ing. However, the phases from different magnitudes of the
neutrinos’ momenta would oscillate rapidly on the MeV−1

scale, rendering their contributions very small. In principle,
all amplitudes should be consistently included and summed,
but these highly oscillatory pieces are unlikely to signifi-
cantly interfere with the forward scattering amplitudes. The
same picture of random diagonal phases and rapid flavor
exchanges would occur and not change this picture, particu-
larly since the angular dependence is not measurable. At
larger distances where the neutrino flux is reduced, off-
diagonal vacuum oscillation terms will be important, leading
to further flavor evolution. Potentially, this could bemodeled
as a system of single neutrino spins evolving according to
their one-body Hamiltonian with random swaps imposed.
However, the equilibrium we discuss should dominate at
smaller radii where much of the dynamics and chemical
evolution occurs. At larger radii, the evolution is governed by
simple one-body dynamics due to the expected geometric
reduction in the strength of the two-body interaction.
The case of a mixture of neutrinos and antineutrinos of

different flavors is more interesting. The total number
density of a particular flavor of neutrino (or antineutrino)
is denoted by nðνxÞ, and the net lepton flavor is given by

FIG. 7. Time-averaged magnitudes of state amplitudes (jAnjt)
for the N ¼ 16 (top) and N ¼ 15 (bottom) cases in the m
subspaces (top: m ¼ 1, and bottom: m ¼ 2.5) with the largest
total overlap with the total state plotted against the respective
diagonal elements of the Hamiltonian in the product state (jni)
basis. In each case, the state projected into the specified m
subspace has been normalized to unity, and the time-averaged
amplitude magnitudes have been scaled by

ffiffiffiffiffiffiffiffi
N m

p
, where N m is

the total number of states in the specified m subspace.
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nðνxÞ − nðν̄xÞ. The net lepton number is preserved by the
path integral picture with random phases and two-particle
exchanges. The net lepton flavor for each flavor is con-
served by the evolution which provides 3 conservation
conditions and the total number of neutrinos is also
conserved which provides a fourth condition. However,
the total number of neutrinos and antineutrinos in each
flavor must be known to specify the full equilibrium
distribution, thus requiring a total of six values to be
specified. Assuming random phases renders the quantum
problem essentially classical, and then it is possible to
determine the equilibrium distributions very easily.
Assume that the flavor swapping processes νeðpÞ þ

νxðp0Þ ⇌ νeðp0Þ þ νxðpÞ have achieved equilibrium.
Because the forward and reverse processes have the same
scattering amplitude, one must have nνeðpÞnνxðp0Þ ¼
nνeðp0ÞnνxðpÞ or, equivalently, nνeðpÞ=nνxðpÞ ¼ nνeðp0Þ=
nνxðp0Þ ¼ q. Therefore, the νe to νx ratio is independent
of the neutrino momentum when the flavor equilibrium is
obtained. Similarly, one also has nνeðpÞ=nνxðpÞ ¼ nν̄xðp0Þ=
nν̄eðp0Þ ¼ q if νeðpÞ þ ν̄eðp0Þ ⇌ νxðpÞ þ ν̄xðp0Þ have
reached equilibrium. This is consistent with the flavor
isospin notation where the antineutrinos are treated as
neutrinos with negative energies [78]. Using the constancy
of q, one can determine the equilibrium distribution
completely for given nðνeÞ − nðν̄eÞ and nðνxÞ − nðν̄xÞ.
In environments where both neutrinos and antineutrinos

are present, flavor off-diagonal evolution from processes
like νeν̄e ⇆ νμν̄μ yields a rapid equilibrium. In such an
equilibrium state, the time-averaged flux into a particular
state must equal the time-averaged flux out of a state. Since
the magnitude of the Hamiltonian matrix elements are
symmetric under time reversal, this implies the probability
of the product of the densities of neutrinos and antineu-
trinos in each flavor must satisfy nðνeÞnðν̄eÞ¼nðνμÞnðν̄μÞ¼
nðντÞnðν̄τÞ, where n represents the density of neutrinos
of a given flavor. These two additional conditions on the
product of neutrino and antineutrino densities, along with
the four previous, completely determine the equilibrium
condition.
We consider a simply implemented three-neutrino-flavor

swap network of 24,000 total neutrinos and antineutrinos,
each labeled only by their energy, as we expect that the
flavor evolution will rapidly tend to isotropy in momentum
given the above arguments. We distribute them randomly in
energy with a distribution that mimics an energy weighted
Boltzmann distribution of the form PðEÞ ∝ Ee−βE which
we show in the top panels for all neutrino and antineutrino
species in Fig. 8. We start with initial distributions with
fractional nðνeÞ ¼ 1=2 and an average energy of 11.9 MeV,
nðν̄eÞ ¼ 1=6 with an average energy of 15 MeV and all
other species with nðνxÞ ¼ 1=12 and an average energy of
18.2 MeV.
With these initial populations, we perform swaps among

the neutrinos and antineutrinos of different energies by

randomly selecting two neutrinos from the distribution and
swapping their energies. In this process, if a neutrino and
antineutrino of the same type are selected, we also allow
them to change to a different flavor, with probability 1

3
for

each flavor. We perform this swapping process on average
250 times per neutrino in the distribution, and we show the
final flavor configuration after the swap network in the two
lower panels of Fig. 8.
For the swapped distribution, we find that the average

energy of each species is approximately equal and is
Ē ≈ 14.5 MeV. The numbers of electron flavor neutrinos
and antineutrinos are reduced to 0.38 and 0.05, respec-
tively, by transformation to other flavors with equal
products of number of neutrinos times antineutrinos in
all flavors. The other flavor populations are increased
slightly to 0.14. While the individual flavor populations
have been adjusted, the conserved differences have been
respected. This rapid approach to equilibrium can signifi-
cantly impact the dynamics and chemical evolution of
supernovae and neutron star mergers.

IV. CONCLUSION

In this work, we have provided evidence that the generic
ν − ν coherent forward scattering Hamiltonian is nonintegr-
able, and the resultant level spacing statistics behave equiv-
alently to those of a random matrix drawn from a Gaussian
orthogonal ensemble. This behavior is generically expected

FIG. 8. Initial (top) and final (bottom) neutrino energy spectra
ðnνiðEÞÞ for each flavor (denoted i) in a simple calculation
assuming random phases from the diagonal parts of the
Hamiltonian. The product of the number of electron neutrinos
and antineutrinos equilibrates with the other flavors, while the
difference is maintained for each flavor.
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in nonintegrable Hamiltonians as there is not an extensive set
of conserved quantitieswhichwould admit degeneracy in the
spectrum. SuchHamiltonians display chaotic behavior, and a
large category of initial conditions is expected to thermalize
in the sense that one-body expectation values will obtain
some equilibrium value from which they stray only tran-
siently and which can be predicted from an energy diagonal
grand-canonical thermal distribution.
Artificial impositions of symmetry can categorically

change the nature of the coherent forward scattering
Hamiltonian. We should only make such simplifying
assumptions in the pursuit of understanding if doing so
does not qualitatively change the behavior of the system we
are studying. This work strongly encourages more careful
consideration on how to appropriately take a thermody-
namic limit in these systems.
The evidence we present here strongly suggests that late-

time one-body expectation values can be obtained a priori
from a thermal partition function. While fully diagonalizing
the Hamiltonian for large N is prohibitively expensive,
even in the lower-dimensional block-decimated invariant
subspaces, Monte Carlo methods may be feasibly imple-
mented to evaluate the partition function at larger values of
N. Such a scheme may provide a method for feasibly
determining the late-time one-body flavor expectation
values in the fast oscillation regime without explicitly
solving the many-body Schrödinger equation or numeri-
cally diagonalizing the Hamiltonian.
While the time-independent Hamiltonian and initial

conditions we consider here are quite simple, we do not
expect the neglected effects, including nonforward scatter-
ing, spatially resolved initial states, or time dependence in
the Hamiltonian, to fundamentally increase the coherence
in the system. In at least some cases, a simple classical
picture of equilibrium, as determined by assuming an
evolution to an incoherent sum of product states, should
provide an accurate approximation to one-body observ-
ables. In particular, this path integral picture can be used to
define an intriguing equilibrium distribution for systems of
neutrinos and antineutrinos of multiple flavors.
Furthermore, in the near future, quantum computers may

provide an avenue for performing the coherent time
evolution of the quantum many-body system (see, e.g.,
Refs. [44,79–83] for recent attempts on current generation
devices) and may be capable of evaluating expectation
values using explicit time evolution for similarly large N,
which can be compared to statistical partition functions
obtained on either classical or quantum computers. As
such, quantum computers may facilitate comparisons
between these two predictions.
Finally, as the number of spins included increases, the

block-decimated subspaces of the Hamiltonian grow com-
binatorially large, which we should expect to drive the
system even closer to the predictions made utilizing the
partition function. While we have provided evidence which

suggests that the equilibration we have observed here will
be obtained when Ĥνν dominates the evolution, a remaining
open question is the precise rate at which this thermal
equilibrium is achieved. We generally observe equilibration
on a timescale which is on the order of ∼10μ−1; however,
we have not proven that this will occur on such short
timescales generically. The examples we have studied do
not display sufficient sensitivity to the system size in the
equilibration timescale to make a clear determination of
the relationship. We leave a more thorough investigation of
the approach to equilibrium to future work.
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APPENDIX: SHORT TIME EVOLUTION

An important question to address is when equilibration is
reached for a given initial state. A simple approach is to
Taylor expand the time evolution of the operator in the
given initial state and use the expansion to estimate when
the first crossing of the equilibrium value is reached, as
depicted in Fig. 5. In what follows, we will refer to the
flavor state of a given neutrino simply as the state of a given
site in our system. We introduce the swap operator
ρ̂ij ¼ 1

2
ˆσ⃗i · ˆσ⃗j þ 1

2
, whose action on a tensor product state

of sites i and j and any other state representing the rest of
the system is given by

ρ̂ijjaii ⊗ jbij ⊗ jψi ¼ jbii ⊗ jaij ⊗ jψi: ðA1Þ
We can take our Hamiltonian of Eq. (1) and rewrite it as (up
to a term proportional to the identity)

Ĥνν ¼
1

N

XN
i<j

μijρ̂ij; ðA2Þ

where we introduce the variables μij ¼ μð1 − vi · vjÞ for
conciseness.
Working in the Heisenberg picture, we then can calculate

the time evolution of a Pauli matrix at a site i, which we fix
for definiteness to be in the e⃗3 direction and choose i ¼ 1,
though our results do not depend on these choices:

σ̂3;1ðtÞ ¼ e−iĤννtσ̂3;1eiĤννt

¼ σ̂3;1 − it½Ĥνν; σ̂3;1� þ
ðitÞ2
2

½Ĥνν; ½Ĥνν; σ̂3;1�� þ � � � :
ðA3Þ
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To compute these commutators, we note the following
identity:

½Ĥνν; P̂ · σ̂3;k� ¼
XN
i<j

μij
N

ðρ̂ijP̂σ̂3;k − P̂ρ̂ijσ̂3;ρijðkÞÞ ðA4Þ

with index∶ ρijðkÞ ¼
8<
:

j if k ¼ i;

i if k ¼ j;

k else.

ðA5Þ

Here, P̂ is an extended permutation operator built from a
product of multiple swaps, and we have shifted our Pauli
matrix to operate on another site using:

σ̂3;kρ̂ij ¼ ρ̂ijσ̂3;ρijðkÞ: ðA6Þ

This allows us to express the commutators as a sum over
permutations times a Pauli matrix. We then compute

½Ĥνν; σ̂3;1� ¼
X

1<j≤N

μ1j
N

ρ̂1jðσ̂3;1 − σ̂3;jÞ; ðA7Þ

½Ĥνν; ½Ĥνν; σ̂3;1�� ¼
1

N2

X
1<j≤N

X
l≠1;j

fμ1jμjlðρ̂1jlðσ̂3;1 − σ̂3;jÞ − ρ̂1ljðσ̂3;1 − σ̂3;lÞÞ

þ μ1jμ1lðρ̂1jlðσ̂3;1 − σ̂3;jÞ − ρ̂1ljðσ̂3;j − σ̂3;lÞÞg þ 2
X

1<j≤N

μ21j
N2

ðσ̂3;1 − σ̂3;jÞ: ðA8Þ

The operators of the form ρ̂ijk ≡ ρ̂ikρ̂ij are cyclic
permutations, mapping states as from site i to j, site j to
k, and site k to i.
Using the operator norm (the largest absolute value of the

eigenvalues in the operator, kÔk ¼ supψ jhψ jÔjψij), we
can bound how large the expectation values are for any
given state using the triangle inequality and submultipli-
cativity of the norm:

kÂþ B̂k ≤ kÂk þ kB̂k; ðA9Þ

kÂ B̂ k ≤ kÂkkB̂k; ðA10Þ

to get

k½Ĥνν; σ̂3;1�k ≤ 2
X

1<j≤N

μ1j
N

∼OðμÞ; ðA11Þ

k½Ĥνν;½Ĥνν;σ̂3;1��k≤
4

N2

X
1<j≤N

�
μ21jþ

X
l≠1;j

ðμ1jμjlþμ1jμ1lÞ
�

∼Oðμ2Þ: ðA12Þ

These represent the worst/best case scenario for the
expectation value of these operators, that is, the largest
values the coefficients of the Taylor expansion can take.
However, a given state may or may not have an expectation
value with the same asymptotic behavior in the limit that
N ≫ 1 as our upper bounds. To see this, we consider
the product state with �1 states at all sites, polarized along
the e⃗3 axis:

jmþ; m−i ¼ j1;…; 1|fflfflffl{zfflfflffl}
mþtimes

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m−times

i: ðA13Þ

There is nothing special about this product state in this
basis; any permutation of the sites states will lead to the
same conclusions in what follows. We can quickly see

hmþ; m−j½Ĥνν; σ̂3;1�jmþ; m−i ¼ 0: ðA14Þ

The swap operator forces the states at sites 1 and j to be
identical, but then the expectation values of the Pauli
matrices at those sites are also identical. Similarly, we
compute

hmþ; m−j½Ĥνν; ½Ĥνν; σ̂3;1��jmþ; m−i ¼ 4
X

j;jϕij¼j−1i

μ21j
N2

∼O
�
μ2m−

N2

�
: ðA15Þ

The contribution from the first two lines of Eq. (A8) is zero,
term by term in the sums. The permutation operators force
the states to be identical at the permuting sites, but then the
expectation value of the Pauli matrices must cancel.
In general, moving beyond a single flavor polarized

product state, we can extend these conclusions to the
class of states that have random phases when written in
the computational basis of product states of j � 1i. The
expectation value becomes approximately diagonal in the
product states, with positive coefficients bounded by 1 from
unitarity, so for such states, we can expect
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hψ j½Ĥνν; σ̂3;1�jψi ∼ 0; and ðA16Þ

hψ j½Ĥνν; ½Ĥνν; σ̂3;1��jψi ∼O
�
μ2

N

�
: ðA17Þ

In the second line, we assume that the product states
generically have OðNÞ j þ 1i-polarized states and/or
OðNÞ j − 1i-polarized states. Clearly, they cannot exceed
this.
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