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Abstract

Cancer is a complex disease shaped by a heterogeneous landscape of inherited genetic
variants and acquired somatic aberrations. Although specific patterns of somatic aberrations
within key pathways are recognized as hallmarks of many cancers, and mounting evidence
suggests a significant interplay between germline and somatic variants, the intricate
relationship between germline predisposition and the disruption of these pathways remains
poorly understood. Here, | present an integrative approach using multi-omics data to
functionally characterize germline variants and explore the heterogeneous landscape of
somatic mutations, with the aim of establish mechanistic links between functional variants

and the disruption of cancer-related biological processes.

To enable the identification of functional variants, | initially performed a comprehensive
characterization of functionally annotated transcriptional regulatory elements, establishing
a hierarchy of ‘consensus’ elements across multiple levels of abstraction. This analysis
generated a vast collection of consensus promoters, enhancers, and active enhancers,
spanning 198 cell lines and 38 tissue types, with aggregate data providing global consensus
definitions for each element type. Additionally, ‘total binding affinity’ method was employed,
integrating 1000 Genomes Project genotype data and thousands of transcription factor
binding motifs, to further characterize and functionally annotate these regulatory elements.
The results generated from this analysis can be interactively explored and visualized through

the CONREL web application.

To allow effective annotation of individual’s ancestry, | developed and successfully employed
an improved version of EthSEQ (version 3), an R package that provides a rapid and reliable
pipeline for ancestry annotation. Accurate stratification of individual ancestry is essential for
correctly interpreting the impact of genomic variations in associations studies. EthSEQ
version 3 was successfully utilized to determine the genetic ancestry of over 500 pediatric
patients diagnosed with 11 different tumor types, enabling further investigation into the

genetic landscape of patients confidently identified as of European ancestry.

To further investigate into the interplay between germline and somatic variants, | conducted
genome-wide association studies across 33 cancer types characterized by The Cancer
Genome Atlas, using binary traits defined by somatic aberration profiles in ten oncogenic

signaling pathways. Functional links between associated variants and somatic profiles were



investigated through cis-eQTL data to identify regulatory interactions with pathway-related
genes. Additionally, using GWAS summary statistics | employed polygenic scores to examine
the contribution of germline genetic variation to somatic molecular profiles, tumor subtypes,
and clinical outcomes such as patient survival and tumor aggressiveness. Polygenic scores

were validated using external data from PCAWG and CCLE datasets.

Lastly, to explore the heterogeneity of somatic mutational profiles, | employed a network-
based approach to propagate somatic alterations through a molecular interaction network,
aiming to reveal novel patterns of somatic alteration with potential significance in cancer. |
then conducted a series of GWAS analyses, utilizing traits defined by combinations of these

propagated somatic scores across genes involved in well-defined DNA repair pathways.

Overall, | demonstrate that germline genetics can describe patients’ genetic liability to
develop specific cancer molecular and clinical profiles. Understanding the functional roles of
genetic variants can provide valuable insights into the biological mechanisms underlying a

disease or trait.
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Introduction

Background
Cancers are complex diseases! driven by a combination of inherited genetic variants and
somatic mutations that are accumulated during tumor progression, frequently disrupting

crucial biological processes?.

Over the past decades, advancement in genomic technologies have enabled the
comprehensive characterization of disease-related alterations, leading to a deeper
understanding of commonly dysregulated processes, and oncogenic pathways. The number
of reported germline variants associated with cancer has grown considerably, thanks to
various strategies3. Genome-wide linkage analysis, a method for tracking disease-related
genetic markers in families with a strong history of cancer, has been particularly successful.
More recently, genome-wide association studies (GWAS) have pinpointed hundreds of
common and rare low-effect risk germline variants across multiple cancer types*. Through
large-scale genomic analyses®, rare germline variants have been identified linked to
functional predisposition in 8% of adult cancer cases. The authors identified several germline
variants with distinct associations. Variants within oncogenes tended to correlate with high
gene expression, while variants within tumor suppressor genes were linked to low expression

and loss of heterozygosity.

On the other side, a large number of somatic aberrations in tumor pathways are now used
as hallmarks in many well-known forms of cancer’. However, the specific genes and pathways
altered in cancer vary greatly across tumor types and individual patients. Some genes are
recurrently altered and well-established as cancer drivers, while others are rarely or never
mutated®®. In19 the authors investigate the patterns of alterations within established cancer
pathways, comparing and contrasting these patterns across 33 different cancer types.
Several crucial signaling pathways are observed frequently disrupted by genetic alterations

in cancer. However, the alteration frequency within these pathways varies.

Advancements in next-generation sequencing have made large-scale genetic analysis both
feasible and affordable. The availability of extensive sequencing data from both healthy
individuals and cancer patients now allows for the identification of genetic factors that

contribute to cancer susceptibility by examining both germline and somatic variations.



Lately, growing evidence supports an interplay between germline and somatic variants,
demonstrating how inherited genetic predispositions can shape the somatic mutational
landscape of tumors. In'! the authors uncovers germline variants that have a direct impact
on tumor evolution, either by promoting mutations in specific cancer genes or influencing
the tissue of origin for tumor development. In our recent work'?, we provide evidence that
germline genetics can shape the aberrant behavior of specific pathways, uncovering
functional associations between SNPs and the biological alteration of oncogenic signaling
pathways. In addition, very recently in'® the authors investigated the impacts of germline
cancer gene eQTLs on somatic mutations in a collection of cancer genes among >12,000
patients across 11 cancer types, demonstrating that germline variants regulate the
expression of cancer genes and associate both with local and global somatic mutations’
rates. Despite these studies, the functional links between germline variants and the somatic
events of oncogenic pathways, and their impact on cancer genesis and progression remains

largely unexplored.

Thesis aim

This thesis aims to fill the gap between individuals’ genetic background and somatic events.
Although, a substantial number of somatic aberrations in oncogenic signaling pathways have
been observed to be linked with many well-known forms of cancer, the interaction landscape

of germline variants and aberrant signaling pathways is still largely unknown.

To elucidate the impact of genetic variations within biological systems, it is important to
correctly identify functional variants and understand their potential effects on specific
biological pathways. Moreover, accurate identification of individuals in genetic studies is
crucial for interpreting results and ensuring the correct attribution of variants to observed

phenotypes.

In the first part of the thesis, | started identifying regulatory elements and their interactions
with transcription. l implemented CONREL, a web resource to explore functionally annotated
transcriptional regulatory elements across different cell lines and tissue types. Regulatory
elements were constructed using a consensus approach, integrating patterns of various
histone modifications derived from ChIP-seq experiments. Consensus regulatory elements
were generated by aggregating ChIP-seq data at multiple levels of abstraction, resulting in a

comprehensive collection of CREs across 198 cell lines and 38 tissue types, including global



consensus elements derived from the combined data. CONREL provides collections of TFs
that show enriched TBAs across common alleles at different significance thresholds and can
hence be used to elucidate regulatory mechanisms at specific regions in only a fraction of

individuals.

Furthermore, | delved into identification and stratification of individual's ancestries for the
correct interpretation of genetic and genomic profiling. | developed a new version of EthSEQ,
a tool that provides a fast and automated computational workflow to annotate ancestry

information from next-generation sequencing (NGS) data.

Given the growth of data generated by large-scale projects, optimizing software
performance has become necessary. To address scalability challenges with large datasets, |
developed a new version of EthSEQ optimized for efficient processing of extensive genetic
data while ensuring compatibility with the latest VCF format. Critical steps in the workflow,
which were previously bottlenecks in terms of memory usage and runtime, have been
reimplemented in C++. This language is renowned for its speed and memory efficiency,
particularly when compared to R, significantly enhancing the scalability and overall
performance of EthSEQ. Moreover, a protocol paper has been published to describe detailed

steps to perform ancestry analysis to a broader audience using different input file formats'4.

The main part of the thesis regards the identification, functional annotation, and
characterization of inherited variants. Specifically, | performed a collection of genome-wide
association studies (GWAS) across 33 cancer types characterized by TCGA and considering
binary traits defined using a large collection of somatic aberration profiles across ten well-
known oncogenic signaling pathways. | investigated functional links between associated
variants and somatic profiles exploring cis-eQTL data to identify cis-regulatory interactions
with genes directly within the pathways, or genes co-expressed and functionally close to
genes within the pathways. | then leveraged polygenic scores approach to explore the
contribution of germline genetic variation to somatic molecular profiles, tumor subtypes,
and clinical outcomes including patient survival and tumor aggressiveness. Polygenic scores

were validated using external data from PCAWG and CCLE datasets.

Finally, | investigated the heterogeneity of somatic mutational profiles aggregating tumor
mutations in the context of molecular networks. In detail, | performed a network-based
approach to propagate somatic alterations in cancer through a molecular interaction

network to uncover low-rate mutated genes or new somatic alteration patterns that could



play an important role in cancer. Finally, | conducted a collection of GWAS analysis
considering traits defined by combinations of these propagated somatic scores across well-

defined DNA repair pathways genes.



Chapter 1. Exploring regulatory elements and
TF:DNA interactions

Introduction

Cis-regulatory elements are regions of non-coding DNA that regulate transcription of
neighboring genes. Promoters initiate gene transcription near the transcription start site
(TSS) of a gene and consist of short sequences. Enhancer, on the other hand, influence gene
transcription from various genomic positions relative to the gene(s) and can be of varying

length.

Transcriptional regulation is a critical biological process that orchestrates gene activity and
regulates the conversion of DNA to RNA (transcript). This process is finely tuned and involves
physical interactions among multiple transcription factors (TFs) with core promoter elements
and through distal enhancer elements. Understanding these interactions is crucial for
deciphering gene regulatory networks. Various genomic factors, including sequence
specificity and histone structure, influence how TFs bind to their target genes. The
development of recent next-generation sequencing techniques has enabled detailed
characterization of these genomic features. Recently, genome-wide chromatin annotations,
based on histone modification patterns, have enabled the identification of potential
regulatory elements across diverse human cell types™~*2. Based on specific combination of
different histone modification patterns it is possible to define distinct regulatory elements:
trimethylation of H3 lysine 4 (H3K4me3) at promoters/transcription start sites,
monomethylation of H3 lysine 4 (H3K4me1l) at enhancers, and acetylation of H3 lysine 27

(H3K27ac) at active regulatory elements.

The Encyclopedia of DNA Elements (ENCODE)' and the NIH Roadmap Epigenomics
Program?® were established to identify all human genome functional elements. Both studies
have performed a variety of assays to identify functional elements. Regulatory elements are
mostly investigated though chromatin immunoprecipitation, followed by sequencing (ChIP-
seq) experiments, uniformly curated, processed and validated, and publicly accessible
though the ENCODE website (www.encodeproject.org). Several resources enable the
investigation of regulatory elements, such as promoters and/or enhancers. This has been

achieved through histone marker ChlP-seq experiments?'=3 or by analyzing their global


http://www.encodeproject.org/

accumulation and integration!®?4. Other resources utilize TF ChlP-seq data to explore

potential interactions between transcription factors and DNA?>2¢,

TFs are a class of proteins that play a vital role in gene regulation by binding to specific DNA
sequences at enhancer or promoter regions. TF binding sites are short and usually
degenerated sequences. The human genome encodes thousands of different TFs, which
exhibit marked selectivity in their DNA binding and demonstrate a preference for specific
sequences that can be over 1000-fold higher compared to others. This remarkable specificity
allows a single TF to regulate distinct genes in different cell types, highlighting the dynamic
nature of gene regulatory networks within an organism. A model summarizing the preferred
DNA-binding sequences of a TF, is often represented by a positional frequency matrix (PFM).
This matrix captures the nucleotide frequency distribution at each position within the TF
binding site. Scores derived from PFM quantify the similarity between a DNA sequence and
the TF's binding motif. While most of the methods to date predict TF:DNA interactions when
these scores exceeds a predetermined threshold, recent advancements propose an
alternative cutoff-independent methods for TF binding prediction?’?8, Among them, an
effective method considers the total binding affinity (TBA) of a sequence??3°, which evaluate
the entire sequence incorporating both high- and low-affinity binding sites, leading to a more

accurate prediction of TF binding.

Here, | implemented CONREL (CONsensus Regulatory ELement), a web application for
exploring regulatory elements across the human genome3!. Employing a ‘consensus’
approach, | have implemented a workflow to build regulatory elements and provide
annotations of TFs with enriched TBAs. By integrating data from multiple experiments, tissue
types and cell lines, CONREL characterizes regulatory elements conserved across various
conditions. Specifically, | combined ENCODE peak regions data across sample replicates and
multiple experiments. For each cell line, ‘consensus regions’ for regulatory elements (CREs)
are computed integrating TSS data. Then, the consensus regions are combined across similar
tissues and across all cell lines to create a comprehensive map. Finally, | characterized all
tissue and global regions by identifying all TFs showing enriched TBA and by determining the
fraction of common alleles among 1000 Genomes Project individuals and Mouse Genomes

Project strains that support TFs TBA enrichment in human and mouse respectively.

Initially, | implemented CONREL using the GRCh37 version of the human genome assembly.

Since then, | have expanded CONREL to include the last GRCh38 human genome assembly.



Most recently, | have supervised and contributed to the expansion of CONREL to include a
mouse model organism. The web application now facilitates the exploration of annotated

CREs derived from both the human and mouse genomes.

CONREL offers a unique resource to explore regulatory elements and their functional
properties across different genomic loci, genes, cell lines, and tissue types, filling a gap in the

comprehensive landscape of TF TBAs across the human and mouse genomes.
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Overview of data analysis workflow

I implemented and performed the computational workflow depicted in Figure 1.1 to identify
robust annotated consensus regions for transcriptional regulatory elements in the human

and mouse genomes.

ENCODE histone ChiP-seq Merge replicates Merge experiments
Expl
a . B
NarrowPeak regions ) EXpN  ———
H3K4mel — L
‘ . ‘ H3K4me3
H3K27ac ) .
BEDTools intersect BEDTools intersect

BroadPeak regions

TSS
- HEK293 LNCaP  prostate ] iPS-18c GM23248  WI38
V ’ - w | ’ - ‘ U
l ¢
Tissue consensus
Consensus regions [ N Global consensus
— -
active enhancer enhancer ) ‘ — J— —
_ ! — o
promoter active enhaner BEDTools union , L
Predicti f functi i i
rediction of function regions ‘)v L BEDTools union

TFBS motifs databases 1,000 Genomes Project

Cl_._T ‘ ° .i”di"id“i' g'inmyopeso °
e

Landscape of TF with significant TBA

TF1(100%), TF12(7%) TF7(95%), TF5(80%)
—
TF4(100%) TF7(1%), TF5(75%)

Figure 1.1 CONREL workflow for the identification of consensus regulatory regions
(CRE) and transcription binding affinity annotations (TBA).
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Results

Landscape of human transcriptional CREs

CONREL provides a vast collection of global and specific CREs for 38 tissue types and 198
different cell lines. This collection is based on over 1,000 ChlIP-seq experiments from the
ENCODE project. ENCODE provides peak data in two distinct formats: narrow and broad
peaks, each computed using the peak calling tools with different thresholds. Notably, for
certain experiments, both narrow and broad peak data are available, while for others, only
one of the two formats is present. To ensure a comprehensive analysis, | consider both

narrow and broad peak data separately.

Table 1.1 summarizes the global number of CREs identified for promoters, enhancers, and
active enhancers, along with the corresponding percentage of the genome spanned by these
regions for both narrow and broad peak data. Figure 1.2 expands upon these statistics by
providing distribution plots for tissue- and cell line-specific CREs regarding their length

distributions.

Table 1.1 Comparison of CREs coverage. Number of global CREs identified by CONREL using
narrow and broad peak data, along with the percentage of the human genome covered by
these CREs. It also includes a comparison with data from the ENCODE and RoadMap
collections.

Promoters Enhancers Active enhancers

No. of regions % No. of regions % No. of regions %
Global narrowPeak 25512 0.80 716249 30.63 290424 15.92
Global broadPeak 28 307 0.96 303125 42.10 115720 22.62
ENCODE 70292 NA 399124 NA NA NA
RoadMap 81232 1.44 NA NA 2328936 12.64

Global CRE promoters encompass roughly 1% of the human genome. In contrast, tissue- and
cell line-specific CRE promoters exhibit greater variability, spanning a range of 0.27% to

0.67%. Interestingly, global CRE enhancers and active enhancers cover a more substantial

12



portion of the genome, ranging from 30% to 40% and 15% to 20%, respectively. However,
tissue- and cell line-specific CREs for these elements demonstrate significant variability, with

consensuses encompassing as little as 0.005% to a maximum of 15% of the genome.

A direct comparison of CREs derived from narrow and broad peak data (Figure 1.3) reveals a
high degree of similarity for global CREs across all regulatory element types. Conversely,
tissue-specific CREs display good concordance only for promoters, with substantial
divergence observed for enhancers and active enhancers. This disparity likely reflects the
limited and variable number of experiments available for specific tissue types within both
narrow and broad peak datasets, where some tissues may have just a single experiment
represented. Interestingly, | observed a significant correlation between the number of
experiments and the degree of similarity considering both enhancers and active enhancers
(correlation=0.63, p-value=5.56e-04, and correlation=0.51, p-value=8.31e-03, respectively).
As examples, among all the tissue-specific CREs and regulatory element types, glia tissue for
enhancer displays the lowest similarity between narrow and broad peak data. In this specific
case, data considering narrow peak were available from two different glial cell lines (i.e. mid-

neurogenesis radial glial cells and radial glial cell), with two independent experiments and

8 1
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g ° 2
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) o .
E 4 £
o = .
= e
Q @ -: »
< 3 o A
5 5 . ’ -
& 2 e A & t < .
ACO | ‘ AP . X
o B peiiai e SISt 1
i - o ity [l
? At : e | =
0 edt 0 s o culani i o '-.'.-‘."‘
B cell line-specific CREs [CJnarrowPeaks tissue-specific CREs
[JbroadPeaks

300000 ' 300000

200000 200000

Number of CREs
Number of CREs

100000 100000

Promoters Enhancers Active enhancers Promoters Enhancers Active enhancers

Figure 1.2 Comparison of CREs coverage for cell lines and tissues. Distribution of
fractions of the human genome covered (A) and number of CREs (B) for CONREL cell
lines (left) and tissue (right) consensus regions computed using both narrow and
broad peak data.
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two repeat measurements for each experiment. However, considering the broad peak, data
were available only from astrocyte cell line, with three experiments but no repeat
measurements. In contrast, muscle tissue-specific CREs exhibit some of the greatest
similarity between narrow and broad peak data among promoters, enhancers, and active
enhancers (with 88%, 32%, and 23% similarity, respectively). Actually, narrow peak data were
available for 10 distinct cell lines originating from muscle tissue. Interestingly, broad peak
data was also available for 5 cell lines, all these 5 were also included and available from

narrow peak data, which may explain the

narrowPeak vs broadPeak Jaccard similarity

higher similarity in muscle tissue observed Promoters Enhancers Aclve erharcers
global 057 0.44
adrenal_gland 0.06 0.06
compared to glia tissue. aorta 008 008
blood 0.35 0.22
bane 0.12 0.06
brain 0.1
Table 1.1 additionally integrates global preas I i
colon 0.13 0.1
regulatory element annotations derived from awoderum o 0id
embryonic r 5
esophagus
both ENCODE and RoadMap projects. Notably, g oe 001 —
@ Kidney 0.09
while the number of globally annotated regions = er 0.2 0.08
lung 0.14 0.07
muscle 0.32 0.23
exhibits some variation across these three e 02 (0
pancreas 0.16 0.16
resources, the overall percentage of the pacerta 28 418
skin 0.31 0.14
genome covered by these regions remains -y __ o1 oot
thymus 022 0.15

comparable. Of note, this analysis is the only

among the three annotations to offer data at  Figure 1.3 Jaccard similarity of CREs.
Similarity comparison between narrow
and broad peak data. Intensity in the red
facilitates a more comprehensive analysis at color of red areas represent higher
overlap, while gray areas indicate no
data for comparison.

both tissue and cell line level. This expansion

different abstraction levels of biological

complexity.

Comparison with other regulatory elements resources

Given the absence of a definitive benchmark to validate our CREs, | decided to compare our
global annotations with regulatory elements identified by other established resources.
Specifically, for promoter annotations, | compared both narrow and broad global CREs to
SCREEN3?, Ensembl?!, and GeneHancer?*. For enhancer and active enhancer annotations,
the comparison included EnhancerAtlas??, DENdb?3, SCREEN, Ensembl, and GeneHancer. All
regulatory region collections were converted into a uniform BED format. When necessary,
coordinates were transformed to the human genome assembly GRCh37 using the UCSC

Genome Browser's liftOver tool and chain file.

14



| employed an asymmetric pairwise comparison to calculate two distinct coefficients for each
resource pair: 1) the percentage of regions from one resource that overlap with regions from
the other, and 2) the ratio between the portion covered by one resource and the portion of

the genome covered by both resources.

Figure 1.4A shows the pairwise comparison results, revealing an average promoter overlap
of approximately 75% across all resource comparisons (excluding Ensembl). This indicates a
generally good level of agreement among the promoter annotations provided by most
resources. Additionally, genome coverage analysis, detailed in Table 1.2, reflects the
observed concordance while accounting for the inherent differences in the size of the
genome covered by each annotation (approximately 1% for CONREL, 2% for GeneHancer and

Ensembl, and 0.3% for SCREEN).

Percentage of overlapping regions Percentage of overlapping regions
CONREL narrow N 72.01% | 76.17% | 72.07% CONREL narrow - 83.39% | 29.67% | 34.79% | 75.17% 87.506 43.21%
,, CONREL broad [BABE . 66.21% | 68.82% | 64.51% CONREL broad [[B128% | - 34.46% | 44.30% | 75.34% | 93.245% | 53.09%
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Figure 1.4 Comparison of CONREL CREs with other regulatory elements resources.
A comparative analysis of Consensus Regulatory Elements (CREs) derived from the
CONREL database with those from established regulatory element resources. A-C)
Pairwise comparisons between all resources for promoter (A), enhancer (B), and
active enhancer (C), both in terms of the percentage of promoters shared and the
genomic coverage captured. The top matrix quantifies the percentage of promoters
in a given resource (row) that overlap with regions in another (column), while the
bottom matrix indicates the proportion of genomic space covered by regions in one
resource that is also encompassed by those in another. (D) Average percentage of
CONREL active enhancer and GeneHancer, Ensembl, EnhancerAtlas, DENdb and
SCREEN enhancers that have overlapping with each of the other resources.
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It is remarkable that, as far as we know, CONREL stands out as the sole resource offering
promoter annotations at three distinct resolution levels (global, tissue, and cell line).
Furthermore, CONREL differentiates between annotations derived from narrow and broad
peak data. While Ensembl provides global annotations and annotations for individual
experiments, both SCREEN and GeneHancer solely offer global annotations. The comparison
of enhancer annotations reveals a generally good level of concordance between CONREL and
other resources, evident in both the percentage of overlapping regions and the shared

fraction of genome coverage (Figure 1.4B,C).

Table 1.2 Human genome coverage of all resources considered in the comparison analysis.
Total coverage of the genome, corresponding fraction, and number of consensus regulatory
elements for CONREL global consensus regions computed using both narrow and broad
peak data and all other data collections.

Genome coverage Genome coverage Number of

fraction regions
Promoter
CONREL narrow (global) 25,488,643 0.80% 25,512
CONREL broad (global) 30,599,944 0.96% 28,307
GeneHancer 72,447,469 2.26% 23,725
Ensembl 72,858,670 2.28% 35,035
SCREEN 9,941,504 0.31% 34,734
Enhancer
CONREL narrow (global) 980,080,993 30.63% 716,249
CONREL broad (global) 1,347,251,757 42.10% 303,125
geneHancer 360,359,358 11.26% 246,906
ensembl 340,176,755 10.63% 273,175
enhancerAtlas 1,818,995,370 56.84% 2,464,777
DENdb 1,383,043,500 43.22% 3,506,396
SCREEN 222,228,613 6.94% 808,157
Active enhancer
CONREL narrow (global) 509,458,088 15.92% 290,424
CONREL broad (global) 723,939,328 22.62% 115,720
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Overall, a higher degree of heterogeneity is observed among the different enhancer
resources. While the genome coverage of CONREL enhancers (~¥30%) and active enhancers
(~20%) is more conservative compared to EnhancerAtlas (~55%) and DENdb (~45%) (Table
1.2), enhancers from SCREEN, GeneHancer, and Ensembl exhibit the most conservative
coverage, encompassing roughly 10% of the genome. Although conservative annotations
might mitigate the presence of artifacts, the overlap between SCREEN, GeneHancer, and
Ensembl is not optimal. This suggests a potential divergence in how these resources

functionally characterize specific genomic regions.

It is important to note that, as illustrated in Figure 1.4D, CONREL active enhancers display
the highest average representation across all other resources. Additionally, CONREL remains
the only resource offering enhancer annotations at three resolution levels (global, tissue,
and cell line) and differentiating between annotations derived from narrow and broad peak

data.

To facilitate the exploration of relationships between our CREs and regulatory elements
identified by other resources, | integrated annotations into CONREL web application,
highlighting all identified overlaps within consensus regions. This allows users browsing
global CREs through the web application to readily identify which other resources support

the specific regulatory elements.

Global and allele-specific distribution of transcription binding affinities across
human CREs

Table 1.3 summarizes for each CRE type across various p-value cutoffs, the average number
of transcription factors with enriched total binding affinity per CRE, alongside the percentage

of regions exhibiting enriched TFs.

Employing broad peak data with the most stringent statistical threshold, we observed
enriched TBAs in approximately 95% of promoters, 85% of enhancers, and 95% of active
enhancers. Conversely, utilizing narrow peak data yielded lower percentages, with enriched
TBAs detected in roughly 80% of promoters, 60% of enhancers, and 70% of active enhancers.
Utilizing a more relaxed statistical approach resulted in enriched TBAs identified within all

CREs.

17



Table 1.3 Enriched TFs through CREs. Mean number of TFs with enriched TBAs at promoter,
enhancer, and active enhancer CREs at different significance cutoff, and percentage of CREs
with at least one enriched TF TBAs.

Promoters Enhancers Active enhancers
TBA significance Mean CREs%  Mean CREs% Mean CREs %
p-value cutoff number number number
of TF of TF of TF
le-02 281 100 256 100 286 100
é le-03 125 99.9 94 99.8 116 99.8
§ le-04 76 93.7 53 84.2 70 86.5
z le-05 51 83.9 34 59 46 68.5
le-02 302 100 431 100 522 100
é le-03 140 100 231 99.9 299 100
g le-04 86 97.8 164 93.3 218 98
i le-05 56 94.7 123 84.4 166 95.6

By characterizing common CRE alleles using 1000 Genomes Project genotype data, we were
able to identify TF TBAs that exhibited enrichment or depletion in only a subset of alleles.
This finding suggests the potential existence of allele-specific regulatory mechanisms. For
instance, analyzing global CREs revealed that roughly 1% and 4% of promoter and active
enhancer regions, respectively, displayed TF TBAs enriched in less than 10% of common
alleles from the 1000 Genomes Project when employing the most stringent significance
cutoff. The full distribution of TF TBA enrichment scores across CRE promoters and active

enhancers is presented in Figure 1.5.
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Figure 1.5 Allele-specific TF TBAs enrichment. Distribution of TFs exhibiting a specific
enrichment fraction for common alleles from the 1000 Genomes Project across CRE
promoters and active enhancers.
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Comparative analysis of TBA annotations and TF-target regulatory relationships
resources

We investigated how TBA annotations capture transcriptional regulatory networks. We
retrieve a list of manually curated TF-target relations from the TRRUST database33, focusing
on those involving TFs in our data. We analyzed CONREL global promoter and active
enhancer regions, looking for the closest protein-coding genes nearby CREs enriching a TF
predicted by TBA with the strictest criteria (p-value cutoff 1e-05) and present in TRRUST. Our
promoter TBA annotations (Figure 1.6A) explained about 15% of TRRUST relationships,

increasing to 35.5% when including active enhancers (Figure 1.68,C).

While CONREL TBA annotations identified many more relationships (Table 1.3) than TRRUST
(around 7300), they still captured a statistically significant portion of TRRUST data.
Specifically, we shuffled regulators and targets in TRRUST randomly 1000 times and
compared the overlap with our results. We observed a statistically significant enrichment for
both promoters (p-values < 0.001 for both broad and narrow data) and active enhancers (p-

value = 0.001 and p-value = 0.012 for narrow and broad peak data respectively).

While TRRUST and CONREL rely on distinct input data, the results suggest CONREL has the

potential to analyze the structure of transcriptional regulatory networks.

A B C

CONREL active enhancers

CONREL promoters namowPeaks CONREL active enhancers

narrowPeaks

CONREL active enhancers
broadPeaks

CONREL promoters CONREL promoters

broadPeaks

TRRUST

TRRUST

Figure 1.6 TRRUST transcriptional regulatory relationships captured by CONREL. The
cumulative fraction of TRRUST relationship captured by CONREL-derived promoters
(A) and active enhancers (B), considering both broadPeak and narrowPeak-derived
CREs. (C) The combined contribution of promoters and active enhancers capture by
CONREL.

Web-interface implementation and usage example in human

limplemented CONREL, a web application to easily explore CREs and their annotations about
TF:DNA interactions. CONREL is developed in R (v3.6.1) and the Shiny package (v1.3.2)
running on a Shiny server (v1.5.12.933). The user interface is accessed through a web

browser. Several R packages are utilized for various functionalities: ‘shinyDashBoardPlus’ for

19



interface design, ‘TnT’ for genome browser generation, ‘biovizBase’ and ‘GenomicFeatures’
for genomic data utilities, and ‘EnsDb.Hsapiens.v75’, ‘EnsDb.Hsapiens.v86” for providing

genomic annotations for human reference genomes GRCh37 and GRCh38, respectively.

For deployment, CONREL utilizes a virtual server with 4GB RAM, 40GB disk space, and 2 CPUs
running Ubuntu 16.04 LTS Linux. The application is containerized within a Singularity image,
which is available for download alongside configuration scripts to enable local server
execution. The source code for the web interface can be found on GitHub at

https://github.com/cibiobcg/CONREL.

The user interface, accessed through a web browser, facilitates the exploration and analysis
of regulatory elements within a genomic context. Users need to define the gene name or a

region of interest (Figure 1.7A) and then select at least three mandatory inputs from the

SEARCH BY CHROMOSOME POSITION SETTINGS
Chromosome reglon: select the gene level or the transcript level visualization for the genome browser
GENE TRANSCRIPT
SEARCH
Peaks calls format of the regions
SEARCH BY GENE NAME
ne symbol Regulatory element:
'. promoter, active enhancer
SeARCH aon Ttons
Consensus regions track to visualize:
=
C o Tissue
Cell-line Tree selection
L]
Optional tracks to add:
|

Add TBA info to global and tissue tracks. value cutoff

o
]
]
]
]
O
O

TF motifs parameters:

Motifs count cutoff

Fraction motifs association in total region cutoff

Figure 1.7 CONREL interface. (A) Search tab allows to select a specific genomic region
or a gene name. Input tabs allow for the selection of source peak data and types of
CRE to be displayed (B) using, when needed, also a cell line selection tree when
activated (C) and TBA statistical filters (D).
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available options (Figure 1.7B): (i) narrow or broad peak format for ChIP-seq data, (ii) at least
one type of regulatory element (e.g., promoter, enhancer), and (iii) at least one CRE. For both
tissue and cell line CREs, users need to select at least one CRE out of all available CREs. A
selection tree displaying all cell lines categorized by tissue of origin is used to facilitate the

selection of specific cell lines of interest (Figure 1.7C).

Additional tracks and parameters can be selected, including for example TBA significance
threshold (default: 1e-05) and two filters for transcription factor position weight matrices
(PFMs) used in the analysis (Figure 1.7D). These PFM filters allow users to exclude potentially
low-confidence motifs by setting a minimum number of sequences defining a PFM (default:

50) and a maximum fraction of CREs an enriched PFM can be associated with (default: 0.50).

Upon selection, a genome browser tab is displayed (Figure 1.8). This browser allows users to
navigate the surrounding genomic region (1 Mbp) and visualize various features, including
genes, transcripts, and consensus regions. Selecting a specific CRE within the browser, the
bottom panels display detailed information: genomic coordinates, strand, the number of

experiments used to build the consensus, and all associated transcription factor TBA

(GRchaz chi19:51357506-51350037 A
51357600 57500 51350000 51358200 51358400 51350600 51350800 513509000
= — — — — — — e
KLK3 (protein_coding) »
- S
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p.value TF_Symbol_and_Code ALL_1000GP GeneCard
segnames o 9
tart 6
end 51358675
width 1
- o AR taar
<1.00e-02 A 1.00e+00 ()
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verlap referenceD8 geneHancer, SCREEN <1.00e-02 AR %07
overlap refe geneHance! De-02 fo— 5.00e 0
B AR -
Sl (M01996) il (2]

Showing 1 1o 3 of 3 entries (filtered from 156 total entries) 1

Number of cell lines used to build the 1g7  Click to expand and see all
global consensus the cell line used

Figure 1.8 CONREL navigation webpage. The genome browser allows users to navigate
specific regions or individual genes (top). Additional panels offer a deeper overview into
CRE and TBA information (bottom).
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enrichments. Figure 1.8 exemplifies this functionality by highlighting TBA enrichments for
androgen receptor (AR) PFMs below a significance of 0.01 for the promoter region of KLK3
gene, also known as Prostate-Specific Antigen (PSA). Interestingly, only half of the common
alleles from the 1000 Genomes Project exhibit significant AR enrichment, suggesting the
influence of single-nucleotide polymorphisms (SNPs) on the PFM score within the promoter
region of KLK3. Moreover, | deeply investigated promoter CREs near the start site of the KLK3
gene. Figure 1.8 shows narrow peak for global data, prostate-specific tissue, and prostate
cell lines. Interestingly, both the global and tissue-specific data show a consensus promoter
region at the beginning of the KLK3 gene. Additionally, the data from LNCaP and prostate cell
lines align in terms of the promoter regions, while the PC3 cell line lacks this specific CRE.
This is interesting because according to scientific literature3*, LNCaP cells express the PSA

protein, whereas PC3 cells do not.

Lastly, users can generate the link to the DNA sequence of the displayed genomic window.
The interface displays additional functionalities for copying or downloading the selected
consensus region information or the TBA information using different file formats (CSV, Excel,

or PDF).

Mouse data integration and usage example

We extended CONREL to include mouse data, following the same workflow used for human
data. ChIP-seq data from ENCODE for 37 cell lines across 18 tissues were utilized. As shown
in Table 1.4, promoters cover approximately 0.5% of the genome, while enhancer regions
range from 11 to 24% for narrow- and broad-peak, respectively. Coverage is more
heterogeneous across cell lines and tissues (data not shown), with percentages ranging from

0.2 to 10%.

Following the approach used for human CRE comparison, we decided to conduct a
comparative analysis of our global annotations with regulatory elements identified by other
established resources. For promoter annotations, both narrow and broad global CREs were
compared to SCREEN, Ensembl, and EPDnew®. Regarding enhancer and active enhancer
annotations, the comparison encompassed EnhancerAtlas, SCREEN, and Ensembl. It is
important to note that EPDnew represents promoter-like elements as single genomic
coordinates. This allows for the comparison of overlapping regions but precludes the

calculation of the shared fraction of the genome covered by two resources.
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As previously observed with human genome, CONREL is more conservative than
enhancerAtlas, while SCREEN and Ensembl are the most conservative amongst all analyzed
resources in defining consensus regions. The enhancerAtlas database demonstrates a
remarkable abundance of putative enhancer regions, covering approximately 82% of the
genome. Of note, this comprehensive resource integrates enhancer predictions derived from
a collection of 241 different cell lines and tissues obtained using 12 distinct high-throughput

experimental techniques.

Table 1.4 Mouse genome coverage of all resources considered in the comparison
analysis. Total coverage of the genome, corresponding fraction, and number of consensus
regulatory elements for CONREL global consensus regions computed using both narrow
and broad peak data and all other data collections.

Genome coverage Genome coverage Number of

fraction regions
Promoter
CONREL narrow (global) 13,423,798 0.49% 14,445
CONREL broad (global) 13,838,769 0.51% 13,794
EPDnew NA NA 25,111
Ensembl 52,478,880 1.94% 25,110
SCREEN 6,935,143 0.26% 23,271
Enhancer
CONREL narrow (global) 314,139,915 11.63% 456,313
CONREL broad (global) 657,282,252 24.34% 187,884
SCREEN 72,377,655 2.68% 262,393
Ensembl 54,215,051 2.01% 69,963
enhancerAtlas 2,225,958,966 82.44% 520,179
Active enhancer
CONREL narrow (global) 103,100,009 3.82% 95,056
CONREL broad (global) 214,572,344 7.95% 47,887

Figure 1.9 presents a pairwise comparison of CRE annotations across various resources,
assessing both the percentage of overlapping regions and the shared fraction of the genome
covered by two resources. The results demonstrate a generally high level of agreement

among promoter annotations across most resources. Regarding enhancer annotations,
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CONREL exhibits a good degree of concordance with other resources, as evidenced by the
substantial percentage of overlapping regions. However, a relatively low shared fraction of
genome coverage is observed for all resources when compared to both SCREEN and Ensembl
datasets. Conversely, a high fraction of shared genome coverage is observed when
compared to EnhancerAtlas. This discrepancy can be attributed to the varying total genome
coverage of each annotation, as detailed in Table 1.4 (approximately 2% for SCREEN and
Ensembl, and 82% for EnhancerAtlas). These findings highlight the importance of
considering both the extent of overlap and the overall genomic context when evaluating the
concordance of CRE annotations across different resources. Notably, both the absolute
number of annotated regions and the overall proportion of the genome covered by these
annotations varies across these three resources. This divergence is likely attributable to the
high diversity in input data utilized to construct the consensus regions for each dataset.
Importantly, our analysis offers data at both the tissue and cell line levels, enabling a more

comprehensive assessment of regulatory element annotations across different biological
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Figure 1.9 Comparison of CONREL CREs with other regulatory elements
resources. A pairwise comparative analysis of all CRE types derived from the
CONREL database with those from established regulatory element resources. The
top matrix quantifies the percentage of promoters in a given resource (row) that
overlap with regions in another (column), while the bottom matrix indicates the
proportion of genomic space covered by regions in one resource that is also
encompassed by those in another.
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contexts and levels of complexity. This expanded scope facilitates a deeper understanding

of the dynamic and context-specific nature of gene regulation.

We computed TBA scores for the mouse data using the same pipeline applied to human
CREs. Following the integration of these results into our web application, we explored the
data to analyze the presence of CREs across various cell lines and tissues of specific genes.
As an illustrative example, we investigate the presence and characteristics of a promoter
consensus region for the Hepatocyte Growth Factor (Hgf) gene (Figure 1.10). Hgf plays a
crucial role in stimulating epithelial cell proliferation, motility, morphogenesis, and
angiogenesis across diverse organ systems. Moreover, endogenous Hgf is essential for the
self-repair mechanisms of injured tissues, including the liver, kidneys, and lungs®®. Given the
liver's high proportion (80%) of hepatocytes, Hgf gene likely plays a pivotal role in hepatic
function. Furthermore, the widespread tissue expression of Hgf suggests the potential
presence of promoter annotations within various tissues. As expected, our analysis revealed
promoter annotations for Hgf gene in nearly all tissue specific CREs, apart from placental
tissue (Figure 1.10A). This finding aligns with observations from cell lines (data not shown).
Intriguingly, we detected the Hepatocyte Growth Factor activator (Hgfac) promoter
annotation exclusively within liver specific CREs (Figure 1.10B). These results suggest a
widespread distribution of inactive Hgf, consistent with existing literature, while potentially

limiting its activation to the liver due to the liver specific co-expression of Hgfac.

(GRCmaB chr5:16546716-166:23886 N chme;mszsuao;&q 35048927 M
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Figure 1.10 CONREL navigation webpage for case example in mouse. The genome
browser showing all available tissue specific CREs at promoter consensus regions of
Hgf gene (A) and Hgfac gene (B).

25



Methods

CRE identification in human genome
ChlP-seq data from ENCODE, based on the GRCh37 assembly, was downloaded for cell lines
with H3K4mel, H3K4me3, or H3K27ac histone markers peak data available. Data was

obtained for both narrowPeak and broadPeak formats.

BroadPeak peaks were filtered based on a p-value threshold of less than 0.01, while no filters
were applied to narrowPeak peaks as they all had p-values below 0.01. The peak files were
converted into BrowserExtensibleData (BED) format files, representing each peak region

with chromosome and genomic position information (BED3 format).

Peak regions derived from sample replicates were merged, preserving only overlapping
regions. Afterward, merged peak regions from different experiments for the same cell line
were combined, considering only regions overlapping in at least two experiments. Consensus
regions for each cell line were computed based on available markers, defining promoters as
regions occupied by H3K4me3 within 1 kb of a TSS, and enhancers as regions occupied by
H3K4mel, depleted of H3K4me3, and at least 1 kb away from TSS. Active enhancers were
each enhancer consensus region overlapping with H3K27ac peaks. TSS data were obtained

from the UCSC Genome Browser, retaining only TSS with scores > 10.

Consensus regions were also characterized at tissue and global levels by merging regions
across cell lines from the same tissue or across all considered cell lines. The consensus was
computed by considering regions overlapping in at least two cell lines and retaining the union

of overlapping regions.

Due to limited availability of ChIP-seq experiments available in the ENCODE dataset and
aligned to the GRCh38 human genome assembly at the time of implementation, | employed
liftOver3” methodology to translate all global, tissue and cell line specific CREs obtained using

the GRCh37 genome assembly to their corresponding GRCh38 coordinates.

TBA scores at human CREs
To characterize the consensus regions, | performed an ad hoc computational strategy using
the Total Binding Affinity (TBA) approach. This method quantifies the affinity of a DNA

sequence for a TF described by a PFM with a single score (Equation 1).

Specifically, | computed TBA scores across all CREs using TF DNA-binding site motifs from

public databases. TBA scores were computed both for the reference genome sequence and
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for common alleles identified from the 1000 Genomes Project. Statistical significance of TBA
scores was determined using a permutation approach and pre-computed thresholds based

on a reference distribution of normalized TBA scores.
Formally, the TBA a,.,, of a sequence r for a PFM w is given by:

l 1 ,
Ay = Z max np(wj'rl’ﬂ—l)’np(wl—jﬂlﬂ" i+j-1) ]
j=1 P(b,Ti4j-1) j=1 P(b,7"iyj 1)

i=1

where [ is the length of the PFM w, L is the length of the sequence r, 1; is the nucleotide at
the position i of the sequence r on the plus strand, 7'; is the nucleotide in the same position
but on the other strand, P(Wj, ri) is the probability to observe the given nucleotide r;at the
position j of the PFM w and P(b,r;) is the background probability to observe the same

nucleotide r;.

TBA method produces a single score considering binding sites of all possible affinities and
weights them based on a physical model of TF:DNA interactions. Initially applied to study
yeast transcriptional regulation, TBA has more recently been used to explore the evolution
of cis-regulatory elements in humans and to detect and characterize Expression Quantitative

Trait Loci (eQTLs).

To analyze TBA scores across all cis-regulatory elements (CREs), | collected 5424 unique TF
DNA-binding site motifs in the form of PFM from public databases such as Jaspar3®, hPDI??,
SwissRegulon*® and HOCOMOCO*!, and from TRANSFAC Professional??.

| computed TBA scores for all TF PFMs across both tissue-specific and global CREs. For each
combination of TF PFM and CRE, | computed TBA scores considering the CRE sequence
described by both version of the human reference genomes (GRCh37and GRCh38), as well
as TBA scores computed on all common alleles identified from individuals in the 1000
Genomes Project. Common alleles with an observed frequency >1% were retained for

analysis.

To assess the statistical significance of a TBA score for a TF PFM at a specific CRE, | employed
a permutation approach. Due to the extensive number of TBA scores computed across all
global and tissue CREs (approximately 5.6e10), | implemented strategies to reduce
computational costs of TBA significance calculation. TBA scores were normalized with

respect to the corresponding CRE length, and significance was determined by comparing the
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TBA value against a PFM-specific reference distribution of normalized TBA scores computed
across 100,000 random genomic regions of varying lengths. Pre-computed TBA normalized
score thresholds for different p-value cutoffs (ranging from 5e-02 to 1e-05) were utilized to
determine TBA significance at various cutoffs, with the default cutoff in CONREL set at 1e-05

for stringent multiple hypothesis correction.

Mouse genome: CRE identification and TBA scores

Consensus regions and TBA scores were also characterized for mouse model. First, ChIP-seq
data from ENCODE based mainly on MGSCv37 and GRCm38 assemblies were downloaded.
All genomic coordinates based on MGSCv37 genome assembly were converted to their
corresponding GRCm38 coordinates. Over 1,000 ChlIP-seq replicates across various cell lines
were downloaded, encompassing peak data for H3K4mel, H3K4me3, and/or H3K27ac
histone markers in both broadPeak and narrowPeak formats. All peaks were filtered based
on a p-value threshold of less than 0.01. The same method used for the human genome
assembly was applied to the murine data to obtain consensus regulatory elements in mouse.
To characterize these elements at both tissue-specific and global levels, consensus regions
were merged across cell lines derived from the same tissue or across all cell lines considered

in the analysis.

To analyze TBA scores across all mouse CREs, we collected 2159 unique TF DNA-binding site
motifs in the form of PFM from public databases such as Jaspar3, UniProbe*3, CIS-BP**, Jolma
et al.*® and HOCOMOCO*, and from TRANSFAC Professional*?. Unlike the human 1000
Genomes Project, no equivalent comprehensive dataset exists for the laboratory mouse to
facilitate the detailed characterization of genotype calls across diverse samples of mouse
model. To address this, we employed an analysis of common alleles among common
laboratory mouse strains to identify shared genetic variants. The Mouse Genomes Project*®
is an ongoing effort with the goal to comprehensively catalog genetic variants for common
key mouse strains. The authors identified various small-scale genomic modifications,
including single nucleotide polymorphisms and indels, relative to the C57BL/6J mouse
reference genome. Genotype calls were retrieved for more than 78 M SNPs and indels across
52 mouse samples for 36 distinct mouse strains. Then, we phased genotype calls using
SHAPEIT2%’ to identify common alleles (frequency >1%). We computed TBA scores

considering GRCm38 mouse reference genome assembly and common alleles identified
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within the Mouse Genomes Project. TBA scores were computed for each PFM and CRE

sequence across both tissue specific and global elements.

Discussion

In this chapter, | introduced CONREL, a web tool designed for exploring transcriptional cis-
regulatory elements (CREs) and understanding TF:DNA interactions using TF total binding
affinities (TBAs). Utilizing ENCODE ChlIP-seq peak data, CONREL offers a comprehensive
database of promoters, enhancers, and active enhancers, defined by combining histone
markers H3K4mel, H3K4me3, and H3K27ac. While various resources exist for exploring
ENCODE ChlP-seq data, CONREL stands out by aggregating experiments at different levels of
abstraction, providing a unique collection of human CREs for 198 cell lines and 38 tissue
types, mouse CREs for 37 cell lines and 18 tissue types, as well as global consensuses. |
observed distinct similarities between narrow and broad peak CREs at tissue and cell-line
levels, indicating the need for expanding input experiments to better characterize consensus
regions while highlighting CONREL's effectiveness in integrating diverse CREs for deeper

genomic exploration.

CONREL offers collections of TFs showing enriched TBAs at various significance thresholds
for each regulatory element, aiding in the elucidation of regulatory mechanisms.
Additionally, it provides information on TF TBA enrichment frequencies across common
alleles in the 1000 Genomes Project, facilitating the identification of TFs regulating
transcripts in specific individuals. Comparison with the TRRUST database suggests CONREL's
utility in exploring transcriptional regulatory network structure and topology. Moreover,
CONREL offers TF TBA enrichment frequencies information for 36 different mouse strains,
providing identification of TFs regulating transcripts in specific mouse models, facilitating the

identification of TFs regulating transcript within a limited fraction of mouse model strains.

Implemented as an R Shiny application, CONREL offers an intuitive interface for exploring all
these data. This versatile resource provides comprehensive information for researchers
interested in studying specific genomic regions or TFs, with all resources available for
download. Future updates will focus on incorporating additional ChIP-seq experiments to
reinforce CRE confidence and expand the range of supported transcriptional regulatory

element types (e.g. poised enhancer, or silencer). Additionally, CONREL will be potentially
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expanded integrating different animal models CREs. CONREL is freely accessible via web
browser or through a downloadable singularity image, ensuring convenient usage for the

wider scientific community.

30



Chapter 2. Analysis of Genetic Ancestry

Introduction

The advent of next-generation sequencing (NGS) has revolutionized the study of the genetic
architecture of complex diseases, playing a key role in cancer research aiming to translate
discoveries into clinical applications and personalized medicine efforts. In recent decades,
genome-wide association studies (GWAS) have successfully identified thousands of common
variants associated with human diseases and traits. However, these association variants
often explain only a small fraction of the heritability and provide limited insights into the
underlying functional mechanisms of disease. Consequently, many recent studies have
shifted their focus to rare variants, which are more likely to exert direct functional effects on
gene products. Due to the low frequency of these rare variants, large sample sizes and cost-
effective sequencing approaches, such as whole-exome sequencing (WES) or targeted
sequencing (TS), are favored approaches for exploring patient genomes. In this setting, a
correct estimation of ancestry stratification of individuals is required to investigate results
from GWAS studies and evaluate the importance of personal genomic variations*8. Recent
large-scale studies*®° have revealed a significant role of ancestry in influencing mutation
rates, DNA methylation patterns, and mRNA expression levels. These findings emphasize the
importance of considering ancestry information when investigating disease mechanisms and
predicting responses to therapies. To address this, several model-based tools and tools based
on Principal Component Analysis (PCA) have been realized and proposed so far’'3. Among
them, EthSEQ>* has been developed and used* for the rapid and automatic assignment of

ancestry information to individuals based on their WES data.

The increasing availability and affordability of high-throughput genomic data have
necessitated an upgrade of EthSEQ. Previous versions of EthSEQ forced the user to follow
stringent input requirements, accepting VCF files only in a highly specific format. For
instance, only positions with a single reference and alternative base and unphased genotype
were permitted, and the genotype field was restricted to the only "GT" format. This limitation
put challenges as most haplotype calling pipelines generate VCF files that may not hold to
these constraints, limiting an easy and smooth integration of EthSEQ into existing pipelines
designed for haplotype calling. The improved version (EthSEQ v3, Figure 2.1) aims to improve
its capabilities in several key areas. First, it has been designed to automatically operate with

diverse genome assemblies and reference populations, ensuring greater flexibility and
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adaptability. Second, it provides pre-computed models for the most widely used WES Kkits.
Last, it is now fully compatible with the standard Variant Call Format (VCF), a widely used
format for storing genetic variation data, facilitating seamless integration with existing
workflows. In addition, EthSEQ v3 exhibits significantly improved computational

performance, enabling fast and efficient processing of large-scale genomic datasets.

EthSEQ is available as an R package, | have implemented and released the new version
accompanied by comprehensive protocol paper detailing its features, the step-by-step
procedures for performing ancestry analysis, and how interpret the results'#. This protocol
aims to make EthSeq v3 accessible to a broader audience, empowering researchers with a

versatile and efficient tool for investigating population genetics and ancestry.
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Figure 2.1 EthSEQ v3 analysis. (A) Schematic representation of the EthSEQ
computational workflow. (B) Visual report example generated by EthSEQ, illustrating
the three-dimensional PCA space. The smallest convex hulls delineate the ancestry
groups within the reference model, while individual points represent the target
model's individuals, color-coded according to their assigned reference ancestries.

Results

Performance analysis

To evaluate the performance of EthSEQ v2 and v3, | exploited the ICGC dataset and assessed
both memory usage and computational time across various combinations of sample sizes
and variant numbers. While EthSEQ v3 incorporates additional preprocessing steps within
the software, it demonstrates comparable execution times to EthSEQ v2. As shown in Figure
2.2A, the marginal slowdown observed in EthSEQ v3 is in average around 20%. On the other

side, the advent of large-scale cohorts showed an exponential increase in memory usage by
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EthSEQ v2. As depicted in Figure 2.2B, ancestry analysis of the ICGC dataset, comprising
2,000 samples and 800,000 SNPs, consumed up to 80GB of memory. While feasible on high-
end computing resources, this made EthSEQ v2 impractical for standard computers with
limited resources, especially considering that standard computers with 128GB of RAM are
not yet commonplace. In contrast, the new version, EthSEQ v3, demonstrates a remarkable
reduction in memory consumption, requiring more than threefold less memory for the same

analysis.

This streamlined approach eliminates the need for users to preprocess their data before
conducting ancestry inference, enhancing overall user-friendliness and convenience. The
optimization allows users to execute EthSEQ on standard computers with typical RAM
capacities of 32GB, suffering only a minor increase in computational time.
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Figure 2.2 performance analysis. Execution time (A) and memory usage (B)
comparison between EthSEQ v2 and v3 using different scale of target model.

Ancestry inference using EthSEQ

To evaluate the output consistency of the new EthSEQ version, | conducted a comparative
analysis using both the original and upgraded versions of EthSEQ on the same target model
of unknown ancestry. Specifically, since the original EthSEQ was implemented with pre-
computed reference model built solely on the GRCh37 genome assembly, | extracted
genotype calls from six individuals within the 1000 Genomes Project phase 3 dataset, not
used to build any pre-computed reference models, and aligned against GRCh37 assembly.
Genotype data for 121,012 SNPs captured by the Agilent SureSelect v2 regions were

provided as input to EthSEQ in VCF format. The reference model was selected from the set
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of pre-computed reference models, representing genotype data for 1000 Genomes Project

individuals for SNPs overlapping exonic regions annotated by GENCODE.

Table 2.1 Comparative analysis of inferred ancestries. Ancestry analyses of six individuals
from 1000 Genomes Project dataset. The first column presents the self-reported ancestry
from the 1000 Genomes Project dataset. The results demonstrate a high degree of
concordance between the self-reported ancestries and those inferred by both versions of
EthSEQ.

EthSEQ v2 EthSEQ v3
ID self-reported pop type contribution pop type contribution
HG00096 EUR EUR  INSIDE EUR INSIDE
HG00384 EUR EUR  INSIDE EUR INSIDE
HG01161 AMR AMR INSIDE AMR INSIDE
HG02367 EAS EAS  INSIDE EAS INSIDE
NA18499 AFR AFR  INSIDE AFR INSIDE
HGO03800 SAS SAS CLOSEST  SAS(85.09%) SAS CLOSEST  SAS(84.41%)
EUR(14.91%) EUR(15.59%)

As showed in Table 2.1 and Figure 2.3A, the inferred ancestries for both EthSEQ versions
exhibited a high degree of concordance. For 5 out of 6 samples, the inferred ancestry aligned
with the self-reported ancestry from the 1000 Genomes Project. In the case of one individual
(HG03800), both analyses positioned the individual outside any defined ancestry group.
However, both versions consistently inferred the same major ancestry contribution, which
was concordant with the self-reported ancestry. These results indicate a high degree of

reproducibility and robustness between the original and upgraded EthSEQ versions.

Furthermore, an analysis of all 1000 Genomes Project individuals not used to build the pre-
computed reference models demonstrated a high concordance (946 out of 954, 99.16%)
between inferred ancestry and self-reported ancestry (Figure 2.3B). Notably, 107 individuals
were positioned outside any defined ancestry group, suggesting admixed ancestry. Anyway,
for 100 of them, the annotated inferred major ancestry contribution reflected the self-
reported ancestry. To note, only one individual was assigned as EUR (European) ancestry,
despite their self-reported ancestry being AMR (Ad Mixed American). The observed
discrepancies between inferred and self-reported ancestries highlight the potential for
complex or ambiguous ancestral origins in certain individuals, as well as the limitations of

self-reported ancestry data. These inconsistencies underline the importance of utilizing
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genetic-based methods for ancestry inference to complement and refine self-reported
information, particularly in admixed populations or individuals with diverse genetic

backgrounds.

Analysis of admixed populations

Target samples with reference populations (#SNPs=67657) Target samples with reference populations (#SNPs=60404)

Figure 2.3 EthSEQ v3 analysis results of 1000 Genomes Project individuals. (A)
Analysis performed on 6 individuals reported in Table 2.1. (B) Analysis performed on
all 1000 Genomes Project individuals. The polygons represent the smallest convex
sets identifying the ancestry groups described in the reference model.

To further evaluate the performance of EthSEQ v3 in ancestry inference, | explored the
Human Genome Diversity Project (HGDP)>> dataset, a collection of genetic profiles of more
than 900 individuals across 55 indigenous populations. | inferred ancestry using EthSEQ v3
and the pre-computed reference model representing genotype data for 1000 Genomes

Project individuals for SNPs overlapping exonic regions annotated by GENCODE.

The HGDP was proposed as a complement to the 1000 Genomes Project dataset with the
aim to analyze interpopulation genetic variability. As expected, a majority (62%) of
individuals were positioned outside any defined ancestry group in the analysis (Figure 2.4A).
This observation highlights the diverse ancestral origins of individuals within the HGDP
compared to 1000 Genomes Project dataset. In detail, the number of individuals for each
self-reported major ancestry population within the HGDP, along with the corresponding
inferred ancestry population assigned by EthSEQ v3, is showed in Table 2.2. The results
highlight the good performance of EthSEQ v3 in accurately assigning ancestry to individuals

from the diverse and underrepresented populations captured in the HGDP dataset. In
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particular, populations reported by HGDP that lack direct correspondence with those in the
1000 Genomes Project (e.g., Central South Asia, Middle East, and Oceania) form distinct
clusters in the PCA results (Figure 2.4B). For each individual, EthSEQ assigned ancestry based
on the closest major population of the reference model from the 1000 Genomes Project.

Table 2.2 Summary of HGDP ancestry. Distribution of individuals across various
combinations of self-reported and inferred ancestries. For 3 out of 4 self-reported
populations in HGDP that are already represented in 1000 Genomes Project (e.g. Africa,

America, and Europe), EthSEQ correctly inferred populations for all individuals. For East Asia
individuals, demonstrated a high accuracy rate of 99%.

Ancestry

self-reported EthSEQ Number of individuals
Africa AFR 79
America AMR 49
Central South Asia SAS 133
Central South Asia EUR 46
East Asia EAS 183
East Asia SAS 2
Europe EUR 135
Middle East EUR 149
Middle East AFR 3
Oceania SAS 14
Oceania EAS 9

Of note, the ancestries assigned to individuals from these populations tend to be
geographically close to the corresponding self-reported ancestries. Individuals self-reported
as Middle East were predominantly (98%) annotated as EUR, with the rest classified as AFR.
This population includes individuals from four indigenous groups spanning territories in both
Northern Africa and the Middle East, including Lebanon, Irag, and Palestine. Central South
Asian individuals were primarily (81%) annotated as SAS, with the remaining individuals
classified as EUR. This population includes individuals from Pakistan, Iran, Punjab, and
Afghanistan. For the Oceania population, approximately 61% were inferred as SAS, while the
rest were classified as EAS. This group represents four indigenous inhabitants from Papua
New Guinea. In the past, genetic studies have been extensively utilized to investigate ancient

migratory pathways of human dispersal from Africa across Europe and Asia>®. These results
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align with these established theories for human migration and offer valuable insights into

the ancestry of indigenous populations and their genetic proximity to major populations,

aligning and integrating with recent findings that challenge the strict "out-of-Africa" model,

suggesting a more complex pattern of ancient human dispersal. This demonstrated robust

performance in inferring ancestry with reasonable accuracy, even for underrepresented

populations. Furthermore, a more comprehensive annotation and reference model,

incorporating a wider range of populations, could be in the future developed to achieve even

more fine-grained and accurate ancestry inference.
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Figure 2.4 Inferred and self-reported ancestries of HGDP individuals. 2-dimensional
principal component spaces representing inferred and self-reported ancestry. (A)
Ethseq outputs of inferred ancestry for HGDP individuals, based on a pre-computed
reference model constructed from variants overlapping exonic regions as reported
by GENCODE. (B) principal component values for all HGDP individuals, annotated
according to their self-reported ancestry.

The upgraded version of EthSEQ was successfully used in a collaborative project to perform

ancestry analysis for over 550 patients across 11 cohorts with recurrent or refractory

pediatric solid cancers®’. The study focused on the high-confidence determination and
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characterization of human leukocyte antigen (HLA) genotypes. To explore genotype
inference accurately, we evaluated the ancestry distribution of the cohort considered. By
analyzing normal whole-exome sequencing (WES) data, EthSEQ identified patients with
European ancestry (Figure 2.5). Using an ancestry fraction threshold of > 70% for population
assignment, 455 out of 576 (79%) patients showed a predominant EUR ancestry, 30 (5.2%)
were AFR, seven (1.2%) were SAS, and 80 (13.9%) patients with no ancestry fraction above

the threshold were classified as admixed.

Subsequent analyses focused exclusively on EUR patients across nine tumor cohorts, each
comprising at least 20 individuals. These cohorts were further analyzed to infer HLA
haplotypes, homozygosity frequencies, and potential candidate allelic associations,

providing valuable insights into the genetic landscape of these specific patient populations.

Of note, the characterization of HLA peptidome revealed an increased occurrence of certain
variant alleles and haplotypes. Notably, the patient cohort in this study primarily originated
from Europe, with a majority from France. In contrast, the reference allele and haplotype
frequencies for European/Caucasian individuals were derived from the US population. This

discrepancy may slightly affect frequency comparisons. This underscores the importance of
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Figure 2.5 Genetic ancestry in patients with advanced pediatric solid cancers.
Predominant genetic ancestry fractions (= 70%) of patients with specific tumor types
(A) and subtypes (B), as determined using EthSEQ. Patients with no predominant
genetic ancestry fraction were classified as admixed. The number of patients in each
cohort is indicated at the bottom of the corresponding bar charts. RMS,
rhabdomyosarcoma; eRMS, embryonal/fusion negative RMS; aRMS, alveolar/fusion
positive RMS; 0S, osteosarcoma; EWS, Ewing sarcoma; NRSTS, non-
rhabdomyosarcoma soft-tissue sarcoma; NB, neuroblastoma; NPB, nephroblastoma;
CAR, carcinoma; LGG, low-grade glioma; HGG, high-grade glioma; GBM, glioblastoma;
MB, medulloblastoma; EP, ependymoma.
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developing more comprehensive reference models that encompass a broader range of

populations to enable more accurate and fine-grained ancestry inference.

Methods

EthSEQ is an R package that automates the annotation of individual ancestry from WES or
TS data. It analyzes differential SNP genotype profiles, leveraging variants specific to the
sequencing assay. As input, EthSEQ requires a set of individuals with unknown ancestry (the
target model) and a set of individuals with known ancestry (the reference model). Both
models are required by EthSEQ to be in GDS (CoreArray Genomic Data Structures) format>8.
EthSEQ accommodates diverse target model input file formats, automatically generating the
appropriate GDS file when required. This feature enhances user-friendliness and streamlines

the analysis process by eliminating the need for manual format conversions.

Reference model
Pre-computed reference models are available within EthSEQ. | implemented an automated

pipeline (https://github.com/ddalfovo/ModelCreationGDS) to generate reference models

compatible with EthSEQ analysis. This pipeline accepts two key

inputs: target region files that define the specific genomic regions parseBED

of interest, typically targeted by sequencing assays (e.g., whole-
exome capture kits) and VCF genotype files containing genotype SubsetVCFs
calls for individuals with defined ancestry. The pipeline is

implemented using Snakemake (Figure 2.6) and run into a mergeSUbsetVCFs

Singularity container for reproducibility. The tool is optimized for

parallel processing, enabling the efficient generation of multiple
compressVCF

reference models simultaneously.

Pre-computed reference models, covering a variety of
createModelGDS

populations, genome assemblies, and RNA-sequencing kits, are

readily available for automatic download and utilization within
all

EthSEQ. To retrieve the list of available reference models, EthSeq

provides a dedicated function, facilitating user selection and Figure 2.6 Schematic
representation of the
Snakemake  workflow
constructed using 1000 Genomes Project data, focusing on major for  generating pre-
computed models.

customization of the analysis process. These models are

ethnic groups (AFR, AMR, EUR, EAS, and SAS), using both genome
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assembly GRCh37 and GRCh38, and supporting multiple WES designs (such as Agilent
SureSelect, Twist Bioscience, Roche MedExome, and Roche KAPA). Additionally, a generic
reference model is constructed by considering the overlapping exonic regions of SNPs as
annotated by GENCODE®®. This comprehensive model allows for broader applicability and

flexibility in ancestry analysis, accommodating a wider range of genetic data.

Alternatively, a custom reference model can be generated based on user-provided sets of

genomic regions and combined genotype/ancestry data.

Target model

EthSEQ accommodates diverse input formats for creating the target model, using genotype
data in VCF or GDS formats, as well as user-provided lists of control (non-tumor) sequencing
Binary Alignment Map (BAM) files. This flexibility enhances the utility of EthSEQ across
various genomic data sources. Specifically, VCF and GDS formats are directly incorporated by
EthSEQ, aggregated with the reference model, and subsequently utilized for ancestry
inference of the target individuals. In contrast, BAM files undergo an initial conversion into
an intermediate VCF format. Utilizing the genotyping module of the ASEQ tool®® with user-
defined quality thresholds (default: depth > 10X, mapping quality > 20), EthSEQ determines
the genotype calls for each individual at all available reference model SNPs. The merged

genotype calls across all individuals are then employed for ancestry inference.

Ancestry inference

To estimate genetic ancestry, PCA is performed on the aggregated genotype data of both the
target and reference models. Utilizing the space defined by the first two or three principal
components (Figure 2.1B), the smallest convex sets that delineate each ancestry groups
described in the reference model are constructed. Then, individuals within the target model
(i.e., those for whom ancestry analysis is unknown) are annotated based on their proximity
to these ancestry groups. Specifically, individuals located within an ancestry group (or
intersecting more than one group) are assigned the corresponding ancestry. For individuals
positioned outside all ancestry groups, the relative contribution of each group is calculated
based on their distances from the group centroids, providing a fine-grained assessment of

their ancestry composition.

To enhance the accuracy of annotations among ancestrally close groups within a study
cohort, a multi-step inference procedure is implemented (Figure 2.1A). This procedure

utilizes a hierarchical tree structure of ancestry group sets, defined by the user. EthSEQ
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performs the ancestry annotation step reducing both the reference and target models
including only individuals from ancestry subgroups. The global annotations of all individuals
are then updated throughout the tree traversal, ensuring a more precise and granular
assignment of ethnicity, particularly for individuals belonging to closely related ancestral

groups.

EthSEQ version 3: improvements and tests

The R programming language is widely recognized for its statistical capabilities and user-
friendly interface. It has also faced criticism for its memory management, potentially limiting
its effectiveness in large-scale data analysis or memory-intensive tasks. The advent of NGS
technologies and the increasing use of large-scale cohorts in research necessitate improved
efficiency in computational tools. To address these challenges, | implemented an upgrade of
EthSEQ to enable compatibility with recent WES kits, provide a comprehensive protocol for
a broader range of users, and offers improved performance, making it feasible to run
effectively on standard computers with limited hardware resources compared to high-end

computing resources.

The original EthSEQ version implemented totally in R bottlenecked when dealing with high-
dimensional datasets, particularly struggling with memory constraints, and exhibiting
suboptimal computational speed. | implemented a new function to replace the
preprocessing steps that convert target model from VCF to GDS format using C++, known for
its efficiency and control over system resources. This new function leveraged lower-level
memory manipulation and optimized algorithms, leading to a substantial reduction in
memory consumption. At the same time, this function introduces additional steps for
manipulating the VCF file, specifically extracting and converting genotype data to ensure
compatibility with the reference model. While this allows for more complex transformations
of the input data, the overall preprocessing time remains comparable to the original R

implementation.

To assess the computational performance of EthSEQ, | conducted ancestry inference on all
samples from the ICGC dataset, evaluating both execution time and memory usage. The ICGC
dataset aggregated whole-genome sequencing (WGS) data from over 2,000 cancer patients
of diverse ancestries, encompassing 38 different tumor types. EthSEQ's pre-computed
reference models are specifically designed for some common commercial WES kits, an

analysis of WGS data necessitates a distinct model. To perform ancestry analysis on WGS
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data, a reference model containing roughly 1M germline variants has been previously
generated and used to infer ancestry for ICGC patients. Then, a VCF file containing genotype
information for roughly 1 million germline variants, overlapping with those in the reference

model, across nearly 2,000 ICGC individuals was used for this analysis.

To evaluate the computational performance of EthSEQ (both execution time and memory
usage) across varying data scales, ancestry inference was conducted on random subsets of
the ICGC dataset generated at different thresholds for both the number of samples and the
number of SNPs. To further evaluate the performance of the upgraded EthSEQ, | conducted
ancestry inference on the 1000 Genomes Project dataset. Individuals used to construct the
pre-computed reference models were excluded from this analysis, and genotype data were
down-sampled to 1 million SNPs. A total of 954 individuals from 26 populations were
included, considering major ancestry group annotations (EUR, AFR, AMR, EAS, and SAS).
Additionally, | explored the inferred ancestries for the HGDP dataset, considering genotype
data for over 800 individuals across 7 major ancestry group annotations (Africa, America,
Central South Asia, East Asia, Europe, Middle East, Oceania). The HGDP genotype data were
similarly down-sampled to 1 million SNPs. Of note, this project comprised 55
underrepresented human populations, aiming to record the genetic profiles of indigenous
and isolated populations to understand the genetic frequencies, human evolution, and

migration patterns.

Finally, to enhance usability and provide a benchmark for testing, EthSEQ now includes
updated sample data, offering users a practical reference for their analyses. Additionally, a
comprehensive protocol** has been developed, complete with detailed instructions and
accompanying commands for running the tool. This protocol is designed to guide users
through the necessary parameters and settings based on their specific input file types,

ensuring a smoother and more efficient user analysis.

Discussion

Here, | presented an upgraded version of EthSEQ, a rapid, reliable, and user-friendly R
package for annotating individual ancestry from WES and TS data. EthSEQ is versatile,
capable of processing single or multi-sample datasets, and offers a wide array of pre-

computed platform-specific reference models. It provides a streamlined approach for
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generating ethnicity annotations directly from a list of BAM files, facilitating seamless

integration into existing WES-based processing pipelines.

The improved version facilitates users to smoothly apply EthSEQ to any VCF file containing
SNP genotype data generated by most of variant calling software, eliminating the need for
data preprocessing. This automated procedure generates detailed information about each
individual's inferred ancestry and includes an informative visual report. Additionally, a multi-
step refinement procedure is available to enhance the accuracy of annotations for
ancestrally close groups of individuals. Furthermore, | compared inferred ancestries derived
from genotype data with self-reported ancestries in a dataset comprising admixed
populations, offering valuable insights into the accuracy and potential limitations of ancestry
inference methods. Moreover, a comprehensive and well-documented version of EthSEQ v3
is now available, highlighting its diverse features and making this powerful tool accessible to
a wider audience of researchers. Finally, the new version of EthSEQ has been successfully
used to infer ancestry across several pediatric tumors cohort to focus exclusively on patients
of predominantly EUR ancestry. This effectively mitigate potential biases in genetic analyses

that could arise from population stratification.
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Chapter 3. Exploring associations between
functional SNPs and somatic aberrations

In this chapter, | present my recent published article!? investigating the intricate relationship

between germline variants and somatic aberrations in cancer.

| first conducted a comprehensive collection of genome-wide association studies (GWAS) on
a large cohort of samples across 33 cancer types. | identified 276 common single nucleotide
polymorphisms (SNPs) by constructing phenotypic traits based on well-characterized
oncogenic signaling pathways. Through linkage disequilibrium (LD) analysis, many LD-
extended SNPs were found to reside within regulatory elements and to potentially alter the
binding affinity of transcription factor binding motifs, including those of known oncogenes
and tumor suppressor genes. Moreover, exploiting cis-eQTL and transcriptomic data from
the Genotype-Tissue Expression (GTEx) project, | conducted a systematic investigation and
identified 247 cis-eQTL links, involving 94 variants and 134 transcripts. Further analysis,
incorporating an integrated protein-protein interaction (PPI) network, revealed that many
cis-eQTL genes present in the PPl network were connected to genes implicated in cancer.
These results show a potential link between cis-eQTL genes and genes involved in oncogenic
pathways, mediated through cancer-related genes. Suggesting a potential effect of cancer

genes on the dysregulation of genes within oncogenic pathways.

Taken together, these results support the hypothesis that functional links exist between
functional germline variation and the dysregulation of key oncogenic pathways. The
identification of this relationship provides additional support for the validity and biological

relevance of the GWAS findings.

Next, | explored to what extent polygenic score theory, to elucidate the relationship between
an individual's unique combination of germline alleles and their predisposition to specific
patterns of somatic aberrations in cancer. A customized workflow was implemented to
determine optimal cutoff parameters through a five-fold cross-validation approach and
compute polygenic somatic scores (PSS). Statistical significance was assessed via
permutation analysis, incorporating multiple hypothesis correction to control for false
discovery rate (FDR). This rigorous analysis revealed 24 PSS exhibiting an FDR<0.25 across 9

oncogenic signaling pathways. The 24 identified PSSs were explored to demonstrate their
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ability to stratify cancer patients based on prognostic outcomes, such as survival and
aggressiveness, and by tumor subtype classifications. To ensure the robustness and
generalizability of the findings, | performed a validation of the PSSs using independent pan-
cancer datasets from ICGC and CCLE, as well as a cancer-specific independent dataset. This
accurate validation process underscores the potential clinical applicability of PSSs in tailoring
treatment strategies and predicting patient outcomes based on their unique genetic

predispositions.

In conclusion, this article provides a deep exploration of the complex interplay between
germline variants and somatic aberrations in cancer, integrating diverse biological data
across multiple levels. Consistent with other research, these results highlight the substantial
influence of germline variants on specific occurrence of somatic aberrations in key oncogenic
pathways. Furthermore, polygenic scores have recently emerged as a promising tool for
cancer risk prediction and are currently undergoing validation in various clinical settings,
demonstrating that an individual's genetic background can influence the aberration of

oncogenic processes.

Future large-scale studies that collect both germline and somatic omics data should continue
to investigate the interplay between inherited genetic variation and acquired somatic
mutations in cancer. The ultimate goal of such works is the identification of robust
biomarkers that can accurately predict cancer risk and inform personalized prevention and

treatment strategies.
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Abstract

Cancer is a complex disease influenced by a heterogeneous landscape of both germline
genetic variants and somatic aberrations. While there is growing evidence suggesting an
interplay between germline and somatic variants, and a substantial number of somatic
aberrations in specific pathways are now recognized as hallmarks in many well-known forms
of cancer, the interaction landscape between germline variants and the aberration of those
pathways in cancer remains largely unexplored. Utilizing over 8,500 human samples across
33 cancer types characterized by TCGA and considering binary traits defined using a large
collection of somatic aberration profiles across ten well-known oncogenic signaling
pathways, we conducted a series of GWAS and identified genome-wide and suggestive
associations involving 276 SNPs. Among these, 94 SNPs revealed cis-eQTL links with cancer-
related genes or with genes functionally correlated with the corresponding traits' oncogenic
pathways. GWAS summary statistics for all tested traits were then used to construct a set of
polygenic scores employing a customized computational strategy. Polygenic scores for 24
traits demonstrated significant performance and were validated using data from PCAWG and
CCLE datasets. These scores showed prognostic value for clinical variables and exhibited

significant effectiveness in classifying patients into specific cancer subtypes or stratifying
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patients with cancer-specific aggressive phenotypes. Overall, we demonstrate that germline
genetics can describe patients’ genetic liability to develop specific cancer molecular and

clinical profiles.

Introduction

Common germline variants in the form of Single Nucleotide Polymorphisms (SNPs) represent
the main form of DNA polymorphism. In the last fifteen years, genome-wide association
studies (GWAS) identified thousands of variants linked with susceptibility to different types
of cancers®¥%3, However, most of these variants exhibited low relative risk, suggesting that
they individually have a small effect on the heritability of cancer®-%. Polygenic scores hence
emerged as an effective approach to integrate multiple small effects across hundreds or even
thousands of variants summarizing in a single measure the patients’ genetic liability to

develop specific cancer types®’.

Cancer, however, is a complex disease®® influenced by both germline variants and a
heterogeneous landscape of somatic aberrations acquired during tumor formation and
evolution which recurrently target core cellular pathways and processes®. A growing
number of studies support the presence of intricate links between germline variants and
somatic aberrations. For example, a pan-cancer study’® exploiting genomic data for >5,000
tumors revealed hundreds of significant associations between germline variants and tumor
formation in specific tissues or somatic aberration of specific cancer genes. Further, in’* a
network-based approach was developed to study interactions between multiple germline
variants and acquired somatic events in breast cancer and in’> we queried genomic data
from more than 500 prostate cancer patients and found strong signal of association between
a germline SNP and SPOP mutated prostate cancer molecular subtype. In addition, in'3 it was
demonstrated that germline variants regulate the expression of cancer genes and associate
both with local and global somatic mutations and in’? it was recently demonstrated that
polygenic background underlying common hematological traits influence the clonal
selection of specific somatic mutations and the development of specific hematological

cancer subtypes.

Overall, although there is an increasing evidence suggesting an interplay between germline

and somatic variants and a large number of somatic aberrations in specific pathways are now
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used as hallmarks in many well-known forms of cancer’4, an exhaustive exploration of the
interaction landscape between germline variants and the aberration of these pathways in

cancer is still largely missing.

Here we exploit data from The Cancer Genome Atlas (TCGA)’>, ICGC Pan-Cancer Analysis of
Whole Genomes (PCAWG)’® and Cancer Cell Line Encyclopedia (CCLE)’”"® projects, together
with other cancer specific studies, to integrate germline genotypes with somatic aberration
profiles in a set of well characterized oncogenic signaling pathways to obtain a pan-cancer
and cancer specific view of how common germline SNPs may contribute or predispose to the
progression and evolution of tumors. We first identify and characterize an array of common
SNPs that increase or decrease the predisposition of these somatic events patterns to occur
and then exploit the theory of polygenic scores to explore to what extent germline genetics
correlates with somatic molecular profiles, tumor subtypes and clinical variables such as

patients’ survival and tumor aggressiveness.

Results

SNP genotypes associate with somatic aberrations in oncogenic signaling
pathways

To examine to what extent germline genetics primes aberrations in oncogenic signaling
pathways we first conducted genome-wide association studies (GWAS) using >8,500 human
samples across 33 cancer types characterized by TCGA and exploiting phenotypic traits built
considering 10 oncogenic signaling pathways previously described and characterized in;
considered pathway include Cell Cycle, HIPPO, MYC, NOTCH, NRF2, PI3K, RTK RAS, TGF Beta,
TP53 and WNT. Specifically, using TCGA SNP Affymetrix 6.0 array data, a collection of pan-
cancer GWAS were performed by means of logistic regression considering the genotypes of
833,130 high quality SNPs across 8,682 TCGA high quality normal samples (patient’s control
samples, non-tumor) using additive, dominant and recessive models. Forty binary traits
were tested, 10 of which considering for each oncogenic signaling pathway the
presence/absence of a somatically altered gene (as described in'® and here referred to as
somatic traits, Figure 3.1A), and the remaining ones (here referred to as somatic
transcriptomic traits, Supplementary Figure 3.1A) considering for each pathway the
presence/absence of up-regulated genes (10 traits), down-regulated genes (10 traits) or

generally deregulated genes (10 traits). The aberration frequencies of all traits across all
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tumor types are reported in Supplementary Figure 3.2. All analyses were adjusted for age at
diagnosis, sex and the first six components from a principal component analysis
(Supplementary Figure 3.3). Genomic inflation (GI) was inspected (Supplementary Figure
3.4) and TP53 downregulation recessive trait (TP53 DOWN recessive) was removed due to
an inflation >1.1. In addition, heterogeneity of associations across tumor types was

determined and investigated.

We identified 6 genome-wide significant (p-value<4.2e-10) associations between 6 SNPs (1
intronic and 5 intergenic) and 5 traits (Figure 3.1B, Supplementary Table 3.1), no one
reported in the GWAS catalog’® or listed in’%. We also identified additional 320 suggestive
(p-value<le-06) associations between 272 SNPs (3 exonic, 7 promoter, 2 3’UTR, 85 intronic
and 175 intergenic) and 36 traits, 7 already reported in the GWAS catalog, one associated
with Core binding factor acute myeloid leukemia and six associated to non-cancer traits
(Figure 3.1B, Supplementary Figure 3.1B, Supplementary Table 3.1), and no one listed in°.
Of these suggestive associations, 8 had a p-value <1e-08 and 71 a p-value <1e-07. Overall,
the majority of associations were trait specific, with 39 SNPs associated to at least two traits.
We found both risk and protective alleles with associations, especially those derived from
dominant and recessive models, often exhibiting high/low ORs. In particular, recessive
models applied in the association of low frequency variants and low case/control ratios
resulted in significant though unstable results (high ORs and large Cls), demanding for
careful interpretation of effect sizes. Of all 326 associations, about 97% demonstrated zero
to moderate heterogeneity across tumor types (64% of associations with I? = 0, 21% with
0 < I? < 0.25and 13% with 0.25 < I? < 0.5) while of the remaining ones only 1 had I? >
0.75. All 9 associations with I? > 0.5 were recessive, suggesting that the variable sample
size of the different tumor type datasets (from 36 in the CHOL and DLBC datasets to 953 in
the BRCA dataset) was probably the major contributor® for the high heterogeneity of those
associations. Of note, the global Minor Allele Frequency (MAF) distribution of genome-wide
significant SNPs was not significantly different than the MAF distribution of suggestive SNPs
(Supplementary Figure 3.5). Linkage disequilibrium (LD) analysis was performed to retrieve
variants in strong LD (D’=1 and R?>0.8) with associated SNPs, obtaining 1105 LD variants for

133 associated SNPs.
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Using our resource CONREL3! we found that 654 of the LD extended associated SNPs (59%)
lie in enhancer elements conserved across 34 tissue types, 331 SNPs (30%) lie in active

enhancer elements conserved across 33 tissue types and 15 SNPs lie in promoter regions
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example. B) Circular plots showing GWAS results for genome-wide significant
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for the forty traits in the inner track. The associations for different oncogenic pathways
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(Figure 3.1C, Supplementary Figure 3.1C and Supplementary Table 3.2). Exploiting our
resource Polympact® we found that 523 of the 678 functional SNPs we identified (77%)
cause a putative absolute relative change >0.5 in the scores of 594 transcription factor
binding motifs, of which 19 are oncogenes (including MYC, JUN, and CTNNB1), ten are tumor
suppressor genes (including , TP53, PTEN, BRCA1 and CEBPA) and more generally 90 (15%)
are genes implicated in cancer (Figure 3.1C, Supplementary Figure 3.1C and Supplementary

Table 3.2).

Overall, the data support the presence of wide association signal between functional
germline SNPs and the occurrence of somatic aberrations in specific oncogenic signaling

pathways.

Associated variants are functionally linked to oncogenic signaling pathways

To further explore GWAS results, we asked whether the observed associations could be due
to downstream effects that SNPs may have on the transcription of genes linked to the activity
of traits’ oncogenic signaling pathways. We hence exploited cis-eQTL and transcriptomic data
available from the Genotype-Tissue Expression (GTEx) project to search, among the 276
GWAS associated variants, for cis interactions with genes in the pathways, or cis interactions

with genes co-expressed and functionally close to genes in the pathways.

Overall, we retrieved 247 cis-eQTL links (of which 123 identified across multiple GTEXx tissues)
involving 94 variants and 134 transcripts (Supplementary Table 3.3). Of these transcripts, 89
were protein coding genes with an associated gene symbol, while the remaining ones were
mostly categorized as novel transcripts. Interestingly, although only three of these 89 cis-
eQTL genes are known to be involved in cancer, when exploiting data from an integrated
protein-protein interaction (PPl) network, 66% of the 74 cis-eQTL genes that are
characterized in the PPl network were found connected to genes involved in cancer, of which
15 were connected to oncogenes and 16 were connected to tumor suppressor genes (Figure
3.2A). Further, of the 89 cis-eQTL genes 53 demonstrated significant transcript level
correlations with oncogenic signaling pathway related genes, 25 of which exhibiting
consistent significant correlations across multiple tissues (Supplementary Table 3.4). Of note,
those co-expression signals span across several traits, with some oncogenic pathways
exhibiting enriched signal in specific traits, like downregulation based somatic transcriptomic

traits, which show the richest signal.
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Overall, 50 SNPs were involved in cis interactions with genes that were observed co-
expressed with members of the corresponding traits’ oncogenic pathways, for a total of
1,802 putative links (Figure 3.2B and Supplementary Table 3.4). Interestingly, mean PPI
distance among cis-eQTL genes and co-expressed genes was 2.94, a distance that was
smaller (p-value<le-03) when compared to the ones obtained from permuted gene sets. Of
note, 205 putative links demonstrated a distance less than or equal to 2. Among those latter
links, we may highlight variant rs2722888, a SNP we found associated to TP53 somatic trait
(additive), which was observed with an effect size lower than 1 (Supplementary Table 3.1).
This indicates that aberrations in TP53 pathway is less likely to occur when the alternative
allele is present. Interestingly, variant rs2722888 alternative allele was linked to increased
expression of ELP3 gene in multiple GTEx tissues, which was positively correlated
(correlations across tissues in the range 0.6-0.7) with TP53 transcript level (Figure 3.2C,
Supplementary Figure 3.6A and Supplementary Table 3.4) with PPl interaction data
supporting a close link (PPl distance 2) between the two proteins. We can hence speculate
that patients carrying rs2722888 SNP may constitutively have higher expression of TP53
gene, likely protecting cells from the accumulation of somatic aberrations in the TP53

signaling pathway and hence supporting the observed GWAS association.

Another interesting example is variant rs12686004, which was found additively associated
to Cell Cycle downregulation trait with an OR of 3.4 (Supplementary Table 3.1), indicating a
strong enrichment of variant’s alternative allele in patients with downregulation of genes
part of the Cell Cycle pathway. Variant rs12686004 alternative allele was linked to increased
expression of ABCA1 gene, which was negatively correlated (-0.7) with RB1 transcript level
(Supplementary Figure 3.6B and Supplementary Table 3.4) and closely linked (PPI distance
2) to it. Interestingly, RB1 is a tumor suppressor gene and is dysfunctional in many major
cancers®?. Hence, we can hypothesize that patients carrying rs12686004 SNP may
constitutively have lower expression of RB1 gene, likely enhancing the cancerous phenotype

of cells that accumulate a somatic deregulation of Cell Cycle genes.

Further, we may highlight variant rs436898, associated with NRF2 downregulation trait
(NRF2 DOWN recessive). The SNP was found linked to increased expression of TMEM30A
gene in multiple GTEx tissues, which was in turn negatively correlated to KEAP1 gene
expression (correlations across tissues in the range 0.53-0.58) and closely PPl connected to

it (Supplementary Figure 3.6CD and Supplementary Table 3.4). Based on these observations,
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Figure 3.2 cis-eQTL and co-expression analyses. A) PPl network showing cis-eQTL
genes that were found connected to cancer-related genes. B) Grid visualization
highlighting coordinates of cis-eQTL genes in one dimension and coordinates of co-
expressed genes in the other dimension. Points in red represent links between genes
with PPl interaction data supporting a close link (PPI distance <2) between the two
proteins. C) An example representing variant rs2722888 alternative allele (associated
with TP53 somatic trait) linked to increased expression of ELP3 gene in Whole Blood
tissue, which was positively correlated with TP53 transcript level with PPl interaction
data supporting a close link (PPl distance 2) between the two proteins.
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GWAS association of rs436898 variant can be supported by the observation that patients
carrying the SNP may have reduced expression of KEAP1, which combined with somatic
downregulation of other NRF2 pathway genes likely exposes cells to a cancerous phenotype

characterized by an increased induction of NRF2.

Taken together, these results support the hypothesis that functional links between GWAS
associated variants, the corresponding traits’ oncogenic signaling pathways and cancer

genes exist, further strengthening the validity of our GWAS results.

Polygenic Somatic Scores

Provided the strong and broad association signal we identified in the TCGA dataset and the
putative functional links we observed, we then explored to what extent polygenic scores can
capture the relationship between the unique combination of alleles in a cancer patient and
its likelihood to present aberrations in specific oncogenic signaling pathways. A new class of
polygenic scores, referred to as Polygenic Somatic Scores (PSS), were computed in the TCGA
dataset for all considered traits across additive, recessive and dominant models using a five-
fold cross-validation approach. Given a trait, the computational strategy we developed first
identifies the best p-value cutoff to build the PSS across different LD clumps, then determines
the PSS performances in terms of AUC across the different LD clumps, selecting the best
performing one, and finally determines its statistical significance using permutation analysis

and multiple hypotheses correction.

Overall, we observed 24 PSS showing an FDR<0.25 across 9 oncogenic signaling pathways
and different association models (Supplementary Table 3.5). Among the obtained PSS, NRF2
downregulation traits (NRF2 DOWN) presented consistent high AUC values across the
different association models with an AUC of 0.75 for the additive model and 0.72 for the
recessive model. Of note, the baseline distributions built on NRF2 transcriptomic traits show
a high variance due to the low ratio between cases and controls patients (0.3% for NRF2
DOWN and 1.6% for NRF2 UP). The other somatic traits, including traits for Cell Cycle, TP53,
MYC, PI3K and RTK RAS oncogenic pathways were observed with AUC values ranging from
0.53 to 0.61 and with an observed AUC greater than all the corresponding baseline
distribution values (Figure 3.3A). As shown in Figure 3.3B, quantile plots obtained from PSS
calculated using the identified LD-clump and p-value thresholds but exploiting the entire

TCGA dataset clearly demonstrate how high PSS predominantly identify patients with altered
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oncogenic pathways. As shown in Supplementary Figure 3.7, no specific tumor type is

segregated by our PSS.

The 24 PSS with FDR<0.25 (Figure 3.3A), denoted as pan-cancer PSS (pPSS), were retained

for further analyses.
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55



PSS associate with patient’s clinical endpoints

To determine the effectiveness of pPSS, we first explored to what extent they can reproduce
the prognostic value of somatic (transcriptomic) traits. Tumor types were analyzed
separately and Overall Survival (OS) and Progression-Free Interval (PFl) data for TCGA
patients was retrieved from®. Patients were stratified based on both traits’ oncogenic
pathways aberration status and pPSS quantiles (considering the median values) and tumor
type specific analyses were performed using a Cox proportional hazards regression model

considering age, sex, and principal components as covariates. Also in this case, models’
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Figure 3.4 Clinical endpoints analysis. A) Tile plots recapitulating the traits survival
analysis results. Results are divided based on PFl and OS events. For each trait’s
oncogenic pathway aberrations status and tumor type, corrected (FDR) empirical p-
values computed comparing the observed AUC with the corresponding AUC baseline
reference distribution are reported. Combinations of trait and tumor type were both
trait’s pathways aberration status and pPSS survival analyses resulted statistically
significant (FDR <0.25) are highlighted with an asterisk. B—E) Kaplan—Meier curves
showing significant survival analyses for specific examples in both trait’s pathway
aberration status (left) and pPSS (right).
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performances (AUC) were computed using a five-fold cross validation approach and were
then tested for statistical significance against reference baseline distributions generated
using permutation analyses, finally correcting for multiple hypotheses. Overall, we observed
87 significant (FDR<0.25) traits showing also a significant (FDR<0.25) pPPS (70 from OS
analysis, 46 from PFl analysis) across 19 tumor types (Figure 3.4A, Supplementary Table 3.6).
pPSS reproduced traits’ OS and PFIl prognostic value across different tumor types, with Cell
Cycle and TP53 somatic traits showing significant OS associations across 8 tumor types and
significant PFl associations across 6 and 5 different tumor types, respectively. As examples,
TP53 pathway aberrations status and pPSS (TP53 additive trait) showed a strong OS
prognostic value in LIHC tumors (Figure 3.4B), Cell Cycle pathway aberrations status and
pPSS (Cell Cycle dominant trait) demonstrated OS prognostic value in MESO tumor (Figure
3.4C), NOTCH UP pathway aberrations status and pPSS (NOTCH UP recessive trait)
demonstrated PFl prognostic value in PRAD (Figure 3.4D) and PI3K DEG pathway aberrations
status and pPSS (PI3K DEG additive trait) showed significant PFl prognostic value in UCEC

tumors (Figure 3.4e).

Overall, our data demonstrate that pPSS can be potentially used to stratify patients with

poor survival or treatment response.

PSS and tumor subtypes

We then asked to what extent pPSS can be used to identify tumor specific subtypes. For
each tumor type we tested the presence of a significant deviation in the distribution of pPSS
across different tumor subtypes. Interestingly, we identified several tumor types were pPSS
demonstrated strong shifts across specific subtypes (Figure 3.5). Examples are UCEC
CN_HIGH subtype (Figure 3.5A), ESCA CIN subtype (Figure 3.5B), TGCT non-seminoma and
seminoma subtypes (Figure 3.5C), STAD CIN subtype (Figure 3.5D), LGG IDHmut codel
subtype (Figure 3.5E), BRCA Basal and Her2 subtypes (Figure 3.5F). Of note, several pPSS

demonstrated significant shifts across subtypes of multiple tumor types.

To explore further this relationship, we built logistic regression models and by comparing
observed AUC against AUC baseline distributions obtained from permutation analysis, we
identified 22 pPSS across the subtypes of 7 tumor types with statistically significant
(FDR<0.25) classification performances (Figure 3.5G, Supplementary Table 3.7). Additionally,
in most of those cases an extended logistic regression model integrating all significant

subtype-specific pPSS achieved same or better performances in classifying tumor subtypes
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(Supplementary Table 3.8). In particular, integrated models for subtypes UCEC CN_HIGH,
TGCT non seminoma and TGCT seminoma achieved much better classification performances
with respect to models built with single pPSS. Instead, integrated models for subtypes BRCA
Basal, BRCA Her2, STAD CIN, STAD GS, ESCA CIN and ESCA ESCC exhibited classification
performances that were comparable to the single most significant pPSS. Of note, the

majority of the subtype-specific pPSS were non transcriptomic and combinations of Cell

WNT- Endometrial Cancer (UCEC) WNT - Esophagogastric Cancer (ESCA) Cell Cycle - Germ Cell Tumor (TGCT) TP53 - Stomach Cancer (STAD)
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Figure 3.5 pPSS and tumor subtypes. A—F) Boxplots showing the distributions of the
pPSS values across different tumor subtypes. pPSS in each cancer subtype are
compared using Kruskal-Wallis test and pPSS for each cancer subtypes pair are
compared using Wilcoxon-test. G) Tile plot recapitulating the tumor subtype analysis
results. For each pPSS and tumor subtype, FDR values of empirical p-values computed
comparing the observed AUC with the corresponding baseline reference distribution
are reported. The combinations of pPSS and tumor subtype statistically significant
(FDR < 0.25) are highlighted with “*’.
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Cycle, NRF2 DOWN, PI3K, TP53 and WNT pPSS were observed as particularly effective in

identifying specific tumor subtypes.

Overall, our results demonstrate that pPSS can be used across several tumor types to stratify

patients based on specific tumor subtypes.

Validation of PSS in an independent pan-cancer dataset

We next tested the effectiveness of our 15 non transcriptomic pPSS using data from the
ICGC PCAWG project’®, a large collection of cancer and matched normal whole-genomes
from patients spanning over 40 tumor types. Although the differences in PCAWG and TCGA
projects data collection limit our ability to test and validate pPSS in PCAWG patients, we
exploited PCAWG germline and somatic processed data to test the presence of statistically
significant shifts in the distribution of pPSS among PCAWG patients with somatic trait

specific aberrations.

In detail, by exploiting GWAS summary statistics trained in the TCGA dataset, PCAWG
germline genotype calls were used to calculate the 15 pPSS of interest across 1,823 PCAWG
patients. Somatic trait specific aberrations for each patient were determined considering
(separately orin combination) reported somatic point mutations, homozygous deletions and
amplifications data identified within the corresponding oncogenic signaling pathways. For 5
of the 15 tested pPSS (33%) we found a statistically significant (FDR<0.25) increase of pPSS
distribution in PCAWG patients harboring somatic trait specific aberrations (Supplementary
Table 3.9). For example, patients harboring point mutations in RTK RAS signaling pathway
genes showed increased RTK RAS pPSS values (Figure 3.6A, left) and patients harboring
homozygous deletions or point mutations in WNT signaling pathway genes showed

increased WNT pPSS value (Figure 3.6B, left).

Overall, the predictive power of pPSS in identifying patients” genetic liability to develop

specific cancer molecular profiles was validated in an independent pan-cancer dataset.

Validation of PSS in cancer cell line data

The 5 pPSS showing significant associations in the ICGC dataset were further tested for
confirmation using data from the Cancer Cell Line Encyclopedia CCLE’”’8, a large collection
of SNP array and omics data for cancer cell lines. Also in this case by exploiting GWAS
summary statistics trained in the TCGA dataset, CCLE germline genotype calls were used to

calculate the 5 pPSS of interest across 995 CCLE cell lines. Somatic trait specific aberrations
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for each cell line sample were determined considering (separately or in combination)
reported somatic point mutations, homozygous deletions and amplifications data identified
within the corresponding oncogenic signaling pathways. For 2 of the 5 tested pPSS (40%) we
found a statistically significant increase (p-value<0.05) of pPSS distribution in CCLE samples
harboring somatic trait specific aberrations (Supplementary Table 3.10). We found, for
example, that patients harboring homozygous deletions in the RTK RAS showed increased
RTK RAS pPSS values (Figure 3.6A, right) and that patients harboring point mutations in WNT
signaling pathway showed increased WNT pPSS values (Figure 3.6B, right).

A RTK RAS pathway B WNT pathway

ICGC PCAWG patients CCLE cell lines ICGC PCAWG patients . CCLE cell lines
tions or point mutations Point mutations in pathway genes
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Figure 3.6 pPSS validation using data for ICGC PCAWG and CCLE. Boxplots showing
statistically significant shift of pPSS distributions in patients harboring specific
aberrations in somatic traits. Specific examples for RTK RAS (A) and WNT (B) pathways
significant in ICGC PCAWG dataset (left) and confirmed in the CCLE dataset (right) are
reported. Wilcoxon-test was performed (two-tail statistic with FDR correction for ICGC
PCAWG and one-tail statistic for further confirmation in CCLE) and reported in the
figure.

Validation of PSS in an independent cancer specific dataset

We finally evaluated our pPSS in the Tyrol cohort®*®° a prostate cancer (PCa) dataset
including 1,036 control samples and 837 cancer samples, of which 280 (of 492 with ERG
gene status annotation) are annotated as PCa samples collected from patients
overexpressing the ERG gene due to a TMPRSS2-ERG fusion (i.e. ERG subtype patients).
Considering the effective ERG subtype classification performances that we observed in the
TCGA PCa dataset (PRAD) for 5 pPSS, we tested to what extent this result could be validated
in the Tyrol cohort. Exploiting GWAS summary statistics trained in the TCGA dataset, the 5
pPPSS were calculated for all 837 cancer samples in the Tyrol dataset exploiting the available
Tyrol genotype data. Two of the five pPSS (40%) also validated in the Tyrol cohort (Figure

3.7A), and one demonstrated a similar (though not significant) trend. Notably, a logistic
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regression model built using the two validated pPPS demonstrated in the Tyrol cohort

statistically significant performances (p-value = 0.033) in ERG subtype classification.

The Tyrol cohort provides also clinical information about patients” Gleason Score (GS), a
grading system representing one of the best independent predictor of prostate cancer
clinical outcome®®. Of the 19 pPSS that in the discovery TCGA dataset demonstrated a
significant association with moderate/high grade prostate cancer patients (i.e., patients with
GS equal to 4+3 or greater than 7, respectively), four (21%) also validated in the Tyrol cohort

(Figure 3.7B) and one other demonstrated a similar (though not significant) trend.

Overall, the predictive power of pPSS was further validated in an independent cancer
specific dataset and we additionally demonstrated that pPSS could be effective in stratifying

patients with more aggressive cancer phenotypes.
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Figure 3.7 pPSS validation in a prostate cancer dataset. Boxplots showing statistically
significant shift of pPSS distribution for ERG subtype (A) and in patients with
moderate/high Gleason Score (GS) (B) in both TCGA dataset (left) and their
confirmation in the Tyrol dataset (right). Kruskal-Wallis rank test sum was performed
(two-tail test with FDR correction for TCGA and one-tail test for confirmation in the
Tyrol dataset).
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Discussion

Over the past 15 years, despite numerous common SNPs have been linked by GWAS studies
to the susceptibility of developing different cancer types, most of the identified associations
demonstrated modest albeit significant effects. GWAS studies have been usually designed to
measure the increased risk that individuals have in developing a specific cancer type.
However, in the last ten years, cancer genomes studies based on next generation sequencing
data have unveiled how cancer is heterogeneous, characterized by the presence of multiple
molecular subtypes and recurrently targeting signaling pathways and biological processes

that are now recognized as hallmarks across many well-known forms of cancer.

This motived a deeper exploration of germline-somatic interactions, leading to a clear
evidence that genetic background can influence the somatic evolution of tumors!370-73.87-90,
Here, we dug further into the exploration of this germline and somatic interplay, using a
GWAS-based approach with additive and non-additive®*®> models and exploiting the
availability of matched germline genotypes and somatic phenotypes from large scale
projects like TCGA, ICGC PCAWG and CCLE. The datasets utilized in our analyses are multi-
ancestry, with European ancestry being the dominant population. Although we employed
logistic regression combined with principal component analysis instead of more advanced
models, extensive evidence has demonstrated the effectiveness of our approach, particularly
in the context of case-control studies®®™’. Further, other recent GWAS studies successfully

used logistic regression with PCA correction on TCGA data®’-°8.

Overall, we found evidence that germline genetics can influence the aberration of specific
oncogenic signaling pathways, highlighting hence how individuals’ genetic background may
contribute to the activity and stability of fundamental biological processes that are
recurrently disrupted in cancer. A large fraction of the SNPs we found associated in our GWAS
were indeed known cis-eQTLs of genes closely connected to oncogenes, tumor suppressor
genes or cancer related genes. In addition, we identified functional links between specific
GWAS associated SNPs and the corresponding oncogenic pathways traits, exploring for some
of them putative biological interpretations that are in-line with scientific knowledge and
literature. As an example, we highlighted a SNP associated with NRF2 signaling pathway
deregulation that is linked in cis to genes that are co-expressed with genes in the pathway

across multiple tissues. Of note, the alternative allele of the SNP was indicative of a
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transcriptional signature associated with downregulation of KEAP1/CUL3/RBX1 complex,

which acts as regulator of NRF2 levels in various cancers®109,

The ability to analyze and integrate different matched omics data enabled us not only to
identify and functionally characterize putative links between specific SNPs genotypes and
the aberration of specific oncogenic signaling pathways, but also to exploit the theory of
polygenic scores to investigate patients’ genetic liability to develop specific molecular
profiles or particularly aggressive forms of cancer. While polygenic scores have been recently
proven valuable in cancer risk prediction with multiple areas where they can have strong
clinical utility, recent reports demonstrate that they can preferentially predict patients
belonging to certain tumor subtypes or carrying specific somatic aberrations®!, highlighting
hence the importance to better understand their association with molecular and clinical
variables. In line with this, our study demonstrates that individuals’ genetic background may
influence the aberration of oncogenic processes in a way that is orthogonal with respect to
the tumor type but important for specific tumor subtypes or to cancers that are particularly

aggressive.

Our results are also in line with’%, were the authors identified polymorphisms associated to
specific tumor types or specific cancer driver gene alterations. While in both cases a genome-
wide association approach was exploited to study germline-somatic links, our approach is
substantially different. Indeed, we performed a pan-cancer analysis that explores germline-
somatic links at the level of pathway and in particular we investigated the polygenic nature
of those links. Although, and as expected, we had no specific overlap with polymorphism
reported in’°, the two studies can be considered complementary, since by exploring different
dimensions of germline-somatic links they both converge to the same conclusion that

germline variants have a significant influence on specific somatic changes in tumors.

While the specific germline-somatic interactions we identified and reported may be used to
generate testable hypothesis about mechanistic processes related to cancer genesis and
progression, an important question would be to what extent our PSS could be useful in a
clinical setting. Although the PPS we have studied demonstrated AUC below 0.8 (which
represent a well-recognized threshold of high predictive power), some of our pan cancer PSS
were able to stratify patients based on OS and PFl in an extremely effective and cancer

specific manner. In addition, classification models built from our PSS demonstrated effective
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in identifying tumor subtypes and tumors with more aggressive phenotypes both in the

discovery but also in external pan-cancer and cancer-specific datasets.

This study has several limitations, including the relatively small size of the TCGA dataset, the
absence of an independent validation dataset with specular data characteristics and the
limited clinical utility that our OS and PFl results could have given that TCGA was not designed
for clinical outcome studies. We, however, envision that our approach could be exploited
and refined to intercept cancer patients with a genetic background that could more likely
make their cancer evolve and progress towards specific molecular and clinical trajectories

(Figure 3.8).

We want to underline that due to the subtle links that can relate tumor types and pathway
aberration profiles, no explicit inclusion of the tumor type in the association model was
considered in the current study. Indeed, while it has been established that genetics
influences tumor type formation’?, the extent at which it can act as a collider or mediator

variable with respect to pathway aberration profiles is not easily definable and further
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Figure 3.8 Polygenic scores model to describe patients’ genetic liability to develop
specific cancer profiles. Cancer patients are stratified based on multiple polygenic
scores built from somatic phenotypic traits. Somatic traits represent patients’
predisposition to carry somatic aberrations in specific oncogenic signaling pathways.
Single polygenic scores or combination of polygenic scores can identify patients with
more aggressive phenotypes, specific tumor subtypes or patients with poorer
survival.
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investigations are required. Furthermore, an increased number of recessive associations,
primarily involving downregulation traits with slightly elevated Gls, were observed. While an
increased Gl may suggest a polygenic trait!®?, the instability of OR estimations observed
across these traits made characterizing most of them challenging in our polygenic analyses.
This necessitates future efforts to delve deeper into their characterization and their role in

cancer predisposition and evolution.

In addition, while in this study we focused on a set of phenotypic traits derived from the
aberration profiles of specific signaling pathways, more advanced methods could be
explored to define somatic traits, were cancer specific disruption of specific biological
processes could be identified by combining germline and somatic tumor omics data together

with network data (e.g. gene networks, protein-protein interaction network)03.

Future large-scale studies collecting both germline and somatic omics data should continue
to explore links between germline genetics and somatic variants with the ultimate goal of

identifying cancer risk biomarkers.

Methods

Landscape of inherited SNPs in cancer patients

Genotype calls generated from Affymetrix SNP Array 6.0 intensities of normal (non-tumor)
samples were retrieved from the TCGA legacy archive (portal.gdc.cancer.gov/legacy-archive).
Each SNP was there annotated with an allele count (0 = AA, 1 =AB, 2 = BB, -1 = missing) and
a confidence score between 0 and 1. Genotype calls with a score larger than 0.1
(corresponding to an error rate of >10%) were set to missing and the data was reformatted
with PLINK v21%4. Only autosomal SNPs were considered. Hardy-Weinberg equilibrium (HWE)
was calculated across European individuals, selected based on the ancestry calls previously
defined in*®, and reported in Supplementary Table 3.11. Samples with SNP call rates <0.9
were discarded. Multi-allelic SNPs and SNPs with call rates <0.9, minor allele frequencies
<0.01, or HWE test p-values <1e-06 were discarded resulting in 842,108 SNPs across 10,755
TCGA samples. Considering that batch effects associated with groups of samples processed
together (plate effects) can lead to a bias in the estimation of variants allele frequencies®>,
we then searched for the presence of variants displaying strong link with plate. In details,

analysis of plates was performed stratifying samples by population (considering AFR, EUR,
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AMR, EAS, SAS major populations as annotated by EthSEQ!*>* in*®, Supplementary Table
3.11) and, for each population, comparing all samples of a particular plate with all other
plate’s samples pooled together. Each variant was tested for the enrichment of genotypes in
specific plates (across 275 plates) performing Fisher exact test considering allelic, dominant,
and recessive models. We discarded all the SNPs demonstrating a strong plate association
(p-value<l1e-08) in at least one population and one statistical model, retaining however
variants associated with 4 or more plates. In addition, we searched for variants showing links
with specific tumor types using a procedure that is similar to the one used for plate
association analysis. All the variants displaying a strong association (p-value<le-08) in at least
one population and one statistical model with exactly one tumor type were excluded.
Overall, genotype calls of 833,130 SNPs across 10,755 TCGA samples were finally considered.
Principal Component Analysis (PCA) was performed on the final data using the smartpca

function implemented in the EIGENSOFT tool'% and the first 6 components were extracted.

GWAS traits definition

A set of phenotypic binary traits were defined based on the somatic aberration profiles
corresponding to 10 oncogenic signaling pathways characterized in'® using TCGA data. The
considered oncogenic pathways include Cell Cycle, HIPPO, MYC, NOTCH, NRF2, PI3K, RTK
RAS, TGF Beta, TP53 and WNT (Supplementary Table 3.12). A set of phenotypic binary traits
(referred to as somatic traits) were defined based on the somatic aberration profiles
described in'%, one for each oncogenic pathway considered. Figure 3.1A shows an example,
based on TP53 pathway, of how a somatic trait is built. An additional set of phenotypic binary
traits (referred to as somatic transcriptomic traits) were defined based on the expression
deregulation profile of the list of genes defined in'® for each oncogenic pathway
(Supplementary Table 3.12). Specifically, mRNA expression z-scores (RNA Seq V2 RSEM) were
retrieved from The cBioPortal for Cancer Genomics!?”1% for each patient and an oncogenic
pathway was considered up-regulated, down-regulated, or generally deregulated if at least
two genes in the pathway had, respectively, an expression z-score >2, <-2 or not in the range
[-2,2]. Supplementary Figure 3.1A provides an example of how a somatic transcriptomic trait
is built, with the TP53 pathway serving as an example. Overall, we defined 10 somatic traits

and 30 somatic transcriptomic traits.
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GWAS association analysis

GWAS analyses were performed for each considered trait within the TCGA dataset.
Associations of SNPs and traits were performed with PLINK v2 using logistic regression with
firth-fallback parameter active, indicating that firth regression is used when logistic
regression fails. The analyses were performed using age at diagnosis, sex and the first 6
principal components previously calculated as covariates. Of note, the selection of the
number of principal components (PCs) was based on the observation that the first six were
sufficient to capture all TCGA populations and subpopulations described in*°. PCs 1-3
captured the major population structure, while PCs 4-6 captured Asian and European
substructures (Supplementary Figure 3.3). In addition, considering that in our scenario the
assumption that the likelihood of a patient to have an oncogenic pathway altered is
proportional to the number of alternative alleles may not be sufficient to explain the complex
genetic architecture of cancer, all three allelic, dominant, and recessive models were
investigated. Overall, 8,860 patients with phenotype and covariate data available were used
in the analyses. Associations were calculated against the minor allele. Family structure in the
analysis was controlled excluding 178 samples representing potential 3™ degree relatives
using a scaled KING kinship coefficient of 0.0422 (--king-cutoff parameter was used while
running the analyses). We extracted all associations that achieved a genome-wide statistical
significance threshold of p-value<4.2e-10 (Bonferroni correction, adjusted also for the
number of traits and models tested, i.e., 5e-08/120), but also suggestive associations
considering a weaker threshold of p-value<le-06. The latter threshold was chosen, similar
to®’, based on the observation that our analyses were conducted across correlated traits
(Supplementary Figure 3.8), involving hundreds of thousands of SNPs (some of which in
linkage disequilibrium), and encompassing both additive and non-additive dependent
models. Associations flagged by PLINK as UNFINISHED were excluded from reported results.
Cross-cancer heterogeneity of the resulting associated variants was determined calculating
the I? index. In detail, the set of significant associations were tested again in each tumor
type separately. The analyses were performed with PLINK as described before. GWAS
summary statistics were combined via meta-analysis across tumor types using PLINK.
Associations flagged by PLINK as UNFINISHED were not considered in the meta-analyses.

Heterogeneity values I? were extracted and collected.
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Functional characterization of associated variants

For each GWAS (both genome-wide and suggestive) associated SNP, we identified all SNPs in
strong linkage disequilibrium (LD) with them within a genomic window of 250kb centered
around the SNP. LD data was retrieved from the ENSEMBL database. Strong LD was defined
as R?>0.8 and D'=1. This extended list of associated SNPs and LD SNPs was then queried for
genomic overlaps with regulatory elements, cancer genes, oncogenes, or tumor suppressor
genes, and their disruptive effect on transcription factor binding motifs. Oncogenes (OGs,
N=82), tumor suppressor genes (TSGs, N=63) and more generally cancer related genes
(N=920) were characterized using a comprehensive list we compiled from literature.
Regulatory elements for promoters, enhancers and active enhancers were retrieved using
our resource CONREL3!, while the impact of SNPs on putative transcription factor DNA
binding motifs was retrieved from our resource Polympact®!, which characterizes the impact
of >18 million common SNPs across >5,000 DNA motifs. SNPs were classified as disruptive

when causing an absolute relative change of motifs’ score >0.5.

Integrated protein-protein interaction network

A reference protein-protein interaction (PPI) network was built by merging information of
five databases: BioGRID release 3.5.17319% HPRD release 9 2010041310 |ntAct release
201501201 BioPlex 3 release 2019050212; STRING release v11.0'*3. Interactions between
nodes that represent human proteins and experimentally validated were retained. Predicted
data, such as evolutionary analysis, gene expression data, and metabolic associations, were
excluded. Interactions from STRING and IntAct databases were filtered considering only
interactions with reported confidence scores higher than 700 and 0.6 respectively.
Interactions from BioGRID, HPRD and BioPlex were all included because manually curated.
After the removal of duplicated edges, the resulting network contains 245,787 interactions

and 16,514 unique human proteins.

Cis-eQTL and co-expression analyses

GTEx v8 RNAseq count matrices were downloaded from recount3 database!!. For each
tissue, logarithm (two based) transformed RPKM+1 of each gene was calculated using R
recount and recount3 packages and quantile normalized using R /imma package. A total of
16,805 RNA-seq samples across 42 tissues were used in the analysis. cis-eQTL data for GWAS
SNPs (both genome-wide and suggestive) were retrieved from GTEx data portal

(gtexportal.org). SNP/gene cis-eQTL links were stratified by tissue and for each tissue cis-
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eQTL genes in that tissue were collected and tested for co-expression against all other
protein coding genes expressed in the same tissue, using Pearson correlation and correcting
p-values with FDR method. Only correlation values smaller than-0.50 or greater than 0.50

and with FDR<0.05 were considered significant.

Polygenic somatic scores construction

For each considered trait, a set of polygenic scores were computed using a five-fold cross-
validation approach and exploiting the TCGA dataset. TCGA samples were randomly
partitioned into five equal-sized disjoint subsets. For each fold, a partition was retained as
validation set while the others were aggregated and used as training set. A set of GWAS runs
was performed in the training sets as previously described. Specifically, logistic regression
was used, considering allelic, dominant, and recessive models, and using age at diagnosis,
sex, and the first 6 principal components as covariates. The generated GWAS summary
statistics were then used in the validation set to build polygenic scores, referred to as
polygenic somatic scores (PSS). PSS were calculated as the average number of minor alleles
weighted by the allele’s effect size using PRSice-211>. As shown in®%63, using a more liberal
but optimized p-value threshold instead of a genome-wide significant threshold, improves
performance of polygenic scores prediction. Hence, a computational workflow was designed
to build effective traits’ PSS and test their performances and statistical significance. As
described in Supplementary Figure 3.9, for each trait we first used PRSice-2 to determine the
best p-value threshold (testing p-values ranging from 1e-08 to 1 and using a 1e-08 step)
across different LD clumps (using R? of 0.2, 0.4, 0.6, 0.8 and 1). In particular, to determine
the optimal p-value threshold for each clump, we averaged the p-value thresholds at the
highest pseudo-R?, when significant (p-value < 0.05), that we obtained across the five folds.
Then, we used PRSice-2 again to generate for each LD clump a trait’s score using the
corresponding best p-value threshold and calculating its representative AUC performance
score, which was obtained averaging the AUC values obtained across the five folds (R pROC
package was used to compute the AUCs). This to finally select the best performing
combination of p-value threshold and LD clump that was used to generate the trait’s PSS.
Further, to better characterize the statistical significance of PSS performances, we
implemented an additional analysis step that is based on permutation analysis. In detail, for
each of the 120 PSS (40 traits across 3 association models), 100 random PSS were generated
by randomly shuffling trait’s labels and for each of them performances in terms of AUC values
were computed using the same computational workflow described before, producing a PSS’s

69



specific AUC baseline reference distribution. Then, for each PSS the observed AUC value and
the corresponding AUC baseline reference distribution were used to compute an empirical
p-value. Specifically, each empirical p-value was computed as (r+1)/(n+1), where n is the size
of the reference distribution and r is the number of AUC values in the reference distribution
that are greater or equal to the observed AUC. P-values were finally corrected for multiple
hypothesis testing using FDR method. A set of pan-cancer PSS (pPSS) was finally defined only
considering PSS with an FDR<0.25.

Survival analysis

TCGA survival data was retrieved from®3. Overall survival (OS) and Progression-Free Interval
(PFl) data were used. Survival analysis was performed to examine to what extent clinical
endpoints correlate with both the somatic (transcriptomic) traits and pPSS within individual
tumor types. Also in this case, a five-fold cross-validation approach was applied. Analysis was
performed using the R survival package. For the analysis based on somatic (transcriptomic)
traits, patients were stratified based on traits definitions. For pPSS analysis, patients were
grouped and tested on the median value of each selected pPSS. In detail, for each fold
analysis, a Cox proportional hazards regression model was computed in the training set and
then used in the validation set to compute the performance (AUC) which evaluates the ability
of the model to discriminate patients with altered pathways or the patients with a higher
pPSS. Also in this case, the performances of our survival models were compared against AUC
baseline reference distributions generated by permutation analyses. Empirical p-values were
computed as described previously. For both analyses, OS and PFl associations were corrected
for multiple hypotheses separately and for each tumor type. OS and PFl associations with an

FDR<0.25 for both somatic (transcriptomic) traits and pPSS analyses were highlighted.

Analysis of tumor subtypes

TCGA cancer subtypes were collected from*°. A total of 5,148 samples were annotated with
molecular subtypes for the following tumor types: BLCA, BRCA, CESC, COAD, ESCA, GBM,
HNSC, LGG, READ, SARC, STAD, TGCT and UCEC. The molecular subtypes of TCGA prostate
cancer (PRAD) dataset were retrieved from’2. Only TCGA patients included in our polygenic
scores computations were retained and then tumor subtypes with less than 20 patients were
discarded. A total of 4,818 patients, representing 13 tumor types spanning more than 40
different tumor subtypes, were used in the analysis. For each tumor type, we tested the

presence of significant deviation in the distribution of pPSS across different tumor subtypes
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applying a five-fold cross-validation approach as described previously. In detail, for each
combination of tumor subtype and pPSS, statistical significance was determined building a
logistic regression model in the training set testing all samples of a particular tumor subtype
against all other tumor samples of that tumor type. Then, the performance (AUC) of the
model was computed in the validation set. Also in this case, the performances of our models
were compared against AUC baseline reference distributions generated by permutation
analyses. An empirical p-value for each combination of pPSS and tumor subtype was
calculated as described previously. For each tumor subtype, associations were corrected for
multiple hypotheses. Given the non-standard u-shape distribution of p-values that we
observed for some combinations, associations were here corrected using the robust FDR
method described in'8. Only FDR<0.25 were considered significant. For each tumor subtype,
significant pPSS were integrated using a logistic regression model to test their predictive

power in identifying tumor subtypes.

Validation using PCAWG data

Data for somatic point mutations, somatic copy number aberrations, together with matched
common SNPs genotype calls and relevant clinical information were obtained from the ICGC
PCAWG project’® for 1,823 patients. Based on available samples annotations, samples that
are both in TCGA and ICGC projects were not considered in the analysis. Genotyping files
(VCF format) representing a total of 67,207,291 germline variants were downloaded from
the ICGC Data Portal (dcc.icgc.org). INDELS and SNPs not in the TCGA genotype dataset were
excluded. A total of 830,168 variants were retrieved and used to build pPSS exploiting the
weights previously trained in the TCGA dataset. Specifically, scores were calculated with
PRSice-2 using TCGA GWAS summary statistics filtered based on PSS TCGA specific optimal
p-value thresholds and LD clump cutoffs. Somatic point mutations and somatic copy number
aberrations were downloaded for each patient and used to collect somatic trait specific
genomic aberrations. Specifically, for each gene in a somatic trait defined by an oncogenic
signaling pathway, we retrieved non-synonymous point mutations, homozygous deletions,
and amplifications. We considered only the somatic copy number aberrations consistent
with the role of the gene (deep deletion of TSGs and ampilification of OGs, as defined above).
Somatic alterations data representing the presence of gene aberration were integrated and
summarized across patients. Due to the differences between data in TCGA and ICGC PCAWG
projects, aberrations were not aggregated but kept separated. Binary somatic trait specific

aberration profiles were defined for each patient considering separately or in different
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combinations the three types of somatic aberrations. Distributions of pPSS in the different
groups were compared using Wilcoxon test statistics (two-tail) and p-values were corrected

for multiple hypotheses. Only results with FDR<0.25 were considered significant.

Validation using CCLE data

Data for somatic point mutations, somatic copy number aberrations, together with matched
SNP Affymetrix 6.0 array Birdseed calls were obtained from the CCLE data portal for 995 cell
lines’”’8 Each SNP was there annotated with an allele count (0 = AA, 1 = AB, 2 = BB, -1 =
missing) and a confidence score between 0 and 1. Genotype calls with a score larger than
0.1 were set to missing and the data were reformatted with PLINK v21%4 A total of 868,261
variants were retrieved and used to build pPSS exploiting the weights previously trained in
the TCGA dataset. As for ICGC, scores were calculated with PRSice-2 using TCGA GWAS
summary statistics filtered based on PSS TCGA specific optimal p-value thresholds and LD
clump cutoffs. Somatic point mutations and somatic copy number aberrations were
downloaded for each cell line and used to collect somatic trait specific genomic aberrations.
Data was processed as described in the previous section. Only pPSS resulting significant in
the ICGC validation were tested for confirmation in CCLE data using a Wilcoxon test statistic

(one-tail) with 0.05 p-value cutoff.

Validation using Tyrol cohort data

SNP genotype calls (Affymetrix SNP Array 6.0) data and clinical information for 1,903
individuals from the Tyrol Early Prostate Cancer Detection Program cohort were retrieved
from®8>. The data include genotype calls for 1,036 healthy control individuals and 867
prostate cancer (PCa) patients. Of these, 492 had annotation for ERG status with 280 patients
(57%) annotated as positive for the TMPRSS2-ERG fusion (ERG subtype patients). In addition,
159 patients were annotated as having a moderate/high Gleason Score (GS) of 4+3 (N=54)
or >7 (N=105). A total of 871,856 SNPs were retrieved and used to build pPSS exploiting the
weights previously trained in the TCGA dataset. Also in this case, scores were calculated with
PRSice-2 using TCGA GWAS summary statistics filtered based on PSS TCGA specific optimal
p-value thresholds and LD clump cutoffs. Only pPSS resulting significant (FDR<0.25) in the
TCGA PRAD subset were tested for confirmation in the Tyrol dataset. Distributions of PSS
were compared using Wilcoxon test statistic (one-tail) to identify PCa ERG subtype patients
and patients with high GS with 0.05 p-value cutoff. Significant pPSS were integrated using a

logistic regression model to test their predictive power in identifying ERG positive patients.
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Supplementary Figure 3.1 Traits construction and GWAS results. A) Cancer patients are
stratified based on the presence of transcriptomic alterations of genes in specific oncogenic
signaling pathways to construct somatic transcriptomic binary traits. TP53 somatic
transcriptomic trait is shown as an example of how the genes deregulation are used to build
the trait. B) Circular plots showing GWAS results for suggestive significant associations with p-
value in the range [1e-07,1e-06). The chromosomal positions (outer track) of the associations
are shown for the forty traits in the inner track. The associations for different oncogenic
pathways are reported on different rows and shown with different colors based on the trait’s
definition. In the middle track, the statistical models used for each association are shown in
different colors. C) Circular plots showing functional characterization of suggestive
associations with p-value in the range [1e-07,1e-06). The functional characterization is
performed on LD extended associated variants. LD extended sets of associated variants are
characterized for genomic overlaps with regulatory elements (inner track) and to cause a
change in the transcription factor binding motifs of genes implicated in cancer (middle track).
The chromosomal positions (outer track) are reported for the corresponding variant from the

GWAS analyses.
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Supplementary Figure 3.2 Traits alteration frequencies. Radar plots showing the fraction of
altered samples per trait across all tumor types.
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Supplementary Figure 3.3 Principal Component Analysis (PCA) and TCGA population structure. A)
Scree plot of the first seven principal components (PCs); B) Major populations are captured by the
first three PCs; C) Asian and European sub-populations are captured by the first six PCs.
Annotations of populations and subpopulations are derived from (Carrot-Zhang et al., 2020).
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Supplementary Figure 3.4 Quantile-quantile (QQ) plots and genomic inflation (G.l.) estimates
for GWAS with traits showing significantly associated SNPs. Red lines represent the expected
distributions, the 95% confidence interval is shaded in gray.

76



~ ~
WNT DOWN - Dominant w© - Cell Cycle - Recessive e HIPPO - Recessive ? MYC - Racessive 1 NRF2 - Racessive ol
E © T Glest=101 Gl est=102 G.l.ast=099 . © - Glest=099 © - Glest=095
© 4
g w - w - w - w
2 = - -+ i -
g < 4 <« -
g @ - o o o -
"’3 o o - ~ 4 o o~ -
o
g -4 - _ -
I o - o - (=T | o - (=T
T 1 UNSLELE I T T T T T T T T T T T T T [H S S B e
1=} 0 ) . - ~ N .
— —| PISK- Recessive @ — TP53- Recessive & w 'WNT - Recessive Cell Cycle DEG - Recessive w - MYC DEG - Recessive -*
T Gl est= 1.01 Gl est=1.02 Gll.est= 1.02 © - Glest=101 Gl est=0.98
o w w0 w o
g -
<+ - -+ - 4
E © - -+ -
g . o o - o
% = o ~ 4 o
o -
° o - - - - - - 4
! o - o o o - o
T T T T T T T T T T T T T T T T T T T T T T T
o r 0y ©
= 7| NAF2DEG - Recessive © | PI3KDEG - Recessive TGF Beta DEG - Recessive P53 DEG - Recessive WNT DEG - Recessive
T Gl est=0.95 Gl est=1.01 Glest=0.96 Gl.est=0.93 Gl est= 1.02
@ R w © - . [}
°
4 <« 4 <
2 © - i
i 7 ® o -
o
2 v o o A a4
3
= o o
o o~
g - - -
I e 4 o o - o - o -
T T T T T T T T T T T 1 T T T T T T T T T T T T
~ Gell Cycle UP - Recessive ™~ | MYCUP - Recessive ] NOTCH UP - Recessive @ -| NAF2UP-Recessive " ° PI3K UP - Recessive *
E w Glest=101 © Glest=098 - © T Glest=099 Gl est =095 - Gl est=1.01
, w0 -
! w - o o -
2 < «
+ -
[ -
o B o+ ™
£ o o - ®
-1 - i o P
6 o™ ™~ o~ -
o - - - -
I [=J | o [=JS | o - o -
T T T T T T T T T T T T T T (I
o «©
TGF Beta UP - Recessive  *) w@ -| TPS3UP- Recessive e © T WNT UP - Recessive = | CellCycle DOWN - Recessive ® HIPPO DOWN - Recessive,
=~ Gl est = 0.94 Gl est=093 Gllest=1.02 Gl.est= 1.04 . Gl.est = 0.94
[P i r « -
o 0 © 1
o -
. * ) -]
2 o o 4 +
2 +
= o ~ 9
ERE ~ 4
g 1 - o
! L= (=T [=T | =R (=T
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
@ - MYCDOWN - Recessive #*° © | NRF2 DOWN - Recessive PI3K DOWN - Recessive  °° | © - RTKRAS DOWN - Recassigh TGF Beta DOWN - Recessiys’
n Gl est-1.08 Gl est=1.10 © 4 Glest-0.84 Gl.est=0.97 Gl est- 0.95
T @ @ s w - n - o
o
<« 4
: . «
2~ - o -
° <« -
E] ~ A “ o
o © o -
s -4 -
I o o - o - o - o -
T T T T T T T T T T T T T T T T T T T T T T T T T
01 2 3 4 5 6 01t 2 3 4 5 6 01 2 3 4 5 6
=
e - TP53DOWN - Recessive #*° 2 | WNT DOWN - Recessive —log,(expected P) —logyg(expected P) — logyg(expected P)
E Gl est=120 Gl est=094
o -
B o
2 0 -
&
< o
) + -
|
&~ 4
<] o~
°
[ o -
T T T T T T T T T T T T
1 2 3 4 5 6 01 2 3 4 5 6

—logye(expected P)

— logyq(expected P)
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Supplementary Figure 3.5 Boxplots showing the distributions of the Minor Allele Frequencies
(MAFs) of genome-wide and suggestive (<le-8, <le-7, <le-6 p-value thresholds) associated

SNPs.
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Supplementary Figure 3.6 Examples of cis interactions with genes that are co-expressed with
genes in the oncogenic pathways of the corresponding traits. These putative links are supported
by a close link (PPl distance 2) between the two proteins. A) shows the co-expression between
cis-eQTL ELP3 gene of the variant rs2722888 (found associated with TP53 somatic trait) and TP53
gene. B) shows the co-expression between cis-eQTL ABCA1 gene of the variant rs12686004
(found associated with Cell cycle somatic transcriptomic DOWN trait) and RB1 gene. C-D) shows
the co-expression between cis-eQTL TMEM30A gene of the variant rs436898 (found associated
with NRF2 somatic transcriptomic DOWN trait) and KEAP1 gene in two different tissues.
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Supplementary Figure 3.8 Traits correlation analysis. Heatmap showing the correlations

between all trait’ pairs.
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Supplementary Figure 3.9 PSS computational workflow. The workflow explains how PSSs are
built and how their statistical significance is computed. For each trait, a 5-fold cross-validation
is used to compute GWAS statistics. The best p-value thresholds across different LD clumps and
averaged across the five folds are computed using PRSice-2. Then, the AUC performance scores
are computed for each LD clump at the corresponding best p-value threshold. The best
performing combination of p-value threshold and LD clump are used to generate each trait’s
PSS. Finally, a permutation approach is used to compute empirical p-values for each trait
comparing each observed AUC value and the corresponding AUC baseline reference
distribution.

Supplementary Tables

Supplementary tables (named Supplementary Data) are available at:

https://www.nature.com/articles/s41698-024-00546-5#Sec26
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Chapter 4. Propagated mutational scores in
DNA repair pathways and variant associations

In the previous chapter, | employed a binary classification for gene mutations based on the

presence or absence of somatic alterations within specific oncogenic pathway genes.

To further this research, | participated in a collaborative project at the Laboratory of
Computational Cancer Genomics, at the University of California San Diego, under the
supervision of Prof. Hannah Carter. The focus of this collaboration was to integrate somatic

mutational profiles with gene networks.

Rationale

The hypothesis that uniquely recurrent mutations in a few driver genes account for
malignant transformation is now recognized as overly simplistic. In the previous chapter, |
analyzed aggregated somatic alterations in specific pathway genes, showing that germline
genetics can influence the dysregulation of oncogenic signaling pathways. However, all
cancers harbor numerous rarely recurrent mutations in unique combinations across
hundreds of potentially cancer-relevant genes. This demands novel approaches that
integrates germline, somatic, and molecular interaction data to assess the functional
significance of these mutations, define somatic traits that capture cancer-specific disruptions

of biological processes, and prioritize them for further investigation.

To address this challenge, | used a network-based method to explore somatic mutational
profiles in a cohort of breast cancer patients. Additionally, | extended the analysis to cover
somatic alterations in DNA damage repair (DDR) pathways, which were not examined in the
previous chapter, to gain a more comprehensive understanding of the mutational landscape

of breast cancer.

Introduction
In the last years, several techniques have been proposed and implemented to identify
disease genes integrating somatic mutation data with network. While simpler network

analysis approaches, such as predicting all neighboring genes!'® or calculating shortest
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120 offer a straightforward starting point for identifying phenotype-associated genes,

paths
they often not come up to expectations. These methods are prone to false predictions due
to irrelevant interactions and fail to capture relevant genes that are not directly connected
to the regulated ones, even though they might be strongly linked through multiple long-
distance interactions. To address these limitations, global network-similarity approaches
have emerged as a more powerful alternative, outperforming local distance measures. These
studies focus on a method that considers the entire network structure. Network
propagation'®® leverages the idea that genes sharing a phenotype tend to interact closely.
By spreading the signal across the network, enabling the identification of altered pathways

in a specific condition, offering a more comprehensive understanding of the underlying

molecular mechanisms.

Network propagation describes multiple techniques discovered in numerous fields that
follow the same underlying strategy'?*™1?4. Among these, a popular approach to interpret
and aggregate somatic mutations heterogeneity is network propagation®® using a random
walk?> model to diffuse information about gene mutations through network interactions.
Network propagation works by integrating each gene's alteration with those of its
neighboring genes within the network, taking into account all potential pathways between
genes. Iteratively, the alteration information is spread to the neighbors of the corresponding
node. This propagation process continues until the propagated scores converge to a steady

state on the network.

The network propagation of somatic scores has been used for identifying cancer-related
genes and pathways?®. This approach leverages the concept of "guilt-by-association",
assuming that genes mutated in cancer are likely to be functionally related and play a role in
cancer development. Network propagation of somatic scores can identify novel cancer genes
that may not be detectable from individual gene-level analyses, providing new insights into

the molecular mechanisms of cancer.

Breast cancer is the most common cancer among women worldwide. BC is a complex and
heterogeneous disease with various molecular subtypes and clinical outcomes. The genomic
landscape of breast cancer is characterized by a complex interplay of germline mutations
and somatic alterations that impact DNA repair pathways. Inherited mutations in BRCAI and
BRCA2 account for a significant proportion of hereditary breast cancers, and their

identification has enabled targeted screening and prevention strategies'?’. Furthermore,
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somatic mutations in genes such as PIK3CA, TP53, and ERBB2 are common in breast cancer

and can guide treatment decisions'?2,

In this chapter, | explored the intricate relationship between germline variants and network-
based propagated mutational scores within a set of well-defined DNA damage repair (DDR)
pathways, focusing specifically on breast cancer. Initially, | investigated the effectiveness of
propagated mutational scores in prioritizing rarely to moderately mutated genes implicated
in cancer, revealing their potential utility in identifying novel cancer-related genes. Then, |
identified and characterized common genomic loci that correlate with patterns of
propagated mutational profiles across DDR pathways. This analysis aimed to elucidate how
germline variants functionally correlate with the dysregulation of corresponding pathway

genes and reveal the genetic mechanisms of DDR pathway disruption in breast cancer.

Results

Propagated mutational scores

To investigate the extent to which somatic mutation profiles propagate across breast cancer
patients, | performed the Network-Based Supervised Stratification (NBS?) 1?2 algorithm on
the parsimonious composite network (PCNet)'30. Specifically, | performed a three-fold cross-
validation approach, utilizing 486 samples from the training set to optimize
hyperparameters. The optimal hyperparameter values were determined through a grid
search strategy, where each hyperparameter was evaluated across a range of values while
the remaining two were held constant. The classification performance (AUC) was used to
guide the selection of optimal hyperparameters. Overall, the best classification performance
was achieved with a=0.5, A=0.01, and B=2e-05 (Figure 4.1).

050

0.4550 0.465

049

0.4525
0.462 048

0.4500
047

0.459

AUC performance score

04475 0.46
0.456 R ; .
01 03 05 0.7 09 001 0.03 041 03 1 2e-06 2e-05 2e-04 0.002 0.02
a A B

Figure 4.1 Hyperparameter optimization. The performance of NBS? to classify tumor
subtypes with respect to different choices of hyperparameters.
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Then, | used the complete training set for building the final classifier and the remaining set
of 245 tumors for validation. Upon convergence, the model was applied to the entire breast

cancer dataset to derive the propagated mutational profiles of all patients.

For each patient, | aggregated the propagated mutational scores for all genes belonging to
nine DDR pathways previously described'3? including BER, DR, FA, HDR, MMR, NER, NHEJ,
NP, and TLS. Interestingly, across all pathways, there were no statistically significant
differences in the distributions of the propagated mutational scores between patients
harboring at least one mutation within the genes of a given pathway and those without any
observed mutations in these genes (Figure 4.2). This observation suggests that the network
propagation of mutational signals may reveal underlying pathway dysregulation even in the

absence of direct mutations within the pathway's genes.

Moreover, by aggregating the propagated mutational scores across all breast cancer patients,
| obtained for each gene a score that represents its network proximity to all genes with
mutations. Using these scores, | computed two gene rankings: one based on the non-
propagated (i.e., raw mutation frequency) profiles and another based on the propagated
mutational profiles. | performed the Wilcoxon-Mann-Whitney rank sum test to assess the

significance of propagation-based rankings by measuring the enrichment of known
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Figure 4.2 DDR propagated mutational scores. Distributions of aggregated
propagated mutational scores for nine DDR pathways in breast cancer patients.
Each patient's score is calculated as the sum of the propagated mutational scores
of all genes within the corresponding pathway.
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oncogenes (OG) and tumor suppressor genes (TGS) towards higher ranks before and after
propagation. Notably, no significant enrichment (p-value=0.17) was observed in the non-
propagated ranking. However, a highly statistical significance enrichment (p-value=2.01e-15)
was observed after propagation. These results support the validity of the method to identify
functional importance genes such as oncogenes and/or tumor suppressor genes. To further
explore the broader relevance of this approach, | extended the analysis by incorporating a
list of cancer in addition to the OGs and TSGs. As expected, considering that the most
mutated genes in a tumor cohort are typically genes implicated in cancer, | observed a
significant enrichment in both rankings, before and after propagation (p-values 3.43e-19 and

2.08e-47, respectively).

Identification of UMGs

| then calculated the difference in rank for each gene before and after propagation. Genes
that move up in the rank order post-propagation were listed as upward mobility genes
(UMGs). This method effectively filters out frequently mutated genes, including well-known
cancer drivers, that occupy high ranks before propagation and therefore cannot meet the
upward mobility threshold. | reported a total of 267 UMGs for breast cancer, of which 64
genes (24%) with established implications in cancer development and progression, including
13 oncogenes (such as JUN, KRAS, and PPARG), and eight tumor suppressor genes (including
CEBPA, CREB1, and NOTCH1). Among the remaining UMGs not directly annotated as cancer-
related genes, | exploited data from the PCNet network. | found that nearly all genes (198
out of 201) of those present in the PCNet network were connected to genes implicated in

cancer.

Overall, the identification of UMGs reveals both known and novel genes potentially
implicated in cancer, demonstrating that network propagation of mutational somatic profiles
in combination with UMG approach can estimate the functional importance of genes

potentially implicated in cancer development and evolution.

Variants associate with propagated mutational profiles in DDR pathways

| conducted genome-wide association studies (GWAS) using 731 breast cancer patients
considering nine DDR pathways. These GWAS analyses employed linear regression,
considering the genotypes of 8,560,450 imputed high-quality variants. Analyses, performed
using PLINK v21%* were adjusted for age at diagnosis, sequencing plate and the first three

components from principal component analysis. Genomic inflation (Gl) was inspected to
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identify potential population structure and other technical artefacts in the data, no bias was
found among all the GWAS results (average GI=1.01) (Figure 4.3, displays example results for
TLS pathway). | identified 6,272 genome-wide significant (p-value<5e-08) variants across

1433 independent loci across the nine DDR pathways.

MAGMA gene-set enrichment analysis identified only six significant gene sets (Bonferroni
adjusted p-value < 0.05) across all nine DDR pathways. Notably, one of these significant gene
sets (GINESTIER_BREAST _CANCER_ZNF217 AMPLIFIED_DN) is associated with the
mismatch repair (MMR) pathway and is directly relevant to breast cancer. This gene set has
been shown®? to be associated with down-regulation in non-metastatic breast cancer

tumors exhibiting amplification in the 20q13 region, involving ZNF217 locus only.

| finally investigated the potential impact of associated variants on the transcription of genes
linked to DDR pathways. Functional mapping of variants to genes, based on eQTL information
from breast tissue, identified 165 cis-eQTL links involving 154 variants, that mapped on 25
genomic risk loci, and 31 protein coding genes. Interestingly, while only one of these 31 cis-
eQTL genes are known to be involved in cancer (NNT), a network analysis using PCNet
revealed that 29 (94%) of these genes were connected to known cancer-related genes.
Specifically, 21 cis-eQTL genes were connected to at least one oncogene, while 16 were
connected to at least one tumor suppressor gene. Further, of the 31 cis-eQTL genes, six
demonstrated significant transcript level correlations with DDR pathway related genes (Table
4.1).

Overall, 16 variants across six genomic loci were involved in cis interactions with genes that
were observed co-expressed with members of the corresponding DDR pathways, for a total
of 44 putative links. Interestingly, mean molecular network interactions distance among cis-
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Figure 4.3 GWAS association results performed by FUMA for TLS pathway. (A)
Manhattan plot displaying genome-wide associations. The red line represents
genome-wide significance (5e-08). (B) Quantile-quantile (QQ) plot and genomic
inflation (Gl) estimates for GWAS results. Red line represents the expected
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eQTL genes and co-expressed genes was 2.02, significantly smaller (p-value<le-03) than that
observed in permuted gene sets. Of note, one genomic locus demonstrated a direct
connection between cis-eQTL and co-expressed genes within PCnet network. Specifically,
this locus was found associated with TLS pathway and was observed to decrease the
expression of /BTK gene in breast tissue, which in turn was positively correlated with REV3L
transcript level, link that is supported by a direct interaction in the molecular network. This
suggests that patients carrying alternative alleles at this locus may constitutively exhibit
lower REV3L expression, potentially leading to TLS pathway dysregulation. While the role of
REV3L in cancer is still under investigation, multiple studies have reported that REV3L down-
regulation or depletion contribute to genomic instability during neoplastic transformation

and progression?33, leading to the accumulation of double-strand breaks3*.

These results provide evidence supporting the existence of functional links between GWAS
associated variants, the corresponding DDR pathways, and cancer-related genes, thereby
strengthening the validity of the GWAS results and highlighting the potential impact of

germline variation on DNA repair processes and cancer susceptibility.

Table 4.1 Cis-interactions with DDR pathways. Significant co-expression between eQTL
genes and genes in the GWAS variant associated DDR pathway

Pathway = Genomic Locus cis-eQTL gene co-expressed gene network
distance
BER 14923.1 Cl140rf39 0GG1 3
NEIL1
HDR 19p13.2 ZNF266 NSMCE4A
EME2
TLS 6q14.1 IBTK REV3L
UBE2A
POLM
UBE2N
5q13.2 FCHO2 WDR48
POLK
SHPRH
3p26.2 LRRN1 REV3L
RAD18
UBE2A
UBE2V2
5q22.2 EPB41L4A REV3L
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Methods

Somatic mutational profiles

Somatic mutation and copy number alteration data were collected and integrated from TCGA
for 982 breast cancer patients. To control for population stratification, only patients
identified of European ancestry*® were considered. Briefly, a gene was classified as altered
for each patient if it had a non-silent somatic mutation or fell within a CNA region. To
maintain biological relevance, only CNAs consistent with the role of the gene (i.e,
amplification of oncogenes and deep deletion of tumor suppressor genes) were retained.
For each patient, somatic mutational profile is represented as a binary (1, 0) profile of gene
alterations, in which a '1' indicates a gene for which mutation(s) has occurred in the tumor
relative to germ line. Breast cancer subtypes annotations were collected from*°. A total of

731 patients with somatic alterations in 18,684 genes were considered in the analysis.

PPl network and interaction features
| downloaded Parsimonious Composite Network (PCNet) via the NDEX browser

(www.ndexbio.org/), a resource detailing molecular interactions among human genes.

Within this network, nodes represent genes, and edges represent various types of functional
relationships between genes, such as protein binding interactions, transcriptional regulation
and signaling by phosphorylation. Molecular interaction was not preprocessed as the
authors recommend it as a consensus network. | annotated each interaction with a set of
edge features, including 76 distinct interaction features distributed across nine categories,
derived from Pathway Commons (v11)*> data and as completely explained in'?°. These
features are designed to weigh the interactions between genes, guiding the direction of

propagation to maximize the agreement among tumors of the same subtype.

Network propagation algorithm

| performed network propagation using NBS? algorithm to aggregate and amplify the effects
of tumor mutations using knowledge of molecular interaction networks. The mutational
profile for each patient independently is projected onto a human gene interaction network
to learn the mutated subnetworks underlying tumor subtypes using a supervised approach

(Figure 4.4).

Briefly, given the graph obtained from PCNet network, Random Walk with Restart (RWR) was

conducted iteratively as follow:
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P(t+1) — (1 — a)P(t) . Q + aP(O)

Where P is a tumor-by-gene binary matrix representing the mutational profile of each
patient and Q is the degree-normalized adjacency matrix of the network graph. Adjacency
matrix Q is directly learned from data, ensuring that the stratification of propagated
mutation profiles resulting from the random walk closely aligns with the predefined tumor
subtypes. The parameter a denotes the restart probability, governing the distance that
mutation signal is allowed to propagate through the network. Upon convergence, when
PED ~ p®) the propagated mutation profile matrix P represent a tumor-by-gene matrix
where somatic alteration profiles have been ‘smoothed’ by the network. The score of each
gene represents its network proximity to all genes with mutations. The cost function J is used
to find optimal edges feature weights w to minimize the subtype classification error on the
propagated mutational profiles P. The cost function is regularized using two
hyperparameters A and B to control respectively sparsity and non-linearity of the model

(specific algorithm implementation is detailed in the NBS? publication methods section).
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Figure 4.4 NBS? workflow (as published in*??! by permission of Oxford University
Press). The final feature weights (w), transition matrix (Q), and propagated mutation
profiles (P) are computed as described in the original NBS? publication.
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Breast cancer propagated mutational scores

The somatic profile data for breast cancer patients was partitioned into training and
validation sets (66% and 33% respectively). Within the training set a three-fold cross-
validation approach was used to optimize the hyperparameters a, A, and B. Specifically, the
training set was randomly divided into three equal-sized, and non-overlapping subsets. The
NBS? algorithm was applied to compute the AUC to assess the performance of the
classification across various values of a, A, and B performing a grid-search strategy. The
optimal values for each hyperparameter were selected based on the highest AUC
performance score achieved averaging the score across the three folds. The final classifier
was built using the complete training set and the validation set to assess its performance for
the classification of tumor subtypes on unseen data. To obtain the propagated mutational
score for all breast cancer patients, the classifier is finally applied to the entire somatic profile

dataset for further analysis.

Upward mobility genes identification

To extend the spectrum of cancer-relevant genes, | performed an integrative approach®* to
identify rarely mutated genes that show a significant rank improvement after mutational
propagation. Specifically, the rank before and after propagation is calculated for each gene
as the arithmetic average score across samples of the mutational profile P before or after
propagation respectively. The mobility status of a gene is then calculated as the difference
between initial and final rank scores. Finally, according with the authors' definition, genes
classified as UMG were those that demonstrated a substantial improvement of at least 8 -
|G| ranks (where B is equal to 0.25, previously determined by the authors and specific for
breast cancer cohorts, and |G| is the number of nodes of the network) and were ranked
within the top 1,000 genes after the network propagation process. The gene ranking
generated from the raw and propagated mutational profiles were both tested for enrichment
of genes previously established as functionally important in various cancer types. Specifically,
oncogenes (N=82), tumor suppressor genes (N=63), and a general set of cancer-related
genes (N=920) were identified using a comprehensive list compiled from the scientific
literature and used to evaluate whether the ranking scores of these genes were statistically

higher than those of other genes.
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GWAS associations with DNA damage repair pathways

| defined a set of continuous traits based on the mutational profiles after propagation
corresponding to nine major DDR pathways: base excision repair (BER), nucleotide excision
repair (NER), mismatch repair (MMR), the Fanconi anemia (FA) pathway, homology-
dependent recombination (HR), non-homologous DNA end joining (NHEJ), direct damage
reversal/repair (DR), translesion DNA synthesis (TLS), and nucleotide pool maintenance (NP).
Atotal of 212 genes across all the DDR pathways were considered in the analysis. Specifically,
a DNA damage repair (DDR) pathway score was calculated for each patient by summing the

propagated somatic mutational scores from P of all genes belonging to that pathway.

Genotype calls derived from Affymetrix SNP Array 6.0 intensities of normal (non-tumor)
samples from the Breast Invasive Carcinoma (BRCA) cohort were obtained from the TCGA
legacy archive (portal.gdc.cancer.gov/legacy-archive). Genotype calls with an error rate
greater than 10% were set to missing, and the data was reformatted using PLINK v2.
Genotype calls with a call rate below 0.75 were removed. The haplotype structure was
inferred with SHAPEIT v2138. To impute missing genotypes, IMPUTE v2.3.2'37 was performed,
utilizing a reference panel constructed from the 1000 Genomes Project data. The imputed
genotype calls were then intersected with imputed GTEx genotype data obtained from
dbGaP (phs000424.p7.v2). Samples with an overall call rate less than 0.9 were excluded, and

only variants with a minor allele frequency (MAF) of 1% or greater were retained.

| then performed a set of GWAS analyses for each considered DNA damage repair pathway
within BRCA dataset. Associations of SNPs and traits were performed with PLINK v2 using
linear regression with age at diagnosis, sequencing plate, and the first 3 principal

components as covariates.

Functional, cis-eQTL and co-expression analyses

| then performed functional mapping and annotation of GWAS results with FUMA (v1.6.1),
an integrated web-based platform®38. Genomic risk loci were defined around significant
variants (<5e-08); the genomic risk loci included all variants correlated (R2>0.6) with the
most significant variant. Genome-wide gene association analysis was performed using
MAGMA v.1.08"3°, utilizing GWAS summary statistics. Additionally, MAGMA gene-set analysis
was conducted on 17,023 gene sets from the MSigDB v2023.1Hs collection. Gene sets were
considered significant if p-value<0.05 after Bonferroni correction for the number of tested

gene sets. Finally, to establish links between associated variants and gene expression, eQTL
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mapping was performed using FUMA for breast mammary tissue data from GTEx v.8. Each
cis-eQTL gene identified in breast mammary tissue was tested for co-expression with all
other protein-coding genes expressed in the same tissue, using Pearson correlation and
correcting p-values with FDR method. Co-expressions were considered significant only if the

correlation coefficient was smaller than —0.50 or greater than 0.50 and with FDR<0.05.

Discussion

In this chapter, | presented a deep exploration of the biological links between germline
variants and their impact on the transcriptome of genes involved in DDR mechanisms. | first
described a network propagation-based approach that is particularly effective in estimating
the functional significance of rarely or moderately mutated genes in breast cancer.
Moreover, | showed that upward mobility genes were enriched in cancer-related genes. This
result underscores the importance of considering the broader mutational landscape, beyond
high-frequency driver mutations, to understand the complex molecular mechanisms
underlying oncogenesis. In combination with known driver genes, these UMGs contribute to

a more comprehensive understanding of breast cancer mechanisms.

Using propagated mutational score profiles, | dug further into the exploration of germline
and somatic interplay through a GWAS-based approach. This analysis revealed evidence that
germline genetics can influence the mutational pattern of specific DDR pathways,
highlighting the potential impact of individual genetic backgrounds on the activity and
stability of fundamental biological processes that are frequently dysregulated in cancer.
Notably, a substantial proportion of the identified GWAS-associated variants were known cis-
eQTLs of genes closely connected to oncogenes, tumor suppressor genes, or other cancer-
related genes. Furthermore, | identified functional links between specific associated variants
and their corresponding DDR pathway’s genes expression. The integration and analysis of
diverse matched omics data enabled the identification and functional characterization of
putative links between specific germline variants and the dysregulation of specific DDR
pathways. This integrative approach highlights the power of multi-omics analyses in

uncovering the complex genetic underpinnings of cancer.

Moving forward, it is important for future large-scale studies to continue exploring the
intricate links between germline genetics and somatic aberrations. This method is broadly
applicable to any cohort of cancer patients with the ultimate goal of identify robust cancer
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risk biomarkers in both pan-cancer and cancer-specific contexts, ultimately advancing our
understanding of cancer evolution and informing personalized prevention and treatment

strategies.

95



Conclusion and future directions

In the context of genetic research, GWAS studies have emerged as a powerful and widely
used methodology for detecting associations between phenotypes and genetic variants.
Through a significant increase in published GWAS results, the utility of this method in

advancing the understanding of complex disease genetics has become increasingly evident.

While GWAS has revolutionized the field, a critical challenge persists in the identification of
causal variants from these results. Several studies have explored approaches to address

these challenges, focusing on both data pre-processing and post-GWAS analyses.

Data pre-processing prior to GWAS analysis plays an important role in mitigating potential
biases and improving the accuracy of results. Factors such as non-random sampling and
population stratification can introduce biases and confound the identification of true genetic
associations. At the same time, post-GWAS analyses support the accurate identification of
causal variants and elucidate their potential mechanisms of action. The integration of
advanced pre-processing techniques and comprehensive post-GWAS analyses enhance the
understanding of genetics of complex diseases, contributing to more personalized

approaches in medicine and healthcare.

In this thesis, | have explored the intricate relationship between inherited genetic variation

and somatic events in adult cancer.

First, to elucidate the impact of genetic variations within biological systems, | developed
CONREL, a web-based tool for exploring transcriptional cis-regulatory elements and
understanding TF:DNA interactions using total binding affinities. This tool represents a
significant advancement in our ability to identify functional variants and comprehend their
potential effects on specific biological pathways. Furthermore, | explored and improved
EthSEQ, a tool to define ancestry structure within individuals. This analysis underscores the
critical importance of considering ancestry information in investigating disease mechanisms

and prediction of therapy responses.

In the main part of the thesis, | implemented a GWAS-based approach to explore how
germline genetics can influence the aberration of specific oncogenic signaling pathways. A
comprehensive post-GWAS integrative analysis has revealed that germline variants can
significantly impact the somatic evolution of tumors. Notably, a large fraction of the

associated SNPs was known cis-eQTLs of genes closely connected to oncogenes, tumor
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suppressor genes, or cancer-related genes. Moreover, integrating diverse matched omics
data, | identified functional links between specific GWAS-associated SNPs and the
dysregulation of oncogenic pathways. Extending upon this approach, | exploited the concept
of polygenic scores to investigate patients' genetic liability to develop specific molecular
profiles or particularly aggressive forms of cancer. This analysis demonstrated that an
individual's genetic background may influence the dysregulation of biological oncogenic

processes of specific tumor subtypes or particularly aggressive cancers.

Looking ahead, to identify cancer risk biomarkers, it is important for future large-scale
studies to further investigate the complex links between germline genetics and somatic
aberrations. In the last part of the thesis, | examined the method of network propagation.
This approach has been used to rank genes and amplify weak associations of genes with
phenotypes, offering a more comprehensive understanding of cancer mechanisms in specific
pathway potentially implicated in cancer. The application of network propagation in
combination with diverse matched omics data elucidated the power of multi-omics analyses
in unraveling the intricate genetic landscape of cancer. This integrative approach expanded
the list of potentially relevant genes in cancer, highlighting how genetic and molecular factors

interact to influence cancer development and progression.

The methodologies developed in this thesis have broad applicability across various cohorts
of cancer patients, with the ultimate goal of identifying robust cancer risk biomarkers in both
pan-cancer and cancer-specific contexts. These advancements have the potential to
significantly enhance the understanding of cancer evolution and inform personalized

prevention and treatment strategies.

This approach can be extended, and more recent deep learning methodologies can be
implemented to further enhance the integration and analysis of the diverse data utilized in
this research. During the past years, the field of genetic research has dramatically changed
with the introduction of deep learning methods. The use of deep learning techniques
demonstrated superior performance in handling complex datasets and analytical tasks. The
growing availability of combined high-dimension and multi-omics datasets enabled deep
learning to unprecedented predictive performance in resolving intricate biological problemes.
Deep learning often yields better performance than traditional approaches due to its ability
to scale with data size and model highly non-linear relationships. However, it is important to

consider the limitations of these methods, particularly in terms of interpretability. The "black
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box" nature of many deep learning models can make it challenging to understand the specific
factors driving their predictions. In a clinical setting, the ability to explain and interpret results
is crucial to driving decisions. To address this challenge, researchers are actively developing

methods to enhance the interpretability of DL models in biological contexts.

In the near future, the integration of network propagation techniques, multi-omics analysis,
and interpretable deep learning approaches will be central to explore the complex
relationships between genetic background and dysregulation of oncogenic biological
processes. This synergistic approach will potentially provide unprecedented understandings

into cancer biology, underlying tumor initiation, progression, and treatment response.
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