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Abstract: We define a strict deformation quantization which is compatible with any
Hamiltonian with local spin interaction (e.g. the Heisenberg Hamiltonian) for a spin
chain. This is a generalization of previous results known for mean-field theories. The
main idea is to study the asymptotic properties of a suitably defined algebra of se-
quences invariant under the group generated by a cyclic permutation. Our point of view
is similar to the one adopted by Landsman, Moretti and van de Ven (Rev Math Phys
32(10):2050031, 2020, https://doi.org/10.1142/S0129055X20500312), who considered
a strict deformation quantization for the case of mean-field theories. However, the meth-
ods for a local spin interaction are considerably more involved, due to the presence of a
strictly smaller symmetry group.
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3.3 The Poisson structure of [B]∞γ . . . . . . . . . . . . . . . . . . . . .

A. Characterization of ˜B-Irreducible Elements . . . . . . . . . . . . . . . . .

1. Introduction

In this paper we provide a rigorous C∗-algebraic framework for the study of the semi-
classical properties of any Hamiltonian with local spin interaction for a spin chain. This
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covers, for example, the Heisenberg Hamiltonian. This result is achieved by means of
a suitable strict deformation quantization, whose construction is the main result of this
paper—cf. Theorem 24.

Strict deformation quantization originates with Berezin [3] and Bayen et al. [1,2] and
it is based on the idea of “deforming” a given commutative Poisson algebra represent-
ing a classical system into a given non-commutative algebra modelling the associated
quantized system. In Rieffel’s approach [17] the deformed algebras are C∗-algebras.

Notably, the “classical-to-quantum” interpretation of a strict deformation quantiza-
tion is not the unique point of view which can be taken. In Landsman’s approach [10,11]
the starting point of a strict deformation quantization is often taken to be a continu-
ous field of C∗-algebras. The latter models an increasingly larger sequence of quantum
physical systems, whose limit defines a macroscopic classical theory. The advantage of
this point of view is that it leads to a rigorous notion of the classical limit of quantum
theories [11]. This in turn yields a mathematically sound description of several physi-
cally interesting emergent phenomena, e.g. symmetry breaking [14,18,19]. This paper
is considering this “micro-to-macro” point of view on strict deformation quantization.

From a technical point of view a strict deformation quantization is defined by the
following data:

1. A commutative Poisson C∗-algebra A∞, namely a commutative C∗-algebra A∞
equipped with a Poisson structure { , } : ˜A∞ × ˜A∞ → ˜A∞ defined on a dense
∗-subalgebra ˜A∞ ⊆ A∞—cf. Sect. 3.3.

2. A continuous bundle of C∗-algebras [7]
∏

N∈NAN , where N = N∪{∞}; (Thorough
the whole paper we will stick to the case of continuous bundle of C∗-algebras over
N, see [11] for the generic case.)

3. A family of linear maps, called quantization maps, QN : ˜A∞ → AN , N ∈ N, such
that

(a) Q∞ = Id
˜A∞ and QN (a)∗ = QN (a∗) for all a ∈ ˜A∞. Moreover, the assignment

N � N 	→ QN (a) ∈ AN ,

defines a continuous section of the bundle
∏

N∈NAN .
(b) For all a, a′ ∈ ˜A∞ it holds

lim
N→∞ ‖QN ({a, a′}) − i N [QN (a), QN (a′)]‖AN = 0 . (1)

(c) For all N ∈ N, QN ( ˜A∞) is a dense ∗-subalgebra of AN .

The algebra A∞ represents the classical (macroscopic) observables of the physical sys-
tem. Likewise, the fibers AN , N ∈ N, of the bundle

∏

N∈NAN recollect the quantum
observables of the (increasingly larger) quantum system.

A relevant example is the strict deformation quantization described in [12,16] for
the C∗-algebra [B]∞π of (equivalence classes of) symmetric sequences—cf. Sect. 2 for
further details. In this scenario the role of the commutative C∗-algebra A∞ is played by
[B]∞π = C(S(B))—here B = Mκ(C), κ ∈ N, while S(B) denotes the states space over
B. The continuous bundle of C∗-algebras

∏

N∈N BN
π is such that, for N ∈ N, BN

π ⊆ BN

is the N -th symmetric tensor product of B.
From a physical point of view the ensuing quantization maps QN are of particular

interest as they relate to mean-field theories like the Curie-Weiss model [9, §2], for which
the interaction between N spin sites is described by
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Hcw,N := − J

2N

N
∑

j1+ j2=N−2

I j1 ⊗ σ3 ⊗ I j2 ⊗ σ3 − h
N−1
∑

j=1

I N−1− j ⊗ σ1 ⊗ I j , (2)

where σ3, σ1 ∈ M2(C) denote the Pauli’s matrices while I ∈ M2(C) is the identity
matrix and I j := I⊗ j . Here J ∈ R represents the strength of the spin interaction
whereas h ∈ R models an external magnetic field acting on the system. As observed in
[12] one may recognize that

Hcw,N/N = QN (hcw) + RN ,

where hcw ∈ C(S(B)) while RN ∈ BN
π is such that ‖RN‖N = O(1/N ).

The physical interpretation is that C(S(B)) is the algebra containing macroscopic
observables, i.e. observables of an infinite quantum system describing classical ther-
modynamics as a limit of quantum statistical mechanics. This has furthermore led to a
significant contribution in the study of the classical limit of ground states [12–14,18].
More precisely, in such works a mathematically rigorous description of the limit of
ground states ωN of Hcw,N in the regime of large particles N → ∞ is given. In par-
ticular, a classical counterpart ω∞ (i.e. a probability measure) of the quantum ground
state ωN ∈ S(BN

π ) is constructed with the property that ω∞(a) := lim
N→∞ ωN (QN (a))

for all a ∈ C(S(B)). Additionally, this algebraic approach has revealed the existence of
several physical emergent phenomena, see [19] for an overview. These results are consis-
tent with the point of view of [11]—which is also the one considered in this paper—for
which a quantum theory is pre-existing and the classical limit is computed in a second
step, not vice versa.

As characteristic for mean-field models, the Curie-Weiss Hamiltonian describes the
energy of a system of N spin sites under the assumption that the interaction is non-local,
namely that every spin site interacts with all other spin site. This leads to interesting
results, but it is ultimately an approximation as one would rather expect each spin site to
interact with finitely many neighbouring spin sites. An exemplary model based on such
a local interaction is the celebrated quantum Heisenberg Hamiltonian (for a spin chain)
[6, §6.2]

HHe,N := −
N−1
∑

j=0

I N−2− j ⊗
3

∑

p,q=1

J pqσp ⊗ σq ⊗ I j −
N−1
∑

j=0

I N−1− j ⊗
3

∑

p=1

h pσp ⊗ I j ,

(3)

where J pq is the symmetric matrix describing the spin interaction while h p are the
components of an external magnetic field—here for j = N − 1 the contribution in the

first sum reads
3
∑

p,q=1
J pqσq ⊗ I N−2 ⊗ σp. For this model the interaction is restricted to

two neighbouring sites.
Similarly to what happens with mean-field models one may wonder whether there

exists a strict deformation quantization of a suitable C∗-algebra such that

HHe,N/N = QN (hHe) + O(1/N ) .

The purpose of this paper is to prove that this is in fact the case, cf. Theorem 24. In [15]
a different (though similar in spirit) point of view is taken, and a strict deformation is
considered such that HHe,N = Qκ(hHe,N )+O(1/κ) where the semi-classical parameter
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κ corresponds to the increasing dimension of the single site algebra B = Mκ(C) for a
fixed number N of lattice sites. In contrast, this paper deals with an arbitrary but fixed
dimension κ ∈ N considering instead the increasing number N of spin sites as the
semi-classical parameter.

Our result is particularly relevant because it provides an excellent basis for studying
the classical limit of local quantum spin systems. Similarly to the case of mean-field
theories [12,14,18,19], one may now consider a rigorous C∗-algebraic formalization of
the limit of ground states or Gibbs states [8,9]. The latter can be used for the study of
spontaneous symmetry breaking and phase transitions in realistic models such as the
Heisenberg model.

From a technical point of view, the methods of this paper profit of those of [12,16]
for mean-field models. Nevertheless the results obtained therein do not apply straight
away to our case. As a matter of fact the strict deformation quantization for mean-field
models (like the Curie-Weiss Hamiltonian) profits of:

1. A large symmetry group, that is, mean-field models are symmetric under the permu-
tation group SN of all N spin sites. This leads to a high symmetry property which
can be exploited in several steps of the construction, cf. [12,16].

2. A fairly explicit description of the classical algebra [B]∞π = C(S(B)). One may
define [B]∞π in terms of equivalence classes of “symmetric sequences”—cf. Remark
3— but the description in terms of C(S(B)) simplifies the discussion, e.g. it allows
to identify a Poisson structure in a rather direct way.

Contrary to this case, local quantum spin Hamiltonians (e.g. the Heisenberg model
defined in (3)) are invariant under the strictly smaller subgroup generated by a fixed
cyclic permutation of N objects. This spoils the possibility of applying the arguments
of [12,16]. The latter have to be reconsidered to take into account the smaller symmetry
group. Moreover, the classical algebra [B]∞γ for such models does not have a “simple”
explicit description. As a matter of fact, [B]∞γ is defined as the C∗-algebra generated by
(equivalence classes of) “γ -sequences”—cf. Definition 5. Nevertheless it is still possible
to prove all properties of [B]∞γ relevant for the discussion of its strict deformation
quantization.

The paper is structured as follows. In Sect. 2 we introduce the notion of “γ -sequences”—
cf. Definition 2—and discuss their properties. The main result in this section is the proof
that the C∗-algebra [B]∞γ generated by (equivalence classes of) γ -sequences is a com-
mutative C∗-algebra. The latter will play the role of the classical algebra A∞ for which
we will present a strict deformation quantization.

In Sect. 3 we state and prove the main theorem of this paper, which provides a strict
deformation quantization of the commutative C∗-algebra [B]∞γ . To this avail, Sect. 3.1
is devoted to prove Proposition 12 which provides the continuous bundle of C∗-algebra
[B]γ needed in the formulation of Theorem 24. The main technical hurdle of this sec-
tion is to prove that, given a γ -sequence (aN )N , the sequence of the norms (‖aN‖N )N
is convergent. While this is straightforward for symmetric sequences (i.e. those used
when dealing with mean-field models) for γ -sequences this is non-trivial and has to
be discussed carefully. Sections 3.2–3.3 discuss further relevant properties of (equiva-
lence classes of) γ -sequences as well as the Poisson structure on the C∗-algebra [B]∞γ .
Eventually Theorem 24 is proved by recollecting all results from the previous sections.

For the sake of clarity the following theorem recollects in a concise fashion the content
of the main Theorem 24 together with the other relevant results of the paper.
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Theorem 1 (main results). The algebra [B]∞γ := [Ḃ]∞γ of equivalence classes of γ -
sequences—cf. Definitions 2–5—is a commutative C∗-algebra which is also endowed
with a Poisson structure {, }γ—cf. Propositions 6–22.

Moreover, the data [B]∞γ and BN
γ := γ N (BN )—cf. Eq. (7)—define a continuous

bundle [B]γ of C∗-algebras—cf. Proposition 12.
Finally, there exists a family of quantization maps QN : [Ḃ]∞γ → [B]Nγ , N ∈ N

such that the data [B]∞γ , [B]γ , {QN }N∈N define a strict deformation quantization—cf.
Theorem 24.

2. The Algebra of γ -Sequences

2.1. Definition of γ -sequences. In this section we will introduce γ -sequences and dis-
cuss their properties.

To fix some notations, let κ ∈ N and set B := Mκ(C). For the sake of simplicity we
shall denote by BN := B⊗N , where N ∈ N, with the convention that B0 = C. The state
space over BN will be denoted by S(BN ): Given η ∈ S(B) we set ηN := η⊗N ∈ S(BN ).
Whenever needed we will denote N = N ∪ {∞}.

Following [12] we denote by I, b1, . . . , bκ2−1, I ∈ B being the identity matrix, a
basis of B (as a R-vector space) abiding by the requirements

tr(b j ) = 0, b∗
j = b j , [b j , b�] = icmj�bm, ∀ j, � = 1, . . . , κ2 − 1 . (4)

where cmj� denotes the structure constants of su(κ). In the particular case κ = 2 we may
choose b j = σ j/2 while cmj� = ε j�sδ

sm , εi jk being the Levi-Civita symbol. We will

denote by ˜B the vector space generated by {b j }κ2−1
j=1 . The latter corresponds to the ker τ ,

being τ : B → C the normalized trace defined by τ(a) := tr(a)/κ .
We then consider the linear operator (left-shift operator) γN : BN → BN uniquely

defined by continuous and linear extension of the following map defined on elementary
tensors1

γN (a(1) ⊗ · · · ⊗ a(N )) := a(2) ⊗ · · · ⊗ a(N ) ⊗ a(1) a(1), . . . , a(N ) ∈ B . (5)

The operator γN is an algebra endomorphism, moreover, γ N
N = IdB , IdB : B → B

being the identity operator. We denote by γ N : BN → BN the averaged γN operator,
defined by

γ N := 1

N

N−1
∑

j=0

γ
j
N . (6)

Clearly γN ◦ γ N = γ N = γ N ◦ γN : We denote by

BN
γ := γ N (BN ), (7)

the C∗-subalgebra of BN made by γN -invariant elements.
Through this paper we will mostly consider sequences (aN )N = (aN )N∈N with

aN ∈ BN for all N ∈ N. A sequence (aN )N≥K will be implicitly extended to (a′
N )N∈N

where a′
N = aN for N ≥ K and a′

N = 0 for N < K .

1 In the forthcoming discussion we will use the notation aN to denote an element aN ∈ BN . When we will
need to use a subindex without necessarily stating the degree of the element we will use the notation a(k) so

that a(k) ∈ BM(k), M(k) ∈ N.
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Definition 2. A sequence (aN )N is called γ -sequence if there exists M ∈ N and aM ∈
BM such that

aN = γ M
N aM :=

{

γ N (I N−M ⊗ aM ) N ≥ M
0 N < M

. (8)

where I ∈ B denotes the identity of B and I N = I⊗N .

Remark 3.

(i) For fixed N , M ∈ N, N ≥ M , γ M
N : BM → BN

γ is a linear operator with operator

norm smaller than 1. This implies that, (γ M
N aM )N is bounded with

‖(γ M
N aM )N‖∞ := sup

N∈N
‖γ M

N aM‖N ≤ ‖aM‖M ,

where ‖ ‖M denotes the norm on BM .
(ii) It is worth comparing our construction with the one presented in the literature

[11,12,16], based on symmetric sequences. We stress that the latter are exploited to
deal with the Curie-Weiss Hamiltonian—or more generally with mean-field theories
[11, §10]— which prescribe a non-local interaction between spin sites. On the other
hand we are interested in models compatible with Hamiltonian describing a local
interaction between spin sites—e.g. the Heisenberg Hamiltonian, cf. Remark 4. To
describe the non-local interaction algebraically one considers the symmetrization
operator SN : BN → BN defined by continuous and linear extension of

SN (a(1) ⊗ · · · ⊗ a(N )) := 1

N !
∑

ς∈SN

a(ς(1)) ⊗ · · · ⊗ a(ς(N )) a(1), . . . , a(N ) ∈ B,

where SN is the set of permutation of N objects [11,16]. Considering the C∗-
subalgebra BN

π := SN BN ⊂ BN one then defines a symmetric-sequence (shortly,
π -sequence) to be a sequence (aN )N such that there exists M ∈ N and aM ∈ BM

π

fulfilling

(aN )N = (πM
N aM )N := (SN (I N−M ⊗ aM ))N≥M .

One immediately sees the relation with Definition 2: Actually a γ -sequence is
defined in a way similar to π -sequences but averaging over a strictly smaller sub-
group of SN . In fact γ -sequences and π -sequences share many similar properties,
although π -sequences are generally speaking better behaved.

2.2. Asymptotic properties of γ -sequences. In what follows we will be mainly interested
in the asymptotic behaviour as N → ∞ of the sequences under investigations. For this
reason, following [16], we introduce the ∼-equivalence relation

(aN )N ∼ (bN )N ⇐⇒ lim
N→∞ ‖aN − bN‖N = 0 . (9)
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For a given sequence (aN )N we will denoted by [aN ]N := [(aN )N ] the corresponding
equivalence class with respect to (9). The ∼-equivalence relation (9) has a nice interplay
with the full C∗-product

∏

N∈N BN defined by
∏

N∈N
BN := {(aN )N | (‖aN‖N )N ∈ �∞(N)} . (10)

As it is well-known [4]
∏

N∈N BN is aC∗-algebra with respect to sup norm‖(aN )N‖∞ :=
sup
N∈N

‖aN‖N . Moreover, the direct C∗-sum

⊕

N∈N
BN := {(aN )N ∈

∏

N∈N
BN | lim

N→∞ ‖aN‖N = 0}, (11)

is a closed two-sided ideal in
∏

N∈N BN and thus we may consider the quotient

[B]∼ :=
∏

N∈N
BN/

⊕

N∈N
BN , (12)

which is nothing but the space of ∼-equivalence classes [aN ]N for bounded sequences
(aN )N . Importantly, [B]∼ is a C∗-algebra with norm

‖[aN ]N‖[B]∼ = lim sup
N→∞

‖aN‖N . (13)

Remark 4. (i) Since both γ - and π -sequences are bounded—cf. Remark 3-(i)—they lead
to well-defined elements [γ M

N aM ]N , [πM
N aM ]N ∈ [B]∼. One may wonder whether

[γ M
N aM ]N = [0]N for a non-zero aM ∈ BM . This is in fact possible, but we postpone

this discussion to Sect. 3.2 where we will prove that, for a given equivalence class
[γ M

N aM ]N it is possible to extract a “canonical representative”—cf. Definition 16—
with the property that [γ M

N aM ]N = [0]N if and only if the canonical representative
vanishes—cf. Proposition 18.

(ii) With reference to Eq. (3) we have (considering κ = 2)

1

N
HHe,N = γ 2

N

( 3
∑

p,q=1

J pqσp ⊗ σq

)

+ γ 1
N

( 3
∑

p=1

h pσp

)

,

showing the relation between γ -sequences and the Heisenberg Hamiltonian. Simi-
larly, as discussed in [12], Eq. (2) leads to

1

N
Hcw,N = −π2

N (Jσ3 ⊗ σ3) + π1
N (hσ1) + O(1/N ),

showing that (Hcw,N/N )N≥1 is equivalent to a π -sequence. At this stage it is
worth observing that γ -sequences model an arbitrary Hamiltonian with local spin
interaction. We say that HN ∈ BN

γ is a (translation invariant) Hamiltonian with
local spin interaction if and only if

HN =
∑

|i− j |≤�

3
∑

p,q=1

J pqσp(i)σq( j) +
N

∑

i=1

3
∑

p=1

h pσp(i), (14)
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were σp(i)σq( j) is a short notation for I i−1 ⊗ σp ⊗ I j−i−1 ⊗ σq ⊗ I N−i− j and
similarly σp(i) = I i−1⊗σp⊗ I N−i . The parameter � ∈ N determines the number of
spin sites which interact with a fixed spin site i—e.g. for the Heisenberg Hamiltonian
� = 1. The strength of the interaction and of the external magnetic field is determined
by J pq , h p. Notice that the latter do not depend on the spin site: This entails that
we are considering translation invariant local spin interactions. Any Hamiltonian
HN as per Eq. (14) leads to a γ -sequences as per Definition (2). Indeed, we have

HN/N =
�−1
∑

m=0

γ 2+m
N

( 3
∑

p,q=1

J pqσp ⊗ Im ⊗ σq

)

+ γ 1
N

( 3
∑

p=1

h pσp

)

.

(iii) The ∼-equivalence relation (9) provides a first example showing the different be-
haviour of γ -sequences with respect to π -sequences. To this avail, let aM ∈ BM

π and
let us consider the π -sequence (πM

N aM )N . By direct inspection one immediately
sees that, for all N ′ ≥ N ≥ M

πN
N ′πM

N aM = SN ′
[

I N
′−N ⊗ SN (I N−M ⊗ aM )

]

= πM
N ′aM ,

which shows that the family of maps πM
N : BM

π → BN
π is “consistent”, namely

πN
N ′ ◦ πM

N = πM
N ′ . The same property does not apply for γ -sequences, but it holds

only asymptotically. Indeed for aM ∈ BM one has, for N ≥ M ,

γ M
N aM = 1

N

N−M
∑

j=0

γ
j
N (I N−M ⊗ aM ) + RN

= 1

N

N−M
∑

j=0

I N−M− j ⊗ aM ⊗ I j + RN , ‖RN‖N ≤ M − 1

N
‖aM‖M .

It then follows that

γ N
N ′γ M

N aM = γ N
N ′

[

1

N

N−M
∑

j=0

I N−M− j ⊗ aM ⊗ I j
]

+ γ N
N ′ RN = γ M

N ′aM + R′
N ′ ,

where we used the γ -invariance while

‖R′
N ′ ‖N ′ =

∥

∥

∥

∥

γ N
N ′ RN − M − 1

N
γ M
N ′aM

∥

∥

∥

∥

N ′
≤ ‖RN‖N +

M − 1

N
‖aM‖M = O(1/N ) .

This shows that, although γ N
N ′ ◦ γ M

N �= γ M
N ′ one still has

lim
N→∞ ‖[γ N

N ′γ M
N aM ]N ′ − [γ M

N ′aM ]N ′ ‖B∼ = 0 . (15)

As we shall see, naively speaking most the results obtained for π -sequences holds
true also for γ -sequences but only asymptotically—in the sense of relation (9).
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2.3. The algebra generated by γ -sequences. In what follows we will consider the ∗-
algebra Ḃ∞

γ ⊂ ∏

N∈N BN generated byγ -sequences together with its projection [Ḃ]∞γ ⊂
[B]∼. As we will see, the latter algebra enjoys remarkable properties, in particular, it
can be completed to a commutative C∗-algebra [B]∞γ .

Definition 5. Let Ḃ∞
γ be the ∗-algebra generated by γ -sequences—cf. Definition 2. We

denote by [Ḃ]∞γ ⊂ [B]∼ the projection of Ḃ∞
γ in [B]∼, that is, [Ḃ]∞γ is the ∗-algebra

generated by equivalence classes of γ -sequences. Thus, [aN ]N ∈ [Ḃ]∞γ if and only if

[aN ]N =
∑

�,k1,...,k�

ck1...k� [γ M(k1)
N (a(k1))...γ

M(k�)
N (a(k�))]N ,

where a(k j ) ∈ BM(k j ) while the sum over �, k1, . . . , k� is finite. We denote by [B]∞γ :=
[Ḃ]∞γ the closure of [Ḃ]∞γ in [B]∼, that is, the C∗-algebra generated by equivalence
classes of γ -sequences. To wit, an equivalence class [aN ]N belongs to [B]∞γ if and only

if for all ε > 0 there exists Nε ∈ N and [a′
N ]N ∈ [Ḃ]∞γ such that ‖aN − a′

N‖N < ε for
all N ≥ Nε.

Proposition 6. Let aM1 , . . . , aM�
, � ∈ N, be such that aMj ∈ BMj , j = 1, . . . , �. Then:

[γ M1
N (aM1)...γ

M�

N (aM�
)]N =

[

γ N

(

1

N �−1

∑

| j |�=N−|M|�
I j1 ⊗ aM1 ⊗ · · · ⊗ I j� ⊗ aM�

)]

N
,

(16)

where | j |� := j1 + · · · + j�, |M |� = M1 + · · · + M� is a short notation while

I j1 ⊗ aM1 ⊗ · · · ⊗ I j� ⊗ aM�
:= 1

�

∑

ς∈S�

I j1 ⊗ aMς(1)
⊗ · · · ⊗ I j� ⊗ aMς(�)

, (17)

denotes “total weighted symmetrization” over the factor aM1 , . . . , aM�
2. In particular

[B]∞γ is a commutative C∗-subalgebra of [B]∼.

Proof. Let aM1 ∈ BM1 , . . . , aM�
∈ BM� , � ∈ N. We will prove that, for N large enough,

γ
M1
N (aM1)...γ

M�

N (aM�
) = γ N

(

1

N �−1

∑

| j |�=N−|M|�
I j1 ⊗ aM1 ⊗ · · · ⊗ I j� ⊗ aM�

)

+ RN ,

(18)

where RN ∈ BN is such that ‖RN‖N = O(1/N ). On account of (9) this implies Eq. (16).
We proceed by induction over � ∈ N. For � = 1 the right-hand side of Eq. (18)

reduces to γ M
N aM + RN so that we may choose RN = 0. For � = 2 we find, for N large

enough (say, N ≥ 2(M1 + M2)),

2 For example I j1 ⊗ aM1 ⊗ I j2 ⊗ aM2 = (I j1 ⊗ aM1 ⊗ I j2 ⊗ aM2 + I j1 ⊗ aM2 ⊗ I j2 ⊗ aM1 )/2.
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γ
M1
N (aM1)γ

M2
N (aM2) = γ N

(

(

I N−M1 ⊗ aM1

)

γ N (I N−M2 ⊗ aM2)

)

= γ N

(

(

I N−M1 ⊗ aM1

) 1

N

N−1
∑

j=0

γ
j
N (I N−M2 ⊗ aM2)

)

= γ N

(

(

I N−M1 ⊗ aM1

) 1

N

N−M2−1
∑

j=M1

γ
j
N (I N−M2 ⊗ aM2)

)

+ RN

= γ N

(

1

N

∑

j1+ j2=N−M1−M2

I j2 ⊗ aM2 ⊗ I j1 ⊗ aM1

)

+ RN ,

= γ N

(

1

N

∑

j1+ j2=N−M1−M2

I j2 ⊗ aM2 ⊗ I j1 ⊗ aM1

)

+ RN ,

where in the last line we used the symmetry of j1, j2 as well as the γN -invariance of the
whole term. The remainder RN coincides with

‖RN‖N =
∥

∥

∥

∥

γ N

(

(I N−M1 ⊗ aM1)
1

N

∑

j∈{0,...,M1−1}
∪{N−M2,...,N−1}

γ
j
N (I N−M2 ⊗ aM2)

)∥

∥

∥

∥

N
≤ CM1,M2

N
,

whereCM1,M2 > 0 is a constant depending on aM1 , aM2 . Roughly speaking, we removed
the values of j for which aM1 and aM2 have "overlapping positions". This happens in
M1 + M2 cases, whose fraction vanishes as N → ∞.

This proves Eq. (18) for � = 2. Proceeding by induction on �, we now assume that
Eq. (18) holds for all �′ < � and prove it for �. To this avail we consider, for N ≥ 2|M |�,

γ
M1
N (aM1)...γ

M�

N (aM�
)

= γ N

(

1

N �−2

∑

| j |�−1=N−|M|�−1

I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1

)

γ
M�

N (aM�
)

+RNγ
M�

N (aM�
)

= γ N

(

1

N �−2

∑

| j |�−1=N−|M|�−1

(I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1)γ
M�

N (aM�
)

)

+ R′
N ,

where ‖R′
N‖N ≤ ‖RN‖N‖aM�

‖ = O(1/N ). Thus, we focus on

γ N

(

1

N �−2 (I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1)γ
M�

N (aM�
)

)

= γ N

(

1

N �−1 (I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1)

N−1
∑

j�=0

γ
j�
N (I N−M� ⊗ aM�

)

)

,

where j1, . . . , j�−1 are such that | j |�−1 = N − |M |�−1. We now proceed as in the case
� = 2 by considering only those values j� for which the position of aM�

“overlaps” with
the ones of I j1, . . . , I j� and not with those of aM1 , . . . , aM�−1 . Notice that, in focusing



Strict Deformation Quantization Page 11 of 35    14 

only on these j�’s we are neglecting a contribution R′′
N with ‖R′′

N‖N = O(1/N ). We
obtain

γ N

(

1

N �−1 (I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1 )

N−1
∑

j�=0

γ
j�
N (I N−M� ⊗ aM�

)

)

= γ N

(

1

N �−1

j1−M�
∑

h1=0

I h1 ⊗ aM�
⊗ I j1−M�−h1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1

)

+ · · · + γ N

(

1

N �−1 I
j1 ⊗ aM1 ⊗ · · · ⊗

∑

0≤h�−1≤ j�−M�

I h�−1 ⊗ aM�
⊗ I j�−1−M�−h�−1 ⊗ aM�−1

)

+ R′′
N ,

(19)

where ‖R′′
N‖N = O(1/N ) while the sum over the h p is empty if jp < M�—notice that

at least one of these sums is not empty if N is large enough. Notice that each of the �−1
sets of � indexes

{h1, j1 − M� − h1, j2, . . . , j�−1}, { j1, h2, j2 − M� − h2, j3, . . . , j�−1},
. . . { j1, . . . , j�−2, h�−1, j�−1 + M� − h�−1}.

is such that its elements sum to N − |M |�. Considering now the summation over
j1, . . . , j�−1 and using the γN -invariance each subset of indexes provides the same
contribution. We are lead to

γ N

(

1

N �−2

∑

| j |�−1=N−|M|�−1

(I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1)γ
M�

N (aM�
)

)

= γ N

(

� − 1

N �−1

∑

| j |�=N−|M|�
I j1 ⊗ aM1 ⊗ · · · ⊗ I j�−1 ⊗ aM�−1 ⊗ I j� ⊗ aM�

)

+ R′′
N ,

= γ N

(

1

N �−1

∑

| j |�=N−|M|�
I j1 ⊗ aM1 ⊗ · · · ⊗ I j� ⊗ aM�

)

+ R′′
N ,

where in the last line we used that for all ς ∈ S� there are � permutations which are
equivalent to ς up to a cyclic permutation. Indeed, for any permutation of aM1 , . . . , aM�

we may use the γN -invariance to write the corresponding contribution fixing the position
of the factor aM�

. This boils down to a permutation of aM1 , . . . , aM�−1 which is repeated
� times.

By induction this proves Eq. (18) for all � ∈ N and thus Eq. (16). ��
Remark 7. (i) The appearance of the total weighted symmetrization (17) ensures that,

when aMj = I M j for all j ∈ {1, . . . , �}, the right-hand side of Eq. (16) coincides

with [I N ]N . This is related to the fact that 1
N �−1

∑

| j |�=N−|M|� = (�− 1)! + O(1/N ).
(ii) A closer inspection to the remainder term RN of Eq. (18) reveals that

∥

∥[RN , γ
M ′

1
N (aM ′

1
) . . . γ

M ′
�′

N (aM ′
�′
)]∥∥N = O(1/N 2), (20)

for all �′, M ′
1, . . . , M

′
�′ ∈ N, and aM ∈ BM . Roughly speaking, the reason for this is

due to the estimate ‖RN‖N = O(1/N ) together with the fact that both (RN )N and
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(γ
M ′

1
N aM ′

1
. . . γ

M ′
�′aM ′

�′
)N are sequences with "an increasing number of identities".

In more details, Eq. (18) implies

γ
M ′

1
N (aM ′

1
) . . . γ

M ′
�′ (aM ′

�′
) = 1

N �′−1

∑

| j |�′=N−|M ′ |�′
γ N (I j1 ⊗ aM ′

1
⊗ · · · ⊗ I j�′ ⊗ aM ′

�′
) + R′

N ,

where ‖R′
N‖N = O(1/N ). This implies

[RN , γ
M ′

1
N (aM ′

1
) . . . γ

M ′
�′

N (aM ′
�′
)] = [RN , R′

N ]

+

[

RN ,
1

N �′−1

∑

| j |�′=N−|M ′|�′
γ N (I j1 ⊗ aM ′

1
⊗ · · · ⊗ I j�′ ⊗ aM ′

�′
)

]

.

The first contribution is estimated by ‖[RN , R′
N ]‖N = O(1/N 2) while for the

second contribution we have
∥

∥

∥

∥

[

RN ,
1

N �′−1

∑

| j |�′=N−|M ′|�′
γ N (I j1 ⊗ aM ′

1
⊗ · · · ⊗ I j�′ ⊗ aM ′

�′
)

]∥

∥

∥

∥

≤ 1

N

N−1
∑

p=0

∥

∥

∥

∥

[

RN ,
1

N �′−1

∑

| j |�′=N−|M ′|�′
γ
p
N (I j1 ⊗ aM ′

1
⊗ · · · ⊗ I j�′ ⊗ aM ′

�′
)

]∥

∥

∥

∥

≤ L

N 2CM1,...,M�′ .

where CM1,...,M�′ > 0 does not depend on N . In the last inequality we used the
estimate ‖RN‖N = O(1/N ) and that, on account of the structure of RN—cf. the
proof of Proposition 6—and of I j1 ⊗ aM ′

1
⊗ · · · ⊗ I j�′ ⊗ aM ′

�′
, the sum over p

is non-vanishing for finitely many values, say L , where L is N -independent. This
proves Eq. (20).

(iii) In complete analogy with Definition 5 one may introduce the C∗-algebra [B]∞π ⊂
[B]∼ generated by equivalence classes of π -sequences [16, Def. II.1]. Moreover,
as shown in [11,12,16], for any aM ∈ BM

π and aM ′ ∈ BM ′
π one finds

[πM
N (aM )πM ′

N (aM ′)]N = [πM+M ′
N (SM+M ′(aM ⊗ aM ′))]N , (21)

which shows that also [B]∞π is a commutative C∗-algebra. In fact, the product
of π -sequences is (asymptotically as N → ∞) a π -sequence. Additionally, one
may prove that the system {BN

π }N∈N, {πM
N }N≥M is a generalized inductive system

[4,5]. This streamlines the identification of a bundle of C∗-algebras
∏

N∈N BN
π out

of which a strict deformation quantization can be constructed [12,16]. The situa-
tion for γ -sequences is slightly different. Indeed, Eq. (16) shows that the product
of γ -sequences is not a γ -sequence, even if its ∼-equivalence class is considered.
Nevertheless, Eq. (16) shows that the product of equivalence classes of γ -sequences
is commutative. As we shall see in Sect. 3.1 this will be enough to identify a continu-
ous bundle ofC∗-algebras

∏

N∈N BN
γ out of which a strict deformation quantization

is obtained. Finally it is worth observing that, for all a ∈ B, one finds γ 1
Na = π1

Na
so that, given the results of [12,16], [B]∞π ⊆ [B]∞γ .
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(iv) By standard Gelfand duality [4, § II.2] we find

[B]∞γ � C(K ([B]∞γ )),

where K ([B]∞γ ) denotes the character space over [B]∞γ . An element ϕ ∈ K ([B]∞γ )

is completely characterized by

ϕM (aM ) := ϕ([γ M
N aM ]N ), aM ∈ BM ,

which identifies a sequence {ϕM }M∈N of states with ϕM ∈ S(BM ). These states are
“asymptotically equivalent” because of Eq. (15). Indeed considering γ M

N : BM →
BN

γ , γ M
N aM = γ N (I N−M ⊗ aM ), we find

lim
N→∞(ϕN ◦ γ M

N )(aM ) = lim
N→∞ ϕ

(

[γ N
N ′γ M

N aM ]N ′
)

= ϕ
(

[γ M
N ′aM ]N ′

)

= ϕM (aM ) .

A similar argument goes for [B]∞π , where K ([B]∞π ) can be explicitly characterized.
In particular K ([B]∞π ) � S(B) [16, Lem. IV.4]. This identification may also be seen
as a consequence of the prominent quantum De Finetti Theorem [11, Thm. 8.9]. As
shown in [12], S(B) is a stratified manifold which carries a Poisson structure.

3. Strict Deformation Quantization of γ -Sequences

The goal of this section is to construct a strict deformation quantization of the commuta-
tive algebra [B]∞γ . To this avail in Sect. 3.1 we will identity a suitable continuous bundle
of C∗-algebras [B]γ by means of a standard construction [10,11]. In Sect. 3.2 we will
introduce the notion of "canonical representative" for an element [aN ]N ∈ [Ḃ]∞γ —cf.
Definitions 16–19. Eventually, in Sect. 3.3 will show that [B]∞γ carries a Poisson struc-
ture and we will prove Theorem 24, which provides the strict deformation quantization
of [B]∞γ .

3.1. The continuous bundle of C∗-algebras [B]γ associated with [B]∞γ . In this section

we will define a continuous bundle of C∗-algebras [B]γ over N = N∪{∞} whose fibers
are [B]Nγ := BN

γ for N ∈ N and [B]∞γ , defined as per Definition 5, for N = ∞.
To this avail we briefly recall the main definitions and results we need—cf. [11, App.

C.19], [4, §IV.1.6]. We denote by C(N) the space of C-valued sequences (αN )N∈N such
that α∞ := lim

N→∞ αN ∈ C exists. A continuous bundle (or field) of C∗-algebras over

N is a tripleA, {AN }N∈N, {ψN }N∈N made byC∗-algebrasA,AN , N ∈ N, and surjective
homomorphisms ψN : A → AN such that:

(i) The norm of A is given by ‖a‖A := sup
N∈N

‖ψN (a)‖AN ;

(ii) For all α = (αN )N∈N ∈ C(N) and a ∈ A there exists a αa ∈ A with the property
that ψN (αa) = αNψN (a).

(iii) For all a ∈ A, (‖ψN (a)‖AN )N∈N ∈ C(N).
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A continuous section of A is an element a ∈ ∏

N∈NAN such that there exists a′ ∈ A
fulfilling aN = ψN (a′) for all N ∈ N. Clearly A can be identified with its continuous
sections, therefore, in the forthcoming discussion we shall always regard a ∈ A as an
element a ∈ ∏

N∈NAN . For this reason from now on we will implicitly identify ψN ,
N ∈ N, with the projection

∏

N∈NAN → AN .

Remark 8. In applications, it is often difficult to identity a continuous bundle of C∗-
algebras by assigning the triple A, {AN }N∈N, {ψN }N∈N directly. However, a useful
result—cf. [10, Prop. 1.2.3], [11, Prop. C.124]—shows that it is in fact sufficient to iden-
tify a dense set of (a posteriori) continuous sections of A. Actually, let ˜A ⊆ ∏

N∈NAN
be such that:

1. For all N ∈ N the set {aN | a ∈ ˜A} is dense in AN ;
2. ˜A is a ∗-algebra;
3. For all ã ∈ ˜A, it holds lim

N→∞ ‖̃aN‖AN = ‖̃a∞‖A∞ , i.e. (‖̃aN‖AN )N∈N ∈ C(N).

Then defining A by

A :=
{

a ∈
∏

N∈N
AN | ∀ε > 0 ∃Nε ∈ N, ∃a′ ∈ ˜A : ‖aN − a′

N‖AN < ε ∀N ≥ Nε

}

,

(22)

one may prove that A is a continuous bundle of C∗-algebras over N [10,11]. In fact, A
is the smallest continuous bundle of C∗-algebras over N which contains ˜A.

We will now prove that
∏

N∈N[B]Nγ identifies a continuous bundle of C∗-algebras

where [B]Nγ := BN
γ for N ∈ N while [B]∞γ denotes theC∗-algebra introduced in Defini-

tion 5. To this avail we will identity a subset ˜A ⊂ ∏

N∈N[B]Nγ fulfilling conditions 1–2–3
of Remark 8. From a technical point of view, condition 3 will require to prove that, for
all [aN ]N ∈ [B]∞γ , the sequence (‖aN‖N )N has a limit as N → ∞: This is proved in
Proposition 10. To this avail, the following Lemma comes in handy.

Lemma 9. Let (αN )N∈N be a bounded sequence of real numbers such that

∃C1,C2 ∈ R, ∃N0 ∈ N : αN ≥ αK + C1
1

K
+ C2

K

N
∀N ≥ K ≥ N0 . (23)

Then (αN )N ∈ C(N), i.e. α∞ := lim
N→∞ αN ∈ R exists.

Proof. Let (αN j ) j∈N be a convergent subsequence of (αN )N∈N. Then for all K ≥ N0
we find

lim
j→∞ αN j ≥ lim

j→∞

(

αK + C1
1

K
+ C2

K

N j

)

= αK +
C1

K
.

Since this holds true for all convergent subsequences we conclude that

lim inf
N→∞ αN ≥ αK +

C1

K
∀K ≥ N0 .
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Considering again a convergent subsequence (αK j ) j∈N of (αN )N∈N the above inequality
implies

lim
j→∞ αK j ≤ lim

j→∞

(

lim inf
N→∞ αN − C1

K j

)

= lim inf
N→∞ αN .

Since this holds for all convergent subsequences we conclude that

lim sup
N→∞

αN ≤ lim inf
N→∞ αN ,

therefore, lim
N→∞ αN = lim inf

N→∞ αN = lim sup
N→∞

αN exists and it is finite. ��

Proposition 10. For all [aN ]N ∈ [B]∞γ the sequence (‖aN‖N )N is inC(N). In particular
we have

‖[aN ]N‖[B]∞γ (= ‖[aN ]N‖[B]∼) = lim
N→∞ ‖aN‖N .

Proof. To begin with we prove the claim for [aN ]N = [γ M
N aM ]N . We will then move to

[aN ]N ∈ [Ḃ]∞γ eventually discussing [aN ]N ∈ [B]∞γ .

γ M
N aM Let aM ∈ BM , M ∈ N, and let us consider [γ M

N aM ]N . Let N , K ∈ N, N ≥
K ≥ M and consider ωK ∈ S(BK ). We decompose ωK in a finite convex
combination of product states

ωK =
∑

p1,...,pK

ω
p1...pK
K ηp1 ⊗ · · · ⊗ ηpK ,

where ηp�
∈ S(B) for all � = 1, . . . , K . We then consider

ωK ,N :=
∑

p1,...,pK

ω
p1...pK
K τ r ⊗ (ηp1 ⊗ · · · ⊗ ηpK )q ∈ S(BN ),

where N = r + qK , q ∈ N and r ∈ {0, . . . , K − 1} while τ ∈ S(B) is
normalized the trace state. We consider

ωK ,N (γ M
N aM ) = ωK ,N

(

1

N

N−1
∑

j=0

I N−M− j ⊗ aM ⊗ I j
)

.

By direct inspection we have that, for all � ∈ {0, . . . , K − 1},
1

N

[

∑

p1,...,pK

ω
p1...pK
K τ r ⊗ (ηp1 ⊗ · · · ⊗ ηpK )q

](

I N−M−� ⊗ aM ⊗ I �

)

= 1

N
ωK (γ �

K (I K−M ⊗ aM )).

The same contribution arises if j ≤ N−r−M = qK −M and j = � mod K .
The number of such j’s is roughly

q − M/K = N/K − r/K − M/K = N/K + O(1),
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where the O(1) contribution is bounded both in N and in K . The net result is

ωK ,N (γ M
N aM ) =

K−1
∑

�=0

(

N

K
+ O(1)

)

1

N
ωK (γ �

K (I K−M ⊗ aM ))

+
1

N

N−1
∑

j=N−r−M+1

ωK ,N
(

γ
j
N (I N−M ⊗ aM )

)

= ωK (γ M
K aM ) + O(K/N ),

where we observed that the sum over j ∈ [N − r − M + 1, N − 1] contains at
most r + M − 1 = O(K ) terms each of which is bounded by ‖aM‖M . Overall
we find

‖γ M
N aM‖N ≥ |ωK ,N (γ M

N aM )| =
∣

∣

∣

∣

ωK (γ M
K aM ) + C

K

N

∣

∣

∣

∣

≥ |ωK (γ M
K aM )| − C

K

N
,

where C > 0 depends on M but not on N or K . The arbitrariness of ωK ∈
S(BK ) leads to

‖γ M
N aM‖N ≥ ‖γ M

K aM‖K − C
K

N
.

Thus, Lemma 9 applies to the sequence (‖γ M
N aM‖N )N proving that lim

N→∞
‖γ M

N aM‖N exists.

[Ḃ]∞γ We now consider an arbitrary element [aN ]N . Although our proof works for an

arbitrary element of [aN ]N ∈ [Ḃ]∞γ , for the sake of (notational) simplicity we
restrict ourself to the case

[aN ]N =
[

∑

k1,k2

ck1k2γ
M(k1)
N (a(k1))γ

M(k2)
N (a(k2))

]

N
,

where the sum over k1, k2 is finite. To prove that (‖aN‖N )N has a limit as
N → ∞ we rely on Eq. (16) together with an argument similar in spirit to the
one used for the case of a single γ -sequence. In fact, Proposition 6 implies that
∥

∥

∥

∥

∑

k1,k2

ck1k2γ
M(k1)
N (a(k1))γ

M(k2)
N (a(k2))

∥

∥

∥

∥

N

=
∥

∥

∥

∥

∑

k1,k2

ck1k2
1

N

∑

j1+ j2=N−M(k1)−M(k2)

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

∥

∥

∥

∥

N

+O(1/N ),

so that we may restrict to the first factor on the right-hand side. As for the case of
single γ -sequence let N , K ∈ N be such that N ≥ K ≥ max

k1,k2
{2(M(k1)+M(k2))}

where the maximum is taken over all pairs k1, k2 ∈ N appearing in the sum
defining [aN ]N . We consider ωK ∈ S(BK ) and, as above, we set

ωN ,K :=
∑

p1,...,pK

ω
p1...pK
K τ r ⊗ (ηp1 ⊗ · · · ⊗ ηpK )q ∈ S(BN ),
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where N = r +qK , q ∈ N and r ∈ {0, . . . , K −1} while ωK = ∑

p1,...,pK
ω

p1...pK
K

ηp1 ⊗ · · · ⊗ ηpK is an arbitrary finite convex decomposition of ωK into product
states. We then evaluate

ωK ,N

(

∑

k1,k2

ck1k2
1

N

∑

j1+ j2=N−M(k1)−M(k2)

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

)

=
∑

k1,k2

ck1k2
1

N

∑

j1+ j2=N−M(k1)−M(k2)

ωK ,N

(

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

)

.

To this avail we fix k1, k2 and split the sum over j2 in two cases:
(a) Let consider the sum for 0 ≤ j2 ≤ N − M(k1) − M(k2) − r . For 0 ≤ � ≤

K−M(k1)−M(k2) we find, with the same argument used for a single γ -sequence,

ωK ,N

(

γ N

(

I N−M(k1)−M(k2)−� ⊗ a(k1) ⊗ I � ⊗ a(k2)

)

)

= ωK

(

γ K (I K−M(k1)−M(k2)−� ⊗ a(k1) ⊗ I � ⊗ a(k2))

)

+ O(K/N ),

The number of j2’s such that 0 ≤ j2 ≤ N − M(k1) − M(k2) − r and j2 = �

mod K is roughly q = N/K + O(1), therefore, summing over such j2’s leads to
a contribution of

ωK ,N

(

1

N

∑

j1+ j2=N−M(k1)−M(k2)
0≤ j2≤N−r−M(k1)−M(k2)

j2≤K−M(k1)−M(k2) mod K

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

)

= ωK

(

1

K

∑

j1+ j2=K−M(k1)−M(k2)

γ K (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

)

+ O(K/N ).

It remains to discuss the sum over 0 ≤ j2 ≤ N − M(k1) − M(k2) − r with
j2 ∈ [K − M(k1) − M(k2), K − 1] mod K : In this case we find

∣

∣

∣

∣

ωK ,N

(

1

N

∑

j1+ j2=N−M(k1)−M(k2)
0≤ j2≤N−M(k1)−M(k2)−r

K−M(k1)−M(k2)≤ j2≤K−1 mod K

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

)∣

∣

∣

∣

≤ 1

N

∑

j1+ j2=N−M(k1)−M(k2)
0≤ j2≤N−M(k1)−M(k2)−r

K−M(k1)−M(k2)≤ j2≤K−1 mod K

‖a(k1)‖M(k1)‖a(k2)‖M(k2)

≤ 1

N

(

N

K
+ O(1)

)

(M(k1) + M(k2) − 1)‖a(k1)‖M(k1)‖a(k2)‖M(k2) = O(1/K ),

where we observed that, for each of the M(k1) + M(k2) − 1 values of � ∈ [K −
M(k1)−M(k2), K −1], there are q = N/K +O(1) values of j2 ≤ N −M(k1)−
M(K2)− r such that j2 = � mod K . Loosely speaking these contributions arise
when j2 is such that “a(k2) overlaps with the (translated) position of a(k1)”. This
does not allow to reconstruct ωK , therefore, these cases are estimated by O(1/K ).
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(b) If j2 ∈ [N − M(k1) − M(k2) − r + 1, N − M(k1) − M(k2)]—which is empty if
r = 0—we have

ωK ,N

(

1

N

∑

j1+ j2=N−M(k1)−M(k2)
N−M(k1)−M(k2)−r≤ j2≤N−M(k1)−M(k2)

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

)

= O(K/N ).

Recollecting our result we have
∣

∣

∣

∣

ωK ,N

(

∑

k1,k2

ck1k2
1

N

∑

j1+ j2=N−M(k1)−M(k2)

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)

)∣

∣

∣

∣

=
∣

∣

∣

∣

ωK

(

∑

k1,k2

ck1k2
1

K

∑

j1+ j2=K−M(k1)−M(k2)

γ K (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

)

+O(1/K ) + O(K/N )

∣

∣

∣

∣

=
∣

∣

∣

∣

ωK

(

∑

k1,k2

ck1k2
1

K

∑

j1+ j2=K−M(k1)−M(k2)

γ K (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

)∣

∣

∣

∣

−C1

K
− C2

K

N
.

where C1,C2 > 0 do not depend neither on N nor on K . The arbitrariness of
ωK ∈ S(BK ) leads to

∥

∥

∥

∥

∑

k1,k2

1

N

∑

j1+ j2=N−M(k1)−M(k2)

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)∥

∥

∥

∥

N

≥
∥

∥

∥

∥

∑

k1,k2

1

K

∑

j1+ j2=K−M(k1)−M(k2)

γ K

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)

)∥

∥

∥

∥

K

−C1

K
− C2

K

N
.

Thus, Lemma 9 applies and the limit

lim
N→∞ ‖γ M(k1)

N (a(k1))γ
M(k2)
N (a(k2))‖N ,

exists and it is finite.
[B]∞γ Finally, let [aN ]N ∈ [B]∞γ . Then, for all ε > 0 there exists Nε ∈ N and

[a′
N ]N ∈ [Ḃ]∞γ such that

‖aN − a′
N‖N < ε ∀N ≥ Nε .

Moreover, since (‖a′
N‖N )N is convergent, there exists N ′

ε ∈ N such that

∣

∣‖a′
N‖N − ‖a′

M‖M
∣

∣ < ε ∀N , M ≥ N ′
ε .
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For N , M ≥ max{Nε, N ′
ε} we then have

|‖aN‖N − ‖aM‖M | ≤ ∣

∣‖aN‖N − ‖a′
N‖N

∣

∣ +
∣

∣‖a′
N‖N − ‖a′

M‖M
∣

∣ +
∣

∣‖a′
M‖M − ‖aM‖M

∣

∣

≤ ‖aN − a′
N‖N +

∣

∣‖a′
N‖N − ‖a′

M‖M
∣

∣ + ‖a′
M − aM‖M ≤ 3ε,

proving that (‖aN‖N )N is a Cauchy sequence. ��
Remark 11. The result of Proposition 10 applies also for π -sequences. For this latter
case the proof streamlines because

‖πM
N aM‖N = ‖πK

N πM
K aM‖N ≤ ‖πM

K aM‖K ,

so that (‖πM
N aM‖)N is decreasing. The difficulties in moving from [B]∞π to [B]∞γ is

twofold. On the one hand, for γ -sequences ‖γ M
N aM‖N is not decreasing, although it

fulfils a similar properties asymptotically. On the other hand, the product of γ -sequences
is not a γ -sequence, even when equivalence classes are considered. This requires a
different strategy to ensure the existence of the limit lim

N→∞ ‖aN‖N for [aN ]N ∈ [B]∞γ .

The following proposition proves the existence of the continuous bundle of C∗-
algebras of interest.

Proposition 12. Let {BN
γ }N∈N be the family of C∗-algebras introduced in Eq. (7). Let

{[B]Nγ }N∈N be defined by [B]Nγ := BN
γ for N ∈ N while [B]∞γ is the C∗-algebra gen-

erated by equivalence classes of γ -sequences, cf. Definition 5. Let [Ḃ]γ ⊂ ∏

N∈N[B]Nγ
be the subset defined by

[Ḃ]γ :=
{

(AN )N∈N ∈
∏

N∈N
[B]Nγ | ∃(aN )N ∈ Ḃ∞

γ : AN =
{

aN N ∈ N

[aN ]N N = ∞
}

. (24)

Then [Ḃ]γ fulfils conditions 1.–2.–3. and thus it leads to a continuous bundle of C∗-
algebras

[B]γ :=
{

(AN )N∈N ∈
∏

N∈N
[B]Nγ | ∀ε > 0 ∃Nε ∈ N, ∃A′ ∈ [Ḃ]γ : ‖AN − A′

N‖N < ε ∀N ≥ Nε

}

.

(25)

Proof. We will prove conditions 1–2–3 of Remark 8. The space [Ḃ]γ is a ∗-algebra,
therefore, condition 2 is fulfilled. Concerning condition 1, we have to prove that

ZM := {AM ∈ [B]Mγ | (AN )N∈N ∈ [Ḃ]γ } ⊆ [B]Mγ ,

is dense in [B]Mγ for all M ∈ N. For M ∈ N it is enough to observe that, for all

aM ∈ [B]Mγ = BM
γ , we may consider (AN )N∈N ∈ [Ḃ]γ defined by

AN =
{

γ M
N aM N ∈ N

[γ M
N aM ]N N = ∞ ,

which leads to AM = γ MaM = aM , i.e. ZM = [B]Mγ . If M = ∞ we have Z∞ = [Ḃ]∞γ
whose closure is per definition [B]∞γ —cf. Definition 5.

Finally condition 3 is equivalent to

lim
N→∞ ‖AN‖N = lim

N→∞ ‖aN‖N = ‖[aN ]N‖[B]∞γ = ‖A∞‖[B]∞γ ∀(AN )N∈N ∈ [Ḃ]γ ,

where the existence of lim
N→∞ ‖aN‖N is ensured by Proposition 10. ��
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3.2. Canonical representative of [aN ]N ∈ [Ḃ]∞γ . To proceed further in the construction
of the deformation quantization of [B]∞γ we have to discuss the possibility of identifying

a canonical representative of an element [aN ]N ∈ [Ḃ]∞γ . This is required for both
endowing [B]∞γ with a Poisson structure as well as for defining the quantization maps

QN : [Ḃ]∞γ → [B]Nγ —cf. Theorem 24.

To begin with, we address the following problem: Given [γ M
N aM ]N ∈ [Ḃ]∞γ does it

hold

[γ M
N aM ]N = [0]N ⇐⇒ aM = 0 ?

A positive answer in this direction would imply that, given an equivalence class [γ M
N aM ]N ,

one is able to determine uniquely the γ -sequence (γ M
N aM )N . Unfortunately, the answer

to this question is negative because

[γ M
N aM ]N = [γ M+K

N (I K ⊗ aM )]N = [γ M+K
N (aM ⊗ I K )]N ,

although the associated sequences are not the same. Indeed

γ M+K
M (I K ⊗ aM ) = 0 �= γ MaM = γ M

MaM .

This counterexample suggests to focus on the C∗-subalgebra ˜BM where ˜B = ker τ ,
τ ∈ S(B) being the trace state—cf. Sect. 2. In fact, therein the situation is slightly better
as shown by the following Lemma.

Lemma 13. Let ãM ∈ ˜BM be such that [γ M
N ãM ]N = [0]N . Then ãM = 0.

Proof. Per definition [γ M
N ãM ]N = [0]N if and only if lim

N→∞ ‖γ M
N ãM‖N = 0. Let ωM ∈

S(BM ) and let τ ∈ S(B) be the normalized trace state τ(a) := tr(a)/κ . Let N ≥ M + 1,
q ∈ N and r ∈ {0, . . . , M} be such that N = r + q(M + 1). We consider the state

ωM,N := τ r ⊗ (τ ⊗ ωM )q ∈ S(BN ) .

By direct inspection we find that

ωM,N (γ M
N ãM )

= [τ r ⊗ (τ ⊗ ωM )q ]
(

1

N

N−1
∑

j=0

γ
j
N (I N−M ⊗ ãM )

)

= 1

M + 1
ωM (̃aM ) + O(1/N ),

(26)

Indeed, for j = 0 the resulting contribution is ωM (̃aM )/N . The same contribution
appears when j = 0 mod M + 1: Since j ∈ {0, . . . , N − 1} this happens q times,
moreover, q = N/(M + 1) + O(1) leading to the right-hand side of Eq. (26). Whenever
j �= 0 mod M + 1 the resulting contribution is 0, on account of the fact that τ vanishes
on ˜B.

Equation (26) implies that, for all ωM ∈ S(BM ),

0 = lim
N→∞ ‖γ M

N ãM‖ ≥ 1

M + 1
|ωM (̃aM )| .

The arbitrariness of ωM leads to ‖̃aM‖M = 0, that is, ãM = 0. ��



Strict Deformation Quantization Page 21 of 35    14 

Thus, although the equivalence class [γ M
N aM ]N does not identify a unique sequence

(γ M
N aM )N , Lemma 13 suggests that a (a posteriori unique) canonical representative may

be extracted by working with the “˜B-irreducible components” of the γ -sequence. To this
avail, we introduce the notion of ˜B-irreducibility. This identifies those elements in BM

which cannot be written as I ⊗ aM−1 or aM−1 ⊗ I for some aM−1 ∈ BM−1.

Definition 14. An element aM ∈ BM is called ˜B-irreducible, and we write aM ∈ BM
irr,

if either M = 0 or

(τ ⊗ ωM−1)(aM ) = (ωM−1 ⊗ τ)(aM ) = 0, (27)

for all ωM−1 ∈ S(BM−1).

Remark 15. Notice that, per definition, a0 ∈ C is ˜B-irreducible, moreover, B1
irr = ˜B,

B2
irr = ˜B2. For the sake of completeness, Appendix A provides a complete characteri-

zation of BM
irr for all M ∈ N.

The notion of ˜B-irreducible elements leads to a proper definition of “canonical
representative” for a γ -sequence—cf. Definition 16. Indeed, let consider an arbitrary
aM ∈ BM . By considering a basis I, b1, . . . , bκ2−1 of B fulfilling (4) we may decom-
pose aM as

aM = a0 I
M +

∑

j1+ j2=M−1
k

ckj1 j2 I
j1 ⊗ bk ⊗ I j2

+
∑

j1+ j2+ j3=M−2
k1,k2

ck1k2
j1 j2 j3

I j1 ⊗ bk1 ⊗ I j2 ⊗ bk2 ⊗ I j3

+ · · · +
∑

j1+···+ j�+1=M−�
k1,...,k�

ck1...k�

j1... j�+1
I j1 ⊗ bk1 ⊗ · · · ⊗ I j� ⊗ bk�

⊗ I j�+1

+ · · · +
∑

k1,...,kM

ck1...kM bk1 ⊗ · · · ⊗ bkM , (28)

where a0, c
k1...k�

j1... j�+1
∈ C and the sum over k1, . . . , k� is finite. At this stage we observe

that (γ M
N aM )N = (γ M

N a′
M )N where a′

M ∈ BM is defined by

a′
M = a0 I

M + I M−1 ⊗
∑

j1+ j2=M−1
k

ckj1 j2bk +
∑

j1+ j2+ j3=M−2
k1,k2

ck1k2
j1 j2 j3

I j1+ j3 ⊗ bk1 ⊗ I j2 ⊗ bk2

+ · · · +
∑

j1+···+ j�+1=M−�
k1,...,k�

ck1...k�

j1... j�+1
I j1+ j�+1 ⊗ bk1 ⊗ · · · ⊗ I j� ⊗ bk�

+ · · · +
∑

k1,...,kM

ck1...kM bk1 ⊗ · · · ⊗ bkM

=
M

∑

j=0

I M− j ⊗ a′
j ∈

M
⊕

j=0

I M− j ⊗ B j
irr . (29)
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We stress that some of the a′
j ’s may vanish in the process. However, it is important to

observe that, moving from aM toa′
M , the γ -sequence (and thus its equivalence class) does

not change. Notice that, if we replace aM with I K ⊗ aM or aM ⊗ I K , the ˜B-irreducible
elements {a′

j }Mj=0 do not change.

Definition 16. Let (γ M
N aM )N be a γ -sequence and let

∑M
j=0 I

M− j ⊗ a′
j be the element

defined as per Eq. (29), where a′
j ∈ B j

irr for all j ∈ {0, . . . , M}. The sequence

M
∑

j=0

(γ
j
N a

′
j )N ∈ Ḃ∞

γ ,

is called the canonical representative of [γ M
N aM ]N .

Remark 17. (i) It is worth pointing out that, while (γ M
N aM )N = (γ M

N a′
M )N for a′

M =
∑M

j=0 I
M− j ⊗ a′

j , for the canonical representative we only have equality of equiva-

lence classes, i.e. [γ M
N aM ]N = ∑M

j=0[γ j
N a

′
j ]N . In particular we have

(γ M
N aM )N = (γ M

N a′
M )N =

M
∑

j=0

(γ
j
N a

′
j )N + RN , (30)

where ‖RN‖ = O(1/N∞). For example if aM = a0 I M then the canonical represen-
tative is the constant sequence aN = a0 I N , N ∈ N, which coincides with (γ M

N aM )N
only for N ≥ M .

(ii) On account of the previous discussion we observe that the algebra generated by
γ -sequences of the form (γ M

N aM )N for aM ∈ BM
irr, M ∈ N, exhaust the whole

space Ḃ∞
γ .

The following proposition shows that the canonical representative introduced in Def-
inition 16 is unique.

Proposition 18. Let M ∈ N and a j ∈ B j
irr for all j = 0, . . . , M. Then

lim
N→∞

∥

∥

∥

∥

M
∑

j=0

γ
j
N a j

∥

∥

∥

∥

N
= 0 ⇐⇒ a0 = 0, . . . , aM = 0 . (31)

Proof. The proof is similar to the one of Lemma 13. By direct inspection we have

0 = lim
N→∞

∥

∥

∥

∥

M
∑

j=0

γ
j
N a j

∥

∥

∥

∥

N
≥ lim

N→∞

∣

∣

∣

∣

τ N
( M

∑

j=0

γ
j
N a j

)∣

∣

∣

∣

= |a0| .

Let now η ∈ S(B) and let ωη,N := τ r ⊗ (τ 2 M−1 ⊗η)q ∈ S(BN ), where N = r + 2Mq,
q ∈ N and r ∈ {0, . . . , 2 M − 1}. We have

0 = lim
N→∞

∥

∥

∥

∥

M
∑

j=0

γ
j
N a j

∥

∥

∥

∥

N
≥ lim

N→∞

∣

∣

∣

∣

ωη,N

( M
∑

j=1

γ
j
N a j

)∣

∣

∣

∣

= 1

2M
|η(a1)|,
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which impliesa1 = 0 because of the arbitrariness ofη ∈ S(B). Notice thatωη,N (γ
j
N a j ) =

0 for all j ≥ 2 on account of the assumption a j ∈ B j
irr.

Proceeding by induction we may assume that a1 = · · · = a�−1 = 0 and prove that
a� = 0. To this avail let η1, . . . , η� ∈ S(B) and set

ωη1,...,η�,N := τ r ⊗ (τ 2M−� ⊗ η1 ⊗ · · · ⊗ η�)
q ∈ S(BN ),

where N = r + 2Mq, q ∈ N and r ∈ {0, . . . , 2 M − 1}. Using the inductive hypothesis
we find

0 = lim
N→∞

∥

∥

∥

∥

M
∑

j=�

γ
j
N a j

∥

∥

∥

∥

N
≥ lim

N→∞

∣

∣

∣

∣

ωη1,...,η�,N

( M
∑

j=�

γ
j
N a j

)∣

∣

∣

∣

= 1

2M
|(η1 ⊗ · · · ⊗ η�)(a�)|,

where, with the same argument as above, the contributions arising from a j , j ≥ � + 1,
vanish. The arbitrariness of η1, . . . , η� ∈ S(B) implies a� = 0. ��

Summing up, every equivalence class [γ M
N aM ]N ∈ [Ḃ]∞γ has a unique canonical

representative obtained by decomposing aM into its ˜B-irreducible components.
We shall now discuss the notion of canonical representative for a generic element

[aN ]N ∈ [Ḃ]∞γ . Proposition 6 and Remark 17-(ii) lead to the following definition.

Definition 19. Let [aN ]N ∈ [Ḃ]∞γ be such that

[aN ]N =
∑

�,k1,...,k�

ck1...k�[γ M(k1)
N (a(k1))...γ

M(k�)
N (a(k�))]N

=
∑

�,k1,...,k�

ck1...k�
1

N �−1

∑

| j |�=N−|M(k)|�
[γ N (I j1 ⊗ a(k1) ⊗ · · · ⊗ I j� ⊗ a(k�))]N .

where ak j ∈ B
M(k j )
irr for all k j , while the sum over �, k1, . . . , k� is finite and |M(k)|� :=

M(k1) + · · · + M(k�). The sequence

∑

�,k1,...,k�

ck1...k�

(

1

N �−1

∑

| j |�=N−|M(k)|�
γ N (I j1 ⊗ a(k1) ⊗ · · · ⊗ I j� ⊗ a(k�))

)

N≥|M(k)|�
,

(32)

is called the canonical representative of [aN ]N .

Similarly to Proposition 18 we have the following result, showing that the canonical
representative introduced in Definition 19 is unique.

Proposition 20. It holds

lim
N→∞

∥

∥

∥

∥

∑

�,k1,...,k�

ck1...k�
1

N �−1

∑

| j |�=N−|M(k)|�
γ N (I j1 ⊗ a(k1) ⊗ · · · ⊗ I j� ⊗ a(k�))

∥

∥

∥

∥

N
= 0

⇐⇒
∑

�,k1,...,k�

ck1...k�
1

N �−1

∑

| j |�=N−|M(k)|�
γ N (I j1 ⊗ a(k1) ⊗ · · · ⊗ I j� ⊗ a(k�))

= 0 ∀N ∈ N, (33)

where the sum over �, k1, . . . , k� ∈ N is finite and ak j ∈ B
M(k j )
irr for all k j .



   14 Page 24 of 35 N. Drago, C. J. F. van de Ven

Proof. For the sake of clarity, we will discuss the proof for � ≤ 2. This simplifies
the construction without affecting the validity of the argument. We thus consider the
sequence

aN :=
∑

k1,k2

ck1k2
1

N

∑

| j |=N−|M(k)|2
γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)), (34)

where the sum over k1, k2 is finite and a(k) ∈ BM(k)
irr for all k. Notice that, whenever

M(k1) = 0 or M(k2) = 0 the corresponding contribution reduces to a single γ -sequence
up to a remainder O(1/N ). We have to prove that lim

N→∞ ‖aN‖N = 0 implies aN = 0

for all N ∈ N.
We observe that ‖aN‖N −→

N→∞ 0 entails

0 = lim
N→∞ ‖aN‖N ≥ |τ N (aN )| =

∑

k1 : M(k1)=0
k2 : M(k2)=0

ck1k2a(k1)a(k2),

so that we may assume (M(k1), M(k2)) �= (0, 0) in (34).
We now analyse (34) with the help of the following parameters:

M := max
k1,k2

max{M(k1), M(k2)},
M1 := min

k1,k2
max{M(k1), M(k2)}, M2 := min

k1 : M(k1)≤M1
k2 : M(k2)≤M1

min{M(k1), M(k2)}.

(35)

Roughly speaking M is the maximal degree of the a(k)’s appearing in (34). The parameter
M1 ≤ M is the minimal "bigger length" among all pairs (k1, k2) appearing in (34). Notice
that M1 > 0 on account of the hypothesis (M(k1), M(k2)) �= (0, 0). Finally M2 ≤ M1
is the minimal length of the a(k)’s appearing when considering only those pairs (k1, k2)

for which max{M(k1), M(k2)} ≤ M1—notice that this implies M(k) = M1 for at least
one between k ∈ {k1, k2}.

Let ωM1
∈ S(BM1), ωM2

∈ S(BM2) and let ωM1,M2,N ∈ S(BN ) be defined by

ωM1,M2,N := τ r ⊗ (τM ⊗ ωM1
⊗ τM ⊗ ωM2

)q , (36)

where N = r + (2M +M1 +M2)q, q ∈ N, r ∈ {0, . . . , 2M +M1 +M2 −1}. We consider

ωM1,M2,N (aN ) =
∑

k1,k2

ck1k2
1

N

∑

| j |=N−|M(k)|2
ωM1,M2,N

[

γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

]

=
∑

k1 : M(k1)≤M1
k2 : M(k2)≤M1

ck1k2
1

N

∑

| j |=N−|M(k)|2
ωM1,M2,N

[

γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

]

,

(37)

where in the second line we observed that

ωM1,M2,N

[

γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

]

= 0 if min{M(k1), M(k2)} > M1 ;
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This follows from the fact that, if M1 < M2 ≤ M , for all aM2 ∈ BM2
irr we have

ωM1,M2,N (γ N (aN−M2 ⊗ aM2)) = 0,

no matter the choice of aN−M2 ∈ BN−M2 . In fact, for all j ∈ {0, . . . , N − 1} one finds
that

ωM1,M2,N
[

γ
j
N (aN−M2 ⊗ aM2 )

] = τ r ⊗ (τM ⊗ ωM1
⊗ τM ⊗ ωM2

)q
[

γ
j
N (aN−M2 ⊗ aM2 )

]

,

is non vanishing only if the position of aM2 “overlaps completely” with either ωM1
or with ωM2

, however, this is not possible because M2 > M1 ≥ M2. Notice that

overlapping with both states is impossible since each pair ωM1
, ωM2

is separated by τM

and M2 ≤ M .
We now analyse the remaining contributions (37) of ωM1,M2,N (aN ). Notice that the

condition M(k1) ≤ M1 and M(k2) ≤ M1 implies M(k) = M1 for at least one between
k1, k2. In fact, we also have M(k1), M(k2) ≥ M2 which implies M(k2) = M2 or
M(k1) = M2 for at least one pair (k1, k2). Moreover, by direct inspection:

(a) If j2 = M mod 2M + M1 + M2 then

ωM1,M2,N
[

γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))
]

= 1

2M + M1 + M2

[

ωM1
(I M1−M(k1) ⊗ a(k1))ωM2

(I M2−M(k2) ⊗ a(k2))

+ωM2
(I M2−M(k1) ⊗ a(k1))ωM1

(I M1−M(k2) ⊗ a(k2))

]

+ O(1/N ), (38)

with the convention that the contribution vanishes if, say, M2 < M(k1)—this may
happen if M2 < M1 and M(k1) = M1. This restrict the non-vanishing contributions
to those pairs (k1, k2) such that {M(k1), M(k2)} = {M1, M2}. Notice that there exists
at least one such pair on account of the definition of M2—cf. Eq. (35). To prove (38)
it suffices to observe that for all � ∈ {0, . . . , N − 1} we have

ωM1,M2,N
[

γ �
N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

]

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ωM1
(I M1−M(k1) ⊗ a(k1))ωM2

(I M2−M(k2) ⊗ a(k2))

if � = 0 mod M1 + M2 + 2M
ωM2

(I M2−M(k1) ⊗ a(k1))ωM1
(I M1−M(k2) ⊗ a(k2))

if � = M1 + M mod M1 + M2 + 2M
0 otherwise

Since the number of � ∈ {0, . . . , N − 1} such that � = 0 mod 2M + M1 + M2 (resp.
� = M1 + M mod 2M + M1 + M2) is roughly N/(2M + M1 + M2) + O(1) the
formula for ωM1,M2,N

[

γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))
]

follows.
(b) Similarly, if j2 = 2M + M1 mod 2M + M1 + M2 then

ωM1,M2,N
[

γ N (I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))
]

= 1

2M + M1 + M2

[

ωM1
(I M1−M(k1) ⊗ a(k1))ωM1

(I M1−M(k2) ⊗ a(k2))

+ωM2
(I M2−M(k1) ⊗ a(k1))ωM2

(I M2−M(k2) ⊗ a(k2))

]

+ O(1/N ),
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where again the contribution is non-vanishing if and only if {M(k1), M(k2)} =
{M1, M2}.

(c) In all other cases the contribution vanishes.
The number of j2 ∈ N such that j2 ≤ N − |M(k)|2 and j2 = M mod 2M + M1 + M2
(resp. j2 = 2M + M1 mod 2M + M1 + M2) is roughly N/(2M + M1 + M2) + O(1).
Moreover, we have

ωM2
(I M2−M(k) ⊗ a(k)) = (ωM1−M2

⊗ ωM2
)(I M1−M(k) ⊗ a(k)),

where ωM1−M2
∈ S(BM1−M2) is arbitrarily chosen.

Thus, combining cases (a)–(b) we find

ωM1,M2,N (aN ) =
∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2

(2M + M1 + M2)
2

(

1

2
ωM1

+
1

2
ωM1−M2

⊗ ωM2

)2[

I M1−M(k1) ⊗ a(k1) ⊗ I M1−M(k2) ⊗ a(k2)

]

+ O(1/N ).

Since ‖aN‖N ≥ |ωM1,M2,N (aN )| and ‖a‖N −→
N→∞ 0 we find

∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2

(

1

2
ωM1

+
1

2
ωM1−M2

⊗ ωM2

)2[

I M1−M(k1) ⊗ a(k1) ⊗ I M1−M(k2) ⊗ a(k2)

]

= 0,

(39)

for all ωM1
∈ S(BM1), ωM2

∈ S(BM2) and ωM1−M2
∈ S(BM1−M2). Choosing

ωM1
= ωM1−M2

⊗ ωM2
,

we have
∑

(k1,k2) :{M(k1),M(k2)}={M1,M2}

ck1k2(ωM1−M2
⊗ ωM2

)2
[

I M1−M(k1) ⊗ a(k1) ⊗ I M1−M(k2) ⊗ a(k2)

]

= 0,

(40)

for all ωM2
∈ S(BM2) and ωM1−M2

∈ S(BM1−M2). This implies that in the general
case, unfolding (ωM1

+ ωM1−M2
⊗ ωM2

)2 and using Eq. (40) we have
∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2 (ωM1
⊗ ωM1

)

[

I M1−M(k1) ⊗ a(k1) ⊗ I M1−M(k2) ⊗ a(k2)

]

+
∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2

(

ωM1
⊗ ωM1−M2

⊗ ωM2

)[

(I M1−M(k1) ⊗ a(k1)) ⊗π (I M1−M(k2) ⊗ a(k2))

]

= 0, (41)

for all ωM1
∈ S(BM1), ωM2

∈ S(BM2) and ωM1−M2
∈ S(BM1−M2) while a ⊗π a′ :=

a⊗a′+a′⊗a. Equation (41) is now linear in ωM1−M2
⊗ωM2

. Since convex combinations
of states in S(BM1−M2) ⊗ S(BM2) generate S(BM1) we find that

∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2 (ωM1
⊗ ωM1

)

[

I M1−M(k1) ⊗ a(k1) ⊗ I M1−M(k2) ⊗ a(k2)

]

+
∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2
(

ωM1
⊗ ω′

M1

)

[

(I M1−M(k1) ⊗ a(k1)) ⊗π (I M1−M(k2) ⊗ a(k2))

]

= 0, (42)
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for all ωM1
, ω′

M1
∈ S(BM1). Choosing ωM1

= ω′
M1

we find

∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2 (ωM1
⊗ ωM1

)

[

I M1−M(k1) ⊗ a(k1) ⊗ I M1−M(k2) ⊗ a(k2)

]

= 0,

out which Eq. (42) simplifies to

∑

(k1,k2) :
{M(k1),M(k2)}={M1,M2}

ck1k2
(

ωM1
⊗ ω′

M1

)

[

(I M1−M(k1) ⊗ a(k1)) ⊗π (I M1−M(k2) ⊗ a(k2))

]

= 0,

(43)

for all ωM1
, ω′

M1
∈ S(BM1).

The arbitrariness of ωM1
, ω′

M1
∈ S(BM1) and the fact that any ω2M1

∈ S(B2M1) can

be written as a convex combination of product states in ωM1
⊗ ω′

M1
lead to

∑

(k1,k2) :{M(k1),M(k2)}={M1,M2}

ck1k2(I M1−M(k1) ⊗ a(k1)) ⊗π (I M1−M(k2) ⊗ a(k2)) = 0 . (44)

On account of the symmetry in k1, k2 in the sum, we may assume that M(k1) = M1 and
M(k2) = M2 for all pairs (k1, k2). Equation (44) reduces to

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2a(k1) ⊗π (I M1−M2 ⊗ a(k2)) = 0 . (45)

Let ωM1
∈ S(BM1) and ωM2

∈ S(BM2) and let

ωM1,M2
:= 1

2
ωM1

⊗ τM1−M2 ⊗ ωM2
+

1

2
τM1−M2 ⊗ ωM2

⊗ ωM1
.

Then Eq. (45) leads to

0 = ωM1,M2

(

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2a(k1) ⊗π (I M1−M2 ⊗ a(k2))

)

= (ωM1
⊗ ωM2

)

(

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2a(k1) ⊗π a(k2))

)

,

with the convention that ωM�
(a(k)) = 0 if M(k) �= M�. This shows that Eq. (45) implies

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2a(k1) ⊗π ⊗a(k2) = 0 . (46)
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We now observe that Eq. (46) is equivalent to

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2
1

N

∑

j1+ j2=N−M1−M2

γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2)) = 0, ∀N ≥ M1 − M2 .

(47)

Indeed, by direct inspection Eq. (46) implies that
∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2 I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2) = 0, ∀ j1, j2 ∈ N, (48)

and thus it implies Eq. (47). Conversely, if Eq. (47) holds true then evaluation on the
state τ �1 ⊗ ωM1

⊗ τ �2 ⊗ ωM2
leads to

0 = (τ �1 ⊗ ωM1
⊗ τ �2 ⊗ ωM2

)

(

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2 1
N

∑

j1+ j2=N−M1−M2
γ N

(

I j1 ⊗ a(k1) ⊗ I j2 ⊗ a(k2))

)

= 1
N (ωM1

⊗ ωM2
)

(

∑

k1 : M(k1)=M1
k2 : M(k2)=M2

ck1k2 1
N a(k1) ⊗π a(k2)

)

,

where �1, �2 are such that �1 + �2 = N − M1 − M2 while ωM1
∈ S(BM1) and ωM2

∈
S(BM2) are arbitrary states. This implies Eq. (45).

By comparison with (34) we conclude that Eq. (47) is nothing but the sum of the
terms in aN whose pairs k1, k2 fulfils {M(k1), M(k2)} = {M1, M2}.

At this stage we may either argue that this is in contradiction with the definition
of M1, M2—unless aN = 0—because min

k1 : M(k1)≤M1
k2 : M(k2)≤M1

min{M(k1), M(k2)} > M2. Alter-

natively we may consider the remaining contribution to aN and argue again as above
identifying new values M1, M2, M . In either case we have aN = 0 for all N ∈ N as
claimed. ��
Remark 21. The notion of canonical representative applies also for symmetric sequences.
Indeed, let [πM

N aM ]N ∈ [B]∞π where aM ∈ BM
π . As for γ -sequences one has

[πM
N aM ]N = [πM+K

N (I K ⊗ aM )]N so that the π -sequence generating [πM
N aM ]N is not

uniquely determined. Nevertheless, since aM ∈ BM
π , one obtain the following unique

decomposition:

aM = SM (̃a0 I
M + I M−1 ⊗ ã1 + · · · + ãM )

= SM

( M
∑

j=0

I M− j ⊗ ã j

)

∈ SM

( M
⊕

j=0

I M− j ⊗ ˜B j
π

)

.

With this decomposition at hand the canonical representative of [πM
N aM ]N is defined by

( M
∑

j=0

π
j
N ã j

)

N
.

This point of view is equivalent to the one adopted in [12].
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3.3. The Poisson structure of [B]∞γ . In this section we will endow [B]∞γ with a Poisson

structure defined on [Ḃ]∞γ . Eventually we will discuss the deformation quantization of
[B]γ .

We recall that a Poisson structure over a C∗-algebra A is given by a bilinear map
{ , } : A0 × A0 → A0 defined on a dense ∗-subalgebra A0 ⊂ A which fulfils:

{a, a′} = −{a′, a}, {a, a′}∗ = {a∗, a′∗} (49)

{a, a′a′′} = {a, a′}a′′ + a′{a, a′′}, (50)

{a, {a′, a′′}} = {{a, a′}, a′′} + {a′, {a, a′′}}, (51)

for all a, a′, a′′ ∈ A0.

Proposition 22. Let { , }γ : [Ḃ]∞γ × [Ḃ]∞γ → [Ḃ]∞γ be the bilinear map defined by

{[aN ]N , [a′
N ]N }γ := [i N [acanN , a′ can

N ]]N , (52)

where (acanN )N denotes the canonical representative of [aN ]N—cf. Definitions 16–19.
Then {, }γ is a Poisson structure on [B]∞γ .

Proof. Notice that {, }γ fulfils condition (49) because so does the pointwise commmu-
tator i[, ].

The non-trivial part of the proof is to prove that {, }γ is well-defined, namely that
{[aN ]N , [a′

N ]N }γ is a well-defined element of [Ḃ]∞γ . Moreover, we also have to prove
conditions (50)-(51): The latter do not follow from the properties of the commuta-
tor because Eq. (52) uses the canonical representative and in general [acanN , acanN ] �=
[acanN , acanN ]can. For these reasons we proceed in several steps:

γ As a first step, we prove that {[aN ]N , [a′
N ]N }γ ∈ [Ḃ]∞γ for the case of two equiva-

lence classes of γ -sequences. Since the commutator is linear, on account of Remark
17-(ii) we may reduce to the case [aN ]N = [γ M

N aM ]N , [a′
N ]N = [γ M ′

N aM ′ ]N for

aM ∈ BM
irr and aM ′ ∈ BM ′

irr. In this latter case we find, for large enough N , say
N ≥ 2(M + M ′),

i N [γ M
N aM , γ M ′

N aM ′ ] = i Nγ N

([

I N−M ⊗ aM , γ N (I N−M ′ ⊗ aM ′ )

])

= iγ N

(

∑

j∈{0,...,M−1}
∪{N−M ′−1,...,N−1}

[

I N−M ⊗ aM , γ
j
N (I N−M ′ ⊗ aM ′ )

])

= iγ N

(

I N−M−2M ′ ⊗
M+M ′
∑

j=0

[

I M
′ ⊗ aM ⊗ I M

′
, γ

j
M+2M ′ (I M

′+M ⊗ aM ′ )

])

=: γ M+2M ′
N aM+2M ′ ,

which implies

{[γ M
N aM ]N , [γ M ′

N aM ′ ]N }γ = [i N [γ M
N aM , γ M ′

N aM ′ ]]N = [γ M+2M ′
N aM+2M ′ ]N ∈ [Ḃ]∞γ .

This proves that the Poisson bracket between [γ M
N aM ]N and [γ M ′

N aM ′ ]N is an
element of [Ḃ]∞γ .
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[Ḃ]∞γ We now consider the general case of [aN ]N , [a′
N ]N ∈ [Ḃ]∞γ . Using again lin-

earity and Remark 17-(ii) we may restrict to case

[aN ]N = [γ M1
N aM1 ...γ

M�

N aM�
]N , [a′

N ]N = [γ M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
]N ,

where aM , a′
M ∈ BM

irr for all M’s and �, �′ ∈ N are arbitrary but fixed.
We observe that Eq. (18)—cf. Proposition 6—leads to

(acanN )N = (γ
M1
N aM1 ...γ

M�

N aM�
)N + RN , (a′can

N )N = (γ
M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
)N + R′

N ,

where ‖RN‖N = O(1/N ) = ‖R′
N‖N . This implies

[acanN , a′can
N ] = [γ M1

N aM1 ...γ
M�

N aM�
, γ

M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
]

+ [RN , γ
M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
] + [γ M1

N aM1 ...γ
M�

N aM�
, R′

N ]
+ [RN , R′

N ] .

At this stage we observe that

[

i N [γ M1
N aM1 ...γ

M�

N aM�
, γ

M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
]]N ∈ [Ḃ]∞γ .

Indeed, this is due to the identity

[aN , a′
Na

′′
N ] = [aN , a′

N ]a′′
N + a′

N [aN , a′′
N ],

together with the fact that the result holds true for � = �′ = 1. Moreover, we
have ‖N [RN , R′

N ]‖N = O(1/N ) so that it remains to discuss the term

∥

∥N [RN , γ
M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
]∥∥N = O(1/N ),

where the latter estimate is due to Remark 7-(ii). Overall we have shown that

i N [acanN , a′can
N ] = i N [γ M1

N aM1 ...γ
M�

N aM�
, γ

M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
] + R′′

N ,

where ‖R′′
N‖N = O(1/N ) and by direct inspection fulfils Eq. (20). This implies

in particular that

[

i N [acanN , a′can
N ]]N = [

i N [γ M1
N aM1 ...γ

M�

N aM�
, γ

M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
]]N ∈ [Ḃ]∞γ .

so that {, }γ is well-defined.

(50) − (51) By proceeding in a completely analogous way one also proves conditions
(50)–(51). Indeed, considering without loss of generality

[aN ]N = [γ M1
N aM1 ...γ

M�

N aM�
]N , [a′

N ]N = [γ M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
]N ,

[a′′
N ]N = [γ NM

1′′aM1′′ ...γ
M ′′

�′′
N aM ′′

�′′
]N ,
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we find

(i N )2[acanN , [a′can
N , a′′can

N ]]
= i N [acanN , i N [γ M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
, γ

M ′′
1

N aM ′′
1
...γ

M ′′
�′′

N aM ′′
�′′

]] + i N [acanN , RN ]

= i N [γ M1
N aM1 ...γ

M�

N aM�
, i N [γ M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
, γ

M ′′
1

N aM ′′
1
...γ

M ′′
�′′

N aM ′′
�′′

]]

+i N [R′
N , i N [γ M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
, γ

M ′′
1

N aM ′′
1
...γ

M ′′
�′′

N aM ′′
�′′

]] + i N [acanN , RN ].

The first contribution fulfils (51). With an argument similar in spirit to
Remark 7-(ii), the second contribution can be estimated by

‖[R′
N , i N [γ M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
, γ

M ′′
1

N aM ′′
1
...γ

M ′′
�′′

N aM ′′
�′′

]]‖N = O(1/N 2) .

Finally ‖N [acanN , RN ]‖N = O(1/N ) because of Remark 7-(ii) so that

(i N )2[acanN , [a′can
N , a′′can

N ]]
= i N [γ M1

N aM1 ...γ
M�

N aM�
, i N [γ M ′

1
N aM ′

1
...γ

M ′
�′

N aM ′
�′
, γ

M ′′
1

N aM ′′
1
...γ

M ′′
�′′

N aM ′′
�′′

]] + R′′′
N ,

with ‖R′′′
N‖N = O(1/N ). This proves condition 51 for {, }γ .

By proceeding in a similar fashion we also have

i N [acanN , a′can
N a′′can

N ]
= i N [γ M1

N aM1 ...γ
M�

N aM�
, γ

M ′
1

N aM ′
1
...γ

M ′
�′

N aM ′
�′
γ
M ′′

1
N aM ′′

1
...γ

M ′′
�′′

N aM ′′
�′′

] + R′′′
N ,

where ‖R′′′
N‖N = O(1/N ) while the first contribution fulfils (50). This

proves condition (50) for {, }γ . ��
Remark 23. The proof of Proposition 22 shows that, if aM ∈ BM

irr and aM ′ ∈ BM ′
irr then

{[γ M
N aM ]N , [γ M ′

N aM ′ ]N }γ = [γ M+2M ′
N aM+2M ′ ]N ,

where aM+2M ′ ∈ BM+2M ′
is not ˜B-irreducible in general.

At last, we can finally state and prove the main theorem of this paper.

Theorem 24. Let [B]γ ⊂ ∏

N∈N[B]Nγ be the continuous bundle of C∗-algebras defined
as per Proposition 12. For K ∈ N let QK : [Ḃ]∞γ → [B]Kγ be the linear map defined by

QK ([aN ]N ) :=
{

acanK K ∈ N

[aN ]N K = ∞ (53)

where (acanN )N is the canonical representative of [aN ]N as per Definitions 16–19. Then
the family of maps {QN }N∈N defines a strict deformation quantization of [B]∞γ .
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Proof. Notice that QN is well-defined for all N ∈ N on account of the uniqueness of
the canonical representative—cf. Propositions 18–20.

With reference to Sect. 1 we have

[B]γ ↔
∏

N∈N
AN , [B]Nγ ↔ AN , [Ḃ]∞γ ↔ ˜A∞, [B]∞γ ↔ A∞ .

We will now prove conditions 3(a)–3(b)–3(c).

3(a) Per definition we have Q∞ := Id[Ḃ]∞γ as well as QN ([aN ]N )∗ = QN ([a∗
N ]N ) for

all [aN ]N ∈ [Ḃ]∞γ . Moreover, Eq. (53) defines an element in the space [Ḃ]γ —cf.
Eq. (24)—and thus a continuous section of [B]γ as per Proposition 12.

3(b) By direct inspection one has

[i K [QK ([aN ]N ), QK ([a′
N ]N )]]K = [i K [acanK , a′can

K ]]K = {[aN ]N , [a′
N ]N }γ ,

which implies Eq. (1). Notice that, on account of Remark 23, in general

QK ({[aN ]N , [a′
N ]N }γ ) �= i K [acanK , a′can

K ],
despite the fact that the equivalence classes of the associated sequences are equal.

3(c) By direct inspection one finds that QM ([Ḃ]∞γ ) = BM
γ for all M ∈ N. Indeed, by

proceeding as in the proof of Proposition 12, let aM ∈ BM
γ , for M ∈ N. Then we

have aM = γ M (aM ) = ∑M
j=0 γ

j
Ma j for a j ∈ B j

irr—cf. Eq. (29). This implies that

aM = γ M (aM ) =
M

∑

j=0

γ
j
Ma j = QM

([ M
∑

j=0

γ
j
N a j

]

N

)

,

thus proving that QM ([Ḃ]∞γ ) = BM
γ . ��
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A. Characterization of ˜B-Irreducible Elements

This section is devoted to characterize the set BM
irr of ˜B-irreducible elements in BM—cf.

Definition 14. To this avail, we introduce the following convenient family of linear maps.

Definition 25. Let M, � ∈ N, � ≥ 2, and j1, . . . , j�−1 ∈ N such that j1 + · · · + j�−1 =
M − �. We denote by ι

j1... j�−1
M : ˜B� → BM the linear map defined by

ι
j1... j�−1
M (̃a�) :=

∑

k1,...,k�

ck1...k�bk1 ⊗ I j1 ⊗ · · · ⊗ I j�−1 ⊗ bk�
, (54)

where I, b1, . . . , bκ2−1 is a basis of B fulfilling (4) and ã� = ∑

k1,...,k�

ck1...k�bk1 ⊗· · ·⊗bk�
,

the sum over k1, . . . , k� being finite.

Remark 26. (i) If � = M one has ι
j1... jM
M (̃aM ) = ãM . Moreover, by direct inspection

ι
j1... j�−1
M does not depend on the chosen basis I, b1, . . . , bκ2−1.

(ii) On account of Definition 14 we have ι
j1... j�−1
M (˜B�) ⊆ BM

irr. Moreover, ι
j1... j�−1
M is

injective. Indeed, if ι
j1... j�−1
M (̃a�) = 0 then for all η1, . . . , η� ∈ S(B) we have

0 = [η1 ⊗ τ j1 ⊗ · · · ⊗ τ j�−1 ⊗ η�](ι j1... j�−1
M (̃a�)) = (η1 ⊗ · · · ⊗ η�)(̃a�) .

The arbitrariness of η1, . . . , η� entails ω�(̃a�) = 0 for all ω� ∈ S(B�), therefore,
ã� = 0.

Let I, b1, . . . , bκ2−1 be a basis of B fulfilling (4) and let aM ∈ BM
irr, M ≥ 2. By

considering Eq. (28) for aM ∈ BM
irr we find

aM = ιM−2
M (̃a2) +

∑

j1+ j2=M−3

ι
j1 j2
M (̃a3| j1 j2)

+ · · · +
∑

j1+···+ j�−1=M−�

ι
j1... j�−1
M (̃a�| j1... j�−1) + · · · + ãM , (55)

where ã�| j1... j�−1 ∈ ˜B� for all �, j1, . . . , j�−1.
Equation (55) provides a description of BM

irr in terms of “˜B-components”. To this avail
we consider the vector space

˜B
M := ˜B2 ⊕

⊗

j1+ j2=M−3

˜B3 ⊕ · · · ⊕
⊗

j1+···+ j�−1=M−�

˜B� ⊕ · · · ⊕ ˜BM , (56)

where ˜B
0 = C and ˜B

1 = ˜B. We then define the linear map

�M : ˜B
M → BM �M (ãM )

:=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a0 M = 0
ã1 M = 1
ιM−2
M (̃a2) + · · ·

+
∑

j1+···+ j�−1=M−� ι
j1... j�−1
M (̃a�| j1... j�−1) + · · · + ãM M ≥ 2

, (57)
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where ãM ∈ ˜B
M

is given by

ãM =

⎧

⎪

⎨

⎪

⎩

a0 M = 0

ã1 M = 1

ã2 ⊕ ⊗

j1+ j2=M−3 ã3| j1 j2 ⊕ · · · ⊕ ⊗

j1+···+ j�−1=M−� ã�| j1+···+ j�−1 ⊕ · · · ⊕ ãM M ≥ 2

.

(58)

Equation (55) can be rephrased by saying that for all aM ∈ BM
irr there exists ãM ∈

˜B
M

such that �M (ãM ) = aM . The following lemma shows that �M is in fact an

isomorphism, proving that BM
irr � ˜B

M
.

Lemma 27. For all M ∈ N, the map �M : ˜B
M → BM

irr is an isomorphism.

Proof. There is nothing to prove for M ∈ {0, 1}, therefore, we assume M ≥ 2.
From Eqs. (55), (57), we have that �M is linear and surjective: Thus, it remains to
prove that �(ãM ) = 0 implies ãM = 0. We now prove that, if �(ãM ) = 0, then all
components of ãM appearing in Eq. (58) vanish.
To this avail let η1, η2 ∈ S(B). By direct inspection we have

0 = (η1 ⊗ τM−2 ⊗ η2)[�(ãM )] = (η1 ⊗ η2)(̃a2) .

Notice that no other term from �(ãM ) provides a non-vanishing contribution because
τ(˜B) = {0}. The arbitrariness of η1, η2 ∈ S(B) leads to ω2(̃a2) = 0 for all ω2 ∈ S(B2)

and thus ã2 = 0.
We now proceed by proving that ã3| j1 j2 = 0 for all j1 + j2 = M − 3. To this avail let
j1, j2 be such that j1 + j2 = M − 3 and let η1, η2, η3 ∈ S(B). Since we already proved
that ã2 = 0 it follows that

0 = (η1 ⊗ τ j1 ⊗ η2 ⊗ τ j2 ⊗ η3)[�(ãM )] = (η1 ⊗ η2 ⊗ η3)(̃a3| j1 j2) .

Once again, the arbitrariness of η1, η2, η3 ∈ S(B) (as well as the one of j1, j2) leads to
ã3| j1 j2 = 0 for all j1 + j2 = M − 3. Proceeding by induction we find ã�| j1... j�−1 = 0 for
all j1 + · · · + j�−1 = M − �. Thus ãM = 0. ��
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