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Abstract. The Web 2.0, GRID applications and more recently seman-
tic desktop applications are bringing the Web to a situation where more
and more data and metadata are shared and made available to large
user groups. Things are further complicated by the highly unpredictable
and autonomous dynamics of data, users, permissions and access control
rules. For this novel scenario, a new access control model, Relation-Based
Access Control (RelBAC ) is proposed which allows subjects, objects
and permissions to be defined independently. The key property which
makes this possible is that permissions are modeled as relations between
subjects and objects. RelBAC is formalized using the Description Logic
ALCQIBO, which allows to perform policy management, e.g., Separa-
tion of Duties via automated reasoning.

1 Introduction

Web service applications, GRID applications, the Web 2.0 and Social Web ap-
plications, e.g., FaceBook, MySpace, and more recently, semantic desktops (e.g.,
IRIS [17], Haystack [16], Nepomuk [26]) are bringing the Web to a situation
where more and more user data and metadata are made available for sharing.
In this context metadata may be tags, attributes of files, or complex graph
structures such as file system or web directories, or (lightweight) ontologies[13].
In turn, users (actually user descriptions) can themselves be tagged by certain
properties, they can be organized in groups, e.g., as the friends of a person, or
as those people who are interested in a specific topic, e.g., “Peace in the Middle
East”, or in the results of a specific scientific experiment. Groups themselves
can build complex graph structures (e.g., lightweight people ontologies written
in FOAF), often across and independently of organizational boundaries, and also
independently of how data and metadata are organized. This situation is further
complicated by the high unpredictable dynamics where data, users, and access
permissions change independently.

This new scenario presents a set of characteristics which make it radically
different from previous applications, e.g., Intranet applications, in particular:
? This paper is a much extended version of the work originally published in [14] and

extended in [15].
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– Data and users are organized in complex structures; typically hierarchical
structures, i.e., direct acyclic graphs (DAGs) plus constraints and complex
links among user groups and data. Permissions themselves are organized in
DAGs, needed to take into account, among other things, the time-variance
of the application context [32, 31]. Thus, as an example, one would like to
distinguish in a uniform way (and to reason about it, see item below) about
Read, Read during the week-end, and Read at night.

– Permissions, and access control policies evolve autonomously from data and
users. This requires treating them as first class objects. As a consequence,
it must be possible to add, delete or change a permission or a rule indepen-
dently from users and data (differently from what happens in Role Based
Access Control (RBAC) [11]). Furthermore a much more refined control on
the arity of access control rules must be supported. In particular, it must be
possible to say that, e.g., m users in a pre-existing group can access n data
in a newly created class.

– Systems are inherently open and it is impossible to know, at design time, the
future evolution of data, metadata, users, user groups and the consequent
access control policies. Data, metadata, users and user groups are subject
to strong unpredictable dynamics. This requires complex reasoning about
policies, at run time, while the system is in operation.

This paper proposes a new access control model, called RelBAC (for Relation
Based Access Control) which allows us to deal with this novel scenario. The key
idea, which differentiates RelBAC from the state of the art, is that permissions
are modeled as relations between users and data (called subjects and objects in
access control terminology), while access control rules are their instantiations,
with arity, on specific sets of subjects and objects. The RelBAC model is defined
as an Entity Relationship (ER) model [9] thus defining permissions as relations
between classes of subjects and classes of objects. Finally, by exploiting the well
known translation of ER diagrams into Description Logics (DL) [3] a domain
specific (Description) logic, ALCQIBO, is used to express and reason about
subjects, objects, permissions and access control rules. In turn, this allows us to
reason about policies by using state of the art, off-the-shelf, DL Reasoners, e.g.,
Pellet [30]. Thus, for instance the permission Use can be modelled as a binary
relation which holds for all the pairs < subj, obj > where the subject subj can
Use the object obj, while Student v ∃Use.PC is an access control rule which
states that all students should have access to at least one PC among all the
PCs which are available. Furthermore, the policy consisting of the above control
rule plus the rule Student v≤ 1Use.PC states that students can use one and
most one PC among all available PCs Notice that the above rule states that at
different time points the same student may be allowed to use different PCs.

The rest of the paper is structured as follows. Section 2 describes the Rel-
BAC model. Section 3 describes the Description Logic of ALCQIBO. In Section
4, RelBAC is formalized with ALCQIBO, together with the definition of hier-
archies, general and ground access control rules and the most common access
control rules TAC. Section 6 shows how to use RelBAC . Section 5 shows the
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way to handle a popular security property, separation of duties with RelBAC .
Section 7 describes the related work and Section 8 provides some conclusions.

2 The RelBAC Model

The RelBAC Model is represented with the ER Diagram as Figure 1. The details
of the components are listed below.

Fig. 1. The ER Diagram of the RelBAC Model.

– SUBJECT (or USER): a set of subjects(e.g., a person or even a thread), namely
the set of those users who can perform operations on objects; a set of subjects
forms a GROUP. The loop on SUBJECT represents the ‘IS-A’ relation between
sets of subjects. The largest GROUP is the collection of all the possible sub-
jects.

– OBJECT: a set of all objects(e.g., anything with a URI), namely the set of
all data (and/ or resources) on which users can perform operations; a set
of objects forms a CLASS. The loop on OBJECT represents again an ‘IS-A’
relation between sets of objects. The largest CLASS is the collection of all the
possible objects of the system.

– PERMISSION: intuitively, a permission is an operation that a subject is al-
lowed to perform on an object. To capture this, a permission is named with
the name of the operation it refers to (e.g., Write or Download). As shown
in the ER diagram of Figure 1, a PERMISSION is a relation between SUBJECT
and OBJECT, namely a set of (subject,object) pairs (e.g., Download(rui, /ar-
title1.pdf) or Read(fausto, http://disi.unitn.it/ knowdive/)). The loop on
PERMISSION represents the ‘IS-A’ relation between sets of permissions. A
Permission can be expressed both in term of subjects (i.e., students can use
all PCs in room 29), and in term of objects (PCs in room 29 can be used by
all students).

– RULE (short for ACCESS CONTROL RULE ): a rule associates a PERMISSION to
a specific set of (SUBJECT,OBJECT) pairs. A rule assigns the specific SUBJECT
the access right to perform the operation named by the PERMISSION to the
specific OBJECT. Rules are formalized as DL formulas, as described in the
following subsection.

As an example of RelBAC model, consider the situation in Figure 2 where
Rui is a person who has on his PC a directory of contacts (on the left) which
represents his social network and a file system (on the right) which contains
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Fig. 2. SUBJECT and OBJECT Hierarchies.

various items including code, publications and entertainment material. In Figure
2, nodes with mark ‘+’ represent a set (of people, of data), while nodes with
mark ‘i’ represent a single entity (a person or a file). Thus, for instance, as
from the picture, Rui has a colleague Hao, who’s a coder in KnowDive research
group. Rui has also another colleague, Ilya, who’s a manager in the group; he
has some friends who are soccer fans, some of which like the team AC Milan
while some others like Juventus (another Italian team). He also has some close
friends classified in his social network.

Consider now Figure 3. Permissions form a complex hierarchical structure.
Similarly to Figure 2, nodes with mark ‘+’ represent sets (of subject/ object
pairs), while nodes with mark ‘i’ represent single subject/ object pairs. The
hierarchy on the left in Figure 3 states that the Read permission is more general
that the Write and Delete permissions, in other words, that having a Write or
a Delete permission implies having also a Read permission. It also states (last
item) that Hao can Read Shrek II, without necessarily being able to Write or
Delete it.

Consider now the hierarchy on the right in Figure 3. This hierarchy shows
how it is possible to represent contextual factors as direct conditions in a hier-
archy. It states, for instance, that the users who can connect on weekdays are
a subset of those who can have connect capability, and the same for those who
can connect on weekends. Notice that in this hierarchy the root Connect is less
general than its descendants and so on for all nodes and paths. In particular the
people that will always be able to Connect will be a subset of those who will be
able to Connect on week days or on weekends. The two hierarchies in Figure 3
have therefore opposite polarity, starting respectively from the relation with the
largest and the smallest extension. The arrows, by going from the largest to the
smallest relation, represent just this fact.



5

Fig. 3. Permission Hierarchies.

The ER Diagram modeling (a part of) the situation in the Figures 2, 3 also
providing the missing information is depicted in Figure 4.4 As it can be noticed,
Read is defined between Knowdive and Work and used to define a many-to-
many access control rule; all the other permissions define one-to-one rules, and
Update is less general of both Write and Delete.

Fig. 4. A portion of the ER Diagram of Figures 2,3.

3 The Description Logic ALCQIBO

The logic ALCQIBO extends the description logic ALC [3] with qualified cardi-
nalities, inverse roles, nominals and Booleans for roles (see [29, 23, 22] for exten-
sions of DLs with Booleans between roles). We define the syntax of ALCQIBO
as follows.

Let NC, NR and NI be pairwise disjoint and countably infinite sets of concept
names, role names and individual names. Then concept expressions and role

4 To simplify the picture, as it is sometimes done, we draw the aggregation box only
around the permission.
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expressions are defined as follows:

C,D ::= A | ¬C | C uD | ≥ nR.C | {ai}
R,S ::= P | R− | ¬R | R u S

where A ∈ NC, P ∈ NR, ai ∈ NI and n ∈ N.
A Knowledge Base (KB) is a pair K = 〈T ,A〉 where T , called TBox, is a finite
set of general concept inclusions (GCIs) of the form C v D and a finite set of
general role inclusions (GRIs) of the form R v S, while A, called ABox, is a
finite set of concept and role assertions of the form C(ai) and R(ai, aj), with
ai, aj ∈ NI.

An ALCQIBO-interpretation, I, is a pair (∆, ·I) where ∆ is a non-empty
set called the domain of I and ·I is a function mapping each A ∈ NC to a subset
AI ⊆ ∆ and each P ∈ NR to a relation P I ⊆ ∆ × ∆. Furthermore, ·I applies
also to individuals by mapping each individual name ai ∈ NI into an element
aIi ∈ ∆ such that aIi 6= aIj , for all i 6= j, i.e., we adopt the so called unique name
assumption (UNA). We extend the mapping ·I to complex roles and concepts
as follows:

(R−)I := {(y, x) ∈ ∆×∆ | (x, y) ∈ RI},
(¬R)I := ∆×∆ \RI , (¬C)I := ∆ \ CI ,

(R u S)I := RI ∩ SI , (C uD)I := CI ∩DI ,
(> n R.C)I := {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ RI and y ∈ CI} ≥ n}, {ai}I := {aIi }.

An ALCQIBO-interpretation I = (∆, ·I) is said a model of a KB, K, iff it
satisfies CI ⊆ DI , for all C v D ∈ K, RI ⊆ SI , for all R v S ∈ K, aIi ∈ CI ,
for all C(ai) ∈ A, and (aIi , a

I
j ) ∈ RI , for all R(ai, aj) ∈ A. In this case we say

that K is satisfiable and write I |= K. A concept C (role R) is satisfiable w.r.t.
K if there exists a model I of K such that CI 6= ∅ (RI 6= ∅).

As usual, we can define a number of useful abbreviations:

C tD for ¬(¬C u ¬D)
(6 n R.C) for ¬(> n+ 1 R.C)
(= n R.C) for ¬(> n+ 1 R.C) u (> n R.C)

∃R.C for (> 1 R.C)
∀R.C for (6 0 R.¬C)
> for A t ¬A (for some concept A)
⊥ for ¬>
U for R t ¬R (for some role R)

Note that, TBox axioms can be internalized. Indeed, we can encode each
axiom C v D as the concept expression ∀U .(¬C t D), while each role axiom
R v S can be encoded as the concept expression ∀U .∀(R u ¬S).⊥. (To encode
ABox assertions as concept expressions see [29]).

Concerning the complexity of ALCQIBO, KB satisfiability can be reduced
to reason over the two-variable first-order fragment with counting quantifiers
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which is NExpTime-complete [28]. On the other hand, Boolean modal logic is
a proper sub-language of ALCQIBO and it is NExpTime-complete [22]. As a
consequence, reasoning in ALCQIBO is NExpTime-complete.

4 Formalization of RelBAC

The possibility of translating ER diagrams into Description Logics allows for a
direct formalization of the RelBAC model into a family of logics for access con-
trol, more specifically, ALCQIBO. In the following of this section we describe
how it is possible to define user groups, object classes and permissions (Section
4.1), we show how it is possible to build hierarchies of users, objects and permis-
sions (Section 4.2), and then show how to formalize general access control rules
(Section 4.3) and instance specific access control rules (Section 4.4). Finally we
conclude this section by showing how it is possible to formalize in RelBAC the
type of access control rules used in RBAC) (Section 4.5).

4.1 Defining Subjects, Objects, Permissions

Sets of subjects and objects are formalized as atomic concepts. Permissions are
formalized as DL roles (not to be confused with the RBAC roles!):

S1, ..., Sm | (subjects)
O1, ..., On | (objects)
P1, ..., Ps | (permissions)

where Si(i = 1, ...,m) are concepts for subjects5, such as Friend or KnowDive ;
Oj(j = 1, ..., n) are concepts for objects, such as V ideo or Code; Pk(k = 1, ..., s)
are roles for permissions defining user-object pairs. Examples of permissions are
conventional file operations such as Read and Write or some other field functions
such as Cash and Audit. User and Object are the concepts for all users and
objects, respectively. From now on, we use italic starting with a Capital letter
as concept and role names.

RelBAC provides ways to build complex groups and classes, and even com-
plex relation based on these concepts and roles defined above through the logic
of ALCQIBO with different constructors such as set operators, cardinality op-
erators as described in Section 3.

4.2 Defining Hierarchies of users, objects and permissions

In RelBAC, we declare hierarchies as subsumption axioms, namely as axions of
the form (we limit ourselves only to one direction of subsumption, dual argu-
ments hold for the other direction):

Ai v Aj

5 Subjects are also called users in access control. The two terms are used interchange-
ably in this paper.
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where Ai, Aj can be users, objects or permissions, whose meaning is

AIi ⊆ AIj

Thus for instance, some paths in the hierarchies in Figures 2, 3, are axiomatized
as follows

Coder v KnowDive
Code vWork

Write v Read
Connect vWeekends

This allows to define partial orders ≥ on users, objects, and permissions, as
follows. A USER HIERARCHY (represented in Figure 1 as the IS-A relation on
SUBJECT and GROUP) is formalized as

U1 ≥ U2 iff U1 v U2

A OBJECT HIERARCHY (represented in Figure 1 as the IS-A relation on OBJECT
and CLASS) is formalized as

O1 ≥ O2 iff O1 v O2

A PERMISSION HIERARCHY (represented in Figure 1 as the IS-A relation on the
aggregation of PERMISSION, SUBJECT and OBJECT) is formalized as

P1 ≥ P2 iff P1 v P2

Notice that the direction of the partial order on users and objects is opposite
to that of subsumption; namely the smaller a set is, the higher it is in the
partial order. ≥ has been defined, for users in particular, to mimic the RBAC
partial order on roles[11]. Notice however that the two partial orders are radically
different, the first being a partial order on users, the second on permissions. The
intuition is that the larger sets of users will have less permissions, and the same
for objects. Similarly, notice that the partial order on permissions has the same
direction as that of RBAC. This definition is coherent with RBAC : the more
powerful permission the higher in the partial order. The overall intuition is that
smaller sets of users and objects and therefore higher in their partial order are
those involved in the more powerful permissions.

4.3 Defining General Access Control Rules

Access control rules may take one of the following three forms

C ≡ D
C v D
C w D
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where: C ≡ D, to be read as “C is equivalent to D”, is interpreted as CI = DI ,
C is either a group of users or a group of objects, and D can be any formula
constructed following the syntax in Section 3. Equivalence should be used with a
lot of attention and limited to those cases which are self-evident (e.g., synonyms)
such as ICTStudent ≡ ICTPeople u Student. Rules usually take the form of
subsumption formulas. In the following we will consider only one direction of
subsumption; dual arguments apply for the other direction.

A first set of paradigmatic examples can be defined as follows:

U v ∃P.O (1)

O v ∃P−1.U (2)
U v ∀P.O (3)

O v ∀P−1.U (4)

For example, we can write:

– Friend v ∃Download.Music to state that all close friends can download
some music,

– Music v ∃Download−1.F riend to state that all music can be downloaded
by some friend,

– Friend v ∀Download.Music to state that friends can download only music,
– Code v ∀Read−1.KnowDive to state that the code can be read only by

KnowDive members.

In RelBAC we can express cardinality in the rules as follows:

U v≥ nP.O (5)

O v≥ nP−1.U (6)
U v≤ nP.O (7)

O v≤ nP−1.U (8)

For example, we can write:

– KnowDive v≥ 1 Program.Code to state that each KnowDive member
should program for at least one project code,

– Code v≤ 2 Program−1.KnowDive to state that each project code should
be programmed by at most 2 KnowDive members,

As it can be easily noticed from the examples above, and as also represented
in the ER model in Figure 1, there are two kinds of access control rules

1. User-centric access control rules (e.g., Rule (1)), namely rules which define
which users can perform an operation P on a certain set of objects;

2. Object-centric access control rules (e.g., Rule (2)), namely rules which define
which objects can be applied a certain operation P−1 by a certain set of users.
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In the above notation we have assumed that all permissions are defined from
subjects to objects and therefore all object-centric rules are defined in terms on
inverse permissions. Of course, in practice, the policy manager is free to define
permissions as she wants.

4.4 Defining Ground Access Control Rules

Most often one would like to define Ground Access Control Rules (and policies),
that we also sometimes call Rules involving Instances, namely statements about
permissions of specific users and/or objects. In turn ground rules may involve
individuals or sets of individuals.

Rules involving individuals (users of objects) can take one of two forms

U(u), O(o) | (group or class assignment)

P (u, o), P−1(o, u) | (permission assignment)

with the following intended (formal) semantics (the cases not considered are
analogous):

(U(u))I = uI ∈ UI

(P (u, o))I = (u, o)I ∈ P I

The first associates a user to a group while the second assigns a permission to a
specific user and a specific object. We have the following examples:

– KnowDive(Rui) declares Rui to be a member of the group KnowDive,
– V ideo(Shrek II) states that the file Shrek II is a video
– Download(Hao, Shrek II) states that Hao can download Shrek II;

To define ground rules about sets of individuals we need some notation for
sets and for computing the domain of a permission. We have the following:

{a1, . . . , a2} | (set constructor)

P : o, P−1 : u | (fill constructor)

(P : o)(u), (P−1 : u)(o) | (membership constructor)

where ai can be a user or an object and the membership constructor is the
composition of the fill constructor and the user assignment constructor, with
the following semantics (the cases with the inverse permission are analogous):

{a1, . . . , a2}I = {aI1 , . . . , aI2}
(P : o)I = {u ∈ UserI |(o, u) ∈ P I}

((P : o)(u))I = uI ∈ (P : o)I

Notice that the fill constructor P : o defines all users u which have permission
P on object o while the membership constructor states that the user u has
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permission P on the object o. The above definitions allow us to define ground
rules as follows:

U v P : o (9)
(P : o)(u) (10)
(∃P.O)(u) (11)
(∀P.O)(u) (12)
(≥ nP.O)(u) (13)
(≤ nP.O)(u) (14)

For example, we can write:

– CloseFriend v Download : Shrek II to state that close friends can down-
load Shrek II,

– CloseFriend u ¬{Hao} v Download : Shrek II to state that Hao is an
exception to the previous policy;

– {Hao, Ilya} v Download : Shrek II to enumerate the two close friends who
can download Shrek II,

– (Download : Shrek II)(Hao) to state that Hao can download Shrek II,
– ∃Update.Beta(Hao) to state that Hao can update at least a file of beta

code,
– ∀Upload.V ideo(Hao) to state that Hao can upload only video,
– ≥ 10Update.Beta(hao) to state that Hao can update at least ten files of

Beta code,
– ≤ 15Download.V ideo(Hao) to state that Hao can download at most fifteen

videos.

Policies (15–20) can be symmetrically stated for objects using inverse permis-
sions, thus obtaining the following:

O v P−1 : u (15)

(P−1 : u)(o) (16)

(∃P−1.U)(o) (17)

(∀P−1.U)(o) (18)

(≥ nP−1.U)(o) (19)

(≤ nP−1.U)(o) (20)

4.5 Defining the Total Access Control Rule

The usual practice in access control, and specifically in RBAC, is to construct
policies as follows. First Roles are defined as sets of permissions P over a specific
set of objects O; let us call this set, P (O). Then P (O) is assigned to individual
users u or sets of users U . This assignment is total in the sense that all the users
in U , or u herself in the case of single user, can apply each permission in P to all
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objects in O. We call this the Total Access Control (TAC) rule. The TAC rule
can be defined as the following RelBAC ground policy:

{P (u1, o1), . . . , P (u1, om), . . . , P (un, om)}.

In other words the TAC rule is defined as the set of all ground access control
rules P (ui, oj) for all users ui ∈ U and objects oj ∈ O.

A more elegant formulation defines the TAC rule as a policy which does not
need to enumerate all instances. The DL formula for the TAC rule6 is defined
as follows:

∀O.P ≡ ∀¬P.¬O

We have in fact that

(∀¬P.¬O)I = {u ∈ UserI | ∀o. (u, o) ∈ ¬P I → o ∈ ¬OI}
= {u ∈ UserI | ∀o. o ∈ OI → (u, o) ∈ P I}
= ∀O.P

We can therefore define a TAC general policy using one of the following DL
formulas:

U v ∀O.P (21)

O v ∀U.P−1 (22)

and similarly in the case of ground TAC policies:

(∀O.P )(u) (23)

(∀U.P−1)(o) (24)

We have the following examples:

– Manager v ∀Code.Update states that all project managers can update all
the code,

– Code v ∀Manager.Update−1 states that all the code can be updated by all
project leaders

It is interesting to notice that the two examples above of the TAC rule, namely

Manager ≡ ∀Code.Update
Code ≡ ∀Manager.Update−1

are equivalent in the sense that they define exactly the same set of policies.
This is due to the fact that the TAC rule (and its strong request to be able to
access all objects) plus the equivalence relation break the asymmetry intrinsic
in subsumption and in user versus object centric access control policies (on this
last item see below Section 6.3).
6 Alex Borgida, borgida@cs.rutgers.edu
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As a follow-up on the last observation, it can be noticed that the RelBAC
TAC rule which does exactly the same as the rules used in RBAC is defined as
follows:

U ≡ ∀O.P (25)

or, from above, equivalently as the following formula 7.

O ≡ ∀U.P−1, (26)

5 Separation of Duties

Separation of Duties (SoD) is an important security property in modern access
control systems[20]. It enforces that more than one person is required to complete
a task. In this section, we will discuss the general meaning of SoD, its enforcement
at design and run time and a high-level security policy [21] for SoD.

5.1 General SoD

An SoD states that, if a sensitive task consists of two steps, then two different
users should perform mutually exclusive steps. More generally, when a sensitive
task is composed of n steps, an SoD constraint requires the cooperation of at
least k (for some k 6 n) different users to complete the task.

In one of the most well-known access control model, Role Based Access Con-
trol (RBAC)[11], SoD is enforced with the help of restrictions on the ‘roles8’.
The SoD that ‘different users should perform two different steps of a task’ can
be enforced at design time by restricting any user from the assignments to the
two roles, each of which is assigned the permission to carry out a step of the two.
For a more general SoD that ‘different users should perform n different steps
of a task’, each step is modeled as an RBAC role Ri, and the SoD is formally
expressed as the following formula: S1 u ... u Si u ... u Sn v ⊥ where Si is a
set of subjects.

In RelBAC , a permission is a relation which links a subject with an object.
To enforce this SoD in RelBAC , we need to assert an axiom which allows permis-
sions. For example, suppose in a scenario of sales force automation9, to initiate,
process, check and archive an order should not be completed by only one user.
Suppose Initiate, Process, Check and Archive are four permissions with the same
domain as users and co-domain as orders. The SoD above can be expressed in
RelBAC as

Initiate u Process u Check uArchive v ⊥
7 See Section 6.2 on the use of equivalences in the definition of access control rules.
8 RBAC roles should not be misused with DL roles, a ‘role’ is a component simulating

a real world group, e.g., a set of managers. A user can only execute a permission
assigned to the role that s/he can activate.

9 http://www.salesforce.com
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This policy restricts any pair (u, o) from belonging to all four sets Initiate, Pro-
cess, Check and Archive.

In general, given n steps of a task step1, ..., stepn, the SoD requires at least
k (k 6 n) users can fulfill all these n steps. Suppose any of the k users can fulfill
maximum m steps. In the worst case, everyone can fulfill equal number of steps,
and satisfies the following in-equations:

(k − 1) ∗m < n i.e. m 6 dn/(k − 1)e − 1 (27)

because k, m, n are all integers. This means intuitively that any user can be
assigned to at most m of these duties as restricted in Formula 27. Thus, any
m + 1 of these duties should not be assigned to one user. Then RelBAC can
enforce the SoD with the following axiom:

Cdn/(k−1)e
n ⊔

i=1

(
dn/(k−1)el

j=1

Pij) v ⊥ (28)

in which Pij stands for one of the m permissions for each step.
Following the example above, given the 4 duties in the SFA scenario, an SoD

requires that at least 3 users should be involved. This SoD can be enforced as
follows.

(Create u Update) t (Review u Create) t (Update uArchive)t
(Update uReview) t (Archive u Create) t (Review uArchive) v ⊥

as Cdn/(k−1)e
n = C

d4/2e
4 = C2

4 = 6.

Up to now, we have discussed the SoD designed by the administrator off-line.
An SoD can be enforced both at design and at run time. An SoD enforced at
run time intuitively means that the duties to be separated cannot be executed
by her simultaneously no matter these duties are assigned to her or not off-line.

RBAC enforces SoD at run time with an extension of a component called
session. In this extended model, if a user wants to activate roles, she has to
activate a session first. Then, the session activates the roles in respect of her. A
run-time SoD, which is called Dynamic Separation of Duties (DSD) in RBAC,
enforces the session of a user is not allowed to activate roles in the DSD, no
matter such roles are assigned to her at design time or not.

In RelBAC , we do not need an extension. The use of a special kind of permis-
sion, which we call Run Time Permission (RTP), solves this problem. Assume
that the name of a permission in the original RelBAC model is an English verb
(or a verb phrase with a major verb describing the operation). Its corresponding
RTP is formed by alternating the verb with the present participle of the verb.
A permission’s RTP describes its current execution. From the semantics of a
permission defined in RelBAC , a user cannot be executing a permission unless
she has been assigned it. This can be guaranteed by the following axiom.

Doing v Do (29)
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where Do stands for a permission in the original RelBAC . Thus, to enforce a user
is not allowed to have some permissions at run time, is to avoid the assignment
of their RTPs to the user. For example, assume that Initiating is the RTP for
the permission Initiate. As said above, a user cannot execute the permission
Initiating without having the permission Initiate. Now, the SoD ‘a user cannot
initiate and process an order at the same time’ is enforced as follows (we assume
that both permissions have the same range, Order):

Initiating u Processing v ⊥

In the real world, a user can be granted the permission to initiate an order (as
a customer) and to process an order (as a sales agent), but cannot perform the
two permissions (duties) simultaneously in order to avoid the process of one’s
own order.

Although an SoD can be enforced at design and run time with similar role
axioms in RelBAC , the mechanisms regulating it are different. To enforce an SoD
at run time, the monitoring mechanism should inform the access control system
in real time, so that the current state such as Alice is initiating an order ‘Bolzano’
should be recognized. Then the knowledge base should be updated with the new
assertion Initiating(alice, bolzano). Therefore, the above SoD (ruling out the
possibility of initiating and processing an order at the same time) in the KB K
entails the following:

K t {Initiating(alice, bolzano)} |= ¬Processing(alice, bolzano)

although Alice might have permissions to both initiate and process some order.

5.2 High Level Security Policy about SoD

SoD has been studied in [21] on detailed requirements for specific users in ad-
dition to numbers of each kind of users. An algebra was proposed to specify
complex policies combining requirements on user attributes and number. On
top of the cardinality constraints for given duties, the algebra can specify the
composition of the users for the SoD which they regard as high-level security
policy. For example, beyond to restrict that at least 2 users should be involved
for the 4 steps in the SFA schema of Section 5.1, it further enforces that the set of
users that can complete the order fulfillment task involve customer(s) to initiate
the order and sales manager(s) to check the order. For example, the composition
of the user set should be as follows.

1. At least one sales manager has to check orders and at least one customer to
initiate orders.

2. At least one sales manager and at least one customer and maybe some other
sales manager or customer are involved, but no others than those two kinds
of users.

3. Exactly two users are involved, one sales manager and one customer.
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Case 1 means that a customer should be involved to initiate the order and a
manager should be involved to check the order, for the other users, the adminis-
trator does not care who processes and archives the order. Case 2 specifies that
only customer and manager can be involved which means the same manager (or
some other manager) will take charge of the duties to process and to archive.
Case 3 is the most strict by allowing only one customer and one manager to be
involved.

RelBAC can achieve this kind of constraints with object-centric rules with
the cardinality restriction constructor. For example, as for the cases above, the
three constraints for the set of users can be formalized as follows.

Order v (> 1 Initiate−.Customer) u (> 1 Check−.Manager)
Order v ∀Involve.(Customer tManager) u

(> 1 Initiate−.Customer) u (> 1 Check−.Manager)
Order v (= 2 Involve.(Customer tManager)) u

(= 1 Initiate−.Customer) u (= 1 Check−.Manager)

Where Involve is a permission more general than any of the 4 permissions for
the 4 duties in the above schema, i.e.

Initiate− t Process− t Check− tArchive− v Involve

This kind of high-level security policy complements the general SoD policy as
discussed in Section 5.1 because it has the full power to describe the composition
of the set of subjects including the exact cardinality.

6 Using RelBAC

How should we use RelBAC in practice? Isn’t RelBAC just the (n+1) Logic
for access control? More precisely, how can we use the added expressibility of
RelBAC policies? This is still too early to judge and a lot of work has to be done
in order to provide an answer to this question and, ultimately, to judge the real
usefulness of RelBAC . However a few comments and observations can already
be done. Let us analyze them in some detail.

6.1 Quantifiers in policies

The first observation is concerned with the role of quantifiers. Why should they
be used at all? They have been very successfully used in data bases, but in access
control they are completely avoided as policies are implicitly universally quanti-
fied (see Section 3). Do we really need them? Maybe access control relations do
not need the level of expressibility needed in data bases and information systems.

Let us consider, as an example, the following access control rule

Student v ∃Use.PC
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which states that students should be able to use at least one PC. We are stating
that any student in principle could use all PCs (as in the TAC rule) but that
what really matters is that she has access to one. And the above policy could
be made stronger, using number restrictions, by saying that a student should
have access to exactly one PC or, using the universal quantifier, by saying that
students can use only PCs and that therefore, e.g., they cannot use personal
assistants.

Of course the same effect can be obtained in the existing systems, e.g., RBAC,
by checking these constraints at run time. But in this case this constraint would
be embedded in the code and it would be impossible to reason about it. Notice
that ER diagrams have been invented just for providing high level semi-formal
specifications of information systems and Description Logics have been defined
in order to perform automated reasoning about their properties. Maybe, in the
past, there was no much need of high level specifications of the kind allowed by
ER diagrams and even less of reasoning about them. But the increasing number
of open, dynamically evolving systems, with strong access control requirements,
which are among the main motivations for this work, seem to lead in this direc-
tion.

6.2 Subsumption policies

In state of the art access control systems, policies are stated as equivalences. In
other words, in any moment in time, a given set of users is given exactly a set of
permissions on a precisely defined set of objects. In RelBAC we have suggested
to minimize equivalences and to concentrate instead on subsumption policies
(Section 4.3). This suggestion is a consequence of the past experience which has
shown that stating properties (in our case policies) as equivalences leads into
specifications which are too rigid, hard to maintain and that can easily create
difficulties (e.g., generate an inconsistent set of policies). And this is more and
more true the more complex systems are, and the more dynamics there are (with
the need, each time a policy is changed, to check that all desired properties are
satisfied).

Consider for instance the following access control rule:

Student ≡ ∃Use.PC

Suppose that, by chance, it happens that students may also use a smart-phone.
One would like to add the following policy

Student v ∃Use.Smart− phone

but this would lead an inconsistent theory (under the assumption that smart-
phones are different objects from PCs), while this would have not been the case
if we had used the corresponding subsumption policy, as written in the previous
subsection. Dually, it is possible to assert the following rule

Student w ∃Use.HPC
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whereHPC is an acronym for High performance Computer, and add later further
policies which restrict the extension of Student just to the correct set of students.

Again, as in the previous subsection, similar effects could be obtained pro-
grammatically by dynamically controlling the extensions of the relevant sets of
users and objects but, again, this would make it impossible to reason about
them at the policy level. The further (usual) advantage of stating a policy in
a logical specification, instead of embedding it into the code, is that it can be
(easily) changed, contrarily to the latter case where the policy is hardwired in
the system code.

6.3 User and Object centric policies

Prior to the success of RBAC and the most recent access models for access
control, this task was done by using Access Control Matrix [6]. A main advantage
of this approach was that the Access Control Matrix could be analyzed by rows
or by columns. By looking at the rows one would take the users’ perspective
and analyze their capabilities, by looking at the columns and one would take the
objects’ perspective and analyze their access control lists. One main problem
was scalability: in large applications the large number of subject/ object pairs,
most of which were irrelevant, made this approach unfeasible in practice. RBAC
solved this problem by splitting subjects from objects via roles. This however
leads to a user centric view of policies where the key component is the definition
of RBAC user roles.

Instead, RelBAC splits subjects from objects by defining permissions as re-
lations. As the previous sections make clear, the role of users and objects is
completely symmetric and one can symmetrically define user-centric or object-
centric policies. In practice, the policy administrator can look at (our version of)
capabilities or at (our version of) access control lists. It is important to notice
that in the Web we find more and more applications, e.g., Wikipedia, various
content portals, where the space of users is quite flat (i.e., most of the users are
undistinguished users, often anonymous, which navigate the Web) while data
form a huge space of valuable content whose access needs to be put more and
more in control (think of instance of the sensitive topics, e.g., sex).

6.4 Scalability

But, will RelBAC scale in practice? This issue is fundamental not only because
the current state of the art, e.g., RBAC, has been vey successful on this issue, but
also because the new full connectivity scenarios are bringing us to applications
where the size of users and data is far beyond the existing applications.

The answer to this question must be split in two parts: ground policies and
general policies. According to our first implementation of RelBAC , ground poli-
cies in RelBAC can be implemented, using, e.g., a relational data base, by using
practically the same ideas as RBAC, and with very much the same level of ef-
ficiency. In practice the triples 〈S,O, P 〉 implementing RelBAC access control
rules can be implemented as pairs 〈S, P (O)〉, very much in the same way as the
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rules used in RBAC. Also the RelBAC policy maintenance problem is basically
the same and the system administrator can be provided an interface which looks
very much the same as in RBAC.

Things change radically at the level of general policies. Here there are many
concurrent issues. The first is the number of policies. On this issue things look
promising. In fact even if RelBAC policies are inherently more expressive, they
extend naturally one of the fundamental features which made RBAC very suc-
cessful, i.e, the hierarchy on roles and the propagation of permissions, to users,
objects and permissions (see Section 4.3), which in turn leads to the possibility
of generation in RelBAC of what we could call Hierarchical Policies. Consider
for instance a policy of kind (1) from Section 4.3 (the same argument applies
also to all the other policies):

U1 v ∃P1.O1.

This policy also implies the following set of policies

U2 v ∃P2.O2.

for any U2 such that U2 ≥ U1, for any O2 such that O1 ≥ O2, and for any P2

such that P2 ≥ P1. In other words, the number of subsumption policies can be
minimized by taking the biggest possible group of users, the smallest possible set
of objects and the most powerful permission. All policies involving any subgroup,
any superset of objects and any less powerful policy are automatically implied. As
a simple example based on the hierarchies in Figures 2,3, consider the following
policy

Knowdive v ∃Update.V ideo

This policy implies that all Coders and Managers not only can Update but they
can also Delete and Read some of the material on Rui’s Semantic Desktop. As
a second example, the following (equivalence version of the) TAC rule

Knowdive ≡ ∀V ideo.Update

states that all the people in the KnowDive group and therefore all Coders and
Managers not only can Update but they can also Delete and Read all Videos
on Rui’s Semantic Desktop and nothing more.

7 Related Work

The state of the art is definitely RBAC [11]10. The amount of work which has
been done on RBAC and its level of development is incomparably high compared
to that of RelBAC (see, e.g., [19, 1, 25] or [5]). Therefore a meaningful compar-
ison can be made only on the basic underlying intuitions. As already hinted in

10 The UCON model [27] deals with temporal and state transition issues which our
outside the current scope of RelBAC .
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the previous sections (and emphasized in the introduction and the conclusions)
the main difference between RelBAC and RBAC is that the former models per-
missions as ER relations thus making them first class entities (which can evolve
independently of subjects and objects), and thus allowing for arity aware access
control policies. The further main difference is that RelBAC embeds policies di-
rectly into a (Description) Logic which allows automated reasoning. These two
ingredients are among what we believe the main recipes for addressing the com-
plication of the current new Web based open, highly dynamic applications. From
another point of view, we can see RelBAC as a natural extension of RBAC by
adding the differences above. Our preliminary experiments make us believe that
ultimately, RelBAC will be used as some kind of enhanced RBAC.

A lot of work has also been developed towards providing logical frameworks
which would allow to reason about RBAC based policies, see, e.g., [4, 18, 24].
Besides the differences in the underlying logic and in in the specifics of the for-
malizations (an obvious consequence of the differences existing between RBAC
and RelBAC ), it is here worth mentioning that in this work the logical frame-
works have been added on top of RBAC, while RelBAC is defined natively with
its own (Description) Logic. As a non trivial plus of our approach, it becomes
possible in RelBAC to have non-logic experts to handle (logic) policies and to
reason about them using state of the art reasoning technologies.

Some researchers have dealt with problems similar in nature to the ones con-
centrated in RelBAC . Thus, for instance, Juri et al. propose an access control
solution for sharing semantic data across desktops [10]. They use a three di-
mensional access control matrix to represent fine-grained policies. The problem
is that their solution will not scale since the matrix grows polynomially with
objects. Other authors have addressed the problem of access control in open and
dynamic environments by adapting RBAC. One such approach is [4]. Another
approach is the algebra of security policies for access control in [7]. This algebra
allows for composing access control policies. S. Agarwal and B. Sprick propose
a similar algebra for dealing with the problem of access control with semantic
web services [2].

Various papers describe the use of Description Logics in the formalization
of access control (see, e.g. [8, 12, 14, 15, 33, 34]). In [34] an early attempt was
made by C.Zhao et al. to apply DLs to the representation of policies in the
RBAC model. In their proposal, users, roles, sessions and permissions are for-
malized as DL concepts but objects are regarded as encapsulated inside permis-
sions together with operations. This results in an explosion in the number of
permissions and the corresponding difficulty to specify policies about objects.
Moreover, they proposed to use only the existential restriction constructor for
permission assignments. Another formalization of RBAC in DLs was proposed
by J.Chae et al. [8], where an operation is represented as a DL role. Recently,
T.Finin et al. proposed to use OWL11 as the formalization of RBAC in [12]. They
provide two ways to formalize a RBAC role, as a class or as an attribute. N3Logic

11 http://www.w3.org/TR/owl-guide/
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is used together with DL subsumption reasoning. Authorization decision queries
can be answered using DL reasoners in their system.

8 Conclusion

In this paper, we have discussed a new access control model, RelBAC and have
formalized it using the Description Logic, ALCQIBO. The subject groups, ob-
ject classes are formalized as concepts and the permissions, which are intuitively
the rights to perform certain operations by the subject onto the object, are
formalized as Description Logic roles. We also showed the way to define hier-
archies inside the subjects, objects and permissions; the way to define general
and ground access control rules. RelBAC allows for great expressiveness in car-
dinality control and natural definition in policies. In addition, a popular security
property, separation of duties, had been discussed under RelBAC in contrast to
other access control models. With this paper, we can see RelBAC as a novel
efficient natural access control model for the Web 3.0.
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G., Cudré-Mauroux, P. (eds.) The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,
Busan, Korea, November 11–15, 2007. Lecture Notes in Computer Science, vol.
4825, pp. 438–451. Springer (2007)

30. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Submitted for publication to Journal of Web Semantics. (2003)

31. Strembeck, M., Neumann, G.: An integrated approach to engineer and enforce
context constraints in rbac environments. ACM Transactions on Information and
System Security 7(3), 392–427 (2004)

32. Wilikens, M., Feriti, S., Sanna, A., Masera, M.: A context-related authorization
and access control method based on rbac:. In: SACMAT ’02: Proceedings of the
seventh ACM symposium on Access control models and technologies. pp. 117–124.
ACM Press, New York, NY, USA (2002)

33. Zhang, R.: RelBAC: Relation Based Access Control. Ph.D. thesis, University of
Trento (March 2009)

34. Zhao, C., Heilili, N., Liu, S., Lin, Z.: Representation and reasoning on rbac: A
description logic approach. In: Hung, D.V., Wirsing, M. (eds.) ICTAC. Lecture
Notes in Computer Science, vol. 3722, pp. 381–393. Springer (2005), http://dblp.
uni-trier.de/db/conf/ictac/ictac2005.html\#ZhaoHLL05


