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In this paper, we are interested in the numerical study of the one-dimensional blood flow 
model with discontinuous mechanical and geometrical properties. We present the mathe-
matical model together with its nondimensional form. We do an exhaustive investigation 
of all its stationary solutions and we propose high-order fully well-balanced numerical 
methods that are able to preserve all of them. They are based on the combination of the 
Generalized Hydrostatic Reconstruction and well-balanced reconstruction operators. These 
methods are able to deal with more than one discontinuous parameter. Several numerical 
tests are shown to prove its well-balanced and high-order properties, and its convergence 
to the exact solutions.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One-dimensional blood flow models have been widely used in the past to address fundamental aspects of pulse wave 
propagation in the cardiovascular system [3,51,53], as well as to determine the state of certain conditions, as for example in 
[59,46,38]. Such models have also been used, in combination with lumped-parameter models, to construct comprehensive 
models of the cardiovascular system for the study of pathological states that act at a systemic level [39,50,9,45,60].

Mathematically, one-dimensional blood flow models are hyperbolic conservation laws, or at least systems of partial dif-
ferential equations with hyperbolic-dominant behavior. Diffusive, dispersive and more complex terms might arise, especially 
when models include a richer-than-usual description of the blood-wall interaction by means of a so-called tube law [26]. 
In the most classical case blood flow is modeled with networks of one-dimensional hyperbolic systems of conservation (or 
balance) laws [12], where coupling conditions among vessels need to be specified [10,42], as well as inlet/outlet boundary 
conditions and the coupling to lumped-parameter models representing the peripheral vasculature [57]. In some applications, 
one-dimensional models are coupled to three-dimensional models, in order to provide realistic boundary conditions to such 
models [55,7,8].

In nature, vessels do not consist of perfectly cylindrical pipes, but present varying geometrical and mechanical properties. 
As a consequence, it is important that mathematical models for blood flow account for this variability. In terms of one-
dimensional mathematical models, one has to consider tube laws that involve space-varying parameters. In turn, as the 
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reader will see in the next section, such variation implies that, for the system of equations written in conservative variables, 
i.e. cross-sectional vessel area and volumetric flow rate, the momentum balance equation includes source terms that depend 
on the spatial derivatives of tube law parameters [62]. These source terms are similar to those arising in other models, such 
as the shallow water equations with variable topography/channel width [4] or in the case of gas dynamics in pipes with 
variable duct cross-section [31]. These terms are often called geometrical source terms and pose particular challenges to the 
design of numerical schemes that are required to accurately approximate certain steady state solutions of the system under 
study (ideally with machine precision errors). Schemes that can preserve certain steady state solutions of the model are 
said to be well-balanced.

The literature on well-balanced schemes for blood flow is rather rich, with many methods proposed in the last decade. 
This variety regards the adopted methodologies and the type of solutions that methods preserve. Many researchers focused 
on techniques that consider the original 2 × 2 system [34], with a careful discretization of source terms arising from space-
varying tube law parameters in order to preserve some or all the stationary solutions of the system: for instance, in [23]
zero-velocity stationary solutions are preserved, in [27] low-Shapiro number stationary solutions, and in, [28,49,47] all of 
the stationary solutions. Methods that preserve zero-velocity stationary solutions are usually said to be well-balanced, while 
those preserving all the stationary solutions have been called exactly well-balanced, energy-balanced, or fully well-balanced: 
the latter will be used in this paper. Another possibility is to work in the context of discontinuous Galerkin schemes, for 
which some examples of well-balanced or fully well-balanced solvers are available [37,13]. Others in turn rely on a model 
reformulation, e.g. [62,58], that results in a non-conservative system and implies to work in the context of path-conservative 
numerical schemes [52]. Some applications of this technique for well-balanced solvers for friction-less one-dimensional 
blood flow are [44,58,43].

In [43] the need of fully well-balanced methods in order to capture correctly the right solutions of the problem was put 
on evidence. In that work, only one of the mechanical parameters of the model, the stiffness coefficient, was considered to 
be space-varying. The main goal of the present work is to develop high-order fully well-balanced numerical methods for 
the general case, in which all the mechanical and geometric parameters may be space-varying. The strategy described in 
[17] based on the design of well-balanced reconstruction operator will be followed. First-, second- and third-order semi-
discrete high-order path-conservative schemes will be developed. A particular property of these methods is that for the case 
of constant parameters they reduce to conservative numerical methods for the original 2 × 2 blood flow model, avoiding 
concerns about the impact of integration path choices in the capacity of the numerical scheme to correctly describe shocks 
[1,15].

The rest of the paper is structured as follows. In section 2 we present the mathematical model and define steady state 
solutions of interest. Next, section 3 regards the design of second and third order accurate semi-discrete finite-volume type 
numerical schemes. Section 4 is devoted to the presentation of numerical results where we verify the implementation of the 
proposed numerical methods and assess their performance with respect to well-balanced properties, as well as regarding 
their capacity to correctly represent transient solutions. Finally, in section 5 we make final consideration on the presented 
work and results, as well as point out further developments.

2. Mathematical model

We consider the following formulation for one-dimensional blood flow in thin-walled deformable elastic tubes intro-
duced in [62]:⎧⎨
⎩

∂t A + ∂xq = 0,

∂tq + ∂x

(
q2

A

)
+ A

ρ
∂x p = 0,

(2.1)

with

p(x, t) = K (x)φ

(
A(x, t)

A0(x)

)
+ pe(x),

where φ is the function defined by

φ(a) = am − an. (2.2)

The notation is as follows:

• A(x, t) represents the cross-sectional area of the vessel.

• q(x, t), the mass-flux and u(x, t) = q(x, t)

A(x, t)
is the averaged velocity of blood at a cross section.

• ρ , the fluid density, assumed to be constant.
• A0(x), the vessel cross-sectional area in an unloaded configuration.
• K (x), the so-called stiffness coefficient, is a known positive function of the vessel wall Young modulus E(x), the wall 

thickness h0(x) and A0(x).
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• p(x, t), the internal pressure.
• pe(x), the external pressure acting on the vessel.
• Here we assume m > 0 and n ∈ (−2, 0]. Typical values for collapsible tubes, such as veins, are m = 10, n = −3/2. For 

arteries we have m = 1/2, n = 0. Moreover, the specified intervals for m and n guarantee the genuine nonlinearity of 
certain characteristic fields [62], as explained later.

Let us now introduce the functions:

�(a) =
a∫

0

φ(τ )dτ =
(

1

m + 1
am+1 − 1

n + 1
an+1
)

, (2.3)

�̃(a) =
a∫

0

τφ′(τ )dτ =
(

m

m + 1
am+1 − n

n + 1
an+1
)

(2.4)

and note that the following equality holds:

�(a) + �̃(a) = aφ(a). (2.5)

Moreover, we note that the momentum equation can be rewritten as follows:

∂tq + ∂x

(
q2

A

)
+ a

K

ρ
∂aφ ∂x A − a2 K

ρ
∂aφ ∂x A0 + A

ρ
φ∂x K + A

ρ
∂x pe = 0, (2.6)

where

a = A

A0
, φ = φ(a), ∂aφ = dφ

da
(a).

If we define now

U =
(

A
q

)
, W =

⎛
⎜⎜⎜⎝

A
q
K
A0
pe

⎞
⎟⎟⎟⎠ , F (W ) =

⎛
⎝ q

q2

A
+ K A0

ρ
�̃

(
A

A0

)⎞⎠ , (2.7)

it can be easily checked that the second component of ∂x F (W ) is equal to:

∂x

(
q2

A

)
+ a

K

ρ
∂aφ∂x A − a2 K

ρ
∂aφ∂x A0 + A0

ρ
�̃(a)∂x K + K

ρ
�̃(a)∂x A0.

If this expression is compared to (2.6) and (2.5) is used, one has that system (2.1) can be written in the form of a 
system of balance laws as follows:

∂t U + ∂x F (W ) + S1(W )∂x K + S2(W )∂x A0 + S3(W )∂x pe = 0, (2.8)

where:

S1(W ) =
⎛
⎝ 0

A0

ρ
�(a)

⎞
⎠ , S2(W ) = −

⎛
⎝ 0

K

ρ
�̃(a)

⎞
⎠ , S3(W ) =

⎛
⎝ 0

A

ρ

⎞
⎠ . (2.9)

The vector notation:

S(W ) = ( S1(W ) | S2(W ) | S3(W ) ) , σ =
⎛
⎝ K

A0
pe

⎞
⎠ , (2.10)

allows us to write system (2.8) in compact form as follows:

∂t U + ∂x F (W ) + S(W ) · ∂xσ = 0. (2.11)

The system can also be written in quasi-linear form:

∂t W +A(W )∂xW = 0, (2.12)
3
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with:

A(W ) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−u2 + a K

ρ ∂aφ 2u A
ρ φ −a2 K

ρ ∂aφ
A
ρ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (2.13)

The eigenvalues of A(W ) are:

λ1 = u − c, λ2 = λ3 = λ4 = 0, λ5 = u + c,

with

c =
√

a
K

ρ
∂aφ.

For parameter ranges previously introduced, system (2.12) is hyperbolic [62], since the matrix is diagonalizable, but not 
strictly hyperbolic.

The flow regime is characterized by the Shapiro number

Sh = |u|
c

.

The flow corresponding to a state [A, q, K , A0, pe]T is said to be subcritical (or subsonic) if Sh < 1, critical (or sonic) if 
Sh = 1 and supercritical (or supersonic) if Sh > 1.

2.1. Weak solutions

Since the source term involves a nonconservative product, the definition of weak solutions is ambiguous and the theory 
of DalMasso, LeFloch and Murat [22] is followed. A family of paths:

�(s; W l, W r) =
[

�U (s; W l, W r)

�σ (s; W l, W r)

]
=

⎡
⎢⎢⎢⎣

�A(s; W l, W r)

�q(s; W l, W r)

�K (s; W l, W r)

�A0(s; W l, W r)

�pe (s; W l, W r)

⎤
⎥⎥⎥⎦ , s ∈ [0,1]

is selected that determines the Rankine-Hugoniot (RH) condition at the jumps:

λ[W ] =
1∫

0

A(�(s; Wl, Wr))
∂

∂s
�(s; W l, W r)ds, (2.14)

where λ is the shock speed, [W ] = W r − W l and W l, W r , the left and right states respectively.
For any family of paths such that:

σ l = σ r = σ =⇒ �σ (s; W l, W r) = σ , ∀s ∈ [0,1], (2.15)

the RH condition reduces to the standard one:

λ[U ] = F (U r,σ ) − F (U l,σ ), (2.16)

in regions where σ is continuous. In effect, if σ l = σ r = σ one has

λ[W ] = λ

[ [U ]
0

]

and, on the other hand,

1∫
0

A(�)∂s�ds =

⎡
⎢⎢⎣

1∫
0

( J (�)∂s�U + S(�)∂s�σ ) ds

0

⎤
⎥⎥⎦=
[ [F (U r,σ ) − F (U l,σ )

0

]
,

4
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where J (W ) represents the Jacobian of F (which is a 5 × 2 matrix) and the dependence on (s; W l, W r) has been dropped 
for shortness. Observe that ∂s�σ ≡ 0 because of (2.15). Therefore, (2.14) is equivalent to (2.16) in this case.

If σ l �= σ r the three final equations in the RH conditions:

λ(Kr − Kl) = 0, λ(A0,r − A0,l) = 0, λ(pe,r − pe,l) = 0,

imply that λ = 0 and the RH reduces to:

F (U r,σ r) − F (U l,σ l) +
1∫

0

S(�(s)) · ∂�σ

∂s
(s)ds = 0, (2.17)

where �(s) = �(s; W l, W r). Therefore, the selection of the family of paths only affects the jump condition satisfied at 
stationary contact discontinuities standing on a jump of the vector-valued function σ . In order to select the family of paths 
in a natural way, let us study the Riemann invariants of the null eigenvalue. It can be easily checked that, given W , the 
eigenspace of the null eigenvalue of A(W ), i.e. the set of vectors Y = [y1, . . . , y5]T ∈R5 such that

A(W )Y = 0,

is composed by the vectors Y satisfying:

y2 = 0,

(
−u2 + a

K

ρ
∂aφ

)
y1 + A

ρ
φ y3 − a2 K

ρ
∂aφ y4 + A

ρ
y5 = 0.

One has then that any curve in the space of states s → W (s) = [A(s), q(s), K (s), A0(s), pe(s)]T satisfying:

q(s) = constant,
ρ

2

q(s)2

A(s)2
+ K (s)φ

(
A(s)

A0(s)

)
+ pe(s) = constant

is an integral curve of the null eigenvalue, i.e. it satisfies

A(W (s))∂s W (s) = 0, ∀s,

as it can be easily verified by differentiating the above expression with respect to s. In this sense, the Riemann invariants 
associated to the null eigenvalue are:

q,
ρ

2

q2

A2
+ Kφ

(
A

A0

)
+ pe.

Therefore, it is natural to assume that a pair of states (W l, W r) can be linked by an admissible contact discontinuity 
standing on a jump of K , A0 or pe if:

ql = qr,
ρ

2
u2

l + Klφ

(
Al

A0,l

)
+ pe,l = ρ

2
u2

r + Krφ

(
Ar

A0,r

)
+ pe,r . (2.18)

If the family of paths is such that the path �(s; W l, W r) linking a pair of states satisfying (2.18) is a parameterization of 
the arc of the curve:

q = ql,
ρ

2
u2 + Kφ(A) = ρ

2
u2

l + Klφ(Al),

that connect both states, then it can be easily shown that (2.17) is automatically satisfied.

2.2. Nondimensional form

Here we describe the nondimensionalization of system (2.1). Due to the need of dealing with very small values for some 
variables, it becomes necessary to work with the equations written in this form in order to avoid oscillations when we 
increase the order of accuracy of the numerical methods.

If the following nondimensional variables are chosen:

x′ = x

L
, t′ = t

T
, A′ = A

A
, q′ = q

A U
, p′ = p

ρU
2
,

where L, T , A are the characteristic length, time, cross-sectional area, and U = L/T , then system (2.1) can be written as:
5
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⎧⎨
⎩

∂t′ A′ + ∂x′q′ = 0,

∂t′q
′ + ∂x′
(

(q′)2

A′

)
+ A′∂x′ p′ = 0,

(2.19)

with:

p′ = S
−2
h K ′φ
(

A′

A′
0

)
+ S

−2
h,e p′

e

and:

Sh = U√
K/ρ

, Sh,e = U√
pe/ρ

,

are dimensionless numbers, and K , pe represent the characteristic values of K and pe and K ′ = K/K , p′
e = pe/pe , A′

0 =
A0/A.

It can be easily checked that system (2.19) can be written in the form (2.11) with the states, fluxes, and sources given 
again by (2.7), (2.9) just by changing the variables by their non-dimensional counterparts, ρ by S

2
h in F (U ), S i(U ), i = 1, 2, 

and ρ by S
2
h,e in S3(U ).

2.3. Stationary solutions

Since stationary solutions U ∗ = [A∗, q∗]T can be interpreted as parametrization with x of integral curves of the null 
eigenvalue, they are implicitly given by:

q∗ = C,
ρ

2

(q∗)2

A∗(x)2
+ K (x)φ

(
A∗(x)

A0(x)

)
+ pe(x) = 	, (2.20)

where C and 	 are given constants. Given a point x, A∗(x) has to satisfy the equation in the A variable:

f (A; C,	, K (x), A0(x), pe(x)) = 0,

where:

f (A; C,	, K , A0, pe) = ρ

2

C2

A2
+ Kφ

(
A

A0

)
+ pe − 	, (2.21)

whose first and second derivative with respect to A are given by:

f ′(A; C,	, K , A0, pe) ≡ f ′(A) = −ρ
C2

A3
+ K

A0

[
m

(
A

A0

)m−1

− n

(
A

A0

)n−1
]

, (2.22)

f ′′(A; C,	, K , A0, pe) ≡ f ′′(A) = 3ρ
C2

A4
+ K

A2
0

[
m(m − 1)

(
A

A0

)m−2

− n(n − 1)

(
A

A0

)n−2
]

. (2.23)

We now proceed by describing noteworthy properties of function (2.21).

2.3.1. Blood-at-rest case
If C = 0, the function reduces to

f (A) = K

[(
A

A0

)m

−
(

A

A0

)n]
+ pe − 	,

then

1. If n = 0:
• f (0) = −K + pe − 	.
• limA−→+∞ f (A) = +∞.

• f ′(A) = Km
Am−1

Am
0

> 0, ∀A > 0.

Then f is strictly increasing: it has a root if and only if pe ≤ (	 + K ) and it is unique.
2. If n ∈ (−2, 0):

• limA−→0+ f (A) = −∞.
• limA−→+∞ f (A) = +∞.
6
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• f ′(A) = K
A0

[
m
(

A
A0

)m−1 − n
(

A
A0

)n−1
]

> 0, ∀A > 0.

Then f is again strictly increasing and it has always a unique root in (0, +∞).

2.3.2. General case
If C �= 0, one has:

• limA−→0+ f (A) = +∞.
• limA−→+∞ f (A) = +∞.

• f ′(A) = 0 ⇐⇒ K

A0

[
m

(
A

A0

)m−1

− n

(
A

A0

)n−1
]

= ρ
C2

A3
⇐⇒ K

[
m

Am+2

Am
0

− n
An+2

An
0

]
= ρC2.

The function

g(A; K , C) ≡ g(A) = K

[
m

Am+2

Am
0

− n
An+2

An
0

]
− ρC2 (2.24)

satisfies:
– limA−→0+ g(A) = −ρC2 < 0.
– limA−→+∞ g(A) = +∞.

– g′(A) = K

[
m(m + 2)

Am+1

Am
0

− n(n + 2)
An+1

An
0

]
> 0, ∀A > 0.

Therefore g has a unique root, Acrit , that corresponds to a minimum of f . It can be checked that the state defined by 
A = Acrit , q = C is critical.

We can conclude the following:

• If f (Acrit) < 0, then f has two roots: it can be shown that one of them, Asub , corresponds to a subcritical regime and 
the other one, Asup , to a supercritical one: see [43] for details.

• If f (Acrit) = 0, then Acrit is the only root of f and it is critical.
• If f (Acrit) > 0, then f has not roots.

3. High-order fully well-balanced numerical methods

For simplicity, we consider here uniform meshes composed by cells Ii = [xi−1/2, xi+1/2] of length 
x whose midpoints 
are represented by xi . The mesh is assumed to be designed so that the discontinuity points of function K , A0 or pe are 
placed at the interface between two computational cells.

Following [52], we consider semi-discrete finite-volume methods of the form:

dW i

dt
= − 1


x

(
D−

i+ 1
2

+D+
i− 1

2
+

x
i+ 1

2∫
x

i− 1
2

A(P t
i (x))

∂

∂x
P t

i (x)dx
)
, (3.1)

where:

• W i(t) ∼= 1


x

x
i− 1

2∫
x

i+ 1
2

W (x, t) dx is the approximation to the cell average of the solution at the i-th cell at time t;

• P t
i (x) =Pi(x; {W j(t)} j∈Si ) is a high-order well-balanced operator in the sense defined in [17], i.e. an operator that gives 

a smooth high-order approximation of the solution at the i-th cell from the values of the cell average approximations 
available at cells belonging to the stencil Si ;

• D±
i+ 1

2
=D±
(

W −
i+ 1

2
, W +

i+ 1
2

)
, where:

W −
i+ 1

2
(t) = P t

i (xi+ 1
2
), W +

i+ 1
2
(t) = P t

i+1(xi+ 1
2
)

are the reconstructions at the cell interface and D±(W l, W r) are the fluctuations corresponding to a first-order path-
conservative numerical method

W n+1
i = W n

i − 
t (
D+(W n

i−1, W n
i ) +D−(W n

i , W n
i+1)
)
, (3.2)

x

7
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for which:

D±(W , W ) = 0, ∀W (3.3)

and:

D−(W l, W r) +D+(W l, W r) =
1∫

0

A(�(s))
∂�

∂s
(s)ds (3.4)

=

⎡
⎢⎢⎢⎢⎣

F (U r,σ r) − F (U l,σ l) +
1∫

0

S(�(s)) · ∂�σ

∂s
(s)ds

0

⎤
⎥⎥⎥⎥⎦ , ∀W l, W r,

where �(s) = �(s; W l, W r), s ∈ [0, 1] is a family of paths joining W l with W r .

Definition 1. The numerical method (3.1) is said to be fully well-balanced if the sequence of cell averages {W ∗
i } of any 

stationary solution W ∗ verifying (2.20) is an equilibrium of the ODE (3.1).

It can be easily checked that (3.1) is fully well-balanced if both the first-order path-conservative method used for com-
puting D± and the reconstruction operator are fully well-balanced according to the following definitions.

Definition 2. The first-order path-conservative numerical method (3.2) whose fluctuations are D± is said to be fully well-
balanced if

D±(W l, W r) = 0

for W l and W r such that

ql = qr, 	(W l) = 	(W r), (3.5)

where

	(W ) = ρ

2

q

A2
+ Kφ

(
A

A0

)
+ pe. (3.6)

Definition 3. The reconstruction operator {Pi(x)} is said to be fully well-balanced if, when it is applied to the sequence of 
cell averages {W ∗

i } of any stationary solution W ∗ verifying (2.20), one has

Pi(x) = W ∗(x), ∀x ∈ [xi−1/2, xi+1/2], ∀i,

W ±
i+ 1

2
= W ∗(x±

i+1/2).

3.1. First-order fully well-balanced path-conservative method

We consider the Generalized Hydrostatic Reconstruction (GHR) technique introduced in [16] as a generalization of the 
hydrostatic reconstruction technique introduced in [2] (which was further enhanced in [6]) to obtain schemes that preserve 
the solutions corresponding to water at rest for the shallow water equations. It is based on a family of paths constructed as 
follows. Given two arbitrary states:

W l =
[

U l
σ l

]
, W r =

[
U r

σ r

]
,

we proceed as follows:

• First a vector of intermediate values:

σ 0 =
⎛
⎝ K0

A0,0
pe,0

⎞
⎠

between σ l and σ r is selected such that σ 0 = σ l = σ r whenever σ l = σ r . The particular choice of intermediate states 
using here will be detailed in Subsection 3.2.
8
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• Then, then the following intermediate states are considered:
– The states W −,1

0 = [A−,1, ql, Kl, A0,l, pe,0]T , W +,1
0 = [A+,1, qr, Kr, A0,r, pe,0]T where A±,1 satisfy:

ρ

2

q2
l

(A−,1)2
+ Klφ

(
A−,1

A0,l

)
+ pe,0 = 	(W l), (3.7)

ρ

2

q2
r

(A+,1)2
+ Krφ

(
A+,1

A0,r

)
+ pe,0 = 	(W r). (3.8)

– The states W −,2
0 = [A−,2, ql, Kl, A0,0, pe,0]T , W +,2

0 = [A+,2, qr, Kr, A0,0, pe,0]T , where A±,2 satisfy:

ρ

2

q2
l

(A−,2)2
+ Klφ

(
A−,2

A0,0

)
+ pe,0 = 	(W −,1

0 ), (3.9)

ρ

2

q2
r

(A+,2)2
+ Krφ

(
A+,2

A0,0

)
+ pe,0 = 	(W +,1

0 ). (3.10)

– The states W −
0 = [A−, ql, K0, A0,0, pe,0]T , W +

0 = [A+, qr, K0, A0,0, pe,0]T where A± satisfy:

ρ

2

q2
l

(A−)2
+ K0φ

(
A−

A0,0

)
+ pe,0 = 	(W −,2

0 ), (3.11)

ρ

2

q2
r

(A+)2
+ K0φ

(
A+

A0,0

)
+ pe,0 = 	(W +,2

0 ). (3.12)

• The path �(s) connecting the two states is then a reparameterization of the curve composed by:
1. The arc implicitly defined in the variables A, pe by:

q = ql,
ρ

2

q2
l

A2
+ Klφ

(
A

A0,l

)
+ pe = 	(W l),

that links W l to the state where W −,1
0 .

2. The arc implicitly defined in the variables A, A0 by:

q = ql,
ρ

2

q2
l

A2
+ Klφ

(
A

A0

)
+ pe,0 = 	(W −,1

0 ),

that links W −,1
0 to W −,2

0 .
3. The arc implicitly defined in the variables A, K by:

q = ql,
ρ

2

q2
l

A2
+ Kφ

(
A

A0

)
+ pe,0 = 	(W −,2

0 ),

that links W −,2
0 to W −

0 .
4. The straight segment of the plane K = K0, A0 = A0,0, pe = pe,0 linking W −

0 to W +
0 .

5. The arc implicitly defined in the variables A, K by:

q = qr,
ρ

2

q2
r

A2
+ Kφ

(
A

A0

)
+ pe,0 = 	(W +,2

0 ),

that links W +
0 to W +,2

0 .
6. The arc implicitly defined in the variables A, A0 by:

q = qr,
ρ

2

q2
r

A2
+ Krφ

(
A

A0

)
+ pe,0 = 	(W +,1

0 ),

that links W +,2
0 to W +,1

0 .
7. The arc implicitly defined in the variables A, pe by:

q = qr,
ρ

2

q2
r

A2
+ Krφ

(
A

A0,r

)
+ pe = 	(W r),

that links W +,1
0 to the state where W r .
9
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Fig. 3.1.1. Projection in the (A, q)-plane of the path linking two states W l and W r . The variables that are constant across every piece are specified.

In Fig. 3.1.1 the projection in the (A, q)-plane of the path linking two states is presented: it is composed of 7 pieces 
across which only two variables are not constant.

Remark 1. The family of paths so defined satisfies (2.15). In effect, if σ l = σ r = σ , then σ 0 = σ . In this case, it can be easily 
checked that Al solves (3.7), (3.9), (3.11), and Ar solves (3.8), (3.10), (3.12). Therefore,

W −,1
0 = W −,2

0 = W −
0 = W l, W +,1

0 = W +,2
0 = W +

0 = W r,

and the path reduces to the straight segment linking W l and W r . Therefore

�σ (s) = σ , ∀s ∈ [0,1].

This definition of path leads to:

1∫
0

A(�(s))∂s�(s)ds =
[

F (W +
0 ) − F (W −

0 )

0

]
. (3.13)

In effect, since the path is composed by 7 pieces, there exists a partition

0 = s0 < s1 < · · · < s7 = 1,

of the interval [0, 1] such that

�(s) = � j(s), s ∈ [s j−1, s j], j = 1, . . . ,7,

where � j is a parameterization of the jth piece following the order above. Since all the pieces but the fourth are arcs of 
integral curves of the null eigenvalue one has

A(� j(s))∂s� j(s) = 0, ∀s ∈ [s j−1, s j], ∀ j ∈ {1,2,3,5,6,7}.

10
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Therefore

1∫
0

A(�(s))∂s�(s)ds =
s4∫

s3

A(�4(s))∂s�4(s)ds

=

⎡
⎢⎢⎣

s4∫
s3

(
J (�4(s))∂s�4,U (s) + S(�4(s))∂s�4,σ (s)

)
ds

0

⎤
⎥⎥⎦

=
[ [F (W +

0 ) − F (W −
0 )

0

]
.

To obtain the last equality, we have taken into account that the fourth piece is a segment linking the states W ±
0 = [U ±

0 , σ 0]T

so that

�σ ,4(s) = σ 0, ∀s ∈ [s3, s4].
Once the paths have been set, the fluctuations are defined as follows:

D+(W l, W r) = F (W +
0 ) − F(U −

0 , U +
0 ;σ 0), (3.14)

D−(W l, W r) = F(U −
0 , U +

0 ;σ 0) − F (W −
0 ), (3.15)

where, F(·, ·; ·) is any continuous function such that, for any σ , F(·, ·; σ ) is a numerical flux consistent with the physical 
flux

F σ (U l, U r) := F ([U l,σ ]T , [U r,σ ]T ),

i.e. any continuous function satisfying

F(U , U ;σ ) = F σ (U , U ), ∀U ,σ .

In particular, in this article the HLL numerical flux is considered (see [33]):

F(U l, U r,σ ) =

⎧⎪⎪⎨
⎪⎪⎩

F (W l) if Sl ≥ 0,
Sr F (W l) − Sl F (W r)

Sr − Sl
+ Sl Sr

Sr − Sl
(Ur − U L), if Sl < 0 < Sr ,

F (W r) if Sr ≤ 0,

where

W l = [U l,σ ]T , W r = [U r,σ ]T

and

Sl = min{λ1(W l), λ5(W r)}, Sr = max{λ1(W l), λ5(W r)}.
See the recent work [61] for discussion on wave speed estimates for HLL-type Riemann solvers.

Remark 2. Although formally the path is composed by arcs that link up to 6 intermediate states, in practice it is enough to 
compute the states W −

0 = [A−, ql, K0, A0,0, pe,0]T , W +
0 = [A+, qr, K0, A0,0, pe,0]T by solving the equations:

ρ

2

q2
l

(A−)2
+ K0φ

(
A−

A0,0

)
+ pe,0 = 	(W l), (3.16)

ρ

2

q2
r

(A+)2
+ K0φ

(
A+

A0,0

)
+ pe,0 = 	(W r), (3.17)

to obtain A± . Therefore we must solve nonlinear equations of the form: find A such that

f (A;qα,	(W α), K0, A0,0, pe,0) = 0, (3.18)

where α = l, r and f is given by (2.21). The following strategy has been used to solve them:

• If qα = 0 (blood-at-rest case), Newton-Raphson method with Aα as initial seed is applied.
11
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• If qα �= 0 (general case) we first compute Acrit,α by solving the nonlinear equation

g(A; Kα,qα) = 0,

where g is given by (2.24). Newton-Raphson method with Aα as initial guess is used. Once Acrit,α has been computed, 
equation (3.18) is solved as follows:
– If f (Acrit,α) = 0, then Acrit,α is the unique solution of (3.18).

– If f (Acrit,α) < 0, then f has two roots: we use then Newton-Raphson method with initial guess Acrit,α
2 or 2Acrit,α to 

obtain the smallest or the largest root, depending on the regime of the state W α .
– If f (Acrit,α) > 0, then f has no roots.
If Newton-Raphson method does not converge or it gives a negative value of A, we use the bisection method in the 
intervals [ε, Acrit,α] or [Acrit,α, M] to obtain the smallest or the largest root, depending on the regime of the state W α . 
In practice we use ε = 10−10 and M = 1.

Finally, the first-order fully well-balanced scheme reads as follows:

U n+1
i = U n

i − 
t


x

(
D−

i+ 1
2

+D+
i− 1

2

)
, (3.19)

where D±
i+ 1

2
=D±(W n

i , W
n
i+1) are given by (3.14), (3.15).

Let us show why this method is well-balanced regardless of the choice of the numerical flux and intermediate values: if 
W l and W r are such that (3.5)-(3.6) is verified, then the equations to be solved to find A± , (3.16) and (3.17), coincide since 
ql = qr and the right-hand sides are equal. Therefore, if this equation has only one solution or if it has more than one but 
the same criterion is used to select one of them, one has

A− = A+

and, as a consequence,

U −
0 = U +

0 := U 0, W +
0 = W −

0 = [U 0,σ 0]T := W 0.

Therefore one has

F(U −
0 , U +

0 ;σ 0) = F(U 0, U 0;σ 0) = F (W 0),

and

F (W ±
0 ) = F (W 0).

Then, taking into account the definition of the fluctuations (3.14)-(3.15), we have

D±(W l, W r) = 0,

so that the method is well-balanced according to Definition 2.

3.2. Choice of the intermediate values

Choice of pe,0

Equations (3.7), (3.8) have the form: find A such that:

ρ

2

C2

A2
+ Kφ

(
A

A0

)
+ p̃e = 	, (3.20)

where ρ , K , A0, C , 	 are given. Let us study their solution depending on the value of p̃e . To do this, we define the function:

pe(A) = 	 − ρ

2

C2

A2
− Kφ

(
A

A0

)
. (3.21)

One has:

• limA−→0+ pe(A) = −∞.
• limA−→+∞ pe(A) = −∞.
12
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• p′
e(A) = 0 ⇐⇒ K A2

(
m

(
A

A0

)m

− n

(
A

A0

)n)
= ρC2.

If we consider the function

h(A) = K A2
(

m

(
A

A0

)m

− n

(
A

A0

)n)
,

one has:
– limA−→0+ h(A) = 0.
– limA−→+∞ h(A) = +∞.
– h′(A) > 0, ∀A > 0.
Then h is strictly increasing and there is a unique state Acrit such that h(Acrit) = ρC2 that corresponds to a maximum 
of pe(A). It can be checked that the corresponding flow is critical.

As a conclusion we have that equation (3.20) has:

• Two solutions if p̃e < pe(Acrit): Asup that corresponds to a supercritical flow and Asub that corresponds to a subcritical 
flow.

• One solution if p̃e = pe(Acrit) that corresponds to a critical flow.
• No solution if p̃e > pe(Acrit).

In the particular case of equation (3.7), one has K = Kl , A0 = A0,l , p̃e = pe,0, C = ql , and

	 = ρ

2

q2
l

A2
l

+ Klφ

(
A

A0.l

)
+ pe,l,

so that, by definition of pe ,

pe,l = pe(Al).

Therefore, if pe,0 is such that pe,0 ≤ pe,l one has

pe,0 ≤ pe,l = pe(Al) ≤ pe(Acrit)

and the equation has always a solution. Similarly, (3.8) has always a solution if pe,0 ≤ pe,r . Therefore we select

pe,0 = min(pe,l, pe,r).

Choice of A0,0

Equations (3.9), (3.10) have the form: find A such that

ρ

2

C2

A2
+ Kφ

(
A

Ã0

)
+ pe = 	, (3.22)

where ρ , K , pe , C , 	 are given. Let us study now their solution depending on the value of Ã0. To do this, we define the 
function

A0(A) = A

φ−1(z(A))
, (3.23)

where φ−1 is the inverse of φ and

z(A) =
	 − pe − ρC2

2A2

K
.

We have the following:

• limA−→+∞ A0(A) = +∞.
• limA−→0+ A0(A) = 0. To show this, let us use the variable B = φ−1(z(A)). Since B −→ 0+ as A −→ 0+ , and A =√

ρ/2|C |(	 − pe − Kφ(B))− 1
2 , one has:
13
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limA−→0+ A0(A) = √
ρ/2|C | limB−→0+

(	 − pe − Kφ(B))− 1
2

B

= √
ρ/2|C | limB−→0+

(
	 − pe − Kφ(B)

K Bn

)− 1
2

(K B)− n
2

B
= +∞,

where we have used that

lim
B−→0+

	 − pe − Kφ(B)

K Bn
= 1,

and n
2 − 1 < 0 for n > −2.

• A′
0(A) = 0 ⇐⇒ A2φ−1(z(A))φ′(φ−1(z(A))) = ρC2

K
⇐⇒ Bφ′(B) + 2φ(B) = 2

K
(	 − pe), where B = φ−1(z(A)) again. If 

we consider the function

j(B) = Bφ′(B) + 2φ(B),

one has:
– limB−→0+ j(B) = −∞.
– limB−→+∞ j(B) = +∞.
– j′(B) > 0, ∀A > 0.
Therefore j is strictly increasing function and there is a unique state B∗ such that j(B∗) = 2

K (	 − pe) that corresponds to 
the minimum Acrit = √

ρ/2|C |(	 − pe − Kφ(B∗))− 1
2 of A0(A). It can be checked that the corresponding flow is critical.

As a conclusion we have that equation (3.22) has:

• Two solutions if Ã0 > A0(Acrit): Asup that corresponds to a supercritical flow and Asub that corresponds to a subcritical 
flow.

• One solution if Ã0 = A0(Acrit) that corresponds to a critical flow.
• No solution if Ã0 < A0(Acrit).

By reasoning as in the choice of pe,0, we select

A0,0 = max(A0,l, A0,r).

Choice of K0
Following [43] K0 is selected as follows:

• K0 = max(Kl, Kr), if Al ≤ A0,0 and Ar < A0,0.
• K0 = min(Kl, Kr), if Al ≥ A0,0 and Ar ≥ A0,0.

• K0 = Kl + Kr

2
, otherwise.

This choice ensures that the equations (3.11) and (3.12) always have a solution.

Choice of the solution
The selection of the intermediate values of the parameters ensures that the equations (3.7)-(3.12) have always at least 

one solution but, in many cases, there are two, one corresponding to a subcritical flow and the other one corresponding 
to a supercritical flow: a criterion is thus required to select one or another. When there are two possible solutions for 
A− (resp. A+) and the flow regime corresponding to W l (resp. W r ) is subcritical or supercritical, we select the one that 
makes that the flow regime corresponding to the pairs of states (W l, W −

0 ) (resp. (W +
0 , W r)) is the same (subcritical or 

supercritical). If the flow regime corresponding to W l (resp. W r ) is critical, we select the one that makes that the flow 
regime corresponding to the pair of states (W −

0 , W r) (resp. (W l, W +
0 )) is the same.

3.3. High-order fully well-balanced reconstruction operator

In order to design high-order well-balanced numerical methods, following the strategy introduced in [14], a standard 
high-order reconstruction operator is selected, i.e. an operator that, given the cell-averages {v j} of a smooth function v(x), 
provides a high-order approximation of the function at the cells:

Qi(x; {v j} j∈S ) ≈ v(x), ∀i,
i

14
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where Si is the set of indices of the cells belonging to the stencil of the ith cell. MUSCL [63], ENO [32], WENO [35,40], 
CWENO [36,20,19] are examples of such operators.

On the basis of the selected reconstruction operator, a well-balanced reconstruction procedure is build as follows: given 
a family of cells values {U i = [Ai, qi]T }:

1. Apply the standard reconstruction operator to {qi} to obtain

Qq,i(x) = Qi(x; {q j} j∈Si ).

2. Find, if possible, the steady state solution U∗
i (x) = [A∗

i (x), qi]T such that:

1


x

x
i− 1

2∫
x

i− 1
2

A∗
i (x)dx = Ai . (3.24)

A∗
i is implicitly given by

ρ

2

q2
i

(A∗
i (x))2

+ K (x)φ

(
A∗

i (x)

A0(x)

)
+ pe(x) = 	i,

for some constant 	i to be found.
3. Compute the fluctuations {v j} j∈Si within the stencil Si :

v j = A j − 1


x

x
j+ 1

2∫
x

j− 1
2

A∗
i (x)dx, j ∈ Si . (3.25)

4. Apply the standard reconstruction operator to {vi} to obtain:

Qv,i(x) = Qi(x; {v j} j∈Si ).

5. Define:

Pi(x) =
[

P i(x)
σ (x)

]
=

⎡
⎢⎢⎢⎣

A∗
i (x) +Qv,i(x)

Qq,i(x)
K (x)
A0(x)
pe(x)

⎤
⎥⎥⎥⎦ , W ±

i+ 1
2

=
[

U ±
i+ 1

2

σ±
i+1/2

]
,

with

U −
i+ 1

2
= P i(xi+ 1

2
), U +

i+ 1
2

= P i+1(xi+ 1
2
)

and

σ±
i+1/2 = σ (x±

i+1/2).

The reconstruction operator Pi is fully well-balanced in the sense that, if it is applied to the cell averages of a steady state 
solution U ∗ , then

P i(x) = U ∗(x), ∀i,∀x ∈ Ii; U ±
i+ 1

2
= U ∗(x±

i+1/2), ∀i.

Moreover, it is conservative, i.e.

1


x

x
i+ 1

2∫
x

i− 1
2

P i(x)dx = U i, for all i,

provided that Qi is conservative, and it is high-order accurate as long as the involved steady state solutions are smooth 
(see [17] for details).
15
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If the K , A0, pe variables are dropped, the numerical method (3.1) can be written as follows:

dU i

dt
= − 1


x

(
D−

i+ 1
2

+D+
i− 1

2
+ F (W −

i+1/2) − F (W +
i−1/2) +

x
i+ 1

2∫
x

i− 1
2

S(Pi(x)) · σ ′(x)dx
)
, (3.26)

where now

D±
i+1/2 = D±

i+1/2(W −
i−1/2, W +

i+1/2),

with D±
i+1/2 given by (3.14)-(3.15).

It can be checked that, if σ is continuous at the intercells xi±1/2, the numerical method reduces to

dU i

dt
= − 1


x

(
Fi+1/2 − Fi−1/2 +

x
i+ 1

2∫
x

i− 1
2

S(Pi(x)) · σ ′(x)dx
)
, (3.27)

with

Fi+1/2 = F(U −
i+1/2, U +

i+1/2;σ (xi+1/2)).

3.4. Quadrature formula

The use of a quadrature formula

xi+1/2∫
xi−1/2

f (x)dx ≈ 
x
M∑

m=1

βm f (xm
i )

to compute cell averages and the numerical source term may spoil the well-balanced character of the method. To avoid this, 
the second step of the well-balanced reconstruction procedure is replaced by:

• Find, if possible, the steady state solution U ∗
i (x) = [A∗

i (x), qi]T such that:

M∑
m=1

βm A∗
i (xm

i ) = Ai . (3.28)

Moreover, before applying the quadrature formula to the integrals in (3.26) it is first equivalently rewritten as follows:

dUi

dt
= − 1


x

(
D−

i+ 1
2

+D+
i− 1

2
+ F (W −

i+1/2) − F (W +
i−1/2)

−F (U ∗
i (x−

i+1/2),σ
−
i+1/2)) + F (U ∗

i (x+
i−1/2),σ

+
i−1/2) +

x
i+ 1

2∫
x

i− 1
2

(
S(P t

i (x)) − S(U ∗
i (x),σ (x))

) · σ ′(x)dx
)
,

where U ∗
i is the steady state solution that satisfies (3.28). Then, the quadrature formula is applied:

dU i

dt
= − 1


x

(
D−

i+ 1
2

+D+
i− 1

2
+ F (W −

i+1/2) − F (W +
i−1/2) (3.29)

−F (U ∗
i (x−

i+1/2),σ
−
i+1/2)) + F (U ∗

i (x+
i−1/2),σ

+
i−1/2) + 
x

M∑
m=1

βm
(

S(P t
i (xm

i )) − S(U ∗
i (xm

i ),σ (xm
i ))
) · σ ′(xm

i )
)
.

Observe that, if the initial condition is given by the cell averages U ∗
i of a steady state solution U ∗ , then

U ∗
i = P i = U ∗, ∀i,

and it can be easily checked that the right-hand side of (3.29) vanishes.
16
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3.5. Second-order fully well-balanced method

In the particular case of second-order methods, the MUSCL reconstruction operator is chosen and the mid-point rule is 
selected to compute cell-averages and the numerical source terms. The initial cell-values are then given by

W 0
i = W 0(xi), for all i,

where W 0(x) is the initial condition.

Let us follow the steps in Section 3.3 in order to obtain Pi(x):

1. Find the stationary solution

U ∗
i (x) =

(
A∗

i (x)
qi

)
,

such that:

A∗
i (xi) = Ai . (3.30)

This stationary solution is characterized by

ρ

2

q2
i

A∗
i (x)2

+ K (x)φ

(
A∗

i (x)

A0(x)

)
+ pe(x) = ρ

2

q2
i

A2
i

+ K (xi)φ

(
Ai

A0(xi)

)
+ pe(xi) = 	(W i).

2. Compute the fluctuations:

vi−1 = Ai−1 − A∗
i (xi−1),

vi = Ai − A∗
i (xi) = 0,

vi+1 = Ai+1 − A∗
i (xi+1),

where the mid-point rule has been used again to compute cell-averages.
3. Apply the minmod reconstruction operator Qi (see [63]) to q j and v j :

Qq,i(x) = qi + minmod

(
qi − qi−1


x
,

qi+1 − qi


x

)
(x − xi),

Qv,i(x) = vi + minmod

(
vi − vi−1


x
,

vi+1 − vi


x

)
(x − xi),

where

minmod(a,b) =

⎧⎪⎨
⎪⎩

min{a,b} if a,b > 0,

max{a,b} if a,b < 0,

0 otherwise.

4. Define:

Pi(x) =
[

P i(x)
σ (x)

]
=

⎡
⎢⎢⎢⎣

A∗
i (x) +Qv,i(x)

Qq,i(x)
K (x)
A0(x)
pe(x)

⎤
⎥⎥⎥⎦ , W ±

i+ 1
2

=
[

U ±
i+ 1

2

σ±
i+1/2

]
,

with

U −
i+ 1

2
= P i(xi+ 1

2
), U +

i+ 1
2

= P i+1(xi+ 1
2
)

and

σ± = σ (x± ).
i+1/2 i+1/2

17
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Once the well-balanced reconstruction procedure has been defined, the numerical method is given by (3.29) where the 
mid-point rule is used again to compute the numerical source term. Observe that, in this case, one has:

x
i+ 1

2∫
x

i− 1
2

(
S(P t

i (x)) − S(U ∗
i (x),σ (x))

) · σ ′(x)dx ≈ 
x
(

S(P t
i (xi)) − S(U ∗

i (xi),σ (xi))
) · σ ′(xi) = 0. (3.31)

Therefore, the scheme reduces to:

dW i

dt
= − 1


x

(
D−

i+1/2 +D+
i−1/2 + F (W −

i+1/2) − F (U ∗
i (x−

i+1/2),σ (x−
i+1/2)) + F (U ∗

i (x+
i−1/2),σ (x+

i−1/2)) − F (W +
i−1/2)
)
.

(3.32)

The discretization in time is performed with the second-order TVD Runge-Kutta method :

W (1)
i = W n

i + 
tL(W n
i ),

W n+1
i = 1

2 W n
i + 1

2 W (1)
i + 1

2 L(W (1)
i ),

where L(W i) represents the right-hand side of (3.32): see [30].

3.6. Third-order fully well-balanced method

In order to design a third-order method the CWENO reconstruction of order 3 (see [36], [19], [20]) will be considered 
and the two-point Gauss quadrature will be used to compute the initial averages and the integrals coming from the source 
term, namely:

W 0
i = 1

2
(W 0(xi,1) + W 0(xi,2)), for all i,

where W 0(x) is the initial condition and:

xi,1 = xi− 1
2

+ 
x

2

(
−
√

1

3
+ 1

)
, xi,2 = xi− 1

2
+ 
x

2

(√
1

3
+ 1

)
.

Again let us follow the steps illustrated Section 3.3 in order to obtain Pi(x):

1. Find the steady state solution:

U ∗
i (x) =

(
A∗

i (x)
qi

)
,

such that:

1

2
(A∗

i (xi,1) + A∗
i (xi,2)) = Ai .

To do this, the following nonlinear system is solved: find A∗
i,1, A∗

i,2, 	i such that:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ

2

q2
i

(A∗
i,1)

2
+ K (xi,1)φ

(
A∗

i,1

A0(xi,1)

)
+ pe(xi,1) = 	i,

ρ

2

q2
i

(A∗
i,2)

2
+ K (xi,2)φ

(
A∗

i,2

A0(x2,1)

)
+ pe(xi,2) = 	i,

A∗
i,1 + A∗

i,2 = 2Ai .

(3.33)

Once this system has been solved obtaining A∗
i,1, A∗

i,2, 	i , the sought stationary solution is characterized by q∗
i (x) = qi

and

ρ

2

q2
i

A∗
i (x)2

+ K (x)φ

(
A∗

i (x)

A0(x)

)
+ pe(x) = 	i, (3.34)

for every x.
18
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2. Compute the fluctuations:

vi−1 = Ai−1 − 1

2

(
A∗

i (xi−1,1) + A∗
i (xi−1,2)

)
,

vi = Ai − 1

2

(
A∗

i (xi,1) + A∗
i (xi,2)
)
,

vi+1 = Ai+1 − 1

2

(
A∗

i (xi+1,1) + A∗
i (xi+1,2)

)
,

where the two-point Gauss quadrature formula has been used to compute cell-averages.
3. Apply the third-order CWENO reconstruction operator Qi to q j and v j to obtain Qq,i(x) and Qv,i(x).
4. Define:

Pi(x) =
[

P i(x)
σ (x)

]
=

⎡
⎢⎢⎢⎣

A∗
i (x) +Qv,i(x)

Qq,i(x)
K (x)
A0(x)
pe(x)

⎤
⎥⎥⎥⎦ , W ±

i+ 1
2

=
[

U ±
i+ 1

2

σ±
i+1/2

]
,

with

U −
i+ 1

2
= P i(xi+ 1

2
), U +

i+ 1
2

= P i+1(xi+ 1
2
)

and

σ±
i+1/2 = σ (x±

i+1/2).

Remark 3. System (3.33) is solved by using the Newton-Raphson method in order to find the root of:

G(A1, A2,	) = 0,

where:

G(A1, A2,	) =

⎛
⎜⎜⎜⎜⎝

ρ

2

q2
i

(A1)2
+ K (xi,1)φ

(
A1

A0(xi,1)

)
+ pe(xi,1) − 	

ρ

2

q2
i

(A2)2
+ K (xi,2)φ

(
A2

A0(x2,1)

)
+ pe(xi,2) − 	

A1 + A2 − 2Ai

⎞
⎟⎟⎟⎟⎠ ,

considering the initial seed as

(A0
1, A0

2,	
0) =
(

Ai, Ai,
ρ

2

(
qi

Ai

)2

+ K (xi)φ

(
Ai

A0(xi)

)
+ pe(xi)

)
.

Once we have obtained the stationary solution U ∗
i (x) = [A∗

i (x), qi]T , it has to be evaluated at the intercells and at the 
quadrature points of the stencil. In order to find the value of A∗

i at a point x, the nonlinear equation (3.34) has to be solved. 
The Newton-Raphson method is used again as explained in Remark 2. As it has been seen in Subsection 2.3, this equation 
may have two possible solutions corresponding to a subcritical and a supercritical flow regime. The following criterion, 
aimed to preserve the regime of the flow, is used to select one of them:

• If the flow regime corresponding to U i is subcritical or supercritical, then the solution that corresponds to the same 
regime is selected at the intercells and quadrature points of the ith cell.

• If the flow regime corresponding to U j , j ∈ Si, j �= i, is subcritical or supercritical, then the solution that corresponds to 
the same regime is selected at the intercells and quadrature points of the jth cell.

• If the flow regime corresponding to U i is critical, then the solution corresponding to the same flow regime as U i−1
(resp. U i+1) is selected at xi−1/2 and xi,1 (resp. xi+1/2 and xi,2).

• If the flow regime corresponding to U j is critical, then the solution corresponding to the same flow regime as U j−1
(resp. U j+1) is selected at x j−1/2, x j−1 and x j,1 (resp. x j+1/2, x j+1 and x j,2).

In the two last items it is assumed that extrema of functions K (x), A0(x), pe(x), if any, are placed at the center of some 
cell: in Subsection 2.3 it has been seen that stationary solutions can only have smooth transitions at points at which one of 
these functions has an extremum.
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Once the well-balanced reconstruction procedure has been defined, the numerical method is given by (3.29) where the 
two-point Gauss quadrature formula is used again to compute the numerical source term. Therefore, the scheme reads as:

dW i

dt
= − 1


x

(
D−

i+1/2 +D+
i−1/2 + F (W −

i+1/2)− F (U ∗
i (x−

i+1/2),σ (x−
i+1/2))+ F (U ∗

i (x+
i−1/2),σ (x+

i−1/2)) − F (W +
i−1/2)

+ 
x

2

((
S(P t

i (xi,1)) − S(U ∗
i (xi,1),σ (xi,1))

) · σ ′(xi,1) + (S(P t
i (xi,2)) − S(U ∗

i (xi,2),σ (xi,2))
) · σ ′(xi,2)

))
.

(3.35)

The discretization in time is performed with the third-order TVD Runge-Kutta method:

W (1)
i = W n

i + 
tL(W n
i ),

W (2)
i = 3

4 W n
i + 1

4 W (1)
i + 1

4 
tL(W (1)
i ),

W n+1
i = 1

3 W n
i + 2

3 W (2)
i + 2

3 L(W (2)
i ),

where L(W i) represents the right-hand side of (3.35): see [30].

4. Numerical tests

In this section several numerical tests are considered to check the performance of the well-balanced numerical methods 
introduced in the previous sections. The following numerical methods will be applied here to system (2.11):

• O1_WB_GHR_HLL: first-order fully well-balanced method (3.14)-(3.15) using the HLL numerical flux;
• O2_WB_GHR_HLL: second-order fully well-balanced extension: see Subsection 3.5;
• O3_WB_GHR_HLL: third-order fully well-balanced extension: see Subsection 3.6;
• O1_WB_HR_DOT: first-order method that preserves blood-at-rest stationary solutions based on the DOT solver (see [58], 

[24]);
• O1_non_WB_HLL: first-order standard non well-balanced HLL solver.

Remark 4. In the case of O1_WB_GHR_HLL, O2_WB_GHR_HLL and O3_WB_GHR_HLL we use the nondimensional form (2.19)
in order to avoid the reconstruction of quantities whose order of magnitude is close to those of rounding errors. This is 
particularly important in the third-order case. In practice we select the characteristic values as follows

L = x f − x0, A =
∑N

i=0 A0(xi)

N
, U =

∑N
i=0

∣∣∣ q0(xi)
A0(xi)

∣∣∣
N

, K =
npar∑
i=0

K0(xi), pe =
N∑

i=0

pe,0(xi),

T = L

U
, 
x = 
x

L
, tfin = tfinT ,

where [x0, x f ] is the space interval; W0 = [A0, q0, K0, A0,0, pe,0]T is the initial condition; N is the number of points of the 
uniform mesh; t f in is the final time of the simulation.

Although all the methods are stable under the usual restriction


t = C F L

x

maxi{|λ j(W n
i )|, j = 1,5.} ,

with C F L ∈ (0, 1], all the numerical simulations have been run with C F L = 0.5 since this value ensures the positivity of the 
HLL solver: see [11].

4.1. Well-balanced property

The objective of this subsection is to check the well-balanced property of the proposed numerical schemes. We consider 
a N-point uniform mesh of the spatial interval [0, L] and free boundary conditions. For Tests 1-3 we will consider the 
following discontinuous stationary solutions:

W 0(x)T =
{

[Al,ql, Kl, A0,l, pe,l]T if x < xg,

[Ar,qr, Kr, A0,r, pe,r]T if x ≥ xg,

where the left and the right values are given in Table 2. The value of m, n, ρ , L, xg , Kref , A0,ref , tend and N , are given in 
Table 1.
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Table 1
Parameters of numerical tests: m[−], n[−], ρ[Kg/m3], L[m], xg [m], Kref[Pa], A0,ref[m2], tend[s], 
N[−].

Parameters m n ρ L xg Kref A0,ref tend N

Well-balanced tests
Test 1 0.5 0 1050 0.2 0.5L 58725.0 3.1353E-4 0.1 100
Test 2-3 10 -1.5 1050 0.2 0.5L 58725.0 3.1353E-4 0.1 100
Test 4-5 0.5 0 1050 5 - - - 2 100

Accuracy test
Test 6 0.5 0 1050 5 - - - 0.5 -

Riemann problems
Test 7 0.5 0 1050 0.2 0.3L 58725.0 3.1353E-4 0.007 100
Test 8 10 -1.5 1050 0.2 0.3L 5.0 1.0E-4 0.025 100
Test 9 10 -1.5 1050 0.5 0.5L 33.3333 2.8274E-5 0.02 100
Test 10 10 -1.5 1050 0.5 0.5L 33.3333 2.8274E-5 0.025 100
Test 11 10 -1.5 1050 0.5 0.5L 33.3333 2.8274E-5 0.05 100
Test 12 10 -1.5 1050 0.5 0.5L 33.3333 2.8274E-5 0.05 100
Test 13 10 -1.5 1050 0.5 0.5L 10.0 1.0E-4 0.03 1000
Test 14 0.5 0 1000 0.4 0.05 1.0 1.0E-4 6.605 1000
Test 15 10 -1.5 1050 0.5 0.5L 10.0 1.0E-4 0.03 1000
Test 16 0.5 0 1050 1 0.5L - 1.0E-4 10 1000

Collapsed vessels
Test 17 0.5 0 1050 50 0.2L - 1.0E-4 4 1000

Critical blockage
Test 18-19 10 -1.5 1050 0.5 0.5L 100 1.0E-4 0.1 1000

Test 1: blood at rest stationary solution Since the selected states can be linked by a stationary contact discontinuity in which 
u = 0, this test allows us to check the ability of the methods to preserve blood at rest stationary solutions. As it can be seen 
in Table 3, all the well-balanced methods capture the stationary solution with machine precision.

Test 2: stationary solution with u �= 0 The selected states can be linked by a stationary contact discontinuity in which u �= 0. 
Therefore, this test allows us to check the ability of the methods to preserve moving stationary solutions. As it can be seen 
in Table 4, only fully well-balanced methods capture the stationary solution with machine precision.

Test 3: perturbed stationary solution with u �= 0 In this test, we consider a perturbation of the stationary solution considered 
in Test 2: more precisely, the initial condition is given by:

W P
0 (x) = W 0(x) + δ(x)T ,

where W 0(x) is given again in Tables 1, 2, and

δ(x) = [0.00001e−20000(x−0.05)2
,0,0,0,0].

In Figs. 4.1.1 and 4.1.2, it can be observed how, once the wave generated by the initial perturbation leaves the domain, 
the underlying stationary solution is recovered better by the fully well-balanced methods.

Test 4: smooth stationary solution We consider the following initial condition:

W 0(x)T = [A∗(x),q∗(x), K (x), A0(x), pe(x)]T , (4.1)

where W 0(x) is the subcritical stationary solution such that

A∗(0) = Al, q∗(0) = Alul,

and

K (x) = Kl + 100e−10(x−2.5)2
, A0(x) = A0,l + 0.0001e−10(x−2.5)2

, pe(x) = pe,l + 100e−10(x−2.5)2
,

where Al, ul, Kl, A0,l, pe,l are given in Tables 1, 2. This test is devoted to check the ability of the methods to preserve 
smooth stationary solutions. As it can be seen in Table 5, only fully well-balanced methods capture the stationary solution 
with machine precision. Nevertheless, the method that preserves blood-at-rest solutions gives better results than the non 
well-balanced method.
E. Pimentel-García, L.O. Müller, E.F. Toro et al. Journal of Computational Physics 475 (2023) 111869
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Table 2
Left-right initial values of Riemann problems: Al,r[m2], ul,r [m/s], Kl,r [Pa], A0,l,r [m2], pe,l,r [Pa].

Left values Al ul Kl A0,l pe,l

Well-balanced tests
Test 1 1.0228A0,l 0.0 Kref 2A0,ref 9999.15
Test 2-3 1.0228A0,l 1.0 Kref 2A0,ref 9999.15
Test 4-5 2.0456A0,l 1.0 58725 5E-4 10000

Accuracy test
Test 6 2.0456A0,l 0.0 58725 5E-4 10000

Riemann problems
Test 7 1.6A0,l 1.0 Kref 0.5A0,ref 3999.66
Test 8 0.9A0,l 0.0 Kref 1.1A0,ref 1333.22
Test 9 3.2E-5 0.1 Kref A0,ref 66.661
Test 10 2.9E-5 0.2 Kref A0,ref 66.661
Test 11 3.42E-5 0.5 Kref A0,ref 66.661
Test 12 3.1E-5 -0.2 Kref A0,ref 66.661
Test 13 1.5A0,l 0.6 5Kref A0,ref 0.0
Test 14 0.01A0,l 2.353043016E-2 0.919219Kref A0,ref 0.0
Test 15 1.5A0,l 1.8 5Kref 1.1A0,ref 66.661
Test 16 1E-6 0.023530423 0.919219 A0,ref 0.0

Collapsed vessels
Test 17 1E-5 1.323213 0.290682 A0,ref 0.0

Critical blockage
Test 18 A0,l 0.0 Kref A0,ref 0.0
Test 19 A0,l 0.0 Kref A0,ref 0.0

Right values Ar ur Kr A0,r pe,r

Well-balanced tests
Test 1 0.9977A0,r 0.0 10Kref A0,ref 11332.37
Test 2-3 3.109988E-4 2.06224886 10Kref A0,ref 11332.37
Test 4-5 - - - - -

Accuracy test
Test 6 - - - - -

Riemann problems
Test 7 1.05A0,r 0.0 10Kref A0,ref 0.0
Test 8 1.6A0,r 0.0 10Kref 1.3A0,ref 666.61
Test 9 3.2E-5 0.2 Kref 1.1A0,ref 66.661
Test 10 3.2E-5 0.1 100Kref 1.05A0,ref 66.661
Test 11 3.34E-5 -0.1 40Kref 1.15A0,ref 66.661
Test 12 3.1E-5 0.1 30Kref 1.05A0,ref 66.661
Test 13 1.1A0,r 1.5 50Kref A0,ref 0.0
Test 14 0.01243004A0,r 2.25423876E-2 0.781336Kref A0,ref 0.0
Test 15 1.1A0,r 2.0 50Kref 1.2A0,ref 6.6661
Test 16 1E-5 0.022542384 0.781336 A0,ref 0.0

Collapsed vessels
Test 17 1.2429978E-6 7.3158749 0.247 A0,ref 666.612

Critical blockage
Test 18 A0,r 0.0 Kref A0,ref -200
Test 19 A0,r 0.0 Kref A0,ref -2000

Table 3
Test 1: L1 errors at time t = 0.1.

Scheme ||
A||1 ||
u||1
O1_WB_GHR_HLL 6.56E-20 2.73E-15
O2_WB_GHR_HLL 5.71E-20 8.63E-16
O3_WB_GHR_HLL 5.96E-20 1.49E-15
O1_WB_HR_DOT 5.71E-20 9.52E-15
O1_non_WB_HLL 7.42E-06 0.13
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Table 4
Test 2: L1 errors at time t = 0.1.

Scheme ||
A||1 ||
u||1
O1_WB_GHR_HLL 1.03E-19 1.26E-14
O2_WB_GHR_HLL 1.03E-19 1.26E-14
O3_WB_GHR_HLL 6.44E-20 3.78E-14
O1_WB_HR_DOT 2.50E-09 2.31E-4
O1_non_WB_HLL 4.52E-06 0.36

Fig. 4.1.1. Test 3: comparison of the numerical solutions and the initial condition. Variable A/A0. Top: time t = 0.001 (left), time t = 0.002 (center), time 
t = 0.1 (right). Bottom: left zoom contact discontinuity at time t = 0.1 (left), right zoom contact discontinuity at time t = 0.1 (right).

Table 5
Test 4: L1 errors at time t = 0.1.

Scheme ||
A||1 ||
u||1
O1_WB_GHR_HLL 3.66E-18 3.66E-15
O2_WB_GHR_HLL 3.85E-18 3.84E-15
O3_WB_GHR_HLL 2.94E-18 6.12E-15
O1_WB_HR_DOT 8.37E-12 6.46E-09
O1_non_WB_HLL 1.81E-07 2.73E-3

Test 5: perturbed smooth stationary solution We consider the following initial condition:

W P
0 (x) = W 0(x) + δ(x)T ,

where W 0(x) is the subcritical stationary solution considered in Test 4 and

δ(x) = [10−7e−40(x−1)2
,0,0,0,0].

Figs. 4.1.3 and 4.1.4 show the differences between the numerical solutions and the underlying stationary solution at dif-
ferent times. It can be observed that, once the wave generated by the initial perturbation leaves the domain, the stationary 
solution is exactly recovered only by the fully well-balanced methods. As expected, the evolution of the perturbation is 
better captured as the order of the method increases.
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Fig. 4.1.2. Test 3: comparison of the numerical and the initial condition. Variable u. Top: time t = 0.001 (left), time t = 0.002 (center), time t = 0.1 (right). 
Bottom: left zoom contact discontinuity at time t = 0.1 (left), right zoom contact discontinuity at time t = 0.1 (right).

4.2. Accuracy test

This test is devoted to check the accuracy of the fully well-balanced methods. The selected parameters are given in 
Tables 1, 2.

Test 6 In this test we consider an initial condition that represents a perturbation of a blood at rest stationary solution in 
the same setting as Test 4-5. More precisely, the initial condition is given by:

W P
0 (x) = W 0(x) + δ(x)T , (4.2)

where W 0(x) is the blood at rest solution defined by

A∗(0) = Al, q∗ = 0,

and

K (x) = Kl + 100e−10(x−2.5)2
, A0(x) = A0,l + 0.0001e−10(x−2.5)2

, pe(x) = pe,l + 100e−10(x−2.5)2
,

where Al, Kl, A0,l, pe,l are given in Tables 1, 2, and

δ(x) = [10−6e−40(x−1)2
,0,0,0,0].

We use 200-, 400-, 800- and 1600-point uniform meshes in order to compute the errors and check the order of the first-, 
second- and third-order fully well-balanced schemes. The reference solution has been computed with the third-order fully 
well-balanced method using a 6400-point uniform grid. In Table 6 we show the results from which we conclude that the 
expected order of accuracy is obtained in the three cases.

4.3. Riemann problems

We consider again a N-point uniform mesh and free boundary conditions. Let us consider the following Riemann prob-
lems:
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Fig. 4.1.3. Test 5: plot of the perturbation, i.e., difference between the numerical solution and the initial stationary solution. Variable A/A0. Top: time t = 0.0
(left), time t = 0.1 (center), time t = 0.4 (right). Bottom: time t = 2 (left), zoom at time t = 2 (right).

Fig. 4.1.4. Test 5: plot of the perturbation, i.e., difference between the numerical solution and the initial stationary solution. Variable u. Top: time t = 0.0
(left), time t = 0.1 (center), time t = 0.4 (right). Bottom: time t = 2 (left), zoom at time t = 2 (right).
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Table 6
Test 6: order of accuracy for the first-, second- and third-order 
fully well-balanced scheme: L1 errors ||
 · ||1 at time t = 0.5.

First-order

Number of cells ||
A||1 Order ||
u||1 Order

200 1.51E-07 - 5.92E-04 -
400 7.86E-08 0.95 4.01E-04 0.56
800 4.34E-08 0.86 2.48E-04 0.69
1600 2.38E-08 0.87 1.42E-04 0.80

Second-order

Number of cells ||
A||1 Order ||
u||1 Order

200 8.87E-08 - 1.98E-04 -
400 2.33E-08 1.93 5.66E-05 1.81
800 5.87E-09 1.99 1.45E-05 1.97
1600 1.47E-09 2.00 3.65E-06 1.99

Third-order

Number of cells ||
A||1 Order ||
u||1 Order

200 2.32E-08 - 1.44E-04 -
400 4.20E-09 2.47 2.60E-05 2.47
800 4.59E-10 3.19 2.83E-06 3.20
1600 3.63E-11 3.66 2.22E-07 3.68

Fig. 4.3.1. Test 7: comparison of the numerical and the exact solutions: variables A/A0 (left) and u (right).

W 0(x)T =
{

[Al,ql, Kl, A0,l, pe,l]T if x < xg,

[Ar,qr, Kr, A0,r, pe,r]T if x ≥ xg,

where the left and the right values are given in Table 2. The value of m, n, ρ , L, xg , Kref , A0,ref , tend and N , are given in 
Table 1.

Test 7-12 The numerical results for these subcritical test cases, taken from [58], are shown in Figs. 4.3.1–4.3.6: as it can 
be seen, both the fully well-balanced methods and the method that preserves blood-at-rest solutions capture correctly the 
exact solution while, as expected, the second- and third-order ones give better results. Here we describe the wave pattern 
of the solution of each Riemann problem:

• Test 7: the solution consists of a left shock and a right shock traveling in opposite directions and separated by a 
stationary contact discontinuity in an artery. It represents the problem of a systolic pressure and flow peak arriving to 
a certain region of the thoracic aorta. Moreover, it is chosen to compress the proximal portion of the aorta, i.e., the part 
that was already reached by the systolic peak.

• Test 8: the solution consists of a left shock and a right rarefaction traveling in opposite directions and separated by a 
stationary contact discontinuity in a vein. It describes the problem of an internal jugular vein during a Valsalva ma-
26
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Fig. 4.3.2. Test 8: comparison of the numerical and the exact solutions. Top: variable A/A0 (left) and zoom rarefaction (right). Bottom: variable u (left) and 
zoom rarefaction (right).

neuver in which the subject exhales while closing all airways. This maneuver produces a high central venous pressure, 
reaching values around 40mmHg. In this idealized problem setup, we consider the case in which the valve presented at 
the proximal end, relative to heart, of the internal jugular vein, suddenly fails to fulfill its function of preventing venous 
reflux toward the head. The negative pressure as initial condition corresponds to a standing subject.

• Test 9: the solution consists of a left rarefaction and a right shock traveling in opposite directions and separated by a 
stationary contact discontinuity in a vein.

• Test 10: the solution consists of a left shock and a right rarefaction traveling in opposite directions and separated by a 
stationary contact discontinuity in a vein.

• Test 11: the solution consists of a left shock and a right shock traveling in opposite directions and separated by a 
stationary contact discontinuity in a vein.

• Test 12: the solution consists of a left rarefaction and a right rarefaction traveling in opposite directions and separated 
by a stationary contact discontinuity in a vein.

Test 13 In this test, taken from [43], the differences between the fully well-balanced methods and the one that only pre-
serves blood-at-rest stationary solutions are clearer: only the numerical results obtained with the former seem to converge 
to the exact solution. To see this, we show the numerical results in a fine mesh of 1000 points: see Fig. 4.3.7. The solution 
consists of a left rarefaction and a right rarefaction separated by a stationary contact discontinuity in a vein.
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Fig. 4.3.3. Test 9: comparison of the numerical and the exact solutions. Top: variable A/A0 (left) and zoom rarefaction (right). Bottom: variable u (left) and 
zoom rarefaction (right).

Test 14 In this test case, taken from [49], a Riemann problem whose initial states are supercritical is considered. The 
solution consists of a stationary contact discontinuity followed by a left rarefaction wave and a right rarefaction wave in an 
artery. Fig. 4.3.8 shows again the numerical results obtained using a mesh of 1000 points. The differences between the fully 
well-balanced methods and the one that only preserves blood-at-rest stationary solutions are also clear in this case: only 
the numerical results obtained with the former capture correctly the intermediate states.

Test 15 We consider now a Riemann problem in which all the variables are discontinuous in the initial condition. The 
solution consists of a left rarefaction followed by a stationary contact discontinuity and a right shock wave in a vein. Once 
again, fully well-balanced schemes capture correctly the exact solution and, as expected, second- and third-order methods 
give better results than first-order ones: see Fig. 4.3.9.

Test 16 In this test we consider a Riemann problem that has three different solutions according to [25]. Fig. 4.3.10 shows 
the numerical results given by the fully well-balanced schemes and the one that only preserves blood-at-rest stationary 
solutions. As it can be observed all methods seem to capture the “F” wave configuration in [25], which corresponds to a 
stationary contact discontinuity followed by a left shock wave and a right rarefaction wave in an artery. In fact, according 
to [56], this configuration would be the physically relevant solution , i.e, the one that satisfies the global entropy condition 
proposed in [21]. Nevertheless, in the zoom of variables A/A0 and u in Fig. 4.3.10, it can be observed that only the fully 
well-balanced methods capture correctly the intermediate state appearing between the stationary contact discontinuity and 
the 1-shock wave.
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Fig. 4.3.4. Test 10: comparison of the numerical and the exact solutions. Top: variable A/A0 (left) and zoom rarefaction (right). Bottom: variable u (left) 
and zoom rarefaction (right).

4.4. Collapsed vessels

The appearance of vacuum states due to vessel collapse has not been specifically considered in this article. Further 
analysis is required to include this phenomenon in the well-balanced reconstruction procedure, specially in the case of 
veins. Nevertheless, in order to check if this methodology is able to handle nearly collapsed arteries, the following test case, 
similar to the one in [49], is considered.

Test 17 This test consists on a supercritical flow in an artery whose solution is given by a stationary contact discontinuity 
followed by a left rarefaction and a right rarefaction traveling in the same direction. Fig. 4.4.1 shows the numerical results 
of the fully well-balanced schemes obtained using a mesh of 1000 points. The reference solution has been computed with 
the first-order fully well-balanced using a fine mesh of 20000 points. We observe that the numerical solutions converge to 
the reference solution dealing well with the collapsed area.

4.5. Critical blockage

The following two test cases, similar to the ones in [49], are devoted to analyze the numerical solution of the methods 
when dealing with the transition from subcritical to critical blockage conditions. We observe in Tables 1 and 2 that the 
initial conditions are the same in both cases except for the variation in the external pressure, which is atmospheric on the 
left and sub-atmospheric on the right.
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Fig. 4.3.5. Test 11: comparison of the numerical and the exact solutions: variables A/A0 (left) and u (right).

Fig. 4.3.6. Test 12: comparison of the numerical and the exact solutions. Top: variable A/A0 (left) and zoom right rarefaction (right). Bottom: variable u
(left) and zoom right rarefaction (right).
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Fig. 4.3.7. Test 13: comparison of the numerical and the exact solutions. Top: variable A/A0 (left), left zoom contact discontinuity (center), right zoom 
contact discontinuity (right). Bottom: variable u (left), left zoom contact discontinuity (center), right zoom contact discontinuity (right).

Fig. 4.3.8. Test 14: comparison of the numerical and the exact solutions. Top: variable A/A0 (left), left zoom contact discontinuity (center), right zoom 
contact discontinuity (right). Bottom: variable u (left), left zoom contact discontinuity (center), right zoom contact discontinuity (right).
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Fig. 4.3.9. Test 15: comparison of the numerical and the exact solutions. Top: variable A/A0 (left), left zoom contact discontinuity (center), right zoom 
contact discontinuity (right). Bottom: variable u (left), left zoom contact discontinuity (center), right zoom contact discontinuity (right).

Test 18 This test consists on a subcritical flow composed by a left moving rarefaction followed by a contact discontinuity 
and a right moving shock. Fig. 4.5.1 shows the numerical results of the fully well-balanced schemes obtained using a mesh 
of 1000 points. The reference solution has been computed with the first-order fully well-balanced using a fine mesh of 
10000 points. We observe that the three of them give accurate results and are able to conserve the total energy 	 (given in 
(2.20)) across the contact discontinuity as expected.

Test 19 In this test we analyze the behavior of the numerical schemes in the case where we reach the critical blockage 
condition and the minimum throat section. The flow generated by the left rarefaction reaches a critical vessel area in the 
narrowest section and a sonic blockage appears. See [49] for details. Fig. 4.5.2 shows the numerical results of the fully well-
balanced schemes obtained using a mesh of 1000 points. The reference solution has been computed with the first-order 
fully well-balanced using a fine mesh of 10000 points. We observe the dissipation of the total energy 	 (given in (2.20)) 
due to the critical blockage. The three methods seem to capture well the critical blockage condition. We also observe an 
improvement in the position of the right moving shock when we increase the order of the methods.

5. Conclusions

In this paper, the one-dimensional model for blood flow in thin-walled deformable elastic tubes introduced in [62] is 
considered. In the context of hyperbolic systems of balance laws, it is well-known that well-balanced methods are necessary 
to correctly capture the propagation of waves generated by small perturbations of a steady state. Moreover, in [43] the con-
clusion was reached that fully well-balanced methods, i.e. methods that preserve all the stationary solutions, are necessary 
as well to correctly capture the steady waves that stand on a discontinuity of one of the mechanical parameters of the blood 
flow model: the stiffness coefficient. The remaining geometrical and mechanical parameters were assumed to be constant 
in that reference. The main contribution of this work is to develop high-order fully well-balanced numerical methods for 
the general case, in which all the parameters may be space varying.

The strategy described in [18] is followed here to develop high-order well-balanced numerical methods. These methods 
are based on the design of high-order well-balanced reconstruction operators. In order to introduce the numerical meth-
ods, first the system is written in a compact form and its nondimensionalization is given. Then, the properties of all its 
possible stationary solutions are studied. This study is necessary to develop first-, second- and third-order well-balanced 
reconstruction operators.

Several numerical tests are considered to test the well-balanced properties of the methods and to check that the desired 
order of accuracy is obtained. The methods are compared with the first-order scheme based on the DOT strategy and the 
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Fig. 4.3.10. Test 16: comparison of the numerical and the exact solution (configuration “F”). Top: variable A/A0 (left) and zoom (right). Bottom: variable u
(left) and zoom (right).

Fig. 4.4.1. Test 17: comparison of the numerical and reference solutions: variables A/A0 (left) and u (right).
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Fig. 4.5.1. Test 18: comparison of the numerical and reference solutions: variables A/A0 (left), u (center) and total energy: 	 (right).

Fig. 4.5.2. Test 19: comparison of the numerical and reference solutions. Top: variable A/A0 (left) and zoom (right). Bottom: variable u (left) and total 
energy: 	 (right).
34



E. Pimentel-García, L.O. Müller, E.F. Toro et al. Journal of Computational Physics 475 (2023) 111869
hydrostatic reconstruction technique introduced in [58]. From this exhaustive study the conclusion already reached in [43]
about the need of well-balanced methods is confirmed in the general case.

Our future goals are several. On the one hand we want to be able to add the friction term that comes from the viscous 
resistance of the tube in consideration as in [28,23]. On the other hand, we want to consider the viscoelastic wall effects 
as in [5]. In these cases the implicit form of stationary solutions is not available so that they have to be numerically 
approached, as it is done in the well-balanced methods introduced in [29]. Finally we want to use these methods to deal 
with networks what implies the study of junctions: see [54,41,48].
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