

DISI ‐ Via Sommarive 14 ‐ 38123 Povo ‐ Trento (Italy)
http://www.disi.unitn.it

SECURITY TREND ANALYSIS WITH
CVE TOPIC MODELS

Stephan Neuhaus and Thomas Zimmermann

May 2010

Technical Report # DISI-10-034

Security Trend Analysis with CVE Topic Models

Stephan Neuhaus
Università degli Studi di Trento

Trento, Italy
Stephan.Neuhaus@disi.unitn.it

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

Abstract—We study the vulnerability reports in the Common
Vulnerability and Exposures (CVE) database by using topic
models on their description texts to find prevalent vulnerability
types and new trends semi-automatically. In our study of the
39,393 unique CVEs until the end of 2009, we identify the
following trends, given here in the form of a weather forecast:
PHP: declining, with occasional SQL injection.
Buffer Overflows: flattening out after decline.
Format Strings: in steep decline.
SQL Injection and XSS: remaining strong, and rising.
Cross-Site Request Forgery: a sleeping giant perhaps, stirring.
Application Servers: rising steeply.

Keywords-security; trends; machine learning

I. INTRODUCTION

Security is often viewed as an arms race between crackers,
who try to exploit flaws in deployed systems, and security
people, who wish to make that impossible. It is therefore
desirable to know of emerging trends in security in order
to be able to think about countermeasures before these
emerging trends become large-scale problems.

One large and publicly available source of vulnerabil-
ity reports is the Common Vulnerabilities and Exposures
database (CVE) hosted at MITRE 1. According to the CVE’s
FAQ2, “CVE is a list of information security vulnerabilities
and exposures that aims to provide common names for pub-
licly known problems. The goal of CVE is to make it easier
to share data across separate vulnerability capabilities (tools,
repositories, and services) with this ‘common enumeration.’”
This seems largely to be true: other databases often contain
CVE identifiers whenever they reference a vulnerability that
is also in the CVE.

The only large study on publicly available data has been
done on the CVE in 2007 [1]. This study relied on a manual
classification of entries, helped by a classification system
called Common Weakness Enumeration (CWE) 3. The CWE
aims to be a complete dictionary for software weaknesses.

One problem with the CVE is that the CWE classification
system is far too detailed: there are simply too many CWEs
to choose from. Therefore, a small set of 19 CWEs was
chosen for the user interface to avoid overwhelming the

1http://cve.mitre.org/
2http://cve.mitre.org/about/faqs.html
3http://cwe.mitre.org/

person making the CVE entry. Steven Christey from MITRE
told us: “[MITRE] worked with the NVD team at NIST to
come up with a set of identifiers that was fairly small but
still gave broad coverage for most vulnerabilities. (You don’t
want to have to train people to map 700+ CWE names, nor
do you want to write the user interface for building up a
menu of that size ;-)”.

One consequence of this is that it will lead to coarse-
grained classification and consequently to loss of informa-
tion. Also, keeping the list fixed will cause emerging trends
to be buried in related but irrelevant classifiers. The same
problem arises when using supervised learning techniques,
since the topics are fixed in advance and are not allowed
to emerge by themselves. In addition, even though the
classification system is already coarse-grained, many CVE
entries do not have any CWE classification at all. That holds
especially for the earlier entries. Therefore, to analyze trends
for CVE data, there is a lot of manual work involved; work
that will include the exercise of discretion and good taste.

In this paper, we follow a different approach, which
is not based on CWEs. Instead we use Latent Dirichlet
Allocation (LDA), an unsupervised learning technique, on
the description texts of CVE entries in order to come up
with our own classification system, called a topic model.
This allows us to identify prevalent topics, but also emerging
trends, in an automated fashion.

CVE entries also often contain score vectors from the
Common Vulnerability Scoring System (CVSS) [2]. We
looked at the evolution of these scores over time, which
can reveal trends that are captured through topic analysis.

Our contributions to the analysis of large corpora of
vulnerability data in general and to the CVE in particular
are:
• We have conducted the first independent study on the

whole body of the CVE database outside of MITRE.
• Since we used a completely different methodology than

the original MITRE study, we offer an independent
way to validate the results periodically published by
MITRE. While most of our findings will agree with
MITRE’s, the independence in methodology gives a
greater confidence in the results.

• We offer a mostly automated approach to analysing
large corpora of vulnerability texts such as the CVE.

Topic models will automatically find the prevalent top-
ics in the CVE and researchers are not limited to man-
ual and potentially error-prone labeling, for example by
CWEs or supervised learning techniques. Overall, the
topics identified by our automated analysis are in high
agreement with the manual CWE classification in the
CVE database.

• Related to the previous point, this work can be the basis
of a recommendation system that suggests possible
topics to people entering new CVEs into the CVE
database. This could solve the problem of the relative
coarse-grainedness of CVE classifications.

• We show how topic analysis helps to identify emerging
trends. We found one trend (vulnerabilities involving
application servers) for which we offer evidence of
growing importance, but which has been judged un-
problematic in the original MITRE study.

• We show how well the topics found on the CVE data
agree with the CWE classifiers in use today.

• We analyse the CVSS CIA scores for independence.
• We find at least one trend that has gone unnoticed in the

original MITRE study, namely that application servers
seem to have become a massive target for attackers.

The remainder of this paper is organised as follows: First,
we describe our methodology (Section II). Then we present
our results (Section III) and describe potential threats to
validity of this study (Section IV). We finish the paper with
a discussion of related work (Section V), as well as conclu-
sions and future work (Section VI). We also provide a step-
by-step guide on how to replicate our study (Appendix A).

This paper contains a large amount of large graphics and
tables, which we present at the end of the paper rather than
in-line.

II. METHODOLOGY

A. Data Gathering and Corpus Preparation

An annotated version of the CVE database is offered
by NIST, and there known as the National Vulnerability
Database (NVD)4. MITRE creates the CVE descriptions
and adds the relevant references. The NVD team at NIST
receives this basic information from MITRE (and through
the public CVE site). NIST then adds other information such
as structured product names and versions, and also maps the
entries to CWE names.

NIST offers files named nvdcve-2.0-year.xml for down-
load, where year is a number from 2002 to 2010 inclusive.
The file for 2002 contains entries from 1988 through 2002,
and the file for 2010 is necessarily incomplete. Since there
is usually a period of consolidation when a new CVE entry
(called a candidate) might be changed or removed, we only
looked at entries that were published up to 2009, inclusive.

4http://nvd,nist.gov

&apos and does into or then whether
" are e is p there which
+ as ff it s these while
++ at for k some they who
? attack from kei ss thi whose
?? be g later such to with
a been get mc t up within
about by go no than us without
all can ha not that v x
allow dn has o the via
also do if of their wa
an doe in on them when

Table I
LIST OF STOP WORDS.

aix 1 execut 1 ibm 1
arbitrari 1 file comp 1 overflow 1
buffer 1 for 1 rcp 1
code 1 function 1 remot 1

Figure 1. Stemmed word list for CVE 2002-1621

I order to build timelines of topics, we need to know when
the problem in a CVE was discovered, disclosed, or pub-
lished. For this, we use the disclosure date of the correspond-
ing OSVDB5 entry. The OSVDB is an open vulnerability
database that is comparable to CVE in scope. While a CVE
entry contains a date field called published-datetime,
this field cannot be used to date a CVE reliably, according
to information from MITRE.

From each CVE entry, we extracted the CVE ID (a
unique identifier) and the summary text. We then subjected
the words in the summary text to the Porter stemming
algorithm [3], which attempts to find word stems so that
for example the words ‘programming’, ‘programmed’, and
‘programs’ would all be mapped to their stem ‘program’.
Next, we removed a number of stop words, i.e., words that
are so common that they do not help differentiate between
CVEs; see Table I.6 Finally we counted the occurrence of
each stem in the summary text. After these operations, we
therefore had, for each CVE, a list of word stems and the
number of times they occurred in that CVE. For example,
Figure 1 shows the list for CVE 2002-1621, clearly a buffer
overflow.

B. Topic Models

We subjected these stemmed CVEs to Latent Dirichlet
Allocation (LDA). This is an unsupervised machine learning
technique that treats CVEs as bags of words, where each
CVE is characterised by a distribution over topics, and each
topic in turn is characterised by a distribution over words [4].
We let LDA identify 40 topics, starting from random topic

5http://www.osvdb.org
6Seemingly nonsensical stop words like ‘a’, ‘e’, ‘g’, ‘k’, or ‘mc’ come

about by breaking words like “e.g.”, “a.k.a.”, or “MC/ServiceGuard” at
word separators like the period ‘.’ or the slash ‘/’.

assignments.7 If there are m unique stemmed words in the
entire CVE corpus, and if there are n CVEs, the result of
LDA contains, among other things, a file that assigns the
word with index k (1 ≤ k ≤ m) in document c (1 ≤ c ≤ n)
a topic z (1 ≤ z ≤ 40), meaning that word k in document c
is about topic z. Note that the same word can be assigned
to different topics in different documents. Another result of
the LDA software is a list of the most frequent words w in
a topic z, together with their probabilities p̂(w | z).

First, we define the probability that a given document c
is about a given topic z:

p̂(z | c) =
∑
w∈c

w is about z

#occurrences of w in c

#words in c
. (1)

This formula can lead to fractional (or fuzzy) assign-
ments. For example, CVE 1999-1471 contains 18 words,
eight of which are assigned to topic 21 (manually labeled
“Buffer Overflow”), and ten to topic 22 (“Credentials Man-
agement”). This CVE is about the passwd program; the
description reads “Buffer overflow in passwd in BSD based
operating systems 4.3 and earlier allows local users to
gain root privileges by specifying a long shell or GECOS
field.”, so the assignment (about 44% buffer overflow, 56%
credentials management) is quite accurate.

We also give an indication of the overall importance of a
topic, which is given by

p̂(z) =
1

#CVEs

∑
c

p̂(z | c). (2)

When LDA is run on a corpus as large as the CVE data
with a comparatively large number of topics, it can happen
that some of the topics are really the same and should be
combined. This will be the case when there is a large overlap
in the set of words that appear in different topics. When k
topics z1, . . . , zk are combined into a topic z, a that topic
will have the joint probability

p̂(z) =
∑

1≤j≤k

p̂(zj), (3)

where p̂(zj) is given by Equation (2).
One result of the LDA software is a list of the most

frequent words in a topic, together with their probabilities.
Again, when k topics are combined, a word w will have the
joint probability

p̂(w | z) =
∑

1≤j≤k

p̂(w | zj)
p̂(zj)

p̂(z), (4)

where p̂(z) is given by Equation (3).

7Automatically finding the best number of topics when doing unsuper-
vised learning is at this point an unsolved problem. It has been solved for
supervised learning [5], and there are some ideas for unsupervised learning,
but at the time of writing, there is no solid theory. The number 40 seemed
to be a good value with good topic separation.

C. Trend Analysis

LDA does not measure changes over time. One alternative
is to use Dynamic Topic Models [6], which would change
the topic distributions and the word distributions within a
topic from one year to the next. Topics over Time [7] works
the other way around, assuming that a CVE has a time stamp
depending on a topic-specific beta distribution.

Both approaches have restrictions, however: dynamic
topic models penalise large changes in word distributions
for any particular topic from one year to the next, whereas
topics-over-time distributions are rather inflexible.

Therefore, we follow Hall et al. [8] and study only the post
hoc empirical probabilities that a randomly selected CVE in
a given year y is about topic z.

p̂(z | y) =
∑

c:t(c)=y

p̂(z | c) p̂(c | y)

=
∑

c:t(c)=y

p̂(z | c) 1
#CVEs in year y

=
1

#CVEs in year y

∑
c:t(c)=y

p̂(z | c), (5)

where p̂(z | c) is given by Equation (1) and t(c) is the
year in which CVE c was published. This formula is simple
to compute, since p̂(z | c) is a result of the LDA model
estimation process.

Plotting p̂(z | y) against y will then give an indication
about the relative importance of topic z in year y: if p̂(z1 | y)
is twice as high a p̂(z2 | y), then twice as many CVEs were
about z1 than about z2 in year y.

In addition to a graphical display, it is also interesting to
know how much a topic has changed in importance, both
since measurements began and in the last year. In general,
we compute the change from year y to year y + n as the
average annual change:

change =
(p̂(z | y + n)

p̂(z | y)

)1/n

− 1, (6)

The intuition behind this is that this number will give
the relative change that the initial level of importance will
have to undergo every year to arrive at the final level of
importance. For example, if this number is 0.1, then that
means that the importance of the topic has risen by 10%
per year on average.

D. Causes and Impacts

During exploratory analysis of the CVE corpus we noticed
a curious feature, namely that most (72.9%) were of the
form “x allows remote attackers to y” or similar forms. For
example, CVE 2008-0895 reads, “BEA WebLogic Portal
10.0 and 9.2 through MP1, when an administrator deletes
a single instance of a content portlet, removes entitlement
policies for other content portlets, which allows attackers

Actually is x Is not x
Classified as x true positive (TP) false positive (FP)
Classified as not x false negative (FN) true negative (TN)

precision =
#TP

#TP + #FP
recall =

#TP
#TP + #FN

Figure 2. Assessing the quality of a classifier.

to bypass intended access restrictions.” This separates the
description of the CVE into two parts, the first of which
describes the cause of the problem and the second the
impact. For those CVEs for which we found such a division,
we subjected them to the same LDA process in the hope of
finding out trends in both causes and impacts.

E. Alignment with CWEs

One problem is that topic models, being an unsupervised
learning technique, do not give indications of goodness-of-
fit, so we usually have no quantitative indication on how
well the classification works. In this case, however, many
CVEs do have an independent classification in the form of
CWE assignments, so we can compare the CWE value with
the topic that was assigned by running LDA.

Usually, the quality of a classifier is determined by using
the false-positive and false-negative rates, or equivalently
the related measures of precision and recall. High pre-
cision values mean that classifications are often correct,
and high recall values mean that many documents will
be correctly classified; see Figure 2. We cannot use these
values directly, however, since our topic assignment based
on LDA is probabilistic. Remember that a document can be
about multiple topics, which is captured by the probability
p̂(z | c). We therefore need to transform our probabilistic
topic assignment into a crisp one, where each document is
assigned exactly one topic. We do this for a given document
c by taking the topic z for which p̂(z | c) is largest.

We compute precision and recall values separately for
each topic. This helps us identify topics that are aligned
particularly well with CWEs. Let cwe(c) be the CWE value
for a document c and let ẑ(v) be a mapping that maps a
CWE v onto a topic. (For simplicity, we assume that ẑ is
single-valued.) Then we count for each document c with
topic z:
• a true positive for z if z = ẑ

(
cwe(c)

)
;

• a false positive for z and a false negative for ẑ
(
cwe(c)

)
if z 6= ẑ

(
cwe(c)

)
.

The intuition is that if the CWE topic and the LDA topic
are the same for a document, i.e., z = ẑ

(
cwe(c)

)
, then that

should count as a true positive. If they are not, however, it
should be counted as a false positive for the LDA topic z
and as a false negative for the true CWE topic ẑ

(
cwe(c)

)
.

We do not count true negatives because they are not needed
for the computation of precision and recall (see Figure 2).

F. CVSS Scores

CVE entries have sections containing scores from the the
Common Vulnerability Scoring System (CVSS), a frame-
work to assess and prioritise vulnerability information [2].
According to its creators, the main benefits of the CVSS are:
• Standardized Vulnerability Scores. The idea is to

enable organisations to leverage a single vulnerability
management policy across all of its platforms.

• Open Framework. The idea is to be able to answer
the question “Which properties gave it that score? How
does it differ from the one released yesterday?”

• Prioritized Risk. Here the idea seems to be that when
the vulnerability score is computed, it is somehow
indicative of actual risk.

CVE data contain six pieces of CVSS information:
• CIA Impact. This is an assessment of the impact

of the vulnerability on confidentiality, integrity, and
availability (CIA). Each impact assessment comes in
three levels, “none” (no impact), “partial” (partially
compromised) and “complete” (completely compro-
mised).

• Authentication. This is the number of instances the
attacker must authenticate in order for the attack to
work. Values are “none” (no authentication required),
“single instance” (must authenticate once), or “multiple
instances” (must authenticate twice or more).

• Access. This says how close the attacker must be to the
attacked host. Values are “local” (local access required),
“adjacent network” (access to broadcast or collision
domain required), or “network” (access to any network
suffices).
In addition, the complexity of the access is captured.
Values are “low”, “medium”, and “high”.

Given the requirements of standardisation and risk priori-
tisation, the individual CVSS scores should be independent
and uncorrelated, that is, it should not be possible to predict
the value of one CVSS score from the value of another.

III. RESULTS

A. Overview

The earliest CVE has an OSVDB disclosure date of
August 1, 1982 (CVE 1999-0531, a candidate that is
now rejected). By contrast, the CVE with the earliest
published-datetime field in the CVE database is
CVE 1999-0095, reporting the sendmail DEBUG hole that
was exploited by the Morris worm [9]). The latest are from
December 31, 2009, comprising a total of 39,749 entries.
After removing duplicates, 39,393 unique CVEs remained.8

After removing stop words and stemming, the CVE
summaries could be as short as a single word (for example

8We have checked 53 duplicate CVE IDs manually to confirm that they
were indeed duplicate entries having identical fields and not different entries
with the same CVE ID.

for CVE 1999-0657, for which the entire summary reads
“WinGate is being used”, which after removing stop words
and stemming reduces simply to “wingat”), but also as long
as 99 words (for CVE 2007-0018, which describes fairly
completely a stack-based buffer overflow in an ActiveX
control). The distribution is shown in Figure 3 (left). It
is clearly a unimodal distribution, having a median of 18
words, a mean of 18.85 words, and a standard deviation of
6.49 words. But it it not a symmetric distribution (skewness
1.51, kurtosis 5.91)9.

The right part of Figure 3 shows how the CVE database
grew over the years. Apparently, the number of CVE entries
peaked in 2006 with 6,885 submissions in that year, and
has been slightly declining in 2007 (to 6,393) and more
drastically in 2009 (by a massive third to 4,446). We assume
that over time, more CVE entries that are published in 2010
will turn out to have been disclosed in 2009, so that this
number will probably rise.

B. Topic Models on the Entire Corpus
Combining topics, we arrived at 28 unique topics. Topics

for which we could not find a good name are simply labeled
“Topic x”, where x is the topic number produced by LDA.

The first main result is a table with all 28 unique topics
(Table VII). The first column contains the topic name z.
The second column contains p̂(z), the proportion of words
that have been assigned that topic by LDA, according to
Equation (3); the table is sorted by the p̂(z) column. The
remaining columns contain the most frequent words from
that topic and their frequency p̂(w | z), according to
Equation (4).

The table contains all the expected topics such as
buffer overflows, format string vulnerabilities, SQL injec-
tion, cross-site scripting, cross-site request forgery and so
on, and roughly in the order that we would intuitively expect
them to be from following the security press.

However, there are also a few surprises:
• There are topics just for Linux kernel issues, and

one for Internet Explorer. The reason is that with
partial/fuzzy assignments, LDA will not try to find
mutually exclusive topics, since a document can be
partly about one topic and partly about another.

• The proportion of resource management issues is very
high. This is due to the combination of denial-of-service
topics with more traditional resource management top-
ics such as memory leaks. This was done because
manual inspection of respective CVEs showed that
these topics were not really separable: a CVE that had
words assigned to resource management issues usually
also had words assigned to a denial-of-service topic.

• CVE Management issues (disputed entries and rejects)
make up almost 3% of the CVE corpus. We will return

9Skewness and kurtosis have been computed with methods compatible
with SAS and SPSS.

to this topic when discussing the changes in topic
importance below.

• The word “PHP” appears in four of the 28 topics, SQL
injection and cross-site scripting, implicating PHP in
these vulnerabilities. However, the proportion of PHP-
specific vulnerabilities has been declining since 2007,
especially for arbitrary code executions due to PHP.
One reason might be that support for PHP 4 was
finally discontinued in August 2007, forcing web site
operators to upgrade to the more secure PHP 5. See
also Section III-C below.

• For the topic labeled “Cross-Site Request Forgery”, the
strings “cross-sit” and “forgeri” appear only beyond the
10 most frequent words (stemming reduces “cross-site”
to “cross-sit” and “forgery” to “forgeri”).

C. Trend Analysis

The second main result is a graphical display of p̂(z|y)
for the 28 topics since 2000 (Table IV). The main findings
are:

• Well-known vulnerabilities like buffer overflows and
format strings are declining, though perhaps not as
steeply as one would wish. It seems that buffer over-
flows are harder to exploit now than they were in the
past, and therefore that effective protective measures
have finally found their way into operating systems,
compilers, and libraries.

• Resource management issues are also generally de-
clining. This puts the high percentage of this topic in
Table VII into perspective: the situation was bad, but it
is getting better.

• Privilege escalation and link resolution issues are also
going down, perhaps indicating better compartmentali-
sation and secure-by-default configurations.

• Perhaps surprisingly, the importance of exploits allow-
ing arbitrary code execution is also going down slightly
in recent years (but see the section on causes and
impacts below).

• SQL injection and cross-site scripting have dents in
their growth curves of the last few years.

The third main result is Table II, which shows more
quantitatively the change in importance for the 28 unique
topics identified by LDA from 2000 to 2009 and from 2008
to 2009, according to Equation (6).

The table is sorted in decreasing order of combined
change10; the “since 2000” column can be used to see
whether the change from 2008 to 2009 was in accordance
with or against the general trend since 2000. For example,
application server-related vulnerabilities have risen by 20.6%
annually since 2000, and by 83.2% from 2008 to 2009.

10We used a weighted geometric average, weighing the change since
2000 ten times as high as the change since 2008.

0
50

0
15

00
25

00

Length of CVE Summary

Length [words]

N
um

be
r

of
 C

V
E

s

1 11 23 35 47 59 71 83 99

Number of CVEs

Time

N
um

be
r

of
 C

V
E

s

1985 1990 1995 2000 2005

0
20

00
40

00
60

00

Figure 3. Length of CVE summary text after stemming and stop word removal (left) and number of CVEs issued per year between 1988 and 2009 (right).

since since since since
Name 2000 2008 Name 2000 2008

Cross-Site Scripting +46.6 +3.8 Firewalls −0.7 +44.1
SQL Injection +45.7 −39.6 Resource Management −1.4 +36.1
Arbitrary Code (PHP) +37.7 −23.0 Linux −2.6 +50.0
PHP +29.9 −8.7 Arbitrary Code +2.6 −16.1
Application Servers +20.6 +83.2 Directory Traversal +1.9 −19.6
Topic 35 +15.6 −8.7 Format String +1.9 −23.1
Microsoft Office +7.9 +37.6 Buffer Overflow −4.3 +37.7
Mozilla +5.3 +68.8 Message Boards +0.4 −22.7
Information Leak +10.6 −5.7 Topic 17 −10.4 +45.2
Microsoft Windows −2.6 +139.0 Credentials Management −7.4 −12.8
Topic 7 +1.0 +65.6 Arbitrary Code (IE) −11.2 +5.1
Java +7.0 −13.1 Cryptography −10.6 −2.4
CVE Issues +5.7 −9.5 Privilege Escalation −17.8 −8.5
Cross-Site Request Forgery +5.5 −17.6 Link Resolution −14.5 −51.3

Table II
TOPICS SORTED ACCORDING TO THEIR CHANGE IN IMPORTANCE SINCE 2008. THE COLUMN MARKED “SINCE 2000” CONTAINS THE AVERAGE

CHANGE PER YEAR SINCE 2000 IN PERCENT, AND THE COLUMN MARKED “SINCE 2008’ CONTAINS THE CHANGE FROM 2008 TO 2009 IN PERCENT.
LONG-TERM CHANGES WEIGH MORE THAN SHORT-TERM CHANGES.

The comparatively unimportant Topic 35 appears rela-
tively high up the list because it rose they rose from a
mere 0.33% in 2008 to 1.5% in 2009. Since link resolution
has been stagnating or declining on average since 2007, we
believe this to be a random fluctuation, not a new trend.

Above we mentioned that incomplete or disputed CVE
entries make up about 3% of CVE entries. Looking now
at the changes in importance, we can see that this quality
has been eroding since 2000, but apparently some quality
measures have taken effect. In fact, when one looks at the
plot of that topic in Figure IV, one can see that after a sharp,
almost exponential increase until 2006, the topic has been
falling.

D. Causes and Impacts

The CVE corpus contains 28,699 unique entries of the
form “x, allows attackers to y” or similar forms, 72.9% of
all unique entries.

Tables VIII and IX show causes impacts respectively,
analogous to Table VII. What can be seen from the table
is that the four most frequent causes are responsible for
two thirds of all CVEs; after the top four, topics fall off

sharply in importance. PHP is identified as one of the four
major causes, making it a prime candidate for improvement.
For the impact data, the situation is even more clear-cut:
arbitrary script and code executions make up almost 58% of
all impacts. This suggests that research on the prevention
of such vulnerabilities could have major impact (no pun
intended). While it is true that adding denial of service
and information leaks would make the figure rise to 92%,
preventing such attacks is in our opinion more difficult than
preventing arbitrary code execution.

One disappointing element in Tables VIII is the ap-
pearance of the word “unspecifie[d]” in the table entries
for various topics. Looking at the corresponding CVEs,
one finds that the phrase “unspecified vulnerabilities” or
“unspecified vectors” is responsible for this. For example,
CVE 2007-0114 reads, “Sun Java System Content Deliv-
ery Server 5.0 and 5.0 PU1 allows remote attackers to
obtain sensitive information regarding ‘content details’ via
unspecified vectors.” Entries like these simply mean that the
source cannot or will not disclose the actual cause of the
vulnerability. That will in turn mean that the CVE entry

will be incomplete, rendering it less useful.
There is an apparent discrepancy in the cause/impact data

versus the entire data as seen in Table VII. For example, in
Table VIII, we see that 19% of all CVEs are about cross-
site scripting, whereas the corresponding column sum in
Table VII gives only about 9.7%. The reason for this effect
is that sometimes a given cause may allow different impacts.
For example, a buffer overflow may at one time allow the
execution of arbitrary code, at another it may lead to a crash
and therefore to a denial of service. So LDA might assign
a document to either the cause (buffer overflow) or to the
impact topic (arbitrary code or denial of service), or partly to
both, depending on which part dominates in the description.
As soon as the document is split into cause and impact,
however, assignments can be made more clearly.

Figures V and VI show graphs of the unique cause and
impact topics analogous to Figure IV. For both data sets,
the important information is that the graphs follow the same
general curves as the corresponding ones in Figure IV. For
example, cross-site scripting and SQL injection are rising,
whereas buffer overflows, denial of service and privilege
escalation are falling and PHP seems to have had its peak
in 2006 or 2007.

E. Alignment with CWEs

Next, we looked at how well the 28 topics found by LDA
aligned with the 19 pre-assigned CWEs that are available
to someone who enters a new CWE. To do that, we first
needed to map LDA topics to CWEs. We ended up with
the assignment shown in Table III, but not all topics were
assigned a CWE or vice versa. The reason for this is that
an LDA topic might not coincide naturally with an available
CWE or only with an CWE that is not used in the NVD. For
example, Topic 23 was labeled “Privilege Escalation”, and
CWE 269 (improper privilege management) exists for just
such a case. But this CWE is not one of the 19 CWEs offered
for CVE entries. This is not a problem for LDA, since partial
assignments are possible (“this document is 50% about topic
1 and 50% about topic 2”), but the CVE does not allow such
partial assignments. That said, we were able to map 12 of
the 24 LDA topics directly to CWEs.11

Table III shows the precision and recall values according
to Figure 2. These show that the performance of LDA
is very good when it comes to standard categories like
cross-site scripting, directory traversals, link resolution or
SQL injection (precision of 80% or more and recall of
80% or more). Other categories fare much worse, among
them the buffer overflow. This is surprising at first glance,
since buffer overflow reports ought to have the two words

11Of the 19 CWEs used in the NVD, we could not map seven CWEs to
LDA topics; they are: CWE 16 (configuration/insecure defaults), CWE 20
(improper input validation), CWE 78 (OS command injection), CWE 189
(numeric errors), CWE 255 (credentials management), CWE 310 (crypto-
graphic issues), and CWE 362 (race conditions).

“buffer” and “overflow” occurring somewhere. However,
this need not be the case; for example, CVE 2008-0090
reads, “A certain ActiveX control in npUpload.dll in DivX
Player 6.6.0 allows remote attackers to cause a denial of
service (Internet Explorer 7 crash) via a long argument
to the SetPassword method.”, so possible CWEs would
include 20 (input validation), 399 (resource management),
or 255 (credentials management), yet the CVE was assigned
CWE 119 (buffer overflow), something that is not apparent
from the description.

False positives and false negatives in the assignment of
LDA topics to CWEs can exist for multiple reasons.

1) In practice a CVE can be about multiple CWEs;
while LDA accounts for this with its probabilistic
assignment, the actual CWE assignment of in the NVD
database does not.

2) Ambiguous entries in the CVE database. For example
if a buffer overflow allows the injection of arbitrary
code, should the CVE entry be classified as CWE 119
(buffer overflow) or CWE 94 (code injection)?

3) The assignment of a CWE to a CVE is to some degree
arbitrary, too, as the example for CVE 2008-0090 and
buffer overflow shows.

F. CVSS

Figure 4 shows the development of CIA impact scores for
confidentiality, integrity, and availability (top row) and for
authentication and access proximity and complexity (bottom
row). What is striking is that for the CIA plots the individual
lines track each other extremely well across figures.12 This
suggests that CIA scores are correlated and not independent
in practice.

Figure 4 shows several trends. The fraction of complete
compromises for confidentiality, integrity, and availability
have decreased substantially until 2006; but since 2007
the fractions are increasing again (see top row). The plot
“Access” shows that local access has declined dramatically
over the past years and that most vulnerabilities can now be
exposed through the network; adjacent networks are almost
never used for the access score. The plot “Access Complex-
ity” shows that the complexity of attacks is increasing (fewer
Low, more Medium). The plot “Authentication” shows that
in recent years a small fraction of vulnerabilities required
users to authenticate once; however the majority (over 90%)
required still no authentication at all.

IV. THREATS TO VALIDITY

We let LDA seed topics randomly. On the one hand,
this is precisely the point of using an unsupervised learning
technique. On the other hand, random topic seeding could

12So well that the we spent a few hours tracking a non-existent bug
in the software that produced the graph. In fact, the Pearson correlation
coefficients are very high (above 0.75) but do not reach 1.00, which means
that the lines do not match perfectly.

P[%] R[%] LDA Topic Name CWE CWE Name

97.8 94.6 SQL Injection 89 Improper Sanitization of Special Elements used in an SQL Command (‘SQL Injection’)
98.1 85.4 Cross-Site Scripting 79 Failure to Preserve Web Page Structure (‘Cross-site Scripting’)
93.1 85.6 Directory Traversal 22 Path Traversal
57.6 80.1 Link Resolution 59 Improper Link Resolution Before File Access (‘Link Following’)
51.8 75.3 Format String 134 Uncontrolled Format String
60.1 57.6 Buffer Overflow 119 Failure to Constrain Operations within the Bounds of a Memory Buffer
29.7 49.3 Resource Management 399 Resource Management Errors
24.9 54.5 Cross-Site Request Forgery 352 Cross-Site Request Forgery (CSRF)
33.1 18.6 Information Leak 200 Information Leak (Information Disclosure)
28.0 18.0 Cryptography 310 Cryptographic Issues
12.1 38.7 Credentials Management 255 Credentials Management
14.2 8.7 Arbitrary Code 94 Failure to Control Generation of Code (‘Code Injection’)

Table III
PRECISION AND RECALL FOR MAPPABLE CVES. THE FIRST COLUMNS ARE FOR PRECISION (‘P’) AND RECALL (‘R’).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect on Confidentiality

Year

F
ra

ct
io

n
of

 C
V

E
s

1988 1992 1996 2000 2004 2008

Complete Compromise
Partial Compromise
No Effect

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect on Integrity

Year

F
ra

ct
io

n
of

 C
V

E
s

1988 1992 1996 2000 2004 2008

Complete Compromise
Partial Compromise
No Effect

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect on Availability

Year

F
ra

ct
io

n
of

 C
V

E
s

1988 1992 1996 2000 2004 2008

Complete Compromise
Partial Compromise
No Effect

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect on Access

Year

F
ra

ct
io

n
of

 C
V

E
s

1988 1992 1996 2000 2004 2008

Adjacent Network
Network
Local

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect on Access Complexity

Year

F
ra

ct
io

n
of

 C
V

E
s

1988 1992 1996 2000 2004 2008

High
Medium
Low

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effect on Authentication

Year

F
ra

ct
io

n
of

 C
V

E
s

1988 1992 1996 2000 2004 2008

Multiple Instances
Single Instance
No Effect

Figure 4. Development of CVSS impact vectors until 2009.

yield different topics on different runs. While not having
conducted a systematic investigation, we ran LDA a num-
ber of times with different random seeds and, apart from
different topic numbers, got the same topics that we report
in this study.

The CVE database is very uneven when it comes to the
quality of the vulnerability descriptions. They range from
almost meaningless entries such as “WinGate is being used”
(CVE 1999-0657; see above) to fairly complete analyses
of the problem, including the root cause. This could lead
LDA to skew its analysis towards those CVEs that are better
reported.

Different vendors may have different terminologies when
describing vulnerabilities. This may lead to essentially iden-
tical vulnerabilities being assigned different topics. This
threat is to some extent mitigated by manually assigning
labels to topics and combining topics.

Different vendors may also have different disclosure
strategies, which could skew the trends we publish. There
is evidence for this because December 31 has an unusually
high number of CVEs: 7.7% of all CVEs (3051) were pub-
lished on that day, where publishing CVEs more regularly
would give only 1/365, or 0.28%,. (Other end-of-month
dates do not have such a disproportionately high publishing
frequency). This threat is mitigated by aggregating CVEs
by year, while at the same time introducing the threat that
trends within a year or trends spanning adjacent years will
be obscured. On the other hand, there are concerns with
the publication date. For example, CVE 2001-1586 has a
publication date of February 12, 2010 (sic!). There are 340
such entries (CVE ID having a year that is less than 2010,
but the published-datetime field being in 2010), but
an explanation for this is still being sought.

V. RELATED WORK

The study that is closest to this work is of course the
paper by Christey et al., also on CVE trends [1]. The main
differences to our study are:

1) They analysed the data up to and including 2007,
whereas we analysed the data up to 2009.

2) They used manual classification of CVE entries, also
using information that is not public, even though it
is not clear from the report text how they categorised
the CVEs. The categories appear associated with CWE
numbers, but some of the CVE numbers used in
the report are not in the 19 CWE numbers that are
provided for CVE entry, such as CWE 415 (double-
free vulnerability). A request for clarification by email
seems to indicate largely manual classification based
on indicator words, phrases in the text (like manual
topic models), or non-public information.

3) We did not differentiate between open vs. closed
source or between different operating systems.

Mainly, our findings agree with this report: buffer over-
flows are still high on the list, but in decline when compared
to web application attacks like cross-site scripting or SQL
injection; a low number of causes are responsible for the
majority of CVE entries; and decline in link following and
directory traversal; regular appearance of information leaks.

However, we disagree on the interpretation of cross-site
request forgery. Christey et al. state that it is a sleeping giant
(emphasis on “sleeping”) and use the low prevalence of 0.1%
in 2006 as an argument. We measure 1.8% prevalence in
2006, and also the growth rate, while negative in the last
year, is by no means negligible. Given the ease with which
CSRF might be exploited, we should definitely keep an eye
on this sleeping giant, lest he wake up.

We seem also to have uncovered a category of attacks on
application servers that seems to be rising faster than any
other attack category. This category does not appear in the
CWEs and hence is missing from the MITRE study.

Another large-scale study is regularly done by Microsoft;
the most recent example is the Microsoft Security Intelli-
gence Report for H1 2009 [10]. The report uses a vast array
of data sources, ranging from online sources like Bing and
Windows Live Hotmail to programs collecting data such as
the Malicious Software Removal Tool or various filters in
Internet Explorer. Overall, the report tends to focus more on
malware and browser exploits.

Both Li et al. [11] and Ozment et al. [12] studied in
2006 how the numbers of defect and security issues evolved
over time. While Li et al. reported an increase, Ozment
reported a decrease in the rate at which new vulnerabilities
are reported; for our data, we observed an increase in
vulnerabilities until 2006 and since then a decrease. Li et al.
used supervised techniques such as Support Vector Machines
and Naive Bayes to classify software defects; for security
vulnerabilities they used manual classification. In contrast
our work uses LDA, an automated and unsupervised learning
technique for vulnerability data.

Coverity used its static analysis tools to scan a large
number of open-source programs and concluded that the
quality of open source software is increasing [13]. We have
not yet tried to separate our CVE data into entries pertaining
either to open source or to closed source software.

Eric Rescorla looked at the related problem of vulner-
ability discovery and, by modeling the discovery process
and estimating model parameters, concludes that finding
vulnerabilities is often without a clear effect on a its life-
time [14]. Also, he noticed that vulnerability data is very het-
erogeneous. His conclusion was therefore that vulnerability
discovery should be de-emphasized the quality of gathered
data be increased.

Scarfone and Mell compared the scores for CVSS ver-
sion 1 with CVSS version 2 for over 11,000 CVEs [15].
They found that v2 has higher scores than v1 and that v2
has greater score diversity than v1. Thus they believe that

v2 successfully addressed deficiencies of the original version
v1. Fruehwirth and Männistö analyzed 720 CVEs from the
NVD and found that adding context information to CVSS
scores significantly improved the prioritization and selection
of the vulnerability response process [16].

VI. CONCLUSIONS AND FUTURE WORK

We studied the Common Vulnerability and Exposures
from the National Vulnerability Database by using topic
models on their description texts. Our results include the
following.
• Eliminating cross-site scripting, SQL injection, and

buffer overflows, and making PHP more secure will
eliminate the majority of all CVEs.

• Application server vulnerabilities have massive growth
rates and are probably the “next big thing” for years to
come.

• Cross-site request forgery is indeed a sleeping giant,
and it is probably already stirring.

Our contribution is not intended to replace manual meth-
ods, but rather to complement them: our findings by and
large support the analysis done by MITRE [1]. By providing
a methodically completely independent way, we gain mutu-
ally supporting evidence that the trends that we are seing
are actually real. Also, while the analysis in this paper is
only a snapshot in time, this analysis is mostly automated
and can thus be easily repeated. To facilitate replication, we
provide an archive file with all the data and scripts (see
Appendix VII).

Another important point is that this work is not another
“Top-n vulnerabilities”-type study such as the CWE/SANS
Top 25 Programming Errors13 ot he OWASP Top 10
Project14. The main difference is that Top-n lists are aware-
ness instruments based on consensus, not necessarily on
actual data, like our study.

Our future work will include replication on other corpora
like the SANS Consensus Security Alerts [17]. Many of
these corpora have fewer but longer documents, so one
question that could be investigated is whether the same
trends emerge. In addition, we plan to distinguish between
open-source and closed-source projects in our topics. For
open-source projects CVEs often link to specific bug report,
which could help to obtain the actual change that fixed the
vulnerability. Thus another data source that we plan to tap
into are bug databases and version archives.

VII. ACKNOWLEDGMENTS

Stephan Neuhaus was supported by the European Com-
mission under contract No. 216917, project EU-FP7-IST-IP-
MASTER.

13http://www.sans.org/top25-programming-errors/
14http://www.owasp.org/index.php/Category:OWASP Top Ten Project

REFERENCES

[1] S. M. Christey and R. A. Martin, “Vulnerability type distri-
butions in CVE,” http://cwe.mitre.org/documents/vuln-trends/
index.html, May 2007.

[2] P. Mell, K. Scarfone, and S. Romanosky, “The complete guide
to the common vulnerability scoring system 2.0,” National
Institute of Standards and Technology, Tech. Rep., Jun. 2007.

[3] M. F. Porter, “An algorithm for suffix stripping,” Program,
vol. 14, no. 3, pp. 130–137, 1980.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 2003,
no. 3, pp. 993–1022, January 2003.

[5] D. Blei and J. McAuliffe, “Supervised topic models,” in Ad-
vances in Neural Information Processing Systems 20, J. Platt,
D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA:
MIT Press, 2008, pp. 121–128.

[6] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in
ICML ’06: Proceedings of the 23rd international conference
on Machine learning. New York, NY, USA: ACM, 2006,
pp. 113–120.

[7] X. Wang and A. McCallum, “Topics over time: a non-
markov continuous-time model of topical trends,” in KDD
’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. New
York, NY, USA: ACM, 2006, pp. 424–433.

[8] D. Hall, D. Jurafsky, and C. Manning, “Studying the history
of ideas using topic models,” in Proceedings from the EMNLP
2008: Conference on Empirical Methods in Natural Language
Processing, October 2008, pp. 363–371.

[9] E. H. Spafford, “The internet worm program: An analysis,”
Purdue University, West Lafayette, IN 47907-2004, Purdue
Technical Report CSD-TR-823, 1988.

[10] R. Boscovich, T. J. Campana, D. Canavor, B. Dang, J. Faul-
haber, V. Gullotto, Y. Huang, J. Jones, J. Lambert, T. Lee,
Z. Mador, R. Mordani, B. Neerumalla, J. Ness, H. O’Dea,
S. Parthasarathy, A. Penta, P. Pottorff, S. Reasor, C. Seifert,
A. Shostack, G. Stathakopoulos, A. Stone, S. Wu, and T. Zink,
“Microsoft security intelligence report volume 7: January
through june 2009,” Microsoft, Inc., Tech. Rep., 2009.

[11] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai,
“Have things changed now?: an empirical study of bug
characteristics in modern open source software,” in ASID ’06:
Proceedings of the Workshop on Architectural and System
Support for Improving Software Dependability. ACM, 2006,
pp. 25–33.

[12] A. Ozment and S. E. Schechter, “Milk or wine: does software
security improve with age?” in USENIX-SS’06: Proceedings
of the 15th USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2006, pp. 93–104.

[13] Coverity, Inc., “Coverity scan open source report 2009,”
Coverity, Inc., Tech. Rep., 2009.

[14] E. Rescorla, “Is finding security holes a good idea?” in Third
Annual Workshop on Economics of Information Security, Jul.
2006, http://www.dtc.umn.edu/weis2004/rescorla.pdf.

[15] K. Scarfone and P. Mell, “An analysis of cvss version 2
vulnerability scoring,” in MetriSec’09: Proceedings of the In-
ternational Workshop on Security Measurements and Metrics,
2009.

[16] C. Fruehwirth and T. Männistö, “Improving cvss-based vul-
nerability prioritization and response with context informa-
tion,” in MetriSec’09: Proceedings of the International Work-
shop on Security Measurements and Metrics, 2009.

[17] SANS, “@Risk: The consensus security alert,” http://www.
sans.org/newsletters/risk/, September 2009.

[18] (2009, Nov.). [Online]. Available: http://www.cs.princeton.
edu/∼blei/lda-c/

[19] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Com-
puting, Vienna, Austria, 2008.

[20] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and
A. Weingessel, e1071: Misc Functions of the Department of
Statistics (e1071), TU Wien, 2009.

APPENDIX A. REPLICATION GUIDE

LDA is a general technique that can be used to analyse
topics for all kinds of corpora. Also, the techniques to extract
graphs like Figure IV are more or less the same for all
corpora. We therefore give a step-by-step guide how to
replicate our results on the CVE data or to use the same
techniques on other corpora.

1) Gather data. Gather a corpus of n documents describ-
ing vulnerabilities. Each document must carry a time
stamp. Also choose the number of topics you wish to
estimate, N .

2) Stem words, apply stop words (optional). Subject the
words in the documents to a stemming algorithm and
to a list of stop words.

3) Compute vocabulary and word counts. The result of
the previous step(s) is a set of n documents containing
a total of m unique words. Enumerate the unique
words from 1 to m and build a matrix 〈mjk〉 where
mjk is the number of occurrences of word k in
document j. This matrix will generally be sparse.

4) Run LDA. Now run the LDA software on 〈mjk〉. We
used David Blei’s LDA implementation for C [18].
The result will be a matrix 〈zjl〉 (1 ≤ j ≤ n and
1 ≤ l ≤ N) where zjl is the topic that was assigned
to word l in document j.

5) Compute post-hoc probabilities. Compute the post-hoc
probabilities according to Equations (1), (2), (5) and
(6).

6) Join topics (optional). If you find that some of the
topics produced by LDA are really equal, join them

using Equations (3) and (4). The order of this and the
previous step can be interchanged; in this case, you
will have to devise a mapping from original topics to
joint topics and adjust 〈zjl〉 accordingly. The result
will however be the same.

7) Plot results. At this point, you have for each unique
topic its overall importance, its average annual change,
its development in importance during the relevant time
period, and a list of the most frequent words in the
topic. We used R [19] and the e1071 package [20]
to make plots like Figure 3, and a number of custom
Perl scripts to create tables like Table VII. We used the
sparklines feature of Microsoft Excel 2010 to create
the sparklines of Tables IV–VI

To facilitate replication of this study, an archive file
with all the data and scripts is available from http://www.
disi.unitn.it/∼neuhaus/archive.tar.gz. The archive does not
contain third-party software such as LDA or R.

Table IV
RELATIVE IMPORTANCE, ALL 28 TOPICS. TOPICS ARE ORDERED

ALPHABETICALLY, FOLLOWED BY UNNAMED TOPICS. THE y AXES ARE
ALL EQUAL, TO FACILITATE COMPARISON.

Topic Trend 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Application Servers 1% 1% 1% 1% 1% 1% 3% 3% 3% 5%

Arbitrary Code 5% 4% 5% 5% 5% 5% 6% 7% 7% 6%

Arbitrary Code (IE) 3% 2% 2% 2% 2% 1% 1% 1% 1% 1%

Arbitrary Code (PHP) 0% 1% 1% 2% 2% 3% 11% 8% 3% 2%

Buffer Overflow 19% 18% 17% 18% 15% 10% 8% 10% 8% 11%

CVE Issues 1% 2% 2% 2% 2% 3% 4% 4% 2% 2%

Credentials Management 5% 6% 6% 5% 4% 4% 3% 3% 4% 3%

Cross-Site Request Forgery 2% 2% 2% 2% 2% 3% 2% 3% 3% 3%

Cross-Site Scripting 0% 1% 6% 6% 8% 13% 13% 9% 10% 10%

Cryptography 2% 2% 2% 2% 1% 2% 1% 1% 1% 1%

Directory Traversal 6% 8% 5% 4% 4% 4% 4% 4% 5% 4%

Firewalls 1% 2% 2% 2% 2% 1% 1% 2% 2% 2%

Format String 2% 3% 2% 2% 3% 2% 1% 1% 1% 1%

Information Leak 2% 2% 3% 3% 3% 3% 5% 4% 4% 3%

Java 3% 1% 2% 2% 2% 2% 2% 2% 3% 3%

Link Resolution 6% 6% 4% 4% 4% 3% 1% 2% 3% 1%

Linux 2% 2% 2% 3% 3% 3% 2% 3% 2% 3%

Message Boards 2% 1% 2% 1% 2% 2% 2% 1% 1% 1%

Microsoft Office 1% 1% 1% 1% 1% 1% 1% 1% 2% 2%

Microsoft Windows 4% 3% 3% 3% 2% 1% 1% 1% 1% 2%

Mozilla 1% 2% 2% 2% 3% 2% 2% 2% 2% 3%

PHP 0% 0% 1% 1% 1% 3% 4% 3% 4% 4%

Privilege Escalation 12% 10% 8% 8% 5% 4% 3% 3% 3% 2%

Resource Management 14% 12% 12% 13% 13% 9% 6% 8% 7% 10%

SQL Injection 1% 1% 2% 2% 4% 11% 10% 8% 17% 10%

N/A 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%

N/A 4% 5% 5% 3% 3% 2% 2% 2% 1% 2%

N/A 0% 0% 1% 1% 2% 1% 2% 2% 2% 2%

Table V
RELATIVE IMPORTANCE OF DISCOVERED CAUSES.

Topic Trend 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

ActiveX 1% 2% 2% 2% 2% 2% 1% 4% 3% 2%

Application Servers 3% 2% 4% 3% 2% 1% 1% 1% 1% 3%

Buffer Overflow 17% 14% 14% 17% 13% 8% 6% 8% 7% 10%

Cisco IOS 3% 4% 5% 3% 3% 2% 1% 2% 1% 2%

Credentials Management 4% 4% 3% 2% 2% 1% 1% 2% 2% 2%

Cross-Site Request Forgery 1% 1% 1% 1% 1% 1% 1% 2% 3% 3%

Cross-Site Scripting 11% 9% 15% 14% 17% 21% 22% 16% 18% 17%

Directory Traversal 6% 12% 7% 6% 5% 5% 6% 6% 7% 5%

Format String 2% 2% 2% 3% 3% 2% 1% 2% 1% 2%

Internet Explorer 2% 3% 3% 4% 3% 3% 4% 3% 2% 2%

Java 1% 1% 1% 2% 2% 2% 2% 2% 2% 2%

Microsoft Office 2% 2% 2% 1% 1% 1% 1% 1% 1% 2%

Mozilla 2% 2% 2% 2% 2% 2% 1% 1% 2% 4%

PHP 5% 6% 6% 8% 8% 10% 19% 17% 10% 8%

SQL Injection 10% 8% 11% 12% 15% 23% 21% 19% 28% 21%

Security Appliances 1% 3% 2% 3% 2% 1% 1% 1% 1% 1%

N/A 4% 2% 2% 1% 2% 2% 1% 2% 1% 1%

N/A 5% 5% 4% 3% 3% 2% 1% 2% 1% 2%

N/A 4% 3% 2% 3% 3% 1% 1% 1% 1% 2%

N/A 2% 3% 3% 2% 2% 2% 1% 2% 2% 2%

N/A 2% 1% 1% 1% 2% 1% 1% 1% 1% 2%

N/A 4% 3% 3% 3% 3% 2% 2% 2% 2% 3%

N/A 4% 2% 3% 2% 2% 2% 2% 2% 2% 2%

N/A 3% 4% 2% 2% 2% 2% 1% 2% 1% 1%

Table VI
RELATIVE IMPORTANCE OF DISCOVERED IMPACTS.

Topic Trend 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Arbitrary Code 15% 18% 20% 25% 22% 17% 23% 24% 17% 24%

Arbitrary Script 17% 17% 20% 21% 24% 39% 37% 31% 43% 35%

CVE Dispute 1% 2% 2% 1% 2% 3% 5% 5% 3% 5%

Denial of Service 30% 23% 21% 22% 21% 13% 8% 12% 9% 11%

Information Leak 22% 23% 18% 13% 14% 13% 14% 16% 17% 15%

Information leak 1% 1% 3% 4% 3% 4% 3% 2% 1% 1%

Privilege Escalation 11% 12% 11% 10% 10% 8% 6% 7% 8% 7%

Resource Abuse 2% 2% 2% 1% 1% 1% 1% 1% 1% 1%

N/A 1% 2% 2% 2% 1% 1% 1% 1% 1% 0%

N/A 0% 0% 0% 0% 0% 0% 1% 1% 0% 0%

N/A 0% 0% 0% 0% 0% 1% 1% 1% 1% 1%

N/A 0% 0% 0% 0% 0% 0% 1% 1% 0% 0%

Name %

Buffer Overflow 11.33 overflow 6.29 execut 6.15 buffer 5.74 arbitrari 5.55 code 4.77
remot 4.29 command 3.05 long 2.83 craft 1.31 file 1.30

Cross-Site Scripting 9.20 script 14.31 html 7.26 cross-sit 7.15 xss 6.92 web 6.73
inject 6.62 vulner 6.48 arbitrari 6.34 remot 5.73 paramet 4.47

Resource Management 9.13 caus 10.33 servic 9.96 denial 9.44 remot 4.94 crash 4.25
applic 1.41 packet 1.26 os 1.24 larg 1.17 server 1.10

SQL Injection 8.91 sql 14.53 inject 7.65 paramet 7.31 command 6.99 vulner 6.69
execut 6.68 arbitrari 6.58 remot 6.23 php 5.14 index 1.65

Arbitrary Code 5.97 php 3.40 remot 3.24 arbitrari 2.57 execut 2.31 modul 2.11
control 1.98 code 1.56 vulner 1.51 dll 1.43 argument 1.33

Privilege Escalation 4.99 user 6.60 local 5.76 privileg 5.74 gain 5.46 root 2.05
access 1.64 file 1.26 program 1.25 bypass 1.21 system 1.20

Arbitrary Code (PHP) 4.36 php 20.14 remot 10.17 code 5.99 file 5.88 execut 5.21
inclus 5.15 arbitrari 5.10 paramet 5.10 vulner 4.95 url 4.94

Directory Traversal 4.17 directori 9.93 dot 9.31 file 8.63 travers 6.71 arbitrari 6.51
remot 6.28 vulner 5.87 read 4.14 paramet 3.16 sequenc 1.94

Credentials Management 3.73 authent 7.53 password 5.21 user 5.21 administr 5.09 remot 4.58
access 3.31 gain 2.71 bypass 2.43 privileg 2.38 account 2.34

Information Leak 3.47 inform 10.51 obtain 7.29 detail 4.63 note 4.39 parti 4.31
third 4.30 error 3.89 remot 2.96 unknown 2.69 messag 2.64

CVE Issues 2.96 note 7.54 issu 4.96 disput 2.17 cve 1.52 candid 1.50
might 1.22 vulner 0.98 but 0.91 refer 0.82 report 0.81

Link Resolution 2.84 file 16.18 user 7.23 local 6.60 arbitrari 5.05 overwrit 4.28
creat 4.22 symlink 3.41 temporari 2.87 tmp 1.88 read 1.64

PHP 2.64 php 21.48 paramet 6.38 admin 3.38 action 2.70 index 2.65
inc 2.50 multipl 2.01 remot 1.87 includ 1.49 class 1.08

Topic 17 2.44 remot 4.21 address 3.46 connect 2.35 server 2.29 ip 2.21
configur 1.93 access 1.85 port 1.40 bypass 1.20 firmwar 1.18

Linux 2.44 kernel 4.81 function 4.21 caus 3.93 user 3.82 local 3.67
linux 3.54 servic 3.10 denial 2.86 null 2.20 memori 1.92

Cross-Site Request Forgery 2.43 request 6.30 inform 5.73 remot 5.32 sensit 4.86 obtain 4.37
direct 3.95 web 3.31 access 3.12 store 2.91 password 2.46

Application Servers 2.27 oracl 7.21 unspecifi 6.64 vector 5.45 compon 5.39 vulner 5.37
unknown 4.25 applic 3.69 server 3.40 remot 3.31 ibm 2.85

Java 2.00 file 7.08 upload 5.26 java 3.86 remot 3.79 extens 3.79
arbitrari 2.98 earlier 2.93 execut 2.78 vulner 2.27 jre 1.92

Mozilla 1.95 remot 3.99 mozilla 3.12 firefox 3.03 javascript 2.11 site 2.10
web 2.08 url 1.75 arbitrari 1.68 domain 1.62 document 1.59

Firewalls 1.79 cisco 4.58 remot 3.10 secur 2.49 devic 1.96 packet 1.79
through 1.68 aka 1.35 commun 1.30 io 1.25 servic 1.24

Microsoft Windows 1.57 server 8.22 window 7.28 microsoft 3.53 remot 3.04 servic 2.27
aka 2.07 xp 2.03 request 1.95 vulner 1.94 name 1.63

Message Boards 1.55 field 8.26 asp 7.89 remot 3.46 user 2.59 messag 2.42
form 2.29 name 2.00 paramet 1.96 email 1.85 board 1.57

Topic 35 1.48 vector 10.25 unspecifi 9.82 unknown 8.24 vulner 7.73 impact 7.45
relat 5.57 involv 4.78 multipl 2.52 possibl 1.80 probabl 1.00

Format String 1.41 string 8.31 format 8.24 arbitrari 5.45 execut 5.15 vulner 4.97
code 4.58 function 3.85 specifi 2.77 remot 2.65 earlier 2.12

Arbitrary Code (IE) 1.33 internet 8.41 explor 7.14 microsoft 4.48 remot 4.02 window 2.74
vulner 2.10 aka 2.06 execut 1.91 arbitrari 1.80 object 1.78

Microsoft Office 1.29 file 4.25 microsoft 4.07 offic 3.96 corrupt 3.76 memori 3.53
vulner 3.45 code 3.37 execut 3.12 arbitrari 2.80 aka 2.58

Cryptography 1.24 file 3.33 password 3.01 encrypt 2.83 make 2.16 easier 2.07
remot 2.04 forc 1.96 flash 1.63 gener 1.28 adob 1.25

Topic 7 1.12 ftp 7.68 server 4.78 command 4.09 remot 3.10 possibl 2.82
other 2.24 adob 2.19 arbitrari 1.82 reader 1.68 vector 1.56

Table VII
THE TEN MOST FREQUENT WORD FOR THE 28 TOPICS IDENTIFIED BY LDA; SEE SECTION III-B.

Name %

SQL Injection 20.05 vulner 9.91 inject 7.95 sql 7.67 php 5.25 earlier 2.77
multipl 2.53 asp 1.78 script 1.20 index 1.08 cross-sit 0.84

Cross-Site Scripting 17.84 vulner 11.19 script 10.94 cross-sit 10.42 xss 10.09 php 4.31
multipl 3.54 earlier 2.41 index 1.17 cgi 1.06 modul 0.86

PHP 11.82 php 12.62 vulner 8.68 file 6.26 remot 5.45 inclus 5.22
earlier 3.53 multipl 1.97 inject 1.68 sql 1.67 index 1.64

Buffer Overflow 9.25 overflow 14.09 buffer 13.60 stack-bas 3.29 server 2.70 function 2.35
appl 2.05 multipl 1.92 os 1.70 heap-bas 1.68 mac 1.57

Directory Traversal 5.92 directori 12.70 vulner 10.96 travers 10.94 php 6.73 earlier 4.36
index 1.67 multipl 1.52 server 1.11 file 0.83 enabl 0.82

Internet Explorer 2.84 earlier 7.93 vulner 6.89 internet 6.37 explor 6.20 php 5.61
microsoft 3.44 file 2.59 remot 2.19 inclus 2.04 inject 1.86

Topic 38 2.27 access 8.88 store 5.63 web 5.49 control 5.28 root 4.99
under 4.66 insuffici 4.37 inform 3.81 password 3.52 sensit 3.28

ActiveX 2.22 control 12.62 activex 10.54 dll 6.46 vulner 3.48 ocx 2.60
dissector 2.13 ether 1.97 certain 1.67 multipl 1.66 unspecifi 1.38

Topic 27 2.14 window 8.71 server 6.83 microsoft 5.71 internet 4.19 xp 2.82
weblog 2.80 properli 2.67 explor 2.65 through 2.61 bea 2.30

Cisco IOS 2.01 cisco 8.21 apach 3.96 through 3.26 io 2.97 firmwar 2.57
run 2.36 router 2.29 configur 1.61 seri 1.50 modul 1.48

Topic 8 2.00 server 5.32 client 3.26 window 2.41 connect 2.13 microsoft 1.95
servic 1.87 web 1.78 exchang 1.64 novel 1.61 agent 1.32

Format String 1.91 vulner 4.58 string 4.00 format 3.88 earlier 2.92 function 2.28
differ 1.61 php 1.53 messag 1.40 gener 1.34 through 1.25

Topic 19 1.86 server 2.30 commun 1.85 http 1.79 session 1.68 cooki 1.57
manag 1.32 vulner 1.23 unspecifi 1.22 through 1.18 web 1.18

Mozilla 1.85 mozilla 4.28 firefox 4.09 adob 3.88 reader 2.91 engin 2.86
acrobat 2.77 seamonkei 2.04 vulner 1.99 thunderbird 1.92 overflow 1.87

Credentials Management 1.83 build 5.39 manag 3.79 authent 3.42 configur 2.74 server 2.74
administr 2.61 hp 2.42 network 2.06 requir 1.61 default 1.50

Java 1.81 earlier 7.24 vulner 5.06 jre 5.04 php 4.68 java 3.91
updat 3.30 jdk 2.63 sun 1.94 sdk 1.65 environ 1.63

Application Servers 1.72 applic 7.58 server 5.22 oracl 4.52 compon 3.19 ibm 2.65
webspher 2.12 vulner 1.96 unspecifi 1.85 web 1.58 through 1.19

Cross-Site Request Forgery 1.69 vulner 8.45 cross-sit 7.01 request 6.13 forgeri 5.60 csrf 5.60
iphon 2.46 script 2.43 appl 2.13 xss 2.11 through 1.95

Topic 11 1.66 check 5.11 properli 4.51 function 2.45 earlier 2.44 handl 1.87
certain 1.70 file 1.58 could 1.51 error 1.47 vulner 1.35

Topic 40 1.63 server 5.90 earlier 4.89 vulner 2.92 through 2.66 web 2.36
ftp 1.75 hitachi 1.38 directori 1.14 manag 1.05 enabl 0.97

Topic 2 1.63 ca 3.39 backup 3.18 earlier 2.79 associ 2.29 through 2.21
comput 2.10 unspecifi 1.79 certif 1.70 vulner 1.59 manag 1.41

Topic 23 1.47 server 3.87 earlier 3.84 java 3.45 vulner 3.29 sun 3.10
system 2.79 function 1.54 decod 1.53 multipl 1.46 web 1.43

Security Appliances 1.31 applianc 3.44 secur 3.00 cisco 2.38 version 1.99 possibl 1.86
earlier 1.84 other 1.77 vulner 1.54 through 1.37 server 1.36

Microsoft Office 1.20 offic 10.34 microsoft 7.44 excel 3.50 viewer 3.17 file 3.05
gold 3.02 word 2.75 format 2.04 powerpoint 2.03 xp 1.96

Table VIII
THE TEN MOST FREQUENT WORDS FOR THE 20 TOPICS IDENTIFIED BY LDA ON THE “CAUSE” DATA.

Name %

Arbitrary Script 33.59 arbitrari 10.75 paramet 8.94 command 6.32 execut 6.28 sql 5.14
script 5.06 html 4.91 inject 4.86 web 4.73 php 2.42

Arbitrary Code 20.80 code 10.56 execut 10.37 arbitrari 10.13 php 5.06 paramet 3.43
url 3.02 long 2.63 file 2.13 craft 1.67 possibl 1.03

Information Leak 15.49 file 7.52 dot 5.69 arbitrari 4.76 inform 3.64 paramet 3.21
read 2.97 obtain 2.93 detail 1.99 note 1.85 parti 1.84

Denial of Service 13.05 caus 11.07 servic 10.54 denial 10.10 crash 4.68 packet 1.90
request 1.54 long 1.44 applic 1.27 possibl 1.19 consumpt 1.12

Privilege Escalation 7.79 bypass 5.82 access 4.66 authent 3.45 gain 3.35 asp 3.05
administr 2.96 privileg 1.97 paramet 1.82 cooki 1.76 restrict 1.63

CVE Dispute 3.64 note 7.98 issu 4.80 vector 1.65 vulner 1.62 might 1.62
affect 1.62 disput 1.51 cve 1.46 report 1.45 bug 1.06

Information leak 2.27 obtain 9.26 inform 8.92 sensit 8.22 error 7.68 path 6.97
messag 6.38 request 4.49 reveal 3.88 invalid 2.97 paramet 2.95

Resource Abuse 1.01 extens 7.16 file 6.44 filenam 4.01 attach 3.73 contain 3.57
document 3.12 exe 3.10 upload 2.91 demonstr 2.49 messag 2.40

Topic 23 0.90 domain 2.76 log 2.21 demonstr 1.84 other 1.80 charact 1.70
php 1.66 server 1.62 user 1.55 window 1.52 script 1.45

Topic 34 0.59 php 13.43 paramet 8.05 comment 2.84 index 2.54 archiv 2.42
modul 2.28 search 2.01 form 1.80 languag 1.36 help 1.17

Topic 25 0.45 php 31.95 cover 3.49 alreadi 3.24 lib 3.20 note 2.74
vector 1.77 includ 1.54 paramet 1.16 auth 1.07 common 0.83

Topic 36 0.42 php 34.41 inc 15.44 includ 1.82 paramet 1.72 admin 1.67
index 1.16 footer 0.90 header 0.81 modul 0.75 plugin 0.72

Table IX
THE TEN MOST FREQUENT WORDS FOR THE 12 TOPICS IDENTIFIED BY LDA ON THE “IMPACT” DATA.

