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”You get pseudo-order
when you seek order;

you only get a measure of order and control
when you embrace randomness.”

N.N. Taleb
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Introduction

The term stochastic from the Greek word στ óχoς (guess, aim, target) finds its linguistic roots
in the expression aiming at guess or being able at conjecturing. Its etymology captures the
essence of unpredictability inherent in those natural and human phenomena characterized by
a probabilistic nature. Over time, this concept has evolved into a cornerstone of mathematical
analysis, an indispensable tool for comprehending complex systems that bear the imprint of
randomness.

The principal objective of this dissertation is to explore the applications of stochastic
analysis across diverse domains, all of which are intrinsically imbued with elements of un-
certainty and stochasticity. This work endeavours to address critical questions that have
surfaced in recent years within various subfields of stochastic analysis. The dissertation is
organized into three major sections, each concentrating on a distinct yet interrelated area
of research: the initial segment focuses on Time-Delayed Backward Stochastic Differential
Equations; the subsequent portion is devoted to the study of Mean Field Games and the
associated Master Equation; the final segment examines the utilization of Machine Learning
techniques in financial and economic decision-making processes.

In recent years, the study of models incorporating temporal dependence on antecedent states
of the solution has gained prominence. Consequently, Stochastic Delay Differential Equations
(SDDEs) are formulated as a natural extension of conventional Stochastic Differential Equations
(SDEs), allowing the coefficients to be functions of both the current and past states. This
work concentrates on a specialized subclass of Backward Stochastic Differential Equations
(BSDEs) featuring time-delayed coefficients. In such equations, the generator function at a
given time t can be influenced by the historical values of the solution.

The main references for the backward time delay framework rely on the work by Lukas
Delong and Peter Imkeller [76, 74, 75, 77, 78]. BSDEs represent a cornerstone of stochastic
modelling with applications ranging from finance to physics. Since many financial problems
can be related to stochastic optimization problems with target terminal conditions, BSDEs
have become an active field of research stimulated by new financial and actuarial applications.
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For example, BSDEs might be used to define nonlinear expectations or to solve stochastic
optimal control problems by means of a probabilistic representation of solutions to Partial
Differential Equations (PDEs).

The connection between probability theory and PDEs is a widely analysed subject,
synthetized by the well-known Feynman-Kac formula ([135]) which states that solutions for
a large class of second order PDEs of both elliptic and parabolic type, can be expressed in
terms of expectation of a diffusion process. One of the first fundamental results has been
formalized by Pardoux and Peng in [177, 178], which have shown the connection between
BSDEs and a system of semi-linear PDEs, proving the nonlinear Feynman-Kac formula within
the Markovian setting. Concerning the non-Markovian scenario, we know from [184, 185]
that a nonlinear Feynman-Kac formula can be still established associating a path-dependent
PDE to a non-Markovian BSDE. More recently, the introduction of horizontal and vertical
derivatives of non-anticipative functionals on path spaces by Dupire [92] and by Cont and
Fournié [61, 62, 63] facilitated the formulation of a new class of path dependent PDEs and
the introduction of the so-called viscosity solution concept, see [94, 95, 185], for more details.
For a complete overview of stochastic calculus with delay we refer to [170], [171] and [219].

We continue our analysis by focusing on Mean Field Games (MFGs). MFG theory was
introduced in 2006 by Lasry and Lions ([148, 149, 150, 151]) to describe the asymptotic
behaviour of differential games with a large number of players, also called agents. A similar
definition was given in the same years by Caines, Huang and Malhamé [129]. The term
mean field refers to the highly symmetric form of interaction and the indistinguishability of
the players whose number is usually denoted by N . The solution of MFG corresponds to
a Nash equilibrium, i.e. a configuration where each player’s strategy is optimal if she/he
has no benefit to deviate whereas all the other players follow a fixed strategies profile. A
formal description of this limit problem is obtained by analyzing the so-called MFG system,
namely a forward-backward PDEs system: a forward Fokker-Planck equation that describes
the evolution of the distribution of players in the state space and a backward Hamilton-Jacobi-
Bellman equation that solves the optimal control problem. An equivalent approach deals
with a Forward-Backward SDEs (FBSDEs) system used to represent the coupled dynamics of
the state, control, and cost processes for each player in the system. The forward equation
describes the dynamics of the state variable for a representative player while the BSDE is
derived from the player’s cost function and the related value function. A third approach
is based on a non-local transport PDE defined on the space of probability measures, the
so-called Master Equation. It takes into account both consistency and optimal strategy in
one single equation. The MFG system has been widely studied, and most of the usual topics
as the existence, uniqueness and stability of solutions have been proved in many different
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frameworks. Conversely, results about the convergence problem, namely when the N -players
differential game approaches the MFG system, are considerably fewer. In particular, most of
the literature mainly considers the case where the players’ state space is the torus Td, hence
a periodic framework, or the whole space Rd . Nevertheless when dealing with real world
problems as those related to biological or financial models, see, e.g., [1], [36], [35], [34] [119],
boundary conditions become unavoidable characteristics we have to deal with, being obliged
to consider non periodic settings in bounded domains. Thus, we consider Dirichlet boundary
conditions in order to model absorption, i.e. players leave the game when touching boundaries
of the state space (assumed to be a smooth domain of the Euclidean space). We analyze
the related Master Equation in a bounded domain with homogeneous Dirichlet conditions,
addressing the convergence problem of the Nash equilibria towards the solution of the Master
Equation.

Thereafter, we focus on a mean-field approach that extends the game theory setting beyond
competition. Given that MFGs involve competitive interactions among multiple agents, we
delve into a complementary perspective known as Mean Field Control (MFC). MFC [47]
confronts problems from a cooperative setting, where a single agent optimally adapts its
actions based on the expected behaviour of a large population. The objective of MFC is
to optimize the overall system’s performance by adjusting the agent’s controls. Following
this intuition, we present a parallelism between MFC problem and the supervised learning
paradigm for Deep Neural Networks (DNNs) in order to provide a mathematical framework for
supervised learning in a high-dimensional scenario. In the supervised learning paradigm, an
algorithm learns from labelled training data to make predictions or decisions. The algorithm
is trained by input-output pairs, where the input is the data or features, and the output
is the corresponding target or label. The goal of supervised learning is to learn a mapping
from inputs to outputs, allowing the algorithm to make predictions on new, unseen data by
training a parametric Machine Learning (ML) model, such as a Neural Network (NN), whose
parameters are optimized to minimize a chosen loss function. Thus, we analyze a Mean Field
Optimal Control Problem [93] where the expected loss is computed over the joint distributions
of input-target pairs. Finally, we formalize a learning process in terms of the so-called Mean
Field Optimal Transport, introduced in [13], where the mass/information is transported by
agents that cooperate to minimize a loss function by selecting optimal controls/parameters.

At last, we develop a couple of ML algorithms for decision-making problems by working
on two distinct learning paradigms. First, we construct different Recurrent Neural Networks
(RNNs), a class of NNs specific for working on time series data that we use to make predictions:
we apply the supervised scheme in the context of time series forecasting, facilitated by a
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dynamic rolling window mechanism. We deal with a classical problem in modern portfolio
theory: following a historical perspective, we predict realized volatility to implement an
allocation strategy known as the Risk Parity strategy where all the assets are constrained to
contribute in the same proportion to the overall risk of the portfolio. Second, we focus on
Reinforcement Learning (RL), i.e. a type of ML where an agent learns to make a sequence of
decisions in an environment to maximize a cumulative reward. Without explicitly labelled
data, the agent explores the environment through a trial and error procedure while receiving
feedback for any taken action. We refer to the monograph [204] for a complete technical
overview and for mathematical details. We deploy a single RL algorithm with continuous
control [155] in the electricity market: we develop a single-agent RL algorithm to model the
optimal behaviour in terms of offering curve of an operator acting on the day-ahead auction
market.

The thesis consists of six chapters, corresponding to six different papers. Each chapter
represents a self-contained and autonomous paper. Hence, the notation changes chapter by
chapter.

Part I: BSDEs with time delayed generators

The first part represents an independent part of the thesis and concerns the study of BSDEs
with time–delayed coefficients. Along this research line, our results are applied to two different
scenarios.

Chapter 1 is based on [87]. Within the latter, we formulate a Feynman-Kac representation
theorem for a class of BSDEs endowed with time-delayed generators and subject to jumps,
which are intrinsically tied to path-dependent, nonlinear Kolmogorov equations. Precisely,
our focus lies on a system of FBSDEs that are influenced by a time-delayed generator and
driven by Lévy-type noise. We derive a nonlinear Feynman-Kac representation formula
that correlates the solution emanating from the FBSDE framework with the solution to
a path-dependent, nonlinear Kolmogorov equation, characterized by both temporal delays
and jump discontinuities. The theoretical constructs are subsequently applied to extend the
paradigmatic Large Investor Problem, incorporating stock price dynamics governed by a
jump-diffusion model.

Chapter 2 deals with [83]. Here, we establish the existence and uniqueness of solutions
for BSDEs featuring time-delayed generators, specifically within the regime of infinitesimal
delays or, equivalently, small Lipschitz constants. Additionally, we demonstrate the continuity
of these solutions with respect to the associated increasing process, requiring merely uniform
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convergence without necessitating convergence in variation. Furthermore, we extend the
existence theorem to encompass scenarios with arbitrary delay intervals by imposing conditions
of monotonicity and linearity upon the generators. As a concrete instantiation of our theoretical
framework, we furnish an application pertinent to actuarial science.

Part II: Mean Field Game theory

In the second part, we focus on the context of strategic interactions and collective decision-
making, dealing with MFGs theory.

Chapter 3 is devoted to [85]. We generalize the theory developed in [41]: the focal point is
the study of a non-local transport equation, called the Master Equation whose trajectories
represent the solutions of the MFG system. We analyze the Master Equation and the related
convergence problem considering a bounded domain with homogeneous Dirichlet conditions.
Concerning the N-players differential game, the player’s dynamic ends when touching the
boundary. We analyze the well-posedness of the Master Equation and the regularity of its
solutions for a suitable class of parabolic equations. Such results are then exploited to consider
the convergence problem of the Nash equilibria towards the Master Equation solution, also
proving the convergence of optimal trajectories. Eventually, we apply our findings to solve a
toy model related to an optimal liquidation scenario.

Chapter 4 moves from [81]. We sketch an unified perspective for Optimal Transport (OT)
and Mean Field Control (MFC) theories to analyse the learning process for Neural Networks
algorithms in a high-dimensional framework. We consider a Mean Field Neural Network in
the context of MFC theory referring to the mean field formulation of OT theory that may
allow the development of efficient algorithms in a high dimensional framework while providing
a powerful tool in the context of explainable Artificial Intelligence.

Part III: Machine Learning Applications in Finance and Economics

Our exploration expands into the application of Machine Learning (ML) algorithms in finance
and economics, focusing on two data-driven algorithms for decision making problems.

Chapter 5 focuses on [84]. We present a hybrid method for computing volatility forecasts
that can be used to implement a risk-controlled strategy for a multi-asset portfolio consisting
of both US and international equities. Recent years have been characterized by extremely
low yields, with 2022 marked by rising interest rates and an increasing inflation rate. These
factors produced new challenges for both private and institutional investors, including the
need for robust forecast methods for financial assets’ volatilities. Addressing such a task, we
focus on a hybrid solution that combines classical statistical models with specific classes of
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Recurrent Neural Networks (RNNs). In particular, we first use the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) approach within the preprocessing phase to capture
volatility clustering, striking an efficient balance between computational effort and accuracy,
to then apply RNN architectures to maximise performances of volatility forecasts later used
as input factors for risk-controlled investment strategies. In terms of portfolio allocation, we
focus on a simplified version of the Risk Parity method that was first proposed by the Research
Division of S&P Global in [20]. This version ignores the contribution of cross-correlations
among assets, nevertheless providing encouraging results. Indeed, we show the effectiveness
of the chosen approach by providing forward-looking risk parity portfolio strategies that
outperform standard risk/return portfolio structures.

Chapter 6 is based on [82]. In the context of electricity market auctions, we address the
stochastic optimal control problem utilizing a single-agent Reinforcement Learning paradigm.
Predominantly, energy transactions occur within the framework of day-ahead markets. In these
markets, both purchasers and vendors of energy submit their bids for specified future intervals,
detailing both the quantity of energy they seek to exchange and the associated financial terms.
Notably, existing literature on energy market dynamics often omits the temporal evolution
of such markets, concentrating instead on predictive models that emulate the terminal
pricing structure emergent from supply-demand equilibria. Our investigation is devoted
to the formulation of an optimized bidding strategy for energy sellers, leveraging a single-
agent Reinforcement Learning algorithm, specifically the Deep Deterministic Policy Gradient
(DDPG) method, operational over a continuous action space. Within this computational
model, the objective function maximizes the expected future returns by modulating the bid
curve as a control action. The state space is constituted by historical data, encapsulating
variables such as past pricing, production overhead, and generation capabilities across both
renewable and non-renewable energy sources. Through iterative learning, the agent refines its
bidding strategy to attain increasingly efficient market participation, thereby optimizing its
long-term payoff.
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Part I

BSDEs with time delayed generators
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1 Feynman-Kac formula for BSDEs with
jumps and time delayed generators as-
sociated to path-dependent nonlinear
Kolmogorov equations

1.1 Introduction

In this chapter, we analyze a stochastic process described by a system of Forward-Backward
Stochastic Differential Equations (FBSDEs). The forward path-dependent equation is driven by
a Lévy process, while the backward one presents a path-dependent behaviour with dependence
on a small delay δ. We establish a non-linear Feynman–Kac representation formula associating
the solution of the latter FBSDE system to the one of a path-dependent nonlinear Kolmogorov
equation with delay and jumps. In particular, we prove that the stochastic system allows to
uniquely construct a solution to the parabolic Partial Differential Equation (PDE), in the
spirit of the Pardoux-Peng approach, see [177, 178], i.e.:−∂tu

(
t,ϕ
)
−Lu

(
t,ϕ
)
−f
(
t,ϕ,u(t,ϕ),∂xu(t,ϕ)σ(t,ϕ),J u(t,ϕ),(u(·,ϕ))t

)
= 0 ,

u(T,ϕ) = h(ϕ) , (t,ϕ) ∈ [0,T ]×Λ ,
(1.1)

T <∞ being a fixed time horizon and Λ being D([0,T ];Rd), i.e. the space of càdlàg Rd-valued
functions defined on the interval [0,T ].

The integro–differential operator J is associated with the jump behaviour and is defined
as

J u(t,ϕ) :=
ˆ
R\{0}

[
u
(
t,ϕt,γ(t,ϕ,z))−u(t,ϕ)

]
λ(z)ν(dz) , (1.2)

where ϕt,γ models the vertical perturbation of the path ϕ defined by

ϕt,γ(θ) := ϕ(θ)1θ∈[0,t) + [ϕ(t) +γ]1θ∈[t,T ] , θ, t ∈ [0,T ] ,γ ∈ Rd , (1.3)
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1.1. INTRODUCTION

with γ : [0,T ]×Λ×{R\{0}}→ Rd being a continuous, non-anticipative functional encoding
the shifting at the (right) endpoint while λ models the intensity of the jumps and ν represents
the associated Lévy measure.

The second order differential operator L, associated to the diffusion, is defined by

Lu
(
t,ϕ
)

:=1
2Tr [σ(t,ϕ)σ∗(t,ϕ)∂2

xxu(t,ϕ)] + ⟨b(t,ϕ),∂xu(t,ϕ)⟩ (1.4)

+
ˆ
R\{0}

(
u
(
t,ϕγ(t,ϕ,z))−u(t,ϕ)−∂xu(t,ϕ)γ(t,ϕ,z)

)
ν(dz) ,

with b : [0,T ]×Λ→ Rd and σ : [0,T ]×Λ→ Rd×l being two non-anticipative functionals.
Also, for a fixed delay δ > 0 we set

(u(·,ϕ))t := (u((t+θ)+,ϕ))θ∈[−δ,0] . (1.5)

Let us underline that the study of a path-dependent Kolmogorov equation whose generator
f depends on both a delayed term (u(·,ϕ))t and on a jump operator J u(t,ϕ), represents the
main novelty we provide in this chapter.

Under appropriate assumptions on the coefficients, the deterministic non-anticipative
functional u : [0,T ]×Λ→ R given by the representation formula

u(t,ϕ) := Y t,ϕ(t) , (1.6)

is a mild solution of the Kolmorogov Equation (1.1).
Concerning the stochastic process Y t,ϕ(t) in Eq. (1.6), provided conditions in Assumptions

1.2 - 1.4 are fulfilled, we prove that the quadruple

(
Xt,ϕ,Y t,ϕ,Zt,ϕ,U t,ϕ)

s∈[t,T ] ,

is the unique solution of the system of FBSDEs on [t,T ] given by

Xt,ϕ(s) = ϕ(t) +
ˆ s

t
b(r,Xt,ϕ)dr+

ˆ s

t
σ(r,Xt,ϕ)dW (r)

+
ˆ s

t

ˆ
R\{0}

γ(r,Xt,ϕ,z)Ñ(dr,dz)

Y t,ϕ(s) = h(XT,ϕ) +
ˆ T

s
f
(
r,Xt,ϕ,Y t,ϕ(r),Zt,ϕ(r), Ũ t,ϕ(r),Y t,ϕ

r

)
dr

−
ˆ T

s
Zt,ϕ(r)dW (r)−

ˆ T

s

ˆ
R\{0}

U t,ϕ(r,z)Ñ(dr,dz) ,

(1.7)

where W stands for a l-dimensional standard Brownian motion. Assuming a delay δ ∈ R+,
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1.1. INTRODUCTION

the notation Y t,ϕ
r , appearing in the generator f of the backward dynamic in the system (1.7),

stands for the delayed path of the process Y t,ϕ restricted to [r− δ,r], namely

Y t,ϕ
r :=

(
Y t,ϕ((r+θ)+)

)
θ∈[−δ,0] . (1.8)

In Eq. (1.7), Ñ models a compensated Poisson random measure, independent from W ,
with associated Lévy measure ν. This stochastic term appears also in the definition of the
integral term Ũ : Ω× [0,T ]→ R related to the jump process by

Ũ t,ϕ(r) =
ˆ
R\{0}

U t,ϕ(r,z)λ(z)ν(dz); (1.9)

we need it in order to introduce to express the solution of (1.1) via the FBSDE system (1.7).
A connection between time-delayed BSDEs and path-dependent PDEs has been proved

by an infinite dimensional lifting approach in [107] and [163]. In [11], the authors consider a
BSDE driven by a Brownian motion and a Poisson random measure that provides a viscosity
solution of a system of parabolic integral-partial differential equations. In [65], the existence
of a viscosity solution to a path-dependent nonlinear Kolmogorov equation (without jumps)
and the corresponding nonlinear Feynman–Kac representation has been proved.

In this chapter, we deal with the notion of mild solution which can be seen as an intermediate
notion for solutions of a PDE lying in between the notions of classical and viscosity solutions.
In [109], the authors provide the definition of mild solution for nonlinear Kolmogorov equations
along with its link with a specific stochastic process. The latter has been also proved for
Semilinear Parabolic Equations in [110], where the definition of the generalized directional
gradient is firstly introduced. The concept of mild solution together with the generalized
directional gradient to handle path-dependent Kolmogorov equation with jumps and delay has
been widely analyzed in the functional formulation, see, e.g., [64]. Moreover, a discrete-time
approximation for solutions of a system of decoupled FBSDEs with jumps has been proved in
[30] by means of Malliavin calculus tools.

Concerning the theory of BSDE with a dependence on a delay, in [77], the authors proved
the existence of a solution for a BSDE with a time-delayed generator that depends on the
past values of the solution. In particular, both existence and uniqueness are proved assuming
a sufficiently small time horizon T or a sufficiently small Lipschitz constant for the generator.
Let us underline that the latter has an equivalent within our setting, as we state in Remark 1.5.
Moreover, in [76, 78] the authors defined a path-dependent BSDE with time delayed generators
driven by Brownian motions and Poisson random measures, with coefficients depending on
the whole solution’s path.

4



1.2. THE FORWARD-BACKWARD DELAYED SYSTEM

In [9], following a different approach, namely considering systems with memory and jumps,
the authors provide a characterization of a strong solution for a delayed SDE with jumps,
considering both Lp-type space and càdlàg processes to derive a non-linear Feynman–Kac
representation theorem.

The present chapter is structured as follows: we start stating notations and problem
setting in Section 1.1.1, according to the theoretical framework developed by [76] and [77]; in
Section 1.3 we study the well-posedness of the path-dependent BSDE mentioned appearing in
the Markovian FBSDEs system (1.7) following the approach in [65] by additionally considering
jumps; in Section 1.4 we provide a Feynman-Kac formula relating the BSDE to the Kolmogorov
Equation defined in (1.1) to then generalise results in [64] by considering a dependence in the
generator f of the backward dynamic on a delayed L2 term, namely Y t,ϕ

r , for a small delay δ;
in Section 1.5 we derive the existence of a mild solution for the Kolmogorov Equation within
the setting developed in [110]; finally, in Section 1.7, we provide an application based on the
analyzed theoretical setting, namely a version of the Large Investor Problem characterised by
a jump-diffusion dynamic.

1.1.1 Notation and Problem formulation

On a probability space
(
Ω,F ,P

)
, we consider a standard l-dimensional Brownian motion W

and a homogeneous Poisson random measure N on R+× (R\{0}), independent from W , with
intensity ν. With the notation R0 := R\{0}, we also define the compensated Poisson random
measure Ñ defined on R+×R0 by

Ñ(dt,dz) :=N(dt,dz)−ν(dz)dt . (1.10)

For the sake of completeness, let us recall that the term ν(dz)dt represents the compensator
of the random measure N and we assume that

ˆ
R0

|z|2ν(dz)<∞ , (1.11)

We refer to, e.g., [12] for further details about the stochastic integration in the presence of
jumps. We remark that the assumption in (1.11) is a standard condition when dealing with
financial applications.

1.2 The forward-backward delayed system

In this section we introduce the delayed forward-backward system, assuming path-dependent
coefficients for the forward and the backward components, a dependence on a small delay

5



1.2. THE FORWARD-BACKWARD DELAYED SYSTEM

into the generator f and the presence of jumps modelled via a compound Poisson measure.
Furthermore, the equation is formulated on a general initial time t and initial values. Thus,
we need to equip the backward equation with a suitable condition in [0, t), as we introduced
in Equation (1.15).

On previously defined probability space, we consider a filtration Ft = {F t
s}s∈[0,T ], which is

nothing but the one jointly generated by W (s∧ t)−W (t) and N(s∧ t, ·)−N(t, ·), augmented
by all P-null sets. We emphasize that Ft depends explicitly on t, namely the arbitrary initial
time in [0,T ] for the dynamic in Eq. (1.7).

Furthermore, the components of the solution of the backward dynamic are defined in the
following Banach spaces:

• S2
t (R) denotes the space of (equivalence class of) Ft-adapted, product measurable càdlàg

processes Y : Ω× [0,T ]→ R satisfying

E
[

sup
t∈[0,T ]

|Y (t)|2
]
<∞ ;

• H2
t (Rl) denotes the space of (equivalence class of) Ft-predictable processes Z : Ω× [0,T ]→

Rl satisfying

E
[ˆ T

0
|Z(t)|2dt

]
<∞ ;

• H2
t,ν(R) denotes the space of (equivalence class of) Ft-predictable processes U : Ω×

[0,T ]×R0→ R satisfying

E
[ˆ T

0

ˆ
R0

|U(t,z)|2ν(dz)dt
]
<∞ .

The spaces S2
t (R), H2

t (Rl) and H2
t,ν(R) are endowed with the following norms:

||Y ||2S2
t (R) = E

[
sup

t∈[0,T ]
eβt|Y (t)|2

]
,

||Z||2H2
t (Rl) = E

[ˆ T

0
eβt|Z(t)|2dt

]
,

and

||U ||2H2
t,ν(R) = E

[ˆ T

0

ˆ
R0

eβt|U(t,z)|2ν(dz)dt
]
,
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1.2. THE FORWARD-BACKWARD DELAYED SYSTEM

for some β > 0, to be precised later.
The main goal is to find a family of stochastic processes

(
Xt,ϕ,Y t,ϕ,Zt,ϕ,U t,ϕ

)
for t,ϕ ∈ [0,T ]×Λ

adapted to Ft such that the following decoupled forward-backward system holds a.s.

Xt,ϕ(s) = ϕ(t) +
ˆ s

t
b(r,Xt,ϕ)dr+

ˆ s

t
σ(r,Xt,ϕ)dW (r)+

+
ˆ s

t

ˆ
R0

γ(r,Xt,ϕ,z)Ñ(dr,dz) , s ∈ [t,T ]

Xt,ϕ(s) = ϕ(s) , s ∈ [0, t]

Y t,ϕ(s) = h(Xt,ϕ) +
ˆ T

s
f
(
r,Xt,ϕ,Y t,ϕ(r),Zt,ϕ(r), Ũ t,ϕ(r),Y t,ϕ

r

)
dr

−
ˆ T

s
Zt,ϕ(r)dW (r)−

ˆ T

s

ˆ
R0

U t,ϕ(r,z)Ñ(dr,dz) , s ∈ [t,T ]

Y t,ϕ(s) = Y s,ϕ(s) , Zt,ϕ(s) = U t,ϕ(s,z) = 0 , s ∈ [0, t] ,

(1.12)

recalling that the term Ũ t,ϕ was introduced in (1.9).
It is worth mentioning that, differently from [76], we work in a non-Markovian setting,

enforcing an initial condition over all the interval [0, t]. More precisely, for both forward and
backward equations, the values of the solution Xt,ϕ need to be known in the time interval
[0, t]. Analogously, regarding the backward component, the values of Y t,ϕ, Zt,ϕ and U t,ϕ need
also to be prescribed for s ∈ [0, t].

Remark 1.1. The δ-delayed feature concerns only Y , but we emphasize that it is possible
to generalize this result to treat the case where both Z and U depend on their past values
for a fixed delay δ. For the sake of simplicity, we consider the case with Yr, hence limiting
ourselves to just one, the process Y , L2 delayed term. As a consequence, the latter implies
that we will have to consider a larger functional space to properly define the contraction which
is an essential step to prove the fix point argument in Th. 1.6.
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1.2. THE FORWARD-BACKWARD DELAYED SYSTEM

The forward path-dependent SDE with jumps

We first study the forward component of X appearing in the system (1.12). It is defined
according to the following equation:

Xt,ϕ(s) = ϕ(t) +
ˆ s

t
b(r,Xt,ϕ)dr+

ˆ s

t
σ(r,Xt,ϕ)dW (r)+

+
ˆ s

t

ˆ
R0

γ(r,Xt,ϕ,z)Ñ(dr,dz) , s ∈ [t,T ]

Xt,ϕ(s) = ϕ(s) , s ∈ [0, t] .

(1.13)

More precisely, we say that Xt,ϕ is a solution to equation (1.13) if the process s 7→Xt,ϕ(s)
is Ft-adapted, P-a.s. continuous and (1.13) is satisfied for any s ∈ [0,T ], P-a.s.

Recalling that a Borel-measurable function φ : [0,T ]×Λ×S is non-anticipative if φ(t,ϕ,e) =
φ(t,ϕ(· ∧ t),e), for all (t,ϕ,e) ∈ [0,T ]×Λ×S, where S is an arbitrary topological space, we
assume the following assumptions to hold.

Assumption 1.2. Let us consider three non-anticipative functions b : [0,T ]×Λ→ Rd, σ :
[0,T ]×Λ→ Rd×l and γ : [0,T ]×Λ×R→ Rd such that

(A1) b, σ and γ are continuous;

(A2) there exists ℓ > 0 such that

|b(t,ϕ)− b(t,ϕ′)|+ |σ(t,ϕ)−σ(t,ϕ′)|+ ||γ(t,ϕ, ·)−γ(t,ϕ′, ·)||L2 ≤ ℓ||ϕ−ϕ′||L∞

for any t ∈ [0,T ], ϕ,ϕ′ ∈ Λ;

(A3) the following bound ˆ
R0

sup
ϕ∈Λ
|γ(r,ϕ,z)|2ν(dz)<∞ ,

holds.

The existence and the pathwise uniqueness for a solution of forward SDE with jumps under
Lipschitz coefficients is a known result, already classical for the case without path-dependent
coefficients, see, e.g. [201]. For the sake of completeness, we report the following proposition:

Proposition 1.3. If (A1), (A2), (A3) hold, then there exists a solution to (1.13) and this
solution is pathwise unique.
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The proof for an equivalent path-dependent setting is stated in Theorem 2.12 in [9]. Both
existence and uniqueness are derived via a Picard iteration approach in the so-called Delfour-
Mitter space that we introduce in subsection 1.4.1. It turns out that our equation (1.13) can
be reformulated with Delfour-Mitter coefficients such as Eq. (1.20) by transformations of the
coefficients we define in Eq. (1.19). Hypotheses (D1) and (D2) required for the existence
result can be deduced from our conditions (A1) – (A3). A similar approach, but for a different
class of integrators is used in Theorem 5.2.15 in [24].

The backward delayed path-dependent SDE with jumps

We now focus on the BSDE appearing in the system (1.12), namely

Y t,ϕ(s) = h(Xt,ϕ) +
ˆ T

s
f
(
r,Xt,ϕ,Y t,ϕ(r),Zt,ϕ(r), Ũ t,ϕ(r),Y t,ϕ

r

)
dr

−
ˆ T

s
Zt,ϕ(r)dW (r)−

ˆ T

s

ˆ
R0

U t,ϕ(r,z)Ñ(dr,dz) , s ∈ [t,T ]

Y t,ϕ(s) = Y s,ϕ(s) , Zt,ϕ(s) = U t,ϕ(s,z) = 0 , s ∈ [0, t] .

(1.14)

for a finite time horizon T <∞ and ϕ ∈ Λ := D
(
[0,T ];Rd

)
. The path-dependent process

Xt,ϕ represents the solution of the forward SDE with jumps of Eq. (1.13), while Ñ models
the compensated Poisson random measure described in Eq. (1.10) and W is a l-dimensional
Brownian motion.

We recall that, when we fix the delay term δ, the notation Y t,ϕ
r stands for the path of

the process restricted to [r− δ,r], according to Eq.(1.8). Notice that the terminal condition
enforced by h depends on the solution of the forward SDE (1.13) as well as the solution
(Y,Z,U) of the backward component considered in the time interval [t,T ].

Differently from the framework studied by Delong in [76], we consider a general initial
time s ∈ [0, t). As highlighted in [65], the Feynman-Kac formula would fail with standard
prolongation.

Thus, an additional initial condition has to be satisfied over the interval [0, t], given by

Y t,ϕ(s) = Y s,ϕ(s) , s ∈ [0, t) . (1.15)

We remark that the supplementary initial condition stated in Eq. (1.15) represents one of
the main differences between Theorem 1.6 and Theorem 14.1.1 in [76].

9
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1.3 The Well Posedness of the BSDE

Concerning the delayed backward SDE (1.14), we will assume the following to hold.

Assumption 1.4. Let f : [0,T ]×Λ×R×Rl×R×L2 ([−δ,0];R)→R, h : Λ→R and λ : R0→
R+ (introduced in (1.9)) such that the following holds:

(A4) There exist L,K,M > 0, p≥ 1 and a probability measure α on B ([−δ,0]) such that, for
any t ∈ [0,T ], ϕ ∈ Λ, (y,z,u) ,(y′,z′,u′) ∈ R×Rl×R and ŷ, ŷ′ ∈ L2 ([−δ,0];R), we have

(i) ϕ 7→ f (t,ϕ,y,z,u, ŷ) is continuous,

(ii) |f(t,ϕ,y,z,u, ŷ)−f(t,ϕ,y′,z′,u′, ŷ)| ≤ L
(
|y−y′|+ |z−z′|+ |u−u′|

)
,

(iii) |f(t,ϕ,y,z,u, ŷ)−f(t,ϕ,y,z,u, ŷ′)|2 ≤K
ˆ 0

−δ

(∣∣ŷ(θ)− ŷ′(θ)
∣∣2)α(dθ),

(iv) |f (t,ϕ,0,0,0,0)|<M(1 +∥ϕ∥pT ).

(A5) The function f is non-anticipative.

(A6) The function h is continuous and |h(ϕ)| ≤M(1 +∥ϕ∥pT ), for all ϕ ∈ Λ.

(A7) The function λ is measurable and λ(z)≤M(1∧|z|), for all z ∈ R0.

The following remark generalizes a classical result, see, e.g., Theorem 14.1.1 in [76],
Theorem 2.1 in [77] or Theorem 2.1 in [78].

Remark 1.5. In order to show both existence and uniqueness of a solution to the backward
part of the system (1.7) and to obtain the continuity of Y t,ϕ with respect to ϕ, we need to
impose K or δ to be small enough. More precisely, we will assume that there exists a constant
χ ∈ (0,1), such that:

K
χe

(
χ+ 6L2

χ

)
δ

(1−χ)L2 max{1,T}< 1
578 . (1.16)

The main difference between our result and Theorem 3.4 in [65] relies on the presence of a
jump component in the dynamics of the unknown process Y t,ϕ: this further term implies a
stronger bound in the condition enforced in Eq. (1.16).

Hence, if K or δ are small enough to satisfy the condition stated in Eq. (1.16), then there
exists a unique solution of (1.14) and the following theorem holds

Theorem 1.6. Let assumptions (A1) – (A7) hold. If condition (1.16) is satisfied,
then there exists a unique solution (Y t,ϕ,Zt,ϕ,U t,ϕ)(t,ϕ)∈[0,T ]×Λ of the BSDE (1.14) such
that (Y t,ϕ,Zt,ϕ,U t,ϕ) ∈ S2

t (R)×H2
t (Rl)×H2

t,ν(R) for all t ∈ [0,T ] and the application t 7→
(Y t,ϕ,Zt,ϕ,U t,ϕ) is continuous from [0,T ] into S2

0(R)×H2
0(Rl)×H2

0,ν(R).
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1.4. THE FEYNMAN-KAC FORMULA

The proof of Th. 1.6 is provided in Appendix 6.6 and it is mainly based on the Banach
fixed point theorem.

We emphasize that similar results hold also for multi-valued processes, namely Y : Ω×
[0,T ]→ Rm, Z : Ω× [0,T ]→ Rm×l and U : Ω× [0,T ]× (Rn \{0})→ Rm. Further difficulties
may arise, due to the presence of correlation between the different components of Y ∈ S2

t (Rm)
or the necessity of introducing the n-fold iterated stochastic integral, see [16], [30] or [64, Sec.
2.1] for further details.

1.4 The Feynman-Kac formula

In what follows we prove that the solution of of Eq. (1.7), namely the path-dependent
forward-backward system with delayed generator f and driven by a Lévy process, can be
connected to the solution of path-dependent PIDE represented by the non-linear Kolmogorov
equation (1.1).

1.4.1 The Delfour-Mitter space

According to [9], we need the solution of the forward SDE (1.7) to be a Markov process to
derive the Feynman-Kac formula. The Markov property of the solution is fully known for the
SDE without jumps, i.e. when γ = 0, see [170] (Th. III. 1.1). Moreover, the Markov property
also holds, by enlarging the state space, for the solution in a setting analogous to that of Eq.
(1.13), see [64] (Prop. 2.6) where driving noises with independent increments are considered.
Since Xt,ϕ : Ω× [0,T ]×D([0,T ];Rd)→ Rd in not Markovian, we enlarge the state space by
considering the process X as a process of the path, by introducing a suitable Hilbert space,
as described in [107] and [163], where they present a product-space reformulation of (1.13)
splitting the present state X(t) from the past trajectory Xt by a particular choice of the state
space. Accordingly, we enlarge the state space of our interest, starting from paths defined
on the Skorohod space D

(
[0,T ];Rd

)
to then consider a new functional space, the so-called

Delfour-Mitter space M2 := L2([−T,0];Rd)×Rd, by exploiting the continuous embedding of
D
(
[−T,0];Rd

)
into L2([−T,0];Rd), as in-depth analyzed in, e.g., [9] and [64].

It is worth mentioning that M2 has a Hilbert space structure, endowed with the following
scalar product

⟨ϕ,ψ⟩M2 = ⟨ϕ,ψ⟩L2 +ϕ(0) ·ψ(0) ,

with associated norm
||ϕ||2M2 = ||ϕ||L2 + |ϕ(0)|2 ,

where · and | · | stand for the scalar product in Rd, resp. for the Euclidean norm in Rd, while
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1.4. THE FEYNMAN-KAC FORMULA

⟨·, ·⟩L2 , resp. || · ||L2 , indicates the scalar product, resp. the norm in L2 := L2([−T,0];Rd).

For t ∈ [0,T ], ϕ ∈ Λ and (φ,x) ∈M2, let us set:

• compatible initial conditions xt,ϕ := ϕ(t) and ηt,ϕ ∈D([−T,0];Rd) defined by

ηt,ϕ(θ) :=


ϕ(t+θ), θ ∈ [−t,0];

ϕ(0), θ ∈ [−T,t);
(1.17)

• (φ,x)t ∈ Λ defined by

(φ,x)t(θ) :=


φ(θ− t), φ ∈D([−T,0];Rd), θ ∈ [0, t);

x, φ ∈D([−T,0];Rd), θ ∈ [t,T ];

0, φ /∈D([−T,0];Rd);

(1.18)

• b̃ : [0,T ]×M2→ Rd, σ̃ : [0,T ]×M2→ Rd×l, γ̃ : [0,T ]×M2×R→ Rd defined by

b̃(t,φ,x) := b(t,(φ,x)t),

σ̃(t,φ,x) := σ(t,(φ,x)t),

γ̃(t,φ,x,z) := γ(t,(φ,x)t,z),

(1.19)

where b : [0,T ]×Λ→ Rd, σ : [0,T ]×Λ→ Rd×l and γ : [0,T ]×Λ×R→ Rd are the given
coefficients of Eq. (1.13).

We emphasize that (φ,x)t is well defined since it does not depend on the choice of the
representative in the class of φ ∈ L2, and the continuous embedding D

(
[−T,0];Rd

)
⊂M2 is

also injective.
We can now rewrite the forward equation (1.13) in the M2-setting:


Xt,η,x(s) = x+
ˆ s

t
b̃(r,Xt,η,x

r ,Xt,η,x(r))dr+
ˆ s

t
σ̃(r,Xt,η,x

r ,Xt,η,x(r))dW (r)

+
ˆ s

t

ˆ
R0

γ̃(r,Xt,η,x
r ,Xt,η,x(r),z)Ñ(dr,dz) , s ∈ [t,T ]

(
Xt,η,x

t ,Xt,η,x(t)
)

= (η,x) .

(1.20)

Here, for a process X, the term Xr means (X((r+θ)+))θ∈[−T,0], which is slightly different
from the delayed term introduced in (1.8). Since this notation occurs only in the context of
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the M2-setting for the forward equation, the reader can clearly distinguish between the two
uses.

The link between the solution of equation Eq. (1.13) and that of equation Eq. (1.20) is
then provided by

Xt,ϕ =Xt,ηt,ϕ,xt,ϕ
,∀(t,ϕ) ∈ [0,T ]×Λ. (1.21)

In order to take advantage of the Feynman-Kac formula already derived in [64] in the case
of non-delayed but still path-dependent BSDE, we have to additionally impose that b, σ, γ, f
and h are locally Lipschitz-continuous with respect to ϕ ∈ Λ in the L2-norm. Thus, in order
to have the same regularity for the solution of the BSDE system with forward Eq. (1.20), we
require that the coefficients b, σ and γ to be locally Lipschitz.

Assumption 1.7. There exists K ≥ 0 and m≥ 0 such that:

(A8) for all t ∈ [0,T ] and for all ϕ1,ϕ2 ∈ Λ,

|b(t,ϕ1)− b(t,ϕ2)|2 + |σ(t,ϕ1)−σ(t,ϕ2)|2 +
ˆ
R0

|γ(t,ϕ1,z)−γ(t,ϕ2,z)|2ν(dz)

≤K||ϕ1−ϕ2||2L2(1 + ||ϕ1||2L2 + ||ϕ2||2L2) ;

(A9) for all t ∈ [0,T ], y ∈ R, z ∈ Rl, u ∈ R, ŷ ∈ L2([−δ,0];R) and for all ϕ1,ϕ2 ∈ Λ,

|f(t,ϕ1,y,z,u, ŷ)−f(t,ϕ2,y,z,u, ŷ)| ≤

K(1 + ||ϕ1||L2 + ||ϕ2||L2 + |y|)m · (1 + |z|+ |u|)||ϕ1−ϕ2||L2 .

(A10) for all ϕ1,ϕ2 ∈ Λ,

|h(ϕ1)−h(ϕ2)| ≤K(1 + ||ϕ1||L2 + ||ϕ2||L2)m||ϕ1−ϕ2||L2 .

We remark that b̃, σ̃ and γ̃, as defined by (1.19) are not necessarily locally Lipschitz, since
D
(
[0,T ];Rd

)
is dense in L2

(
[0,T ];Rd

)
, but they are set to constants outside D

(
[0,T ];Rd

)
.

However, one can define these coefficients first on [0,T ]×D
(
[0,T ];Rd

)
×Rd and then extend

to [0,T ]×M2 by density, using the uniform continuity provided by assumption (A8). It is
this version of the above functions that we will use in the sequel.

Within this setting, lifting the state space turns out to be particularly convenient in order
to investigate differentiability properties of the solution and to relate the solution of Eq.
(1.20) (combined with the backward equation) to the solutions of the non-linear Kolmogorov
equation defined by Eq. (1.1) on [0,T ]×Λ.
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Remark 1.8. It is also possible to work directly on the Skorohod space D. However, since
D is not a separable Banach space, one has to consider weaker topologies on D, following a
semi-group approach like the one developed by Peszat and Zabczyk in [186].

1.4.2 Main theorem

In what follows we provide the main result, namely a nonlinear version of the Feynman–Kac
formula in the case where the process Xt,ϕ has jumps and the generator of the backward
dynamic f depends on the past values of Y .

Theorem 1.9 (Feynman-Kac formula). Under hypotheses (A1) – (A10) with condition (1.16)
being verified, let (Xt,ϕ,Y t,ϕ,Zt,ϕ,U t,ϕ)(t,ϕ)∈[0,T ]×Λ be the solution of the forward-backward
system (1.12).

Let u : [0,T ]×Λ→ R be the deterministic function defined by

u(t,ϕ) = Y t,ϕ(t), (t,ϕ) ∈ [0,T ]×Λ . (1.22)

Then u is a non-anticipative function and there exist constants C > 0 and m≥ 0 such that,
for all t ∈ [0,T ] and ϕ1,ϕ2 ∈ Λ,

|u(t,ϕ1)−u(t,ϕ2)| ≤ C(1 + ||ϕ1||L2 + ||ϕ2||L2)m||ϕ1−ϕ2||L2 .

Moreover, the following formula holds:

Y t,ϕ(s) = u(s,Xt,ϕ), ∀s ∈ [0,T ], (1.23)

for any (t,ϕ) ∈ [0,T ]×Λ.

To prove the representation formula (1.22), we adapt the proof of Theorem 4.10 of [65] by
adding the contribution of U and Ũ , respectively modelling the process and the integral term
connected to the jump component.

Proof. We follow the Picard iteration scheme, hence considering the iterative process of the
BSDE with delayed generator driven by Lévy process described by

Y n+1,t,ϕ(s) = h(Xt,ϕ) +
ˆ T

s

f
(
r,Xt,ϕ,Y n+1,t,ϕ(r),Zn+1,t,ϕ(r), Ũn+1,t,ϕ(r),Y n,t,ϕ

r

)
dr

−
ˆ T

s

Zn+1,t,ϕ(r)dW (r)−
ˆ T

t

ˆ
R
Un+1,t,ϕ(r,z)Ñ(dr,dz) ,
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with Y 0,t,ϕ ≡ 0, Z0,t,ϕ ≡ 0 and U0,t,ϕ ≡ 0 and initial condition

Y n+1,t,ϕ(s) = Y n+1,s,ϕ(s) , Zn+1,t,ϕ(s) = Un+1,t,ϕ(s,z) = 0 , s ∈ [0, t].

Let us suppose that there exists a non-anticipative functional un : [0,T ]×Λ→R such that
un is locally Lipschitz and Y n,t,ϕ(s) = un(s,Xt,ϕ) for every t,s ∈ [0,T ] and ϕ ∈ Λ.

Since Y n,t,ϕ(r+θ) = un(r+θ,Xt,ϕ) if r+θ ≥ 0 and Y n,t,ϕ(r+θ) = Y n,t,ϕ(0) = un(0,Xt,ϕ)
if r+θ < 0, by defining

ũn(t,ϕ) :=
(
un((t+θ)+,ϕ)

)
θ∈[−δ,0]

,

the delayed term reads
Y n,t,ϕ

r = ũn(r,Xt,ϕ)

and the above equation becomes

Y n+1,t,ϕ(s) = h(Xt,ϕ)

+
ˆ T

s
f
(
r,Xt,ϕ,Y n+1,t,ϕ(r),Zn+1,t,ϕ(r), Ũn+1,t,ϕ(r), ũn(r,Xt,ϕ)

)
dr

−
ˆ T

s
Zn+1,t,ϕ(r)dW (r)−

ˆ T

s

ˆ
R\{0}

Un+1,t,ϕ(r,z)Ñ(dr,dz) , s ∈ [t,T ]

Y n+1,t,ϕ(s) = Y n+1,s,ϕ(s) , Zn+1,t,ϕ(s) = Un+1,t,ϕ(s,z) = 0 , s ∈ [0, t] .

For fixed n, we define ψn : [0,T ]×D([−T,0];Rd)×Rd×R×Rl×R→ R as

ψn(t,φ,x,y,z,u) := f(t,(φ,x)t,y,z,u, ũn(t,(φ,x)t)) , (1.24)

and h̃ :D([−T,0];Rd)×Rd→ R as

h̃(φ,x) := h((φ,x)T ) . (1.25)

Since un is locally Lipschitz-continuous, one can show that ψn and h̃ are also locally Lipschitz
in φ. Therefore, one can extend them by density to [0,T ]×M2×R×Rl×R, respectively to
M2, keeping the locally Lipschitz property.

After setting η = ηt,ϕ, x = xt,ϕ (see (1.17)), we enlarge the state space and write the
forward–backward system in an equivalent way as (for simplicity, we omit the dependence on
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n) 

dXτ,η,x(t) = b̃(t,Xτ,η,x
t ,Xτ,η,x(t))dt+ σ̃(t,Xτ,η,x

t ,Xτ,η,x(t))dW (t)

+
´
R0
γ̃(t,Xτ,η,x

t ,Xτ,η,x(t),z)Ñ(dt,dz)

(Xτ,η,x
τ ,Xτ,η,x(τ)) = (η,x)

dY τ,η,x(t) = ψn

(
t,Xτ,η,x

t ,Xτ,η,x(t),Y τ,η,x(t),Zτ,η,x(t), Ũ τ,η,x(t)
)

dt

+Zτ,η,x(t)dW (t) +
´
R0
U τ,η,x(t,z)Ñ(dt,dz)

Y τ,η,x(T ) = h̃(Xτ,η,x
T ,Xτ,η,x(T )) .

It is easy to check that the two sets of solutions,
(
Xt,η,x,Y t,η,x,Zt,η,x,U t,η,x

)
and(

Xt,ϕ,Y n+1,t,ϕ,Zn+1,t,ϕ,Un+1,t,ϕ
)

are equivalent.
We have already observed that the extended coefficients b̃, σ̃, γ̃ satisfy conditions (A1)-(A2)

in [64, pp. 8-9]; in a similar manner, ψn and h̃ satisfy (B1) and (B2) in [64, p. 24]. Then
we can exploit Theorem 4.5 in [64] and infer that there exists a locally Lipschitz function
ūn : [0,T ]×M2→ R such that the following representation formula holds:

Y τ,η,x(t) = ūn (t,Xτ,η,x
t ,Xτ,η,x(t)) .

Let us define the following locally Lipschitz, non-anticipative functional un+1 : [0,T ]×Λ→ R
by

un+1(t,ϕ) := ūn(t,ηt,ϕ,ϕ(t)) ,

where the time shifting ηt,ϕ is defined according to (1.17). Then

Y n+1,t,ϕ(s) = un+1(s,Xt,ϕ), ∀s ∈ [0,T ] .

Notice that
(
Y n,t,ϕ,Zn,t,ϕ,Un,t,ϕ

)
is the Picard iterative sequence needed to construct the

solution
(
Y t,ϕ,Zt,ϕ,U t,ϕ

)
:

(
Y n+1,·,ϕ,Zn+1,·,ϕ,Un+1,·,ϕ

)
= Γ(Y n,·,ϕ,Zn,·,ϕ,Un,·,ϕ) ,

where Γ is the contraction defined in the proof of Theorem 1.6. By applying Theorem 1.6, we
then have:

lim
n→∞

E
(

sup
s∈[0,T ]

∣∣Y n,t,ϕ(s)−Y t,ϕ(s)
∣∣2)= 0.

Of course, un(t,ϕ) converges to u(t,ϕ) := E [Y t,ϕ(t)], for every t ∈ [0,T ] and ϕ ∈ Λ, hence
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1.5. MILD SOLUTION OF THE KOLMOGOROV EQUATION

implying that the nonlinear Feynman–Kac formula Y t,ϕ (s) = u(s,Xt,ϕ) holds. From its
definition, it is clear that u is non-anticipative. Regarding the locally Lipschitz property, it
can be proven by applying Itô’s formula to |Y t,ϕ1−Y t,ϕ2 |2 and resorting to standard calculus.

1.5 Mild solution of the Kolmogorov Equation

In this section, we prove the existence of a mild solution of the path-dependent partial
integro-differential equation (PPIDE) Kolmorogov equation (1.1) showing a dependence both
on a delayed term and on integral term modelling jumps.

Let us start by recalling from [64] the notion of the Markov transition semigroup corre-
sponding to the operator L introduced by (1.4). From [64, Prop. 2.6], we know that the
strong solution X0,η,x ∈M2 of Eq. (1.20) is a Markov process in the sense that P-a.s.,

P((X0,η,x
t ,X0,η,x(t)) ∈B|Fs) = P((X0,η,x

t ,X0,η,x(t)) ∈B|(X0,η,x
s ,X0,η,x(s))),

for all (η,x) ∈M2 and all Borel sets B of M2, the proof of this fundamental result being given
in several works, as, e.g. [9, Th. 3.9], [192, Prop. 3.3] or [186, Sec. 9.6]; for more details, see,
e.g., [110].

Denoting by Bp(S) the space of Borel functions with at most polynomial growth on a
metric space S, the transition semigroup P̃t,s, acting on Bp(M2) is then defined by

P̃t,s[φ](η,x) := E[φ(Xt,η,x
s ,Xt,η,x(s))], φ ∈Bp(M2), (η,x) ∈M2.

Coming back to our setting, we define Pt,s :Bp(Λ)→Bp(Λ) by

Pt,s[φ](ϕ) := E[φ(Xt,ϕ(·∧s)], φ ∈Bp(Λ), ϕ ∈ Λ.

Obviously (see (1.17) for the notations), for φ ∈Bp(Λ) and ϕ ∈ Λ,

Pt,s[φ](ϕ) = P̃t,s[φ](ηt,ϕ,xt,ϕ). (1.26)

In order to introduce the notion of mild solution, we will need to define the generalized
directional gradient of a function u : [0,T ]×Λ→ R, following the approach in [110], also
described in [64]. Suppose that the function u satisfies the following locally Lipschitz-continuity
condition:

|u(t,ϕ1)−u(t,ϕ2)| ≤ C||ϕ1−ϕ2||L2(1 + ||ϕ1||L2 + ||ϕ2||L2)m ;

|u(t,0)| ≤ C ;
(1.27)

17



1.5. MILD SOLUTION OF THE KOLMOGOROV EQUATION

Since the procedure of defining the generalized directional gradient takes place in Hilbert
spaces, we will have to appeal again to the M2-lifting, as we have already done for the
coefficients of the forward equation. We define first

v(t,φ,x) := u(t,(φ,x)t)

for (t,φ,x) ∈ [0,T ]×D([−T,0];Rd)×Rd and then extend it to [0,T ]×M2 by density. Again,
this is possible due to condition (1.27). Then, according to [110, Th. 3.1], there exists a Borel
function ζ : [0,T ]×M2→ Rd such that

⟨v(·,Xt,η,x
· ,Xt,η,x(·)),W (·)⟩[t,τ ] =

ˆ τ

t
ζ(s,Xt,η,x

s ,Xt,η,x(·))ds, (1.28)

for any 0≤ t≤ τ ≤ T and (η,x) ∈M2, where ⟨X,Y ⟩[t,τ ] denotes the joint quadratic variation
of a pair of real stochastic processes (X(t),Y (t))t∈[0,T ] on the interval [t,τ ],

⟨X,Y ⟩[t,τ ] := lim
ϵ↘0

1
ϵ

ˆ τ

t
(X(s+ ϵ)−X(s)) · (Y (s+ ϵ)−Y (s))ds,

with the limit taken in probability and X(s),Y (s) defined as X(s), respectively Y (s) for
s > T .

The set of all functions ζ with the above property is called the generalized directional
gradient of v and is denoted ∇σv. Its name and notation come from the observation that if
v (and, consequently u) and the coefficients of the forward equation are sufficiently regular,
then ∇(η,x)v · σ̃ ∈∇σv (see [110, Remark 3.3]).

We come back to the Λ-setting and define ∇σu, the generalized directional gradient of u
as the set of all non-anticipative functions ξ : [0,T ]×Λ→ R such that there exists ζ ∈ ∇σv

satisfying
ζ(t,φ,x) = ξ(t,(φ,x)t)

for all (t,φ,x) ∈ [0,T ]×D([−T,0];Rd)×Rd. Such a function can be defined by setting
ξ(t,ϕ) := ζ(t,ηt,ϕ,xt,ϕ).

It is clear that relation (1.28) translates into

⟨u(·,Xt,ϕ),W (·)⟩[t,τ ] =
ˆ τ

t
ξ(s,Xt,ϕ)ds,

for all (t,ϕ) ∈ [0,T ]×Λ and all τ ∈ [t,T ], if ξ ∈∇σu. From this relation, it is clear (see also
Remark 3.2 in [110]) that if ξ, ξ̂ ∈∇σu, then

ξ(s,Xt,ϕ) = ξ̂(s,Xt,ϕ) ds-a.e., P-a.s.,
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1.5. MILD SOLUTION OF THE KOLMOGOROV EQUATION

so there is no ambiguity if we write ∇σu(s,Xt,ϕ).
We have now all the ingredients for introducing the notion of mild solution.

Definition 1.6. A non-anticipative function u : [0,T ]×Λ→ R is a mild solution to Eq. (1.1)
if u satisfies (1.27) and the following equality holds true for all (t,ϕ) ∈ [0,T ]×Λ and ξ ∈∇σu:

u(t,ϕ) = Pt,T [h](ϕ) +
ˆ T

t
Pt,s [f (·,u(s, ·), ξ(s, ·),J u(s, ·)) ,(u(·, ·))s] (ϕ)ds, (1.29)

where (u(·, ·))s is the delayed term defined in (1.5).

Given the definition of Pt,T and the above mentioned remark, we can reformulate relation
(1.29) as

u(t,ϕ) = E[h(Xt,ϕ
T )]

+E
[ˆ T

t
f
(
Xt,ϕ,u(s,Xt,ϕ),∇σu(s,Xt,ϕ),J u(s,Xt,ϕ),(u(·,Xt,ϕ))s

)
ds

]
. (1.30)

The following theorem represents the core result of this section.

Theorem 1.10 (Existence and Uniqueness). Let assumptions (A1) – (A10) and (1.16) hold
true. Then the function u defined by (1.22) is the unique mild solution to the path-dependent
partial integro-differential Eq. (1.1).

Proof.
Existence. Let us consider the backward component of the FBSDE described in Eq. (1.12)
for s ∈ [t,T ]

Y t,ϕ(s) = h(Xt,ϕ) +
ˆ T

s
f
(
r,Xt,ϕ,Y t,ϕ(r),Zt,ϕ(r), Ũ t,ϕ(r),Y t,ϕ

r

)
dr

−
ˆ T

s
Zt,ϕ(r)dW (r)−

ˆ T

s

ˆ
R\{0}

U t,ϕ(r,z)Ñ(dr,dz) , s ∈ [t,T ] .
(1.31)

By Theorem 1.9, the non-anticipative function u defined by (1.22) is satisfying (1.27) (the
second part comes the continuity of t 7→ Y t,ϕ, asserted in Theorem 1.6) and the representation
formula (1.23) holds. Moreover, by means of Eq. (1.22), we can write the delayed term Yr as
a function of the path of solution of the forward dynamic Xt,ϕ and, thus, by defining

ũ(t,ϕ) :=
(
u((t+θ)+,ϕ)

)
θ∈[−δ,0]

,
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we can rewrite Eq. (1.31), leading to



Y t,ϕ(s) = h(Xt,ϕ) +
ˆ T

s
f
(
r,Xt,ϕ,Y t,ϕ(r),Zt,ϕ(r), Ũ t,ϕ(r), ũ(r,Xt,ϕ)

)
dr

−
ˆ T

s
Zt,ϕ(r)dW (r)−

ˆ T

s

ˆ
R\{0}

U t,ϕ(r,z)Ñ(dr,dz) , s ∈ [t,T ]

Y t,ϕ(s) = Y s,ϕ(s) , Zt,ϕ(s) = U t,ϕ(s,z) = 0 , s ∈ [0, t],

. (1.32)

At this point, we enlarge the state space going through M2 coefficients analogously to the
proof of Theorem 1.6, obtaining

Y t,η,x(s) = h̃(Xs,η,x
T ,Xs,η,x(T ))

+
ˆ T

s
ψ
(
r,Xt,η,x

r ,Xt,η,x(r),Y t,η,x(r),Zt,η,x(r), Ũ t,η,x(r)
)
dr

−
ˆ T

s
Zt,η,x(r)dW (r)−

ˆ T

t

ˆ
R0

U t,η,x(r,z)Ñ(dr,dz) ,

(1.33)

where the map h̃ was defined in Eq. (1.25) and ψ is defined similarly to ψn introduced in Eq.
(1.24):

ψ(t,φ,x,y,z,u) := f(t,(φ,x)t,y,z,u, ũ(t,(φ,x)t))

on [0,T ]×D([−T,0];Rd)×Rd×R×Rl×R and extending it by density. Since h̃ and ψ are
locally Lipschitz, hence satisfying the conditions required by Theorem 4.8 in [64], we can
apply this result in order to conclude that the function v : [0,T ]×M2→ R defined by

v(t,η,x) := Y t,η,x(t)

is a mild solution (in the sense of [64], but similar to ours) of the following PPIDE
−∂tv

(
t,η,x

)
−L̃v

(
t,η,x

)
−ψ
(
t,η,x,v(t,η,x),∂xv(t,η,x)σ̃(t,η,x), J̃ v(t,η,x)

)
= 0 ,

v(T,η,x) = h̃(η,x) , (t,η,x) ∈ [0,T ]×M2 ,

where L̃ and J̃ are the straightforward modifications of L, respectively J in M2. Since
v(t,ϕ,x) = u(t,(φ,x)t) for any (t,ϕ,x) ∈ [0,T ]×D([−T,0];Rd), by playing on the relation
(1.26) and the connection between the formulations of the generalized directional gradient in
the càdlàg, respectively M2 cases, it is straightforward to show that u is a mild solution of
(1.1).
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Uniqueness. Let us take two mild solutions u1 and u2 of the path-dependent PDE (1.1). We
define

f i(t,ϕ,y,z,w) := f(t,ϕ,y,z,w,
(
ui (·,ϕ)

)
t
) , i= 1,2 .

Using these drivers we can consider the following BSDEs:

Y t,ϕ (s) = h(Xt,ϕ) +
ˆ T

s
f i(r,Xt,ϕ,Y t,ϕ (r) ,Zt,ϕ (r) , Ũ t,ϕ (r))dr

−
ˆ T

s
Zt,ϕ (r)dW (r)−

ˆ T

s

ˆ
R0

U t,ϕ(r,z)Ñ(dr,dz) , i= 1,2 ,
(1.34)

for which there exist unique solutions
(
Y i,t,ϕ , Zi,t,ϕ ,U i,t,ϕ

)
∈ S2

t (R)×H2
t (Rl)×H2

t,ν(R) for
i= 1,2 .

By Theorem 1.9 we see that

Y i,t,ϕ (s) = vi(s,Xt,ϕ), for all s ∈ [0,T ] , a.s.,

for any (t,ϕ) ∈ [0,T ]×Λ, where vi : [0,T ]×Λ→ R, i= 1,2 are defined by

vi(t,ϕ) := Y i,t,ϕ (t) , (t,ϕ) ∈ [0,T ]×Λ .

Hence, by the existence part, we obtain that the functions vi are solutions of the PDE of type
(1.1), but without the delayed terms

(
vi (·,ϕ)

)
t :

 −∂tv
i(t,ϕ)−Lvi(t,ϕ)−f i(t,ϕ,vi(t,ϕ),∂xv

i (t,ϕ)σ(t,ϕ),J vi(t,ϕ)) = 0,

vi(T,ϕ) = h(ϕ), i= 1,2 .
(1.35)

Since ui is also solution to equation (1.35), by using the uniqueness part of Theorem 4.5 from
[64] we get that (after embedding these equations in M2, as we did in the previous part)

ui(t,ϕ) = vi(t,ϕ), (t,ϕ) ∈ [0,T ]×Λ , i= 1,2 .

Hence
Y i,t,ϕ (s) = vi(s,Xt,ϕ) = ui(s,Xt,ϕ), i= 1,2 ,
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so BSDEs (1.34) become a single equation,

Y i,t,ϕ (s) = h(Xt,ϕ) +
ˆ T

s
f(r,Xt,ϕ,Y i,t,ϕ (r) ,Zi,t,ϕ (r) , Ũ i,t,ϕ (r) ,Y i,t,ϕ

r )dr

−
ˆ T

s
Zi,t,ϕ (r)dW (r)−

ˆ T

s

ˆ
R0

U t,ϕ(r,z)Ñ(dr,dz) ,
(1.36)

with i= 1,2 , for which we have uniqueness from Theorem 1.6.
Therefore Y 1,t,ϕ = Y 2,t,ϕ and, consequently

u1(t,ϕ) = Y 1,t,ϕ (t) = Y 2,t,ϕ (t) = u2(t,ϕ).

Remark 1.11. From Theorem 4.5 in [64], besides relation (1.23), it can also be inferred
that for every (t,ϕ) ∈ [0,T ]×Λ the following representation formulas hold, P-a.s. and for a.e.
s ∈ [t,T ]:

Zt,ϕ(s) =∇σu(s,Xt,ϕ);

U t,ϕ(s,z) = u
(
s,(Xt,ϕ)t,γ(s,Xt,ϕ,z))−u(s,Xt,ϕ),

where we use the notation introduced in (1.3). These formulas could have been used to prove
directly the existence part of the above result, by taking the expectation in equation (1.32) and
using relation (1.30).

1.7 Financial Application

In this section, we provide a financial application moving from the model studied in, e.g. [67],
or [96]. We consider a generalization of the so-called Large Investor Problem, where a large
investor wishes to invest in a given market, buying or selling a stock. The investor has the
peculiarity that his actions on the market can affect the stock price. We refer to Example
14.1 in [76] for a detailed example of the time-delayed setting. Other results on replication
problems for large investors in different settings are also presented in [65] and [96].

1.7.1 A perfect replication problem for a large investor

Concerning the problem of the perfect replication strategy for a large investor in a setting
with memory, we generalize Example 14.1 in [76] by asking, in addition to path-dependent
coefficients, the dynamic of the risky asset driven by a Poisson random measure.
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We denote the investor’s strategy by π and the investment portfolio by Xπ and we assume
that its past Xπ

r may affect directly the stock coefficients µ, σ and γ and the bond rate.
Consequently, we consider the following dynamic

dS0(t)
S0(t) = r(t,Xπ(t),Xπ

t )dt ,

S0(0) = 1 ,

dSi(t)
Si(t)

= µi (t,Xπ(t),Xπ
t )dt+σi(t,Xπ(t),Xπ

t )dW (t)

+
ˆ
R0

γi(t,Xπ(t),Xπ
t ,z)Ñ(dt,dz),

Si(0) = si > 0 ,

(1.37)

where ri, µi, σi and γi, i = 1,2 are FW,Ñ -predictable processes, FW,Ñ being the natural
filtration associated to the Brownian motion W and to the Poisson random measure Ñ , with
compensator defined according to Eq. (1.10).

The total amount of the portfolio of the large investor is described by

dXπ(t) = π1(t)dS1(t)
S1(t) +π2(t)dS2(t)

S2(t) + (Xπ(t)−π1(t)−π2(t))dS0(t)
S0(t) dt .

where, at any time t ∈ [0,T ], πi(t) represents the amount invested in the risky asset Si, while
Xπ(t)−π1(t)−π2(t) is the amount invested in the riskless one S0.

Let us denote, for simplicity, ϕ := (ϕ1,ϕ2) for ϕ among the symbols S, π, µ, σ or γ and by
· the scalar product in R2. The goal is to find an admissible replicating strategy π ∈ A for a
claim h(S(T )).

We have that the portfolio X evolves according to

dXπ(t) = π1(t)
S1(t)dS1(t) + π2(t)

S2(t)dS2(t) + Xπ (t)−π(t)
S0 (t) dS0 (t)

= π(t) ·
[
µ(t,Xπ,Xπ

t )dt+σ(t,Xπ,Xπ
t )dW (t) +

ˆ
R0

γ(t,Xπ,Xπ
t ,z)Ñ(dt,dz)

]
+[Xπ (t)−π1(t)−π2(t)]r(t,Xπ(t),Xπ

r )dt ,

Hence, for t ∈ [0,T ], we have

Xπ(t) = h(S(T )) +
ˆ T

t
F (s,Xπ(s),Xπ

s ,π(s))ds−
ˆ T

t
Z(s)dW (s)−

ˆ T

t

ˆ
R0

U(s,z)Ñ(ds,dz),

(1.38)
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with final condition Xπ(T ) = h(S) by denoting

F (s,Xπ(s),Xπ
s ,π(s)) :=−r(s,Xπ(s),Xπ

s )(Xπ(s)−π1(s)−π2(s))−π(s) ·µ(s,Xπ(s),Xπ
s ) ;

Zπ(s) := π(s) ·σ(s,Xπ(s),Xπ
s ) ;

Uπ(s,z) := π(s) ·γ(s,Xπ(s),Xπ
s ,z) .

(1.39)

The generator F can be rewritten to accommodate the dependence of Zπ and Uπ by introducing
the following transformation

F̄
(
s,Xπ(s),Xπ

s ,Z
π(s), Ũπ(s)

)
= F (s,Xπ(s),Xπ

s ,π(s)) (1.40)

since from Eq. (1.39) we have

[
π1 (s) π2 (s)

]
=
[
Zπ (s) Uπ (s,z)

]σ1(s,Xπ(s),Xπ
s ) γ1(s,Xπ(s),Xπ

s ,z)
σ2(s,Xπ(s),Xπ

s ) γ2(s,Xπ(s),Xπ
s ,z)

−1

by imposing that the matrix
[
σT γT

]
is invertible.

We then ask the coefficients r,µ, σ and γ to be such that the function F̄ : [0,T ]×R×
L2 ([−δ,0];R)×R×R→ R satisfies assumptions (A4), (A5) and (A9) .

Furthermore, we need a couple of simplifying assumptions in order to fit the theoretical
framework of the chapter.

First, we introduce a functional aiming at encoding the forward process in order to decouple
the terminal condition in the BSDE (1.38) from the stock forward dynamic (1.37). The risky
assets vector S can be explicitly written, by a variation of constants formula, as a functional
of the random coefficients of the stock (W and Ñ), on the wealth X and on the processes Z
and U depending on the allocation strategy π. Hence h(S(T )) can be written as

h(S(T )) = h̄
(
W,Ñ,Xπ,Zπ,Uπ) (1.41)

where h̄ is asked to satisfy, besides conditions (A6) and (A10) in the first two coefficients, a
Lipschitz condition in the last three with Lipschitz constant K1.

Thus, we can rewrite (1.38) as

X(t) = h̄
(
W,Ñ,X,Z,U

)
+
ˆ T

t
F̄
(
s,X(s),Xs,Z(s), Ũ(s)

)
ds−

ˆ T

t
Z (s)dW (s)

−
ˆ T

t

ˆ
R0

U(s,z)Ñ(ds,dz) t ∈ [0,T ] .
(1.42)

If we assume that δ = T and the Lipschitz constants K and K1 are sufficiently small, then
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the time-delayed BSDE (1.42) has a unique solution. The setting is a little more general than
ours, in the sense that the final condition also depends on the path of the solution of the
backward equation (1.42), but one can use Theorem 14.1.1 in [76].

The further modelling concerns introducing the Markovian setting, i.e. allowing the initial
time and value to vary. Hence, we introduce the forward processes W̄ and N̄ by

(W̄ (s), N̄(s)) =
(
ϕ1(t) +

ˆ s

t
dW (r),ϕ2(t) +

ˆ s

t

ˆ
R0

Ñ(dr,dz)
)
, s ∈ [t,T ],

(W̄ (s), N̄(s)) = (ϕ1(s),ϕ2(s)) , s ∈ [0, t),
(1.43)

with Brownian motion W , compensated Random measure Ñ and an initial càdlàg datum
ϕ= (ϕ1,ϕ2) ∈ Λ.

Finally, by recalling the coefficients F̄ , Z and U defined in Eq. (1.39) we may write the
following decoupled forward–backward stochastic system:



W̄ t,ϕ (s) = ϕ1 (t) +
ˆ s

t
dW (r) , s ∈ [t,T ] ,

N̄ t,ϕ (s) = ϕ2 (t) +
ˆ
R0

ˆ s

t
dÑ(r,z), s ∈ [t,T ] ,(

W̄ t,ϕ (s) , N̄ t,ϕ
)

= ϕ(s) , s ∈ [0, t),

Xt,ϕ (s) = h̄(W̄ t,ϕ, N̄ t,ϕ,Xt,ϕ,Zt,ϕ,U t,ϕ) +
ˆ T

s
F̄
(
r,Xπ(r),Xπ

r ,Z
t,ϕ(r), Ũ t,ϕ(r)

)
dr

−
ˆ T

s
Zt,ϕ(r)dW (r)−

ˆ T

s

ˆ
R0

U t,ϕ(r)Ñ(dr,dz), s ∈ [t,T ] ,

Xt,ϕ (s) =Xs,ϕ (s) , Zt,ϕ (s) = U t,ϕ (s,z) = 0, (s,z) ∈ [0, t)×R0.

(1.44)

where the BSDE coefficients are defined according to (1.39).
Then, imposing the same assumptions as before (where t= 0) there exists a unique solution(

Xt,ϕ,Zt,ϕ,U t,ϕ
)

(t,ϕ)∈[0,T ]×Λ
for the BSDE in (1.44). Again, the final condition is a little more

general than the one in the theoretical framework, but this can be easily modified by adapting
the proof of Theorem 1.6, as it is done, for example in Theorem 14.1.1 in [76].
Moreover, by Theorem 1.9, the solution of the backward equation in the above system can be
expressed as

Xt,ϕ (s) = u(s,W̄ t,ϕ, N̄ t,ϕ), for all s ∈ [t,T ] ,

for every (t,ϕ) ∈ [0,T ]×Λ, where u(t,ϕ) := Xt,ϕ (t). Furthermore, u is the mild solution,
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according to Definition 1.6, of the following path-dependent PDE:
∂tu(t,ϕ) + 1

2∂
2
xxu(t,ϕ) +

ˆ
R0

(
u(t,ϕt,(0,1))−u(t,ϕ)−∂yu(t,ϕ)

)
ν(dz)

+F̄ (t,u(t,ϕ),(u(·,ϕ))t ,∂xu(t,ϕ) ,J u(t,ϕ)) = 0,

u(T,ϕ) = h̄
(
ϕ,u(·,ϕ) ,∂xu(·,ϕ) ,u(·,ϕ·,(0,1))−u(·,ϕ)

)
,

with (t,ϕ) ∈ [0,T )×Λ, with u(t,ϕt,(0,1)) corresponding to the vertical perturbation as defined
in Eq. (1.3).

We also present a concrete example of a jump-diffusion model for option pricing that can
help the reader link the forward dynamic to a tractable application. This example has a clear
limitation if applied to our setting, such as no path-dependence in the coefficients of the stock
dynamic (1.45) but only in the terminal condition h of the BSDE. Moreover, if we need to
assume suitable conditions on µ, σ and γ, e.g. asking µ bounded and σ, γ constant (w.r.t.
X), so that the terminal condition also satisfies the required Lipschitz condition.

Example 1.12. (Forward SDE with a discrete number of jumps). The stock price may
present a jump–diffusion dynamic with a discrete number of jumps triggered by a Poisson
process, namely we consider the following equation

dS(t)
S(t) = µ(t)dt+σ(t)dW (t) +d

N(t)∑
i=1

(Vi−1) , (1.45)

in place of Eq. (1.37), where N(t) is a standard Poisson process of fixed rate and jumps
size {Vi} modelled as a sequence of independent, identically, distributed non-negative random
variables. We consider independence among all the sources of randomness, namely W and
N . We refer to, e.g., [141] for a detailed treatment of this kind of jump-diffusion. Firstly, we
notice that the forward Eq. (1.45) can be explicitly solved by the following

S (t) = s0 exp
[ˆ t

0

(
µ(s)− 1

2σ
2 (s)

)
ds+

ˆ t

0
σ (s)dW (s)

]N(t)∑
i=1

Vi . (1.46)

If we assume no path-dependence in the coefficients, such as in Eq. (1.45), then we may
encode in the terminal condition of the BSDE (1.38), a dependence only on W , N and {Vi}.
Hence, by introducing the following functional

h(S) = h̃(W,N,{Vi}) , (1.47)

we can decouple the FBSDEs system to fit the setting of Theorem 1.6.
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1.8 Conclusions and Future Development

The core result of this chapter relies on deriving a stochastic representation for the solutions of
a non-linear PDE and associating the PDE solution to a FBSDE with jumps and a time-delayed
generator. The presence of jumps both in the forward and backward dynamic and, moreover,
the dependence of the generator on a (small) time-delayed coefficient represents the central
aspect of novelty arising in the analysis of this kind of FBSDE system. Furthermore, we present
an application for a large investor problem admitting a jump–diffusion dynamic. Throughout
the chapter, we mention some possibilities to generalize the setting of our equations such as
considering the dependence of f also on a delayed term for the processes Z and U , see Remark
1.1 for more details, or in-depth analyzing the choice of a weaker topology, see Remark 1.8. A
different modelling choice deals with considering a further delay term affecting the forward
process, see [160] for more details. Furthermore, it might deserve attention to investigate a
discretization scheme for this equation, e.g. in line with [30], for the considered equations to
obtain a numerical approach based on Neural Networks methods to efficiently compute an
approximated solution for the considered FBSDE.
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2 Time-Delayed Generalized BSDEs

2.1 Introduction

BSDE were introduced in the linear case by Bismut [26], as adjoint equations involved in
the control of SDEs. The nonlinear case was considered by Pardoux and Peng first in [179]
and then in [180, 183], where they established a connection between BSDEs and semilinear
parabolic partial differential equations (PDEs), by the so-called nonlinear Feynman–Kac
formula, in a similar framework to the one analyzed in Chapter 1,. It was this kind of
applications which triggered an impressive amount of research on the subject. Concerning
parabolic PDEs with Neumann boundary conditions, Pardoux and Zhang discovered that
their solutions can be linked to BSDEs involving the integral with respect to continuous
increasing processes (Stieltjes integral).

This work represents the first step in establishing a probabilistic representation formula of
the solutions of delayed path-dependent parabolic PDEs with Neumann boundary conditions.
It consists of studying the well posedness of the associated BSDEs, i.e. existence and
uniqueness of solutions, as well as stability with respect to terminal data and coefficients. As
already shown in [66] for the case of such PDEs considered on the whole space, the generator
of the associated BSDE has to take into account the delayed-path of its solution. As a result,
our present work is concerned with the following BSDE:

dY (t) =−F (t,Y (t),Z(t),Yt,Zt)dt−G(t,Y (t),Yt)dA(t)

+Z(t)dW (t), t ∈ [0,T ] ;
Y (T ) = ξ,

(2.1)

where the generators F and G depend also on the past of the solution (Y (t),Z(t)), denoted
by (Yt,Zt). Here, if x : [−δ,T ]→ Rn is a function and t ∈ [0,T ], xt : [−δ,0]→ Rn denotes the
delayed-path of x, defined as

xt(θ) := x(t+θ), θ ∈ [−δ,0],
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where δ > 0 is a fixed delay. The coefficient A is a continuous real valued increasing process.
We recall that time-delayed BSDEs were first introduced in [72] and [73] where the authors

obtained the existence and uniqueness of the solution of the time–delayed BSDE

Y (t) = ξ+
ˆ T

t
f(s,Ys,Zs)ds−

ˆ T

t
Z(s)dW (s), 0≤ t≤ T, (2.2)

where
Ys := (Y (r))r∈[0,s] and Zs := (Z(r))r∈[0,s] .

In particular, the aforementioned existence and uniqueness result holds true if the time horizon
T or the Lipschitz constant for the generator f are sufficiently small.

The motivation behind the introduction of a driving force dA and the corresponding
integral goes beyond the link with PDE and can be traced in actuarial applications since the
classical works [106] and [203]. In the context of insurance, a BSDE such as the one described
in Equation (2.1) can be used to model the evolution of a hedging strategy for an insurance
portfolio over time. In this framework, the Riemann-Stieltjes integral is linked to the sum
of claims with respect to an increasing continuous process that might model the cumulative
distribution of some events.

This chapter is organized as follows. In the remaining part of the first section, we introduce
the notations and set the framework of our problem. In section 2.3 we derive a result of
existence and uniqueness for small delay (or small Lipschitz constant) for BSDE (2.1), based on
Banach’s fixed point theorem, expressed in Theorem 2.3. Moreover, we provide in Proposition
2.5, the well-posedness result for an arbitrary delay for a specific case assuming monotone (in
the delayed term) and linear coefficients. Section 2.4 is devoted to the problem of stability
of solutions with respect to terminal data ξ and coefficients F , G and A. Lastly, in Section
2.5, we present an insurance application dealing with a variable annuity investment that
suits the theoretical setting. The main difficulty encountered is to prove the convergence of
the solutions of the approximating BSDEs when the increasing process A is approximated
uniformly, but not in variation. In order to tackle this problem, we use a stochastic variant of
Helly-Bray theorem, proved in the Appendix section, as it may be an interesting result for
use in other applications.

2.1.1 Problem setting and notations

On the Euclidean space Rn we consider the Euclidean norm and scalar product, denoted by
|·| and ⟨·, ·⟩, respectively. If n,k ∈N∗, Rn×k denotes the space of real n×k-matrices, equipped
with the Frobenius norm (the Euclidean norm when this space is identified with Rnk), denoted
as well by |·|.
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For s < t , C([s, t];Rn) represents the set of continuous functions x : [s, t]→ Rd, endowed
with the sup-norm: ∥x∥C([s,t];Rn) := supr∈[s,t] |x(r)|; BV ([s, t];Rn) denotes the set of right-
continuous functions with bounded variation η: [s, t]→ Rn, i.e. with a finite total variation.
Recall that the total variation of η on [s, t] is defined as

Vt
s(η) := sup∑n

i=1 |η(ti)−η(ti−1)| ,

where the sup is taken on all the partitions s= t0 < t1 < · · ·< tn = t. The standard norm on
BV ([s, t];Rn) is given by

∥η∥BV ([s,t];Rn) := |η(s)|+ Vt
s(η).

We will simply denote C[s, t], BV [s, t] instead of C([s, t];R), BV ([s, t];R), respectively.
If x : [s, t]→ Rn is a Borel-measurable function and η∈BV ([s, t];Rn), by

´ t
s ⟨x(r)dη(r)⟩

we denote the sum
n∑

i=1

ˆ t

s
⟨xi(r)dηi(r)⟩ ,

where x1, . . . , xn and η1, . . . , ηn are the components of x, respectively η, in the case where
the Lebesgue-Stieltjes integrals are well-defined and the sum makes sense.

We fix now the framework of our problem, to be utilized throughout the chapter.
Let T > 0 be a finite horizon of time, d,m∈N∗ and δ ∈ (0,T ] a fixed time-delay. Let (Ω,F ,P)

be a complete probability space, W a d-dimensional Brownian motion and F = {Ft}t∈[0,T ] the
filtration generated by W , augmented by the null-probability subsets of Ω. The stochastic
process A : Ω× [0,T ]→ R is an increasing F-adapted process with A(0) = 0, P-almost surely.
In the following definition, we present the reference Banach spaces. They represent the
continuous analogous of the càdlàg processes introduced in Section 1.2.

Definition 2.2. Let p≥ 2 and β ≥ 0.

(i) Sp,m denotes the space of continuous F–progressively measurable processes Y : Ω× [0,T ]→
Rm such that

E
[
sup0≤s≤T |Y (s)|p

]
<+∞ .

(ii) Sp,m
β denotes the space of continuous F–progressively measurable processes Y : Ω× [0,T ]→
Rm such that

E
[
sup0≤s≤T e

βA(s)|Y (s)|p
]

+E
[ˆ T

0
eβA(s)|Y (s)|2dA(s)

]p/2

<+∞ .

(iii) Hp,m×d
β denotes the space of F–progressively measurable processes Z : Ω× [0,T ]→ Rm×d
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2.3. EXISTENCE AND UNIQUENESS

such that

E
[ˆ T

0
eβA(s)|Z(s)|2ds

]p/2

<+∞ .

Instead of Hp,m×d
0 we will write Hp,m×d. The space Sp,m

β ×Hp,m×d
β (in fact, its quotient

with respect to P×Pdt-a.e. equality) is naturally equipped with the following norm

∥(Y,Z)∥pp,β = E
[
sup0≤s≤T e

βA(s)|Y (s)|p
]

+E
[ˆ T

0
eβA(s)|Y (s)|2dA(s)

]p/2

+E
[ˆ T

0
eβA(s)|Z(s)|2ds

]p/2

.

2.3 Existence and uniqueness

We consider the following BSDE

Y (t) = ξ+
ˆ T

t
F (s,Y (s),Z(s),Ys,Zs)ds+

ˆ T

t
G(s,Y (s),Ys)dA(s)

−
ˆ T

t
Z(s)dW (s), t ∈ [0,T ] , (2.3)

with ξ ∈ L2 (Ω,FT ,P;Rm) and the generators F : Ω× [0,T ]×Rm×Rm×d×L2 ([−δ,0];Rm)×
L2([−δ,0];Rm×d)→ Rm, G : Ω× [0,T ]×Rm×L2 ([−δ,0];Rm)→ Rm such that the functions
F (·,y,z, ŷ, ẑ) and G(·,y, ŷ) are F–progressively measurable, for any (y,z, ŷ, ẑ) ∈ Rm×Rm×d×
L2 ([−δ,0];Rm)×L2([−δ,0];Rm×d), respectively for any (y, ŷ) ∈ Rm×L2 ([−δ,0];Rm) .

Recall that, for a function x : [−δ,T ]→ Rn and some t ∈ [0,T ], xt : [−δ,0]→ Rn denotes
the delayed-path of x, defined as

xt(θ) := x(t+θ), θ ∈ [−δ,0].

In order to define Ys and Zs even for s < δ, we prolong by convention, Y by Y (0) and Z by 0
on the negative real axis.

In what follows we present the assumptions required in this section. We suppose that
there exist constants β, L, L̃ > 0, bounded progressively measurable stochastic processes
K,K̃ : Ω× [0,T ]→ R+ and ρ, ρ̃ probability measures on ([−δ,0],B ([−δ,0])) such that:

(B0) E
[
eβA(T )

(
1 + |ξ|2

)]
<+∞;

(B1) E
[ˆ T

0
eβA(t) |F (t,0,0,0,0)|2 dt+

ˆ T

0
eβA(t) |G(t,0,0)|2 dA(t)

]
<+∞.
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(B2) for any t∈ [0,T ], (y,z) ,(y′,z′)∈Rm×Rm×d, ŷ, ŷ′ ∈L2 ([−δ,0];Rm) and ẑ, ẑ′ ∈L2([−δ,0];Rm×d),
we have

(i) |F (t,y,z, ŷ, ẑ)−F (t,y′,z′, ŷ, ẑ)| ≤ L(|y−y′|+ |z−z′|), P-a.s.;

(ii) |F (t,y,z, ŷ, ẑ)−F (t,y,z, ŷ′, ẑ′)|2

≤K (t)
ˆ 0

−δ

(∣∣ŷ(θ)− ŷ′(θ)
∣∣2 +

∣∣ẑ(θ)− ẑ′(θ)
∣∣2)ρ(dθ), P-a.s.;

(B3) for any t ∈ [0,T ], y,y′ ∈ Rm and ŷ, ŷ′ ∈ L2 ([−δ,0];Rm), we have

(i) |G(t,y, ŷ)−G(t,y′, ŷ)| ≤ L̃|y−y′|, P-a.s.;

(ii) |G(t,y, ŷ)−G(t,y, ŷ′)|2 ≤ K̃ (t)
ˆ 0

−δ

∣∣ŷ(θ)− ŷ′(θ)
∣∣2 ρ̃(dθ), P-a.s.;

Remark 2.1. Let us underline that latter conditions differ from those used in [72], since we
allow T to be arbitrary, but different from the delay δ ∈ [0,T ]. This allows to separate the
Lipschitz constant L w.r.t. (y,z) from the Lipschitz constant K w.r.t. (ŷ, ẑ); therefore the
restriction on the coefficients can avoid the constant L.

Remark 2.2. Existence and uniqueness of a solution to the backward system (2.3) will be
proved exploiting a standard Banach’s fixed point argument which requires K or δ to be small
enough.

More precisely, by denoting K1 := sup
s∈[0,T ]

K(s), K̃1 := sup
s∈[0,T ]

K̃(s) and

ωδ := sup
t∈[0,T −δ]

(A(t+ δ)−A(t)) ,

we will assume the existence of a positive constant c < cβ,L̃ := min
{

β2−8L̃2

4β2 , 1
584

}
such that

(H1) K1 ·max{1,T} · e(8L2+ 1
2 )δ+βωδ

4L2 ≤ c, P-a.s.;

(H2) 4K̃1 ·A(T ) · e(8L2+ 1
2 )δ+βωδ

β ≤ c, P-a.s.

Our first result states existence and uniqueness of equation (2.3).

Theorem 2.3. Let us assume that (B0)–(B3) hold true and β > 2
√

2L̃. If conditions (H1)
and (H2) are satisfied then there exists a unique solution (Y,Z) ∈ S2,m

β ×H2,m×d
β for (2.3).

Proof. The existence and uniqueness will be obtained by the Banach fixed point theorem.
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Let us consider the map Γ : S2,m
β ×H2,m×d

β →S2,m
β ×H2,m×d

β , defined in the following way:
for (U,V ) ∈ S2,m

β ×H2,m×d
β , Γ(U,V ) = (Y,Z), where the couple of adapted processes (Y,Z) is

the solution to the equation

Y (t) = ξ+
ˆ T

t
F (s,Y (s),Z(s),Us,Vs)ds+

ˆ T

t
G(s,U(s),Us)dA(s)

−
ˆ T

t
Z(s)dW (s), t ∈ [0,T ] . (2.4)

The existence of a unique solution (Y,Z) ∈ S2,m×H2,m×d is guaranteed by [179]. Indeed, if
we denote

B(t) :=
ˆ t

0
G(s,U(s),Us)dA(s), t ∈ [0,T ];

F̂ (t,y,z) := F (t,y−B(t),z,Ut,Vt), t ∈ [0,T ], (y,z) ∈ Rm×Rm×d,

then (Y,Z) is a solution to equation (2.3) if and only if (Y +B,Z) solves the equation

Ŷ (t) = ξ+B(T ) +
ˆ T

t
F̂ (s, Ŷ (s),Z(s),Us,Vs)ds−

ˆ T

t
Z(s)dW (s), t ∈ [0,T ] .

Since F̂ is Lipschitz with respect to (y,z), it remains to prove that E
´ T

0
∣∣F̂ (t,0,0)

∣∣2dt <+∞
and ξ+B(T ) ∈ L2 (Ω,FT ,P;Rm). We have (remember that K1 := sup

s∈[0,T ]
K(s) and K̃1 :=

sup
s∈[0,T ]

K̃(s)):

E
ˆ T

0

∣∣F̂ (t,0,0)
∣∣2dt= E

ˆ T

0
|F (t,−B(t),0,Ut,Vt)|2 dt≤ 3E

ˆ T

0
|F (t,0,0,0,0)|2 dt

+3L2E
ˆ T

0
|B(t)|2 dt+ 3E

ˆ T

0
K (t)

ˆ 0

−δ

(
|U(t+θ)|2 + |V (t+θ)|2

)
ρ(dθ)dt

≤ 3E
ˆ T

0
|F (t,0,0,0,0)|2 dt+ 3L2E

ˆ T

0
|B(t)|2 dt

+3TE
[
K1 sup

t∈[0,T ]
|U(t)|2

]
+ 3EK1

ˆ T

0
|V (t)|2 dt.

Since (B1) holds and K1 is bounded, we only have to show that E
´ T

0 |B(t)|2 dt < +∞ and
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E |B(T )|2 <+∞. We have

E
ˆ T

0

∣∣∣∣∣
ˆ t

0
G(s,U(s),Us)dA(s)

∣∣∣∣∣
2

dt

≤ E
ˆ T

0

[ˆ t

0
eβA(s) |G(s,U(s),Us)|2 dA(s) ·

ˆ t

0
e−βA(s)dA(s)

]
dt

≤ T

β
E
ˆ T

0
eβA(t) |G(t,U(t),Ut)|2 dA(t)≤ 2T

β
E
ˆ T

0
eβA(t) |G(t,0,0)|2 dA(t)

+2T
β

E
ˆ T

0
eβA(t)L2 |U(t)|2 dA(t) + 2T

β
E
ˆ T

0
eβA(t)K̃ (t)

ˆ 0

−δ
|U(t+θ)|2 ρ̃(dθ)dA(t)

≤ 2T
β

E
ˆ T

0
eβA(t) |G(t,0,0)|2 dA(t) + 2TL2

β
E
ˆ T

0
eβA(t) |U(t)|2 dA(t)

+2T
β

EK̃1A(T )eβωδ sup
t∈[0,T ]

eβA(t) |U(t)|2 <+∞,

by (B1) and (H2), which proves the claim (along the way we have also proven that E |B(T )|2 <
+∞).

The proof that (Y,Z) ∈ S2,m
β ×H2,m×d

β is very similar to that of Proposition 1.1 from [181],
so it is left to the reader.

Let us prove that Γ is a contraction with respect to the equivalent norm

∥(Y,Z)∥22,α,β,a,b := E
(
supt∈[0,T ] e

αt+βA(t)|Y (t) |2
)

+aE
ˆ T

0
eαs+βA(s)|Y (s) |2dA(s)

+ bE
ˆ T

0
eαs+βA(s)|Z (s) |2ds.

where α := 8L2 + 1
2 and the constants a,b > 0 are yet to be chosen.

Let us consider
(
U1,V 1) ,(U2,V 2)∈S2,m

β ×H2,m×d
β and

(
Y 1,Z1) := Γ

(
U1,V 1), (Y 2,Z2) :=

Γ
(
U2,V 2). For the sake of brevity, we will denote in what follows

∆F (s) := F (s,Y 1 (s) ,Z1 (s) ,U1
s ,V

1
s )−F (s,Y 2 (s) ,Z2 (s) ,U2

s ,V
2

s ),

∆G(s) :=G(s,U1 (s) ,U1
s )−G(s,U2 (s) ,U2

s ),

∆U (s) := U1 (s)−U2 (s) , ∆V (s) := V 1 (s)−V 2 (s) ,

∆Y (s) := Y 1 (s)−Y 2 (s) , ∆Z (s) := Z1 (s)−Z2 (s) .
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Exploiting Itô’s formula we have, for any t ∈ [0,T ]

eαt+βA(t)|∆Y (t) |2 +
ˆ T

t
eαs+βA(s)|∆Y (s) |2 (αds+βdA(s)) +

ˆ T

t
eαs+βA(s)|∆Z (s) |2ds

= eαT +βA(T )|∆Y (T ) |2−2
ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆Z (s)dW (s)⟩

+2
ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆F (s)⟩ds+ 2

ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆G(s)⟩dA(s) .

From assumptions (B2)–(B3) we obtain,

2
∣∣∣ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆F (s)⟩ds

∣∣∣≤ 2
ˆ T

t
eαs+βA(s)∣∣⟨∆Y (s) ,∆F (s)⟩

∣∣ds
≤ 8L2

ˆ T

t
eαs+βA(s)|∆Y (s) |2ds+ 1

8L2

ˆ T

t
eαs+βA(s)|∆F (s) |2ds

≤ 8L2
ˆ T

t
eαs+βA(s)|∆Y (s) |2ds+ 1

2

ˆ T

t
eαs+βA(s)

(
|∆Y (s) |2 + |∆Z (s) |2

)
ds

+K1T

4L2 e
αδ+βωδ · sups∈[0,T ]

(
eαs+βA(s)|∆U (s) |2

)
+ K1

4L2 e
αδ+βωδ ·

ˆ T

0
eαs+βA(s)|∆V (s) |2ds

and

2
∣∣∣ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆G(s)⟩dA(s)

∣∣∣≤ 2
ˆ T

t
eαs+βA(s)∣∣⟨∆Y (s) ,∆G(s)⟩

∣∣dA(s)

≤ β

2

ˆ T

t
eαs+βA(s)|∆Y (s) |2dA(s) + 2

β

ˆ T

t
eαs+βA(s)|∆G(s) |2dA(s)

≤ β

2

ˆ T

t
eαs+βA(s)|∆Y (s) |2dA(s) + 4L̃2

β

ˆ T

t
eαs+βA(s)|∆U (s) |2dA(s)

+4K̃1 A(T )
β

eαδ+βωδ · sups∈[0,T ]
(
eαs+βA(s)|∆U (s) |2

)
.

By (H1) and (H2), we have

(
K1T
4L2 + 4K̃1 A(T )

β

)
eαδ+βωδ ≤ 2c, P-a.s.;

K1
4L2 e

αδ+βωδ ≤ c, P-a.s,
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(recall that α := 8L2 + 1
2). Therefore,

eαt+βA(t)|∆Y (t) |2 + β

2

ˆ T

t
eαs+βA(s)|∆Y (s) |2dA(s)

+1
2

ˆ T

t
eαs+βA(s)|∆Z (s) |2ds

≤−2
ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆Z (s)dW (s)⟩+ 4L̃2

β

ˆ T

t
eαs+βA(s)|∆U (s) |2dA(s)

+2csups∈[0,T ]
(
eαs+βA(s)|∆U (s) |2

)
+ c

ˆ T

0
eαs+βA(s)|∆V (s) |2ds.

(2.5)

Since eαs+βA(s)∆Y ∈ S2,m and ∆Z ∈H2,m×d, one can show that

E
[ˆ T

0
eαs+βA(s)⟨∆Y (s) ,∆Z (s)dW (s)⟩

]
= 0,

hence

β

2E
ˆ T

0
eαs+βA(s)|∆Y (s) |2dA(s) + 1

2E
ˆ T

0
eαs+βA(s)|∆Z (s) |2ds

≤ 4L̃2

β
E
ˆ T

0
eαs+βA(s)|∆U (s) |2dA(s) + 2cE

[
sups∈[0,T ]

(
eαs+βA(s)|∆U (s) |2

)]
+cE

[ˆ T

0
eαs+βA(s)|∆V (s) |2ds

]
.

(2.6)

On the other hand, by Burkholder–Davis–Gundy’s inequality, we have

2E
[

supt∈[0,T ]

∣∣∣ˆ T

t
eαs+βA(s)⟨∆Y (s) ,∆Z (s)⟩dW (s)

∣∣∣]
≤ 1

2E
(
supt∈[0,T ] e

αt+βA(t)|∆Y (t) |2
)

+ 72E
ˆ T

0
eαs+βA(s)|∆Z (s) |2ds.

Hence, by (2.5),

1
2E
(
supt∈[0,T ] e

αt+βA(t)|∆Y (t) |2
)

≤ 72E
ˆ T

0
eαs+βA(s)|∆Z (s) |2ds+ 4L̃2

β
E
ˆ T

0
eαs+βA(s)|∆U (s) |2dA(s)

+2cE
[
sups∈[0,T ]

(
eαs+βA(s)|∆U (s) |2

)]
+ cE

[ˆ T

0
eαs+βA(s)|∆V (s) |2ds

]
.
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Thus, with a := λβ
2 , b := λ

2 −144 and some λ > 288, by taking into account (2.6), we obtain

E
(
supt∈[0,T ] e

αt+βA(t)|∆Y (t) |2
)

+a

ˆ T

0
eαs+βA(s)|∆Y (s) |2dA(s)

+bE
ˆ T

0
eαs+βA(s)|∆Z (s) |2ds

≤ 2c(2 +λ)E
[
sups∈[0,T ]

(
eαs+βA(s)|∆U (s) |2

)]
+ 4L̃2

β
(2 +λ)E

ˆ T

0
eαs+βA(s)|∆U (s) |2dA(s)

+c(2 +λ)E
ˆ T

0
eαr+βA(r)|∆V (r) |2dr,

so
∥(∆Y,∆Z)∥22,α,β,a,b ≤ µλ ∥(∆U,∆V )∥22,α,β,a,b ,

where
µλ := max

{
c(2 +λ), 8L̃2(2+λ)

λβ2 , 2c(2+λ)
λ−288

}
.

Since c < cβ,L̃, we can take λ slightly bigger than 1
2cβ,L̃

−2, such that 2c(2 +λ) < 1 and so
µλ < 1 (by the definition of cβ,L̃).

It follows that the application Γ is a contraction on the Banach space S2,m
β ×H2,m×d

β .
Therefore, by Banach fixed point theorem, there exists a unique fixed point (Y,Z) = Γ(Y,Z)
in the space S2,m

β ×H2,m×d
β , which completes our proof.

Remark 2.4. Let us underlined that the condition on A to be increasing can be relaxed
assuming it to be a continuous bounded variation F-adapted process with A0 = 0, P-a.s. Indeed,
by considering the increasing process Ã(t) := ∥A∥BV ([0,t]), t ∈ [0,T ] and the Radon–Nikodym
derivative γ(t) := dA(t)

dÃ(t) , t ∈ [0,T ], we have that |γ(t)| ≤ 1, ∀t ∈ [0,T ], P-a.s. and the BSDE
(2.3) can be rewritten as

Y (t) = ξ+
ˆ T

t
F (s,Y (s),Z(s),Ys,Zs)ds+

ˆ T

t
G̃(s,Y (s),Ys)dÃ(s)

−
ˆ T

t
Z(s)dW (s), t ∈ [0,T ] ,

where the new coefficient G̃ : Ω× [0,T ]×Rm×L2 ([−δ,0];Rm)→ Rm is defined as G̃(t,y, ŷ) :=
γ(t)G(t,y, ŷ), still satisfying the condition (B3), by replacing A with Ã and with the same L̃
and K̃.

As shown in [72], conditions as (H1) and (H2) restricting the magnitude of the delay are
necessary. However, in the same paper the authors provide some examples (F ≡KY (t−T )
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and F ≡K
´ t

0 Y (s)ds, with K ≤ 0) in which the delay can be considered of arbitrary length.
The next result is a first attempt to get rid of the restrictive assumptions concerning the delay,
by imposing monotonicity and linearity on generators F and G.

More precisely, we assume that m = 1, ξ ∈ L2 (Ω,FT ,P) and we require F and G not
depending on Zs), namely F : Ω× [0,T ]×R×Rd×L2 ([−δ,0])→ R and G : Ω× [0,T ]×R×
L2 ([−δ,0])→ R. Moreover, we require that:

(D1) ŷ 7→ F (t,y,z, ŷ) and ŷ 7→G(t,y, ŷ) are non-increasing with respect to the positive cone
of L2 ([−δ,0]) for all (t,y,z) ∈ [0,T ]×R×Rd, P-a.s.;

(D2) F (t,y,z, ŷ) = F0(t) +F1(y,z, ŷ), G(t,y, ŷ) =G0(t) +G1(y, ŷ), with F1 and G1 linear.

Thus, the BSDE (2.3) reduces to the following one:

Y (t) = ξ+
ˆ T

t
[F0(s) +F1(Y (s),Z(s),Ys)ds] +

ˆ T

t
[G0(s) +G1(Y (s),Ys)]dA(s)

−
ˆ T

t
Z(s)dW (s), t ∈ [0,T ] . (2.7)

Proposition 2.5. Assume conditions (D1), (D2) and (B0)–(B3) hold. If β > 2
√

2L̃, then
there exists a solution (Y,Z) ∈ S2,1

β ×H
2,1×d
β for (2.7).

Proof. As in the proof of theorem 2.3, we consider the map Γ : S2,1
β → S2,1

β , defined in the
following way: for U ∈ S2,1

β , Γ(U) = Y , where the couple of adapted processes (Y,Z) is the
solution to the equation

Y (t) = ξ+
ˆ T

t
[F0(s) +F1(Y (s),Z(s),Us)ds] +

ˆ T

t
[G0(s) +G1(Y (s),Us)]dA(s)

−
ˆ T

t
Z(s)dW (s), t ∈ [0,T ] .

Using the same type of computations as in the above proof, it is easy to see that even without
conditions (H1) and (H2), Γ is still a Lipschitz-continuous function. By a classical comparison
theorem for BSDEs, if U1(t) ≤ U2(t) Pdt-a.e., then Y 1(t) ≤ Y 2(t), ∀t ∈ [0,T ], P-a.s., with
Y i(t) := Γ(U i), i= 1,2. This shows that Γ is non-increasing with respect to the positive cone
of S2,1

β .
One can use now an argument from [154, Theorem 2.2] to show that there exist U,U ∈

S2,1
β such that Γ([U,U ]) ⊆ [U,U ], where [U,U ] :=

{
U ∈ S2,1

β | U(t)≤ U(t)≤ U(t), Pdt-a.e.
}

.
Obviously, [U,U ] is a closed, convex set of the Banach space S2,1

β .
Let Y 0 := U and, by recursion, Y n+1 := Γ(Y n). By the monotonicity property of Γ, it is
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easy to show that ∀t ∈ [0,T ], P-a.s.,

U(t) = Y 0(t)≤ Y 2(t)≤ ·· · ≤ Y 2n(t)≤ ·· · ≤ Y 2n+1(t)≤ ·· · ≤ Y 3(t)≤ Y 1(t)≤ U(t).

Let Y (t) := limn→∞Y 2n(t) and Y (t) := limn→∞Y 2n+1(t). Since U,U ∈ S2,1
β , for any H ∈

L2(Ω;BV [0,T ]) or H ∈L2(Ω× [0,T ],PdA(·)) we have, by the dominated convergence theorem,

lim
n→∞

E
ˆ T

0
eβA(t)Y 2n(t)H(t)dt= E

ˆ T

0
eβA(t)Y (t)H(t)dt and

lim
n→∞

E
ˆ T

0
eβA(t)Y 2n+1(t)H(t)dt= E

ˆ T

0
eβA(t)Y (t)H(t)dt.

Hence (eβA(·)/2Y 2n) and (eβA(·)/2Y 2n+1) converge weakly to eβA(·)/2Y , respectively eβA(·)/2Y ,
in both L2(Ω;C[0,T ]) and L2(Ω× [0,T ],PdA(·)). By Mazur’s lemma (applied two times), for
any n ∈ N there are convex combinations, let us call them Y n and Y

n, of the elements of
(Y 2k)k≥n, respectively (Y 2k+1)k≥n, such that (eβA(·)/2Y n) and (eβA(·)/2Y

n) converge strongly
in both L2(Ω;C[0,T ]) and L2(Ω× [0,T ],PdA(·)) to eβA(·)/2Y , respectively eβA(·)/2Y . Therefore,
(Y n) and (Y n) converge strongly in S2,1

β to Y , respectively eβA(·)Y ; thus, limn→∞ Γ(Y n) = Γ(Y )
and limn→∞ Γ(Y n) = Γ(Y ).

On the other hand, by the linearity of F1 and G1, Γ(Y n) and Γ(Y n) are convex combinations
of the elements of (Y 2k+1)k≥n, respectively (Y 2k)k≥n, so eβA(·)/2Γ(Y n) and eβA(·)/2Γ(Y n)
converge pointwisely to eβA(·)/2Y , respectively eβA(·)/2Y . Consequently, Γ(Y ) = Y and Γ(Y ) =
Y . Then, setting Y = 1

2Y + 1
2Y , we have Γ(Y ) = Y , which proves our claim.

2.4 Dependence on parameters

Let us consider, for all n ∈ N∗, the following BSDEs which approximate (2.3):

Y n(t) = ξn +
ˆ T

t
Fn(s,Y n(s),Zn(s),Y n

s ,Z
n
s )ds+

ˆ T

t
Gn(s,Y n(s),Y n

s )dAn(s)

−
ˆ T

t
Zn(s)dW (s), t ∈ [0,T ] , (2.8)

In order to unify the notations, we will sometimes denote ς0 instead of ς, if ς is ξ, A, F , G,
Y or Z. We suppose that the coefficients ξn, An, Fn, Gn, n≥ 0, satisfy conditions (B2)–(B3),
(H1), (H2) with processes Kn, K̃n, but the same constants β, c, L, L̃. Moreover, we have to
impose that β > 2

√
2L̃.

We suppose that there exists p > 1 such that
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(B′
0) supn∈NE

[
epβAn(T ) |ξn|2p

]
<+∞.

(B′′
0) supn∈NE

[
eqAn(T )

]
<+∞, for any q > 0.

(B′
1) supn∈NE

[(´ T
0 eβAn(t) |Fn (t,0,0,0,0)|2 dt

)p
+
(´ T

0 eβAn(t) |Gn (t,0,0)|2 dAn(t)
)p]

<+∞.

Under these assumptions, there exists a unique solution (Y n,Zn) ∈ S2,m
β ×H2,m×d

β to
equation (2.8). In fact, one can now prove by standard computations that (Y n,Zn) ∈
Sp,m

β ×Hp,m×d
β , ∀n ∈ N and

sup
n∈N
∥(Y n,Zn)∥p,β <+∞. (2.9)

Our aim is to show that if the coefficients (ξn,An,Fn,Gn) of equation (2.8) converge to
(ξ,A,F,G), then (Y n,Zn) converge to (Y,Z) in S2,m×H2,m×d. Let now specify in what sense
the convergence of the coefficients takes place. We define

∆nF := supt∈[0,T ], (y,z)∈Rm×Rm×d, (ŷ,ẑ)∈L2([−δ,0];Rm×Rm×d) |F
n(t,y,z, ŷ, ẑ)−F (t,y,z, ŷ, ẑ)| ;

∆nG := supt∈[0,T ], y∈Rm×Rm×d, ŷ∈L2([−δ,0];Rm) |Gn(t,y, ŷ)−G(t,y, ŷ)|

and impose

(C1) E
[
|ξn− ξ|2p

]
→ 0 as n→∞;

(C2) Esupt∈[0,T ] |An(t)−A(t)| → 0 as n→∞;

(C3) E[ (∆nF )2p + (∆nG)2p]→ 0 as n→∞.

The uniform convergence from assumption (C3) can be relaxed to a weaker type of
convergence; however, we will work with this hypothesis for the sake of keeping computations
as simple as possible.

We now state a technical result that needed for the proof of Theorem 2.8: it is a variant
of the Helly-Bray theorem for the stochastic case and is also stronger than Proposition 3.4
from [222]:

Proposition 2.6. Let (Xn,Hn) : (Ωn,Fn,Pn)→C([0,T ];Rd)2, n≥ 1, be a sequence of random
variables, converging in distribution to a random variable (X,H) : (Ω,F ,P)→ C([0,T ];Rd)2.
If for all n≥ 1, Hn is Pn-a.s. with bounded variation and

lim
ν→+∞

sup
n≥1

Pn

(
∥Hn∥BV ([0,T ];Rd) > ν

)
= 0, (2.10)

then H is P-a.s. with bounded variation and the sequence of C[0,T ]-valued random variables(´ ·
0 ⟨Xn(s),dHn(s)⟩

)
n≥1 converges in distribution to

´ ·
0 ⟨X(s),dHn(s)⟩.
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As expected, the proof of this result uses a deterministic Helly-Bray type theorem aiming
uniform convergence. We state and prove this result:

Lemma 2.7. Let (xn)n≥1 ⊆ C([0,T ];Rd) and (ηn)n≥1 ⊆BV ([0,T ];Rd) be two sequences of
functions such that:

i) xn converges uniformly to a function x∈C([0,T ];Rd);

ii) ηn converges uniformly to a function η;

iii) supn≥1 ∥ηn∥BV ([0,T ];Rd) <+∞.

Then η ∈BV ([0,T ];Rd), ∥η∥BV ([0,T ];Rd) ≤ liminfn→∞ ∥ηn∥BV ([0,T ];Rd) and the sequence of
continuous functions

(´ ·
0 ⟨xn(s),dηn(s)⟩

)
n≥1 converges uniformly to

´ ·
0 ⟨x(s),dη(s)⟩.

Proof. The first two assertions are well-known, so we skip their proof.
Let us prove the last one. We say that a tuple π = (t0, . . . , tk) is a partition of [0,T ] if

0 = t0 < t1 < · · ·< tkN
= T .

We consider πN = (tN0 , . . . , tNkN
), N ∈ N∗ partitions of the interval [0,T ] such that

lim
N→∞

sup
0≤i<tN

kN

∣∣∣tNi+1− tNi
∣∣∣= 0.

Let xN : [0,T ]→ Rd be a step-function approximating x, defined by

xN := 1{0}x(0) +
∑kN

i=1
1(ti−1,ti]x(ti).

Let M := supn≥1 ∥ηn∥BV ([0,T ];Rd). Then

∣∣∣∣∣
ˆ t

0
⟨xn(s),dηn(s)⟩−

ˆ t

0
⟨x(s),dη(s)⟩

∣∣∣∣∣≤
∣∣∣∣∣
ˆ t

0
⟨xn(s)−x(s),dηn(s)⟩

∣∣∣∣∣
+
∣∣∣∣∣
ˆ t

0

〈
x(s)−xN (s),d(ηn−η)(s)

〉∣∣∣∣∣+
∣∣∣∣∣
ˆ t

0

〈
xN (s),d(ηn−η)(s)

〉∣∣∣∣∣
≤ ∥xn−x∥C([0,T ];Rd) VT

0 (ηn) +
∥∥∥xN −x

∥∥∥
C([0,T ];Rd)

(
VT

0 (ηn) + VT
0 (η)

)
+
∑kN

i=1
|x(ti)| · |(ηn−η)(ti∧ t)− (ηn−η)(ti−1∧ t)| .

Therefore,

sup
t∈[0,T ]

∣∣∣∣∣
ˆ t

0
⟨xn(s),dηn(s)⟩−

ˆ t

0
⟨x(s),dη(s)⟩

∣∣∣∣∣≤M ∥xn−x∥C([0,T ];Rd)

+2M
∥∥∥xN −x

∥∥∥
C([0,T ];Rd)

+ 2
(∑kN

i=1
|x(ti)|

)
∥ηn−η∥C([0,T ];Rd) .
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It follows that

limsup
n→∞

sup
t∈[0,T ]

∣∣∣∣∣
ˆ t

0
⟨xn(s),dηn(s)⟩−

ˆ t

0
⟨x(s),dη(s)⟩

∣∣∣∣∣≤ 2M
∥∥∥xN −x

∥∥∥
C([0,T ];Rd)

.

Since limN→∞
∥∥∥xN −x

∥∥∥
C([0,T ];Rd)

= 0, we finally get

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∣
ˆ t

0
⟨xn(s),dηn(s)⟩−

ˆ t

0
⟨x(s),dη(s)⟩

∣∣∣∣∣= 0.

Let us now proceed with the proof of the main result of this section, which follows the
same steps as that of Proposition 3.4 from [222].

Proof of the proposition 2.6. Let W := C([0,T ];Rd), V := C([0,T ];Rd)∩BV ([0,T ];Rd) and,
for ν > 0,

Vν :=
{
η ∈V | ∥η∥BV ([0,T ];Rd) ≤ ν

}
.

By the first part of Lemma 2.7, Vν is a closed subset of the Banach space W.
Let us consider the function Λ : W×W→W defined by

Λ(x,η)(t) :=


´ t

0 ⟨x(s),dη(s)⟩ , (x,η) ∈W×V;
0, (x,η) ∈W× (W\V).

By the last conclusion of Lemma 2.7, the restriction Λ|W×Vν
is continuous.

Let now Rn := Pn ◦ (Xn,Hn)−1 and R0 := P◦ (X,H)−1, the distribution probabilities of
(Xn,Hn), respectively (X,H). By the assumptions of the theorem, (Rn)n≥1 converges weakly
to R0, i.e.

lim
n→∞

ˆ
W×W

Φ(x,η)Rn(dx,dη) =
ˆ

W×W
Φ(x,η)R0(dx,dη), (2.11)

for every bounded continuous functional Φ : W×W→ R.
First of all, by Portmanteau lemma,

limsup
n→∞

Rn (W×Vν)≤R0 (W×Vν) , ∀ν > 0.

Since, by condition (2.10),
lim

ν→+∞
inf
n≥1

Rn (W×Vν) = 1, (2.12)

we get limν→+∞R0 (W×Vν) = 1, i.e. R0 (W×V) = 1, meaning that H is P-a.s. of bounded
variation.
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Let now ϕ : C[0,T ]→ R be an arbitrary bounded continuous functional. It remains to
prove that limn→∞Eϕ(Λ(Xn,Hn)) = Eϕ(Λ(X,H)), which can be written as

lim
n→∞

ˆ
W×W

(ϕ◦Λ)dRn =
ˆ

W×W
(ϕ◦Λ)dR0.

Since ϕ◦Λ|W×Vν
is bounded and continous, it can be extended to a continuous functional

Φν : W×W→ R, bounded by M := supz∈C[0,T ]ϕ(z); hence, by (2.11),

lim
n→∞

ˆ
W×W

Φν (x,η)Rn(dx,dη) =
ˆ

W×W
Φν (x,η)R0(dx,dη).

Let us estimate the term

Tn,ν :=
∣∣∣∣∣
ˆ

W×W
(Φν (x,η)−ϕ◦Λ)Rn(dx,dη)

∣∣∣∣∣ ,
for n ∈ N (including then the case n= 0). We have

Tn,ν ≤
ˆ

W×W
|Φν (x,η)−ϕ◦Λ|Rn(dx,dη) =

ˆ
W×(W\Vν)

|Φν (x,η)−ϕ◦Λ|Rn(dx,dη)

≤ 2MRn (W× (W\Vν)) = 2M (1−Rn (W×Vν)) .

Hence, by (2.12) and its consequence

lim
ν→+∞

sup
n≥0

Tn,ν = 0.

Finally, for all n≥ 1 and ν > 0,

∣∣∣∣∣
ˆ

W×W
(ϕ◦Λ)dRn−

ˆ
W×W

(ϕ◦Λ)dR0

∣∣∣∣∣
≤
∣∣∣∣∣
ˆ

W×W
Φν (x,η)Rn(dx,dη)−

ˆ
W×W

Φν (x,η)R0(dx,dη)
∣∣∣∣∣+Tn,ν +T0,ν

and therefore

limsup
n→∞

∣∣∣∣∣
ˆ

W×W
(ϕ◦Λ)dRn−

ˆ
W×W

(ϕ◦Λ)dR0

∣∣∣∣∣≤ 2sup
n≥0

Tn,ν , ∀ν > 0

which, by passing to the limit as ν→ 0, yields the desired conclusion.

We are now in the position for presenting the main result of this section, namely the
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convergence in law of the solution of Eq. (2.8) to the BSDE (2.3):

Theorem 2.8. Assume that the above assumptions are fulfilled. Then

lim
n→∞

E
[

sup
t∈[0,T ]

|Y n(t)−Y (t)|2 +
ˆ T

0
|Zn(t)−Z(t)|2 dt

]
= 0.

Proof. Let us denote for short

∆nY (t) := Y n(t)−Y (t) , ∆nZ(t) := Zn(t)−Z(t) ; ∆nξ := ξn(t)− ξ(t)

ωn
δ := sup

t∈[0,T −δ]
(An(t+ δ)−An(t)) .

Exactly as in the proof of Theorem 2.3, by (H1) and (H2), we have

(
K1T
4L2 + 4K̃1 A(T )

β

)
eαδ+βωδ ≤ 2c , P-a.s.;

K1
4L2 e

αδ+βωδ ≤ c , P-a.s,

for all n ∈ N, where α= 8L2 + 1
2 . Let us apply Itô’s formula to eαt+βA(t) |Y n(t)−Y (t)|2:

eαt+βAn(t)|∆nY (t)|2 +
ˆ T

t
eαs+βAn(s)|∆nY (s)|2 (αds+β dAn(s)) +

ˆ T

t
eαs+βAn(s)|∆nZ(s)|2ds

= eαT +βAn(T )|∆nξ|2−2
ˆ T

t
eαs+βAn(s)⟨∆nY (s),∆nZ(s)dW (s)⟩

+2
ˆ T

t
eαs+βAn(s)⟨∆nY (s),Fn(s,Y n(s),Zn(s),Y n

s ,Z
n
s )−F (s,Y (s),Z(s),Ys,Zs)⟩ds

+2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,Gn(s,Y n(s),Y n

s )dAn(s)−G(s,Y (s),Ys)dA(s)⟩ .

From assumptions (B2)–(B3) and (B′
1), we have, with Kn

1 := supt∈[0,T ]K
n and K̃n

1 :=
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supt∈[0,T ] K̃
n,

2
ˆ T

t
eαs+βAn(s)⟨∆nY (s),Fn(s,Y n(s),Zn(s),Y n

s ,Z
n
s )−F (s,Y (s),Z(s),Ys,Zs)⟩ds

≤ 8L2
ˆ T

t
eαs+βAn(s)|∆nY (s) |2ds+ 1

2 |∆nF |2
ˆ T

t
eαs+βAn(s)ds

+1
2

ˆ T

t
eαs+βAn(s)

(
|∆nY (s) |2 + |∆nZ (s) |2

)
dr

+Kn
1 Te

αδ+βωn
δ

4L2 sups∈[0,T ]
(
eαs+βAn(s)|∆nY (s) |2

)
+Kn

1 e
αδ+βωn

δ

4L2

ˆ T

0
eαr+βAn(r)|∆nZ (r) |2dr

and, for all b > 0,

2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,Gn(s,Y n(s),Y n

s )dAn(s)−G(s,Y (s),Ys)dA(s)⟩

= 2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,Gn(s,Y n(s),Y n

s )−Gn(s,Y (s),Ys)⟩dAn (s)

+2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,Gn(s,Y n(s),Y n

s )−G(s,Y (s),Ys)⟩dAn (s)

+2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,G(s,Y (s),Ys)⟩ (dAn (s)−dA(s))

≤ 2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,G(s,Y (s),Ys)⟩ (dAn (s)−dA(s))

+b
ˆ T

t
eαs+βAn(s)|∆nY (s) |2dAn (s) + 4L̃2

b
|∆nG|2

ˆ T

t
eαs+βAn(s)dAn (s)

+β

2

ˆ T

t
eαs+βAn(s)|∆nY (s) |2dAn (s) + 4L̃2

β

ˆ T

t
eαs+βAn(s)|∆nY (s) |2dAn (s)

+4K̃n
1 A

n (T )eαδ+βωn
δ

β
sups∈[0,T ]

(
eαs+βAn(s)|∆nY (s) |2

)
.
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Since α= 4L2 + 1 and β > 2
√

2L̃, one can choose b := β
2 −

4L̃2

β and so we obtain

eαt+βAn(t)|∆nY (t)|2 + 1
2

ˆ T

t
eαs+βAn(s)|∆nZ(s)|2ds

≤ eαT +βAn(T )|∆nξ|2−2
ˆ T

t
eαs+βAn(s)⟨∆nY (s),∆nZ(s)dW (s)⟩

+2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,G(s,Y (s),Ys)⟩ (dAn (s)−dA(s))

+1
2 |∆nF |2

ˆ T

t
eαs+βAn(s)ds+ 4L̃2

b
|∆nG|2

ˆ T

t
eαs+βAn(s)dAn (s)

+K1Te
αδ+βωn

δ

4L2 sups∈[0,T ]
(
eαs+βAn(s)|∆nY (s) |2

)
+K1e

αδ+βωn
δ

4L2

ˆ T

0
eαs+βAn(s)|∆nZ (s) |2ds

+4K̃1A
n (T )eαδ+βωn

δ

β
sups∈[0,T ]

(
eαs+βAn(s)|∆nY (s) |2

)
.

Therefore, by conditions (H1) and (H2),

1
2

ˆ T

t
eαs+βAn(s)|∆nZ(s)|2ds

≤ 2
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,G(s,Y (s),Ys)⟩ (dAn (s)−dA(s))

+1
2 |∆nF |2

ˆ T

t
eαs+βAn(s)ds+ 4L̃2

b
|∆nG|2

ˆ T

t
eαs+βAn(s)dAn (s)

+2c sups∈[0,T ]
(
eαs+βAn(s)|∆nY (s) |2

)
+ c

ˆ T

0
eαs+βAn(s)|∆nZ (s) |2ds.

Exploiting Burkholder–Davis–Gundy’s inequality, we have that

2E
[
supt∈[0,T ]

∣∣∣ˆ T

t
eαs+βAn(s)⟨∆nY (s),∆nZ(s)dW (s)⟩

∣∣∣]
≤ 1

4 E
(
eαs+βAn(s)|∆nY (s) |2

)
+ 144E

ˆ T

0
eαs+βAn(s)|∆nZ (s) |2ds.
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As in the proof of Theorem 2.3, we obtain

E
(
sups∈[t,T ] e

αs+βAn(s)|∆nY (s) |2
)

+E
ˆ T

0
eαs+βAn(s)|∆nZ (s) |2ds

≤ CE
[
|∆nξ|2p + |∆nF |2p + |∆nG|2p

]
·EeβqAn(T )

+CE sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
eαs+βAn(s)⟨∆nY (s) ,G(s,Y (s),Ys)⟩ (dAn (s)−dA(s))

∣∣∣∣∣ .
where C is a positive constant and q := p

p−1 .
By conditions (C1) and (B′′

0),

lim
n→∞

E
[
|∆nξ|2p + |∆nF |2p + |∆nG|2p

]
·EeβqAn(T ) = 0.

It remains to prove that

lim
n→∞

E sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣= 0,

where, for s ∈ [0,T ],

Xn(s) := eαs+βAn(s)⟨∆nY (s) ,G(s,Y (s),Ys)⟩;

Hn(s) :=An (s)−A(s) .

One can prove that
E sup

t∈[0,T ]
|Xn(t)|p

is uniformly bounded (with respect to n), by (2.9). Obviously, by (B′′
0),

sup
n∈N∗

E sup
t∈[0,T ]

|Hn(t)|2 <+∞.

Hence, the sequence (Xn,Hn)n∈N∗ is tight in C [0,T ]2. By Prokhorov’s theorem, we can
extract a sequence, say (Xnk ,Hnk)k∈N∗ , convergent in distribution to some stochastic process
(X,H) with continuous paths. Since, by (C2), limn→∞Esupt∈[0,T ] |Hn(t)| = 0, H must be
P-a.s. equal to 0. The condition (B′′

0) also implies that supn∈NE∥Hn∥aBV [0,T ] <+∞, for every
a > 1, so ∥Hn∥BV [0,T ] is bounded in probability (i.e., it satisfies condition (2.10)). We can
now apply Proposition 2.6, proved as an auxiliary result in the Appendix section, in order to
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derive the convergence in distribution to 0 of the process(ˆ t

0
Xn(s)dHn(s)

)
t∈[0,T ]

.

Since, for some ν > 0, the functional ϕν : C [0,T ]→ R, defined by

ϕν(x) := sup
t∈[0,T ]

|x(T )−x(t)|∧ν,

is bounded and continuous, it follows that

E
[

sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣∧ν
]

= 0,

for every ν > 0. Since, by Markov’s inequality, for some a ∈ (1,p)

E sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣≤ E
[

sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣∧ν
]

+ 1
νa

E
[

sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣
a]

and

E
[

sup
t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣
a]
≤ E

[(
sup

t∈[0,T ]
|Xn(t)|a

)
∥Hn∥aBV [0,T ]

]

≤
(
E
[

sup
t∈[0,T ]

|Xn(t)|p
])a

p (
E∥Hn∥

p
a(p−a)
BV [0,T ]

)1− a
p

,

it follows that
lim

n→∞
E sup

t∈[0,T ]

∣∣∣∣∣
ˆ T

t
Xn(s)dHn(s)

∣∣∣∣∣= 0,

which concludes our proof.

2.5 Hedging a stream of payments with time-delayed GBSDE

In this last section we present a risk management application for an insurance product, the
so called variable annuity instrument, whose composition can be controlled by the insurer
selecting an appropriate strategy. The composition for the underlying investment portfolio
can be controlled internally by the insurer to reduce the overall risk of the policyholder
investment. Specifically, inspired by [71], we consider an insurance product where the
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policyholder withdraws some guaranteed amounts as a fraction of the maximum value of the
investment and, additionally, is subjected to a continuous payment triggered by an increasing
continuous process A modelling the cumulative function of claims (or, e.g. of fees for the
management of the wealth). At maturity the remaining value is converted into a life-time
annuity with a guaranteed consumption rate C.

We consider a probability space (Ω,F ,P) with associated natural filtration F = (Ft)0≤t≤R

generated by a Brownian motion W := (W (t), 0≤ t≤ T ) and a finite time horizon T ≤∞.
The goal of the investor is to replicate the insurance by investing into the assets and

to quantify the risk of the investing activities. In the terminology of [136], we focus on an
investment composed by a risk free asset S0 and a risky asset D.

The price of the risk free bond S0 := (S0(t), 0≤ t≤ T ) is given by the equation

dS0(t)
S0(t) = r(t)dt, S0(0) = 1, (2.13)

where r describes the risk free interest rate being a non-negative F-progressively measurable
stochastic process.

The price of the risky asset D := (D(t), 0≤ t≤ T ) with maturity T is given by

dD(t)
D(t) = (r(t) +σ(t)θ(t))dt+σ(t)dW (t), S(0) = x, (2.14)

where the volatility σ := (σ(t), 0 ≤ t ≤ T ) and the risk premium θ := (θ(t), 0 ≤ t ≤ T ) are
F-progressively measurable processes.

On the other hand, the stream of liabilities P (t) := (P (t), 0≤ t≤ T ) depends on the past
value of the portfolio by the following:

P (t) = γ sup
s∈[0,t]

{X(s)}dt+
ˆ t

0
X(s− δ)dA(s). (2.15)

The first term models a guaranteed withdrawal amount as a fraction γ ∈ (0,1) of the running
maximum value of the investment value. Instead, the second term models a Stieltjes integral
representing the total amount of continuous claims that depends on a past value of the
investment and that are triggered by the increasing continuous function A. We emphasize that
if we consider no dependence on the value of the investment X, i.e. only

´ t
0 dA(s), we obtain

the well-known case with A representing a cumulative consumption process. See, e.g., [136]
for a detailed description or [97] for the problem of utility maximization under a drawdown
constraint setting.

We consider a self financing investment portfolio X := (X(t),0≤ t≤ T ), while the admis-
sible strategy π := (π(t),0≤ t≤ T ) denotes the amount invested in the risky asset D.
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We denote µ(t) = r(t) +θ(t)σ(t) and we write the dynamic of X by the following SDE

dX(t) =π(t)dD(t)
D(t) + (X(t)−π(t)) dS0(t)

S0(t) −dP (t) (2.16)

=π(t)(µ(t)dt+σ(t)dW (t)) + (X(t)−π(t))r(t)dt

−γ sup
s∈[0,t]

{X(s)}dt−
ˆ t

0
X(s− δ)dA(s)

X(T ) =Ca(T ) ,

a being the annuity factor a(T ) = EQ
[´∞

T e−
´ s

T r(u)duds|FT

]
.

Equation (2.16) models a variable annuity contract where the policyholder’s contributions
are invested into two assets (D and S0). Positive returns are distributed to policyholder
account based on on the maximum value of the investment and on a prescribed process A
(hedging fee) while the remaining value at maturity is received as a life-time annuity.

From [71], we know that there exists a unique equivalent martingale measure Q∼ P under
which the discounted price process S is a (Q,F)-martingale. Thus, we perform the following
change of variables

Y (t) =X(t)e−
´ t

0 r(s)ds , Z(t) = π(t)σ(t)e−
´ t

0 r(s)ds , 0≤ t≤ T (2.17)

giving the following dynamic for the discounted portfolio process Y := (Y (t))0≤t≤T under the
measure Q

Y (t) = Cã(T ) +
ˆ T

t
γ sup

u∈[0,s]

{
Y (u)e−

´ s
u r(v)dv

}
ds+

+
ˆ T

t
Y (s− δ)e−

´ s−δ
0 r(v)dvdA(s)−

ˆ T

t
Z(s)dWQ(s) ,

(2.18)

WQ being a Q-Brownian motion.
By assuming that conditions (B0) - (B3) and (H1) - (H2) hold true and by applying

Theorem 2.3, we obtain existence and uniqueness of the solution of equation (2.18). Moreover,
the stability of the investment under a perturbation (in uniform norm) of the distribution of the
prescribed cumulative distribution is obtained by Theorem 2.8, letting to model robust hedging
for the investment with respect to a modification of the prescribed cumulative distribution of
future claims.
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2.6 Conclusions and further developments

In this chapter, we develop a theoretical framework to study a BSDE with a time-delayed
generator whose dynamic depends also on the Stieltjes integral term. Under regular assump-
tions of the coefficients and small delay, we prove the well-posedness of the problem in terms
of existence, uniqueness and stability under a perturbation in uniform norm. We also provide
an application of our results for a BSDE in insurance setting. Moreover, we obtain the global
(in time) well–posedness of the BSDE for an arbitrary delay that represents a novel result in
the literature, representing a first attempt to handle (globally) time delayed BSDE. Providing
a solid theoretical background for this setting could open up new directions for applications.

Concerning further direction of research, other extensions would consider the forward
reflected SDE linked to the Stieltjes integral in (2.1) to investigate the corresponding FBSDE
with delayed generator and possible connections with the nonlinear PDE with Neumann
boundary conditions in the spirit of [181]. Another possibility concerns considering Stieltjes
integration with respect to increasing functions that are not necessarily continuous, dealing
with dynamics driven by Poisson random measure.
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Mean Field Games theory
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3 The Master Equation with Absorption

3.1 Introduction

In this chapter we study the convergence problem in a bounded domain Ω⊂ Rd, via Master
Equation, whose precise definition is given in Eq. (3.7), requiring an absorbing condition at
the boundary ∂Ω, namely we ask for each player to remain in the game as long as his dynamic
lies in the interior int(Ω) of the domain Ω.

In this framework, the dynamic of the player i, 1≤ i≤N , is described by the following
Stochastic Differential Equation (SDE), with initial time t0 > 0 and final time T > t0:dX

i,t0
t = b(t,Xi,t0

t ,αi
t)dt+

√
2σ(Xi,t0

t )dBi
t

Xi,t0
t0 = xi

0.
(3.1)

αi
t being the control of the player i, i.e. a progressively measurable process taking values in a

certain set A, while b : [0,T ]×Ω×A→ Rd is the drift function and σ : Ω→ Rd×d represents
the diffusion matrix. Henceforth, for simplicity, we will shortly write Xi

t .

The process Xi
· is Markovian providing standard hypotheses on the drift and the coefficient

terms. Therefore, we are allowed to define the hitting time τ at ∂Ω in [0,T ] as

τ(Xi
· ) = inf

{
t ∈ [t0,T ] |Xi

t ∈ ∂Ω
}
∧T , (3.2)

where a∧ b := min{a,b} and we abbreviate τ(Xi
t) by τ i, whenever no confusion is possible.

From now on, we indicate a vector of RNd with v := (v1, . . . ,vN ), with vi ∈Rd, i∈ {1, ...,N}.
A cost functional is associated with each player i, which chooses his own strategy in order to
minimize it. To obtain a convergence result, we have to require the cost functional to have a
symmetric structure. Namely, we assume that the cost for the player i depends on both its
position xi and on the other players’ empirical distribution, defined as follows:

mN,i
x = 1

N −1
∑
j ̸=i

δxj1{xj∈int(Ω)} , (3.3)
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where δx is the Dirac mass at x. The indicator function specifies that we are interested only
in those players in the interior of Ω. Let us underline that the presence of such an indicator
function slightly modifies the classic theoretical setting of the problem: for the rest of the
chapter, mN,i

x belongs to Psub, the space of subprobability measure, as in-depth analyzed in
Section 3.2.2.

Consequently, the cost functional is defined in the following way

JN
i (t0,x0,α) = E

[ˆ τ i

t0

(
L
(
s,Xi

s,α
i
s

)
+F

(
s,Xi

s,m
N,i
Xs

))
ds+G

(
Xi

τ i ,m
N,i
x

)]
, (3.4)

where L, F and G are, respectively, the Lagrangian term, the running cost and the final
cost to pay at the hitting time, or at the final time when no boundary hitting happens.

Each player wishes to minimize its cost functional, which also depends on the strategies
of the other players. The set of strategies α∗ which allows the agents to play their optimal
strategy, in relation to the other agents, is called Nash equilibrium. Namely,

JN
i

(
t0,x0,α

∗)≤ JN
i

(
t0,x0,αi,(α∗

j )j ̸=i

)
.

We define vN
i (t,x) := JN

i (t,x,α∗). Exploiting both the Itô-Doeblin formula and the dynamic
programming principle, we have that α∗ is a Nash equilibrium if vN

i solves a coupled system
of parabolic equations, traditionally called Nash system. Namely, for (t,x) ∈ (0,T )×ΩN and
for i= 1, ...,N , we have

−∂tv
N
i −

N∑
j=1

tr
(
a(xj)D2

xjxj
vN

i

)
+H(t,xi,Dxiv

N
i )

+
N∑

j ̸=i

Hp(t,xj ,Dxjv
N
j ) ·Dxjv

N
i = F (t,xi,m

N,i
x ) ,

vN
i (T,x) =G(xi,m

N,i
x ) ,

vN
i (t,x)|xi∈∂Ω = 0 ,∀t ∈ [0,T ]

(3.5)

H(t,x,p) = sup
α∈A

(−b(t,x,α) ·p−L(t,x,α)) being the Hamiltonian of the system, and with Hp

its derivative in p and a= σσ∗.
Knowing the initial distribution, independently from the individual starting position on

∂Ω, implies that these players suddenly stop their dynamic at the initial time, hence making
no contribution to the evolution of other players. Therefore, for all i, j, the following equation
holds:

vN
i (t,x1, ... ,xj−1,x,xj+1, ... ,xN ) = vN

i (t,x1, ... ,xj−1,y,xj+1, ... ,xN ) , (3.6)

54



3.1. INTRODUCTION

for all x,y ∈ ∂Ω. Hence, the value function vN
i does not depend on xj when xj ∈ ∂Ω.

Roughly speaking, the degrees of freedom of the solution vN
i decreases from N to N −

(number of players on ∂Ω). This fact has a direct correspondence also in the dynamic of the
game in terms of a leak of mass in the Fokker-Planck equation, as we will see in (3.10) and in
the Psub formulation of the Master Equation w.r.t. to a new boundary condition as proved in
Corollary 3.13.

It is possible to provide a suitable approximation for the asymptotic configuration when
N → +∞ by introducing the MFG system. Roughly speaking, a generic player behaves
according to the following dynamic:dXt = b(Xt,αt)dt+

√
2σ(Xt)dBt ,

Xt0 = x0 ,

and the cost functional is given by
(
here τ = τ(X·)

)
J(t0,x0,α·) = E

[ˆ τ

t0

(
L(s,Xs,αs) +F (Xs,m(s))

)
ds+G(Xτ ,m(τ))

]
.

The solution of a MFG represents the analogous to a Nash equilibrium for a non-cooperative
game, see [39, 41, 45, 148, 149] for more details. Moreover, the optimal strategies in the MFG
system provide approximated ε-Nash equilibria in the Nash system, as proved, e.g., in [44, 130,
139]. However, the lack of compactness properties of the problem creates many difficulties in
the “very” convergence proof, i.e. in proving the convergence of the Nash equilibria in the
N -players game towards the optimal strategies of the MFG system.

In order to handle this problem, Lasry and Lions in [150] proved that the solutions of
the Mean Field Games are just the trajectories of a non-local transport equation, called the
Master Equation, in the space of measures. In particular, if (t,x,m) ∈ (0,T )×Ω×Psub(Ω),
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then the Master Equation is defined as follows:

−∂tU(t,x,m)− tr
(
a(x)D2

xU(t,x,m)
)

+H (t,x,DxU(t,x,m))

−
ˆ

Ω
tr(a(y)DyDmU(t,x,m,y))dm(y)

+
ˆ

Ω
DmU(t,x,m,y) ·Hp(t,y,DxU(t,y,m))dm(y) = F (x,m)

in [0,T ]×Ω×Psub(Ω) ,

U(T,x,m) =G(x,m) in Ω×Psub(Ω) ,

U(t,x,m) = 0 for (t,x,m) ∈ [0,T ]×∂Ω×Psub(Ω) ,
δU

δm
(t,x,m,y) = 0 for (t,x,m,y) ∈ [0,T ]×Ω×Psub(Ω)×∂Ω ,

(3.7)

where DmU and δU
δm are two derivatives, considered with respect to the measure variable m,

whose precise definition will be given later.
Furthermore, when we consider the limiting procedure by taking the number of agents N

to +∞, the solution of the Nash system will converge to the solution of the Master equation,
as proved by Cardaliguet, Delarue, Lasry and Lions in [41] for the periodic setting (Ω = Td).

For the sake of completeness, let us underline that our formulation of (3.7), is typically
referred to as First order Master Equation, or Master Equation without common noise,
appearing when the dynamic of the generic player has the form (3.1). Besides, in the Second
order Master Equation, or Master Equation with common noise, the dynamic of the generic
player presents an additional Brownian term dWt, common to all the players. In the latter
case, the Master Equation presents other terms depending on DmmU , a second order derivative
of U with respect to the measure, and the overall system difficulty significantly grows.

After being introduced in [150], the Master Equation has been studied in many papers,
almost always in the periodic case Ω = Td, or in the whole space Ω = Rd. In [33], Buckdahn,
Li, Peng proved the well-posedness of the first order Master equation without coupling terms,
by means of probabilistic arguments, while Chassagneux, Crisan and Delarue, in [51], provided
a first exhaustive existence and uniqueness result of solution, still without common noise.
Moreover, Gangbo and Swiech, in [115], gave a short time existence for the Master Equation
in the presence of common noise.

The most relevant result was certainly given in [41], where Cardaliaguet, Delarue, Lasry
and Lions proved the well posedness of the Master Equation, with and without common
noise, in a periodic setting. As regards other boundary conditions, in [194], Ricciardi proved
existence and uniqueness results for the first order Master Equation with Neumann boundary
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conditions.
Moreover, Carmona and Delarue in [45] derived convergence results in the whole space,

while in [69, 68], Delarue, Lacker and Ramanan used the Master Equation to analyse the
large deviation problem as well as the central limit theorem. Concerning the major-minor
problem, Cardaliaguet, Cirant and Porretta studied a convergence result in [40]. For finite
state problems, we refer to the works of Bayraktar and Cohen in [15] and by Cecchin and
Pelino in [49]. Finally, Bertucci, Lasry and Lions in [23] studied the Master Equation for the
Finite State Space Planning Problem. More recently, in the setting of MFG with exhaustible
resources, i.e. the continuum limit of a dynamic game of exhaustible resources modelling
Cournot competition between producers, see e.g. [117, 116] for more details, Graber and Sircar
study the Master Equation for a MFG of controls with absorption in [118]. Differently from
the classical setting studied in this chapter where the interaction is through the mean of the
state variable, in [118] the authors studied a model of Cournot competition between producers
whose states depend on the empirical measure over controls. Concerning a theoretical overview
of MFG of control, we refer to [43].

Other important papers about the Master Equation and the convergence problem are
given by [14, 46, 48, 50, 89, 90, 175, 143, 144, 113, 132, 114, 165].

Concerning the MFG model with absorption, the first-order system has been widely
studied, see for example [36], where the authors studied MFG with absorption through the
introduction of a renormalized empirical measure, or [104, 103], where a monotone regularized
version of the problem is considered. In [35] a model of bank run is considered within the
framework of a MFG model with absorption and common noise. In [18], the authors consider
a jump-diffusion dynamic with controlled jumps for the players, providing an example of
an illiquid inter-bank market model, where the banks can change their reserves only at the
jump times of some exogenous Poisson processes with a common constant intensity. Similar
problems, such as minimal-time MFGs where agents want to leave a given bounded domain
through a part of its boundary in minimal time with application to crowd motion, have been
studied in [166]. Similarly, in [21, 22, 31], optimal stopping MFGs were studied for a model
where a representative agent chooses both the optimal control and the optimal time to exit
the game. A very general result about the Mean Field Games system, which includes the
Dirichlet case as well as the periodic one and the Neumann case, was given by Porretta in
[190].

Our aim is to both treat MFG with absorption and to study the related Master Equation
(without common noise) for a bounded domain, assuming homogeneous Dirichlet boundary
conditions. We refer to [194] and [195] for an equivalent result in the Neumann case.

The main contributions of this work can be summarized as follows:
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• Existence of the Master Equation solution for a bounded domain with Dirichlet setting:
the solution corresponds to an equilibrium of a (random) flow of sub-probability measures.
Here, the main novelty relies upon the study of the Master Equation (3.7) in Psub(Ω)
instead of P(Ω), the space of Borel probability measures in Ω. This particular measure
space is essential to handle the dissipation of mass related to the framework of Dirich-
let’s boundary conditions. Furthermore, we use specific tools such as the generalized
Wasserstein distance introduced in [188] to deal with subprobability measures.

• A new boundary condition in the Master Equation: we stress the fact that the last
boundary condition δU

δm = 0 in (3.7) is completely new in the literature. It relies on
the fact that the Dirichlet boundary condition in the Nash system (3.5) provides a
smoothing effect near the boundary while approaching the asymptotic configuration.

The chapter is basically divided into three parts: first, we study the Master Equation (3.7),
proving the existence, uniqueness and regularity of solutions; then we use previously obtained
results on the Master Equation to prove the convergence problem, in a suitable sense; while
in the third part, we provide an economical application, inspired by the models proposed by
[43, 127, 145]. More precisely, in Section 3.2, we introduce the basic notations and hypotheses
we will need throughout the chapter, and we state the two main results we want to prove.
In Section 3.6 we give a formal proof for the well-posedness of the Master Equation, which
becomes rigorous provided some strong regularity results of the function U . In Sections 3.7
and 3.9 we state the latter regularity results for U : in particular, Section 3.7 is devoted to the
study of the Fokker-Planck equation and the Mean Field Games, whereas in Section 3.9 we
analyze a MFG linearized system which provides a suitable regularity for the function U . In
Section 3.11 we derive results about the convergence of the solution and we conclude with
3.12, presenting an optimal liquidation toy model.

The function U is defined as in (3.9), and various estimates, such as global bounds and
global Lipschitz regularity, are established. Notably, one of the key challenges in demonstrating
that U satisfies (3.7) is establishing its C1 continuity with respect to m. This step necessitates
a meticulous analysis of the linearized mean field game system (refer to [41, 194]) to establish
strong regularity of U in both the spatial and measure variables.

It is worth highlighting that these regularity estimates demand strong regularity not only
in the spatial domain but also in the measure variable.

In the spatial domain, the regularity is derived in [41] through differentiation of the
equation with respect to x. However, in the case of Dirichlet boundary conditions, as well as
in general for any boundary conditions, such methods are not directly applicable. Instead, we
obtain these bounds by employing a distinct set of space-time estimates that require careful
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handling.
Moreover, it’s essential to note that regularity estimates for the Dirichlet parabolic equation

necessitate compatibility conditions between initial and boundary data. Unfortunately, these
compatibility conditions cannot always be guaranteed within this context. Consequently, we
extend the estimates obtained in [41] through an in-depth investigation of the regularity of
solutions to the Fokker-Planck equation.

A noteworthy novelty in this work is the meticulous study of the Fokker-Planck equation
and the linearized Mean Field Games system. This study is conducted within negative-order
Hölder spaces, and the well-posedness is established via approximation using smooth functions.
However, it’s important to emphasize that smooth functions are not dense in the dual of
Hölder spaces, as pointed out in [132]. As a result, we must confine our analysis to appropriate
subsets of these dual spaces. Notably, these ideas can be applied also to adjust the Neumann
case [194].

3.2 Problem Formulation and Main Results

In the first part of the chapter, we analyze the well-posedness of the Master Equation defined
on [0,T ]×Ω×Psub(Ω) with a homogeneous Dirichlet condition on ∂Ω.

Our aim is to find a solution U : [0,T ]×Ω×Psub(Ω)→ R which solves strongly the
equation (3.7). Following the classical framework, described in [41], for each initial data
(t0,m0) ∈ [0,T ]×Psub(Ω), we consider the MFG system in [t0,T ]×Ω with a homogeneous
Dirichlet conditions:

−ut− tr(a(x)D2u) +H(t,x,Du) = F (t,x,m(t)) ,

mt−
∑
ij

∂2
ij(aij(x)m)−div(mHp(t,x,Du)) = 0 ,

m(t0) =m0, u(x,T ) =G(x,m(T )) ,

u|∂Ω = 0 , m|∂Ω = 0 ,

(3.8)

where, as always, a backward Hamilton-Jacobi-Bellman equation for the value function u of
the generic player is coupled with a forward Fokker-Planck equation for the density m of the
population. Then we define

U(t0,x,m0) = u(t0,x) (3.9)

and we want to prove that, under certain assumptions, U is the solution of the Master
Equation (3.7).

First and foremost, we point out that assuming a Dirichlet boundary condition implies

59
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the following preliminary estimate on m:

∥m(t)∥L1 ≤ 1 ∀m0 ∈ Psub(Ω) . (3.10)

This is a classical result, under certain assumptions on H (which will be included in our
hypotheses), and it was proved, for example, in Proposition 3.10 of [190] for m0 ∈ L1(Ω); by
a density argument, it can be easily extended for m0 ∈ Psub(Ω).

Hence, m can not be represented as a probability measure as it occurs in the periodic setting
[41] or in the Neumann formulation [194]. This is why we have to work with m ∈ Psub(Ω).

Actually, this is not a strange result: following the stochastic interpretation and the
N -players game, the agents exit the bounded boundary when they hit Ω and, thus, the
corresponding distribution mN,i

x should decrease in terms of mass.

3.2.1 Hölder spaces

In what follows we briefly recall basic notions about the Banach functions spaces then used
throughout the chapter, see, e.g., [146, 194], for more details.

Let T > 0 and Ω⊂ Rd be the closure of an open, bounded and connected set, with the
boundary of class C2+α, for some α > 0; we denote with QT the set QT := [0,T ]×Ω. We call
d(·) the oriented distance function from the boundary of Ω, defined as

d(x) =

 dist(x,∂Ω) x ∈ Ω ,

−dist(x,∂Ω) x /∈ Ω .

Thanks to [70], we have d(·) ∈ C2+α in a neighbourhood of the boundary. Since we are only
interested in the local character of d near ∂Ω, when we write d(·), we mean a C2+α function
coinciding with d in a neighbourhood of the boundary.

For n≥ 0 and α ∈ (0,1), Cn+α(Ω) is defined as the space of functions n-times differentiable,
with derivatives α-Hölder continuous. Being ϕ ∈ Cn+α(Ω), its norm is defined in the following
way:

∥ϕ∥n+α :=
∑

|ℓ|≤n

wwwDlϕ
www

∞
+
∑

|ℓ|=n

sup
x ̸=y

|Dℓϕ(x)−Dℓϕ(y)|
|x−y|α

.

Similarly, the parabolic space C n+α
2 ,n+α(QT ) consists of functions ϕ admitting derivatives
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Dr
tD

s
xϕ, with 2r+s≤ n, and with norm

∥ϕ∥n+α
2 ,n+α :=

∑
2r+s≤n

∥Dr
tD

s
xϕ∥∞ +

∑
2r+s=n

sup
t
∥Dr

tD
s
xϕ(t, ·)∥α

+
∑

0<n+α−2r−s<2
sup

x
∥Dr

tD
s
xϕ(·,x)∥n+α−2r−s

2
.

In order to work with Dirichlet boundary conditions, we define the spaces Cn+α,D(Ω) and
C

n+α
2 ,n+α,D(QT ) as the subspaces of functions belonging to Cn+α(Ω), resp. to C n+α

2 ,n+α(QT ),
vanishing at ∂Ω. When there is no risk of confusion, we will omit the set Ω or QT .

Analogously, we define the spaces C0,α, Cα,0, C1,2+α. For the sake of completeness, also
because of its relevance throughout the work, let us specify the norm equipping the latter
functional space:

∥ϕ∥1,2+α := ∥ϕ∥∞ +∥ϕt∥0,α +∥Dxϕ∥∞ +
∥∥∥D2

xϕ
∥∥∥

0,α
.

Eventually, we have to work with suitable subsets of the dual spaces of Cn+α and Cn+α,D.
In particular, we denote as C−(n+α) the set

C−(n+α) :=

ρ ∈ (C(n+α)
)′ ∣∣∣⟨ρ,ϕ⟩=

∑
|γ|≤n

ˆ
Ω
∂γϕ(x)ργ(dx) ∀ϕ ∈ Cn+α , (ργ)γ measures on Ω


In the same way we define the set C−(n+α),D and C− α

2 ,−α. The norms on these spaces are
inherited by the classical dual spaces norm:

∥ρ∥−(n+α) = sup
∥ϕ∥n+α≤1

⟨ρ,ϕ⟩ , ∥ρ∥−(n+α),D = sup
∥ϕ∥n+α,D≤1

⟨ρ,ϕ⟩ ,

∥ρ∥−( α
2 ,α) = sup

∥ϕ∥ α
2 ,α≤1

⟨ρ,ϕ⟩

The importance of these subspaces is given by the following result.

Lemma 3.1. The space C−(n+α) is a norm-closed subset of
(
Cn+α

)′. Moreover, if ρ ∈ C−n,
then there exist a sequence {ρk}k ⊂ C2+α such that ρk→ ρ in C−(n+α) and ρk |∂Ω = 0.

Proof. Thanks to [132, Lemma 2.6], we know that C−(n+α) is a norm-closed subset of
(
Cn+α

)′.
Let ρ ∈ C−n. Then there exist measures {ργ}|γ|≤n such that ρ = ∑

|γ|≤n
∂γργ(dx) . Defining

ργ(Rd \Ω) = 0, we can consider {ργ}γ as measures on Rd.
Let {nε}ε be smooth mollifiers. We define ρk

γ := ργ ∗η 1
k

and ρ̃k := ∑
|γ|≤n

∂γρk
γ(dx) . Thanks

to [132, Lemma 2.3, Lemma 2.7], we have ρ̃k ∈ C∞ and ρ̃k→ ρ in C−(n+β) for all β > 0.
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Then, we consider a nonnegative smooth function ξk(s) ∈ C∞(R) such that ξk(s) = 1 for
|s| ≥ 1

k and ξk(0) = 0. We define ρk(x) = ρ̃k(x)ξk(d(x)). Then we have ρk ∈ C2+α and the
convergence to ρ in C−(n+α) is preserved.

3.2.2 Subprobability Measures and Generalized Wasserstein Measure

Let us start the present subsection with a proper notion of distance for elements belonging to
Psub(Ω). Since the usual Wasserstein distance Wp(µ,ν) is defined only when the two measures
µ,ν have the same mass, in what follows we rely on the so-called generalized Wasserstein
distance which allows computing distance between measures with different masses, see e.g. [188,
189] for a complete description and [105, 197] for the corresponding probabilistic interpretation
based on optimal transport.

According to [189], we introduce also the following definition which is the one we will use
throughout the chapter.

Definition 3.3. Let m1,m2 ∈Psub(Ω) be two Borel sub-probability measures on Ω. We call the
generalized Wasserstein distance between m1 and m2, and we write d1(m1,m2) the quantity

d1(m1,m2) := sup
Lip(ϕ)≤1 ,∥ϕ∥C0 ≤1

ˆ
Ω
ϕ(x)d(m1−m2)(x) , (3.11)

We remark that d1(m1,m2) is equivalent to the well-known flat metric over the space of
Radon measures with finite mass on Ω.

Furthermore, we define a suitable derivation of U with respect to the (sub)measure m as
it appears in the Master Equation (3.7). Namely, we have:

Definition 3.4. Let U :Psub(Ω)→R. We say that U is of class C1 if there exists a continuous
map K : Psub(Ω)×Ω→ R such that, for all m1, m2 ∈ Psub(Ω) we have

lim
s→0

U(m1 +s(m2−m1))−U(m1)
s

=
ˆ

Ω
K(m1,x)(m2(dx)−m1(dx)) . (3.12)

We define δU

δm
(m,x) :=K(m,x).

Remark 3.2. Condition (3.12) defines uniquely the derivative K. Conversely, in the classical
setting, where U : P(Ω)→ R, see e.g. [41, 194], the function K is defined up to an additive
constant, since, for c ∈ R and m1,m2 ∈ P(Ω),

´
Ω cd(m2−m1) = 0. Hence, in those cases a

normalization condition is needed to uniquely identify K.
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Let us note that, exploiting Eq. (3.12), we have the following equality for m1, m2 ∈Psub(Ω),

U(m2)−U(m1) =
ˆ 1

0

ˆ
Ω

δU

δm
(m1 +s(m2−m1),x)(m2(dx)−m1(dx))ds.

which turns out to be very useful in our computations. Moreover, we note that, if δU
δm is C1 in

the space variable, we have

|U(m2)−U(m1)| ≤ sup
m

wwwwDx
δU

δm
(m, ·)

wwww
∞

d1(m1,m2) ,

suggesting us define the intrinsic derivative of U with respect to m, which directly appears in
the Master Equation (3.7).

Definition 3.5. Let U : Psub(Ω)→ R. If U is of class C1 and δU
δm is of class C1 with respect

to the last variable, we define the intrinsic derivative DmU : Psub(Ω)×Ω→ Rd as

DmU(m,x) :=Dx
δU

δm
(m,x) .

3.5.1 Assumptions

We require the following hypotheses throughout the report:

Hypotheses 1. Let 0< α < 1. Assume that

(i) ∥a(·)∥1+α <∞ and ∃µ > λ > 0 s.t. ∀ξ ∈ Rd

λ|ξ|2 ≤ ⟨a(x)ξ,ξ⟩ ≤ µ|ξ|2 ;

(ii) H : [0,T ]×Ω×Rd→R, G : Ω×Psub(Ω)→R and F : [0,T ]×Ω×Psub(Ω)→R are smooth
functions with H locally Lipschitz with respect to the last variable;

(iii) ∃C > 0 s.t.
0<Hpp(t,x,p)≤ CId×d ;

(iv) F is increasing in the last variable, i.e.
ˆ

Ω

(
F (t,x,m)−F (t,x,m′)

)
d(m−m′)(x)≥ 0;

moreover

sup
m∈Psub(Ω)

(
∥F (·, ·,m)∥α

2 ,α +
∥∥∥∥ δFδm(·, ·,m, ·)

∥∥∥∥
α
2 ,α,2+α

)
+ Lip

(
δF

δm

)
≤ CF ,
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with

Lip
(
δF

δm

)
:=

sup
m1 ̸=m2

(
∥m1−m2∥−1

−(2+α),D

∥∥∥∥ δFδm(·, ·,m1, ·)−
δF

δm
(·, ·,m2, ·)

∥∥∥∥
α
2 ,α,2+α

)
;

(v) G satisfies the same estimates as F with α and 1 +α replaced by 2 +α, i.e.

sup
m∈Psub(Ω)

(
∥G(·,m)∥2+α +

∥∥∥∥ δGδm(·,m, ·)
∥∥∥∥

2+α,2+α

)
+ Lip

(
δG

δm

)
≤ CG ,

with

Lip
(
δG

δm

)
:=

sup
m1 ̸=m2

(
∥m1−m2∥−1

−(2+α),D

∥∥∥∥ δGδm(·,m1, ·)−
δG

δm
(·,m2, ·)

∥∥∥∥
2+α,2+α

)
;

(vi) Moreover, we require the following Dirichlet boundary conditions:

δF

δm
(t,x,m,y)|y∈∂Ω = 0 , δG

δm
(x,m,y)|y∈∂Ω = 0 , G(x,m)|x∈∂Ω = 0 ,

for all m ∈ Psub(Ω).

We note that in hypotheses (vi) we have two standard compatibility assumptions for G
and δG

δm , naturally linked to the boundary conditions framework. In particular, the condition
on G is essential to have a classical solution for both the Master Equation (3.7) and the MFG
system (3.8), whereas the condition on δG

δm is a compatibility condition for the linearized MFG
system, see e.g. Corollary 3.13.

We underline that condition on F is a novelty, and it will play a crucial role when
considering the Dirichlet boundary condition of δU

δm .

3.5.2 Convergence in the Nash system

The second part of the chapter is focused on the convergence problem. As already said, the
value function vN

i is defined as the cost function related to the optimal control, and functions
{vN

i }i solve the Nash system (3.5).
The idea is to define proper finite dimensional projections U along trajectories mN,i

x . To
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this end, we define the following functions uN
i :

uN
i (t,x) = U(t,xi,m

N,i
x )

then proving that they almost solve the Nash system (3.5), with an error of order 1
N , and

such that, within suitable spaces, |uN
i −vN

i | → 0, for N →+∞.
The main Theorem of this part is the following:

Theorem 3.3. Assume Hypotheses 1 hold true and let (vN,i)i∈{1,...,N} be the solution of (3.5)
and U the solution of the master equation (3.7). Fix N ≥ 1 and (t0,m0) ∈ [0,T ]×Psub(Ω).

(i) For any x ∈ (Ω)N , let mN
x := 1

N

N∑
i
δxi1{xj∈int(Ω)}. Then,

sup
i=1,...,N

∣∣∣vN,i(t0,x)−U(t0,xi,m
N
x )
∣∣∣≤ C

N

(ii) For any i ∈ {1, ...,N} and xi ∈ Ω, we define

wN,i(t0,xi,m0) :=
ˆ

ΩN−1
vN,i(t0,x)

∏
j ̸=i

m0(dxj) ,

where x = (x1, ...,xN ). Then,

||wN,i(t0, ·,m0)−U(t0, ·,m0)||L1(m0) ≤
{ CN−1/d if d≥ 3
CN−1/2 log(N) if d= 2
CN−1/2 if d= 1

(3.13)

3.6 Well-posedness of the Master Equation

A formal proof of existence and uniqueness of solutions for (3.7) can be easily given directly
using the very definition of U . The difficulty here relies on the proof of the C1 character of U
with respect to m. Once proved this and the boundary conditions of U , the existence and
uniqueness theorem are rigorously proved, as we will see in the following theorem.

Theorem 3.4. Suppose hypotheses 1 are satisfied. Take U defined as in (3.9), suppose that
δU
δm exists, being also bounded in C2+α

x ×C2+α
y , uniformly in t and continuously in m, and that

boundary conditions of (3.7) hold for U . Then U is the unique classical solution U of the
Master Equation (3.7).
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Proof. Existence. By a density argument, we only need to prove that U solves (3.7) at
(t0,x,m0), where m0 is a smooth and positive function satisfying m0|∂Ω = 0 and

´
Ωm0(x)dx≤ 1.

Taking (u,m) as the solution of the MFG system starting from m0 at time t0, by the definition
of U , we have that for all s > t0

U(s,x,m(s)) = u(s,x) ,

therefore, we can write

∂tU(t0,x,m0) = lim
h→0

U(t0 +h,x,m0)−U(t0 +h,x,m(t0 +h))
h

+ut(t0,x) .

Again by the very definition of U :

ut(t0,x) =−tr(a(x)D2
xU(t0,x,m0)) +H(t0,x,DxU(t0,x,m0))−F (t0,x,m0) .

As regards the limit part, we define ms := (1−s)m(t0)+sm(t0 +h). Since U is C1 with respect
to m, then:

− lim
h→0

ˆ 1

0

ˆ
Ω

δU

δm
(t0 +h,x,ms,y)(m(t0 +h,y)−m(t0,y))

h
dyds=

−
ˆ

Ω

δU

δm
(t0,x,m0,y)

(∑
ij

∂2
ij(aij(x)m(t0,y))

+ div
(
m(t0,y)Hp(t0,y,Du(t0,y))

))
dy .

Integrating by parts, and using the boundary conditions of δU
δm and m, we can rewrite the

right-hand side as

ˆ
Ω

[
Hp(t0,y,DxU(t0,y,m0))DmU(t0,x,m0,y)

− tr
(
a(y)DyDmU(t0,x,m0,y)

)]
dm0(y) ,
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therefore

∂tU(t,x,m) =−tr
(
a(x)D2

xU(t,x,m)
)

+H (t,x,DxU(t,x,m))

−
ˆ

Ω
tr(a(y)DyDmU(t,x,m,y))dm(y)

+
ˆ

Ω
DmU(t,x,m,y) ·Hp(t,y,DxU(t,y,m))dm(y)−F (t,x,m) ,

hence concluding the existence part.
Uniqueness. Suppose that there exists a second solution V of (3.7). We fix (t0,m0), with

m0 smooth s.t. m0|∂Ω = 0, and we take m̃ as the solution of


m̃t−

∑
ij
∂2

ij(aij(x)m̃)−div
(
m̃Hp(t,x,DxV (t,x,m̃))

)
= 0 ,

m̃(t0) =m0 ,

m̃|∂Ω = 0

which is well-posed since DxV is Lipschitz continuous with respect to the measure. Then we
define ũ(t,x) = V (t,x,m̃(t)) and we want to prove that ũ solves a Hamilton-Jacobi equation.
Using the equations of V and m̃, we get

ũt(t,x) =Vt(t,x,m̃(t)) +
ˆ

Ω

δV

δm
(t,x,m̃(t),y)m̃t(t,y)dy

=Vt(t,x,m̃(t)) +
ˆ

Ω

δV

δm
(t,x,m̃(t),y)

∑
ij

∂2
ij(aij(x)m̃(t,y))dy

+
ˆ

Ω

δV

δm
(t,x,m̃(t),y)div

(
m̃Hp(t,x,DxV (t,x,m̃))

)
dy .

Previous integrals can be easily estimated with an integration by parts, and taking into
account the boundary condition for V . As regards the first, we have

ˆ
Ω

δV

δm
(t,x,m̃(t),y)

∑
ij

∂2
ij(aij(x)m̃(t,y))dy =

ˆ
Ω

tr(a(y)DyDmV (t,x,m̃(t),y))m̃(t,y)dy ,

while for the second
ˆ

Ω

δV

δm
(t,x,m̃(t),y)div

(
m̃Hp(t,x,DxV (t,x,m̃))

)
dy

=−
ˆ

Ω
Hp(t,x,DxV (t,x,m̃))DmV (t,x,m̃,y)m̃(t,y)dy .
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Previous estimates allow us to write

ũt(t,x) =Vt(t,x,m̃(t)) +
ˆ

Ω
tr(a(y)DyDmV (t,x,m̃,y))dm̃(y)

−
ˆ

Ω
Hp(t,y,DxV (t,y,m̃))DmV (t,x,m̃,y)dm̃(y)

= − tr(a(x)D2ũ(t,x)) +H(t,x,Dũ(t,x))−F (t,x,m̃(t)) ,

hence (ũ, m̃) is a solution of the MFG system (3.8). Then, by uniqueness of solutions for the
MFG system, we get (ũ, m̃) = (u,m), implying that V (t0,x,m0) = U(t0,x,m0), whenever m0

is smooth. Therefore, by density, the uniqueness is proved.

In the next two sections, we will prove the C1 character of U with respect to m, the C2

regularity in x and y of δU
δm and the boundary conditions for U , hence justify the hypotheses

previously given, also allowing us to then apply Theorem 3.4 and finally prove the well-
posedness of (3.7).

3.7 The Fokker-Planck equation and the MFG system

Let us first give the following technical lemma, providing a regularity result for a linear PDE
with non-homogeneous drift.

Lemma 3.5. Suppose a satisfies hypothesis (i) of 1 , let q= d+2
1−α , b,f ∈Lq(QT ), ψ ∈C1+α,D(Ω),

and z be the solution of
−zt− tr(a(x)D2z) + b(t,x) ·Dz = f(t,x) ,

z(T ) = ψ ,

z|∂Ω = 0 .

Then z satisfies
∥z∥ 1+α

2 ,1+α ≤ C
(
∥f∥Lq +∥ψ∥1+α

)
. (3.14)

Moreover, if b,f ∈ C0,α(QT ) and ψ ∈ C2+α,D(Ω), it holds

∥z∥1,2+α ≤ C
(
∥f∥0,α +∥ψ∥2+α

)
. (3.15)

Proof. We exploit ideas stated in [194]. In particular, if f ∈ C(QT ), b∈ C(Ω), then we conclude
with Theorem 5.1.1 of [158]. While, in the general case, we write z = z1 +z2, where z1 and z2

respectively satisfy:
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−(z1)t− tr(a(x)D2z1) = 0 ,

z1(T ) = ψ ,

z1|∂Ω = 0 ,

and 
−(z2)t− tr(a(x)D2z2) + b ·Dz2 = f − b ·Dz1 ,

z2(T ) = 0 ,

z2|∂Ω = 0 .

For z1, we apply Theorem 5.1.11 of [158] to obtain ∥z1∥ 1+α
2 ,1+α ≤ C∥ψ∥1+α . For z2, by

Corollary of Theorem IV.9.1 in [146], we have

∥z2∥ 1+α
2 ,1+α ≤ C∥f − bDz1∥Lq ≤ C

(
∥f∥Lq +∥ψ∥1+α

)
,

concluding the first part. Then, if b,f ∈ C0,α(QT ) and ψ ∈ C2+α,D, by (3.14), we have
f − b ·Dz ∈ C0,α, allowing to apply Theorem 5.1.13 in [158] to conclude.

3.7.1 The Fokker-Planck equation

From now on, q will denote the quantity q := d+2
1−α , and p will be the conjugate exponent of q,

i.e. p := d+2
d+1+α .

The present section is focused on the study of the following Fokker-Planck equation
µt−div(a(x)Dµ)−div(µb) = div(c) ,

µ(t0) = µ0 ,

µ|∂Ω = 0 ,

(3.16)

where c ∈ L1(QT ), µ0 ∈ C−(1+α), and b ∈ Lq(QT ). Let us underline that the latter equation
plays a fundamental role in studying both the Mean Field Games system and the linearized
one.

The main difficulty here relies on low regularity of both data and coefficients. Hence, the
main idea is to start with the regular case, where we have the existence and uniqueness of
solutions, to then obtain estimates that we will then exploit to pass to the limit in the general
case.

Let us start by giving a suitable definition of a solution for the system (3.16):
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Definition 3.8. Let c∈L1, µ0 ∈ C−1, b∈Lq. We say that a function µ∈ C([0,T ];C−(1+α),D)∩
L1(QT ) is a weak solution of (3.16) if, for all t ∈ (t0,T ] and ϕ satisfying in [t0, t]×Ω the
following linear equation 

−ϕt−div(aDϕ) + bDϕ= ψ ,

ϕ(t) = ξ ,

ϕ|∂Ω = 0 ,

(3.17)

with ψ ∈ L∞(Ω) and ξ ∈ C1+α,D, it holds true:

⟨µ(t), ξ⟩+
ˆ t

t0

ˆ
Ω
µ(s,x)ψ(s,x)dxds= ⟨µ0,ϕ(t0, ·)⟩−

ˆ t

t0

ˆ
Ω
c(s,x) ·Dϕ(s,x)dxds, (3.18)

where ⟨·, ·⟩ denotes, respectively, the duality between C−(1+α),D and C1+α,D, C−(1+α) and C1+α.

Note that Lemma 3.5 implies ϕ ∈ C 1+α
2 ,1+α, therefore the terms on the right-hand side are

well-defined and the definition is well-posed.

Proposition 3.6. Let c∈L1, µ0 ∈ C−1, b∈Lq. Then there exists a unique solution for (3.16),
which satisfies, for a certain C depending on a and b,

sup
t∈[t0,T ]

∥µ(t)∥−(1+α),D +∥µ∥Lp ≤ C
(
∥µ0∥−(1+α) +∥c∥L1

)
, (3.19)

Moreover, if µn
0 → µ0 in C−(1+α), bn → b in Lq, cn → c in L1, we have µn → µ in

C([0,T ];C−(1+α),D)∩Lp(QT ), where µn and µ are the solutions related to (µn
0 , b

n,fn) and
(µ0, b,f).

Proof. Without loss of generality, we can consider t0 = 0.
Existence: smooth case. Assume that f , b and µ0 are smooth functions, with µ0 satisfying

µ0(x)|x∈∂Ω = 0 . Then, splitting the divergence terms in (3.16), we obtain a linear equation
and the existence of solutions is guaranteed by [146, 158].

Let ϕ be a solution of (3.17), with ψ = 0 and ξ ∈ C1+α,D. Using ϕ as a test function for µ,
we get by Lemma 3.5

⟨µ(t), ξ⟩= ⟨µ0,ϕ(0, ·)⟩−
ˆ t

0

ˆ
Ω
c(s,x) ·Dϕ(s,x)dxds

≤ C∥ξ∥1+α

(
∥µ0∥−(1+α) +∥c∥L1

)
.

Passing to the sup for ∥ξ∥1+α ≤ 1, we obtain

sup
t∈[0,T ]

∥µ(t)∥−(1+α),D ≤ C
(
∥µ0∥−(1+α) +∥c∥L1

)
, (3.20)
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and we are left to prove the Lp bound for µ. To this end, we take ϕ as the solution of (3.17),
with t= T , ξ = 0 and ψ ∈ Lq . Then, again by Lemma 3.5, we have

ˆ T

0

ˆ
Ω
µψdxds= ⟨µ0,ϕ(0, ·)⟩−

ˆ T

0

ˆ
Ω
c(s,x) ·Dϕ(s,x)dxds

≤ C∥ψ∥Lq

(
∥µ0∥−(1+α) +∥c∥L1

)
.

Passing to the sup for ∥µ∥Lq ≤ 1, we get

∥µ∥Lp ≤ C
(
∥µ0∥−(1+α) +∥c∥L1

)
,

which concludes the proof in the regular case.
Existence: general case. We proceed adapting and adjusting [194, Proposition 5.3]. By

Proposition 3.1, we take smooth data µk
0, ck, bk, with µk

0(x) = 0 for x ∈ ∂Ω, and converging to
µ0, c, b, respectively in C−(1+α),D, L1 and Lq.

We consider µk as the solution of (3.16). The previous convergences imply, for a certain
C > 0,

||µk
0||−(1+α) ≤ C∥µ0∥−(1+α) ,

∥bk∥Lq ≤ C∥b∥Lq ,

||ck||L1 ≤ C∥c∥L1 .

Considering the function µk,h := µk−µh, which satisfies (3.16) with data b= bk,
c= ck− ch +µh(bk− bh), µ0 = µk

0−µh
0 , then, by estimates (3.19), we have

sup
t
||µk,h(t)||−(1+α),D + ||µk,h||Lp

≤ C
(
||µk

0−µh
0 ||−(1+α) + ||ck− ch||L1 + ||µh(bk− bh)||L1

)
,

By the uniform bound of {µk}k in Lp, the last term can be estimated as follows
∥∥∥µh(bk− bh)

∥∥∥
L1
≤ C||bk− bh||Lq , (3.21)

and since {µk
0}k, {ck}k and {bk}k are Cauchy sequences, the right-hand side goes to 0 and

{µk}k is a Cauchy sequence, too. Then µk→ µ in C([0,T ];C−(1+α),N )∩Lp(QT ), for a certain
µ also satisfying (3.19). We are then left to prove that µ satisfies (3.18), for ϕ satisfying
(3.17). To this end, we consider the test function ϕk related to µk, so that

⟨µk(t), ξ⟩+
ˆ t

0

ˆ
Ω
µk(s,x)ψ(s,x)dxds= ⟨µk

0,ϕk(0, ·)⟩−
ˆ t

0

ˆ
Ω
ck(s,x) ·Dϕk(s,x)dxds, (3.22)
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Concerning convergence of ϕk towards ϕ, since ϕk−ϕ satisfies
−(ϕk−ϕ)t−div(aD(ϕk−ϕ)) + bkD(ϕk−ϕ) = (bk− b)Dϕ,

(ϕk−ϕ)(t) = 0 ,

(ϕk−ϕ)|∂Ω = 0 ,

by Lemma 3.5, we have

||ϕk−ϕ|| 1+α
2 ,1+α ≤ C||(bk− b)Dϕ||Lq → 0 ,

allowing us to pass to the limit in (3.22), hence ending the existence part.
Uniqueness and stability. Let µ1 and µ2 be two solutions. Then µ := µ1−µ2 solves

the same problem with c= µ0 = 0, and by (3.19) we have ∥µ∥L1 = sup
t∈[0,T ]

∥µ(t)∥−(1+α),D = 0,

concluding the uniqueness part.
For the stability part, we consider cn→ c, µn

0 → µ0 and bn→ b. Then the function µn−µ
satisfies (3.16), with b ,µ0 and f respectively replaced by bn, µn

0 −µ0, and cn− c+µ(bn− b).
Hence, (3.19) implies

sup
t∈[0,T ]

∥µn−µ∥−(1+α),D +∥µn−µ∥Lp

≤ C
(
||µn

0 −µ0||−(1+α) + ||cn− c||L1 + ||µ(bn− b)||L1

)
.

Proceeding as done for the existence in the general case, we derive the right-hand side
convergence to 0, which implies µn→ µ in C([0,T ];C−(1+α),D)∩Lp(QT ), hence concluding the
proof.

As a direct consequence of Prop. (3.6), we can derive a further estimate in the space
C−(2+α),D.

Corollary 3.7. Suppose hypotheses of Proposition 3.6 are satisfied together with b ∈ C
α
2 ,α.

Then the function µ satisfies

sup
t∈[0,T ]

∥µ(t)∥−(2+α),D +∥µ∥−( α
2 ,α) ≤ C

(
∥µ0∥−(2+α) +∥c∥L1

)
, (3.23)

(3.24)

Proof. Since b ∈ C α
2 ,α, we can take ϕ as the solution of (3.17), with ξ ∈ C2+α,D(Ω), ψ = 0, so
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that, applying the results of [146], [158], we have ∥ϕ∥1+ α
2 ,2+α ≤ C∥ξ∥2+α, and (3.18) implies

⟨µ(t), ξ⟩= ⟨µ0,ϕ(0, ·)⟩−
ˆ T

0

ˆ
Ω
c(s,x) ·Dϕ(s,x)dxds

≤ C
(
∥µ0∥−(2+α) +∥c∥L1

)
∥ξ∥2+α .

Now, as in Proposition 3.6, choose ϕ as the solution of (3.17), with t= T , ξ = 0 and ψ ∈ C α
2 ,α .

Then, again by Lemma 3.5, we have
ˆ T

0

ˆ
Ω
µψdxds= ⟨µ0,ϕ(0, ·)⟩−

ˆ T

0

ˆ
Ω
c(s,x) ·Dϕ(s,x)dxds

≤ C∥ψ∥α
2 ,α

(
∥µ0∥−(2+α) +∥c∥L1

)
.

Passing to the sup in the two inequalities for ∥ξ∥1+ α
2 ,2+α ≤ 1 and ∥µ∥Lq ≤ 1, we get (3.23).

3.8.1 Mean Field Games system and Lipschitz regularity of U

Now, we turn out to the study of the Mean Field Games system and its properties to derive
essential results we will then exploit to obtain some first regularity estimates of the solution
U of the Master Equation.

In particular, the MFG system has the following form:

−∂tu− tr(a(x)D2u) +H(t,x,Du) = F (t,x,m(t)) ,

∂tm−
∑
i,j
∂2

ij(aij(x)m)−div(mHp(t,x,Du)) = 0 ,

u(T ) =G(x,m(T )) , m(0) =m0 ,

u|∂Ω=0 , m|∂Ω=0 .

(3.25)

The first result is obtained by studying some regularity properties of (3.25) uniformly in
m0.

Proposition 3.8. The system (3.25) has a unique classical solution (u,m), with u∈ C1+ α
2 ,2+α

and m ∈ C([t0,T ];Psub(Ω)). Moreover, m(t) has a positive density for t > t0, and the following
estimates hold:

∥m∥α
2 ,−(1+α),D +∥m∥Lp +∥u∥1+ α

2 ,2+α ≤ C . (3.26)

Furthermore, if (u1,m1) and (u2,m2) are two solutions of (3.25), with m1(t0) =m01, m2(t0) =
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m02, then it holds

∥u1−u2∥1,2+α +∥m1−m2∥Lp(QT ) ≤ Cd1(m01,m02) ,

sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D ≤ Cd1(m01,m02) . (3.27)

Proof. Step 1: Existence and uniqueness of solutions. We want to apply Schauder’s fixed
point Theorem. Let X be the convex set, closed for the uniform distance, defined as follows:

X :=
{
γ ∈ C([t0,T ];Psub(Ω)) s.t. ∥γ∥α

2 ,−(1+α),D ≤M ∀s, t ∈ [t0,T ]
}
,

where M will be specified later. We define a map Φ :X →X as follows.
For γ ∈X, let u= uγ be the solution of the HJB equation:


−ut− tr(a(x)D2u) +H(t,x,Du) = F (t,x,γ(t)) ,

u(T ) =G(x,γ(T )) ,

u|∂Ω = 0 .

(3.28)

Using hypotheses on F and G and Theorem V.6.1 of [146], we know that there exists a
unique classical solution u ∈ C1+ α

2 ,α. Moreover, by Taylor formula, we can write H(t,x,Du) =
H(t,x,0)+V (t,x) ·Du for a certain V ∈L∞, thanks to the global boundedness of Du, obtaining
a linear equation satisfied by u. Then, exploiting both the Corollary of Theorem IV.9.1 and
Theorem IV.5.2 of [146] we get

∥u∥1+ α
2 ,2+α ≤ C

(
∥F (·, ·,γ(·))∥α

2 ,α +∥G(·,γ(T ))∥2+α

)
,

Define Φ(β) =m, where m ∈ C([t0,T ];Psub(Ω)) is the solution of the FP equation



mt−
∑
i,j
∂2

ij(aij(x)m)−div(mHp(t,x,Du)) = 0 ,

m(t0) =m0 ,

m|∂Ω = 0 .

(3.29)

The existence of a unique solution for (3.29) is guaranteed by Proposition 3.6. Moreover, we
know from (3.19) that

sup
t∈[t0,T ]

∥m(t)∥−(1+α),D +∥m∥Lp ≤ C∥m0∥−(1+α) ,
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for a certain p > 1. Therefore, to check that m ∈X, we are left with proving that, for some
C > 0, it holds

∥m(t)−m(s)∥−(1+α),D ≤ C|t−s|
α
2 , for all t ̸= s.

Subtracting the distributional formulation (3.18) in t and s, we have
ˆ

Ω
ξ(x)m(t,dx)−

ˆ
Ω
ϕ(s,x)m(s,dx) +

ˆ t

s

ˆ
Ω
ψ(r,x)m(r,dx)dr = 0 , (3.30)

for each ξ ∈ C1+α,D, ψ ∈ L∞ and ϕ satisfying

−ϕt− tr(a(x)D2ϕ) +Hp(t,x,Du) ·Dϕ= ψ ,

ϕ(t) = ξ ,

ϕ|∂Ω = 0 .

(3.31)

We choose ψ = 0. Thanks to Lemma 3.5 we know that ϕ ∈ C1+ α
2 ,1+α and its norm is bounded

according to (3.14). Coming back to (3.30), we obtain
ˆ

Ω
ξ(x)(m(t,dx)−m(s,dx)) =

ˆ
Ω

(ϕ(t,x)−ϕ(s,x))m(s,dx)≤ C∥ϕ(t)−ϕ(s)∥1+α

∥m(s)∥−(1+α),D ≤ C|t−s|
α
2 ∥m0∥−(1+α)∥ξ∥1+α ,

and taking the sup over the ξ ∈ C1+α,D with ∥ξ∥1+α ≤ 1,

∥m(t)−m(s)∥−(1+α),D ≤ C|t−s|
α
2 ∥m0∥−(1+α) .

Choosing M = C∥m0∥−(1+α), we have proved that m ∈X.
Since X is convex and closed and Φ(X)⊆X, to apply Schauder’s theorem we need to show
that:

• Φ(X) is relatively compact;

• Φ is continuous.

In this way, the closure of the convex envelope of Φ(X), say X̂ := inv(Φ(X)), is compact
and convex, and for the closure and the convexity of X we have Φ(X)⊆ X̂ ⊆X. So we can
consider the restriction Φ| : X̂ → X̂ , which satisfies the classical hypotheses of the Schauder’s
Theorem. Hence, the existence of a fixed point remains guaranteed.

We start proving the relatively compactness of Φ(X). Let {γn}n ⊂X and let un and mn

be the related solutions. Applying Ascoli-Arzelà’s Theorem we have unk
→ u in C1,2, for a
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certain subsequence {unk
}k and u ∈X.

To prove the convergence of {mnk
}n, we take ϕnk

as the solution of (3.31) with Du replaced
by Dunk

and ψ = 0. The difference ϕk,h := ϕnk
−ϕnh

satisfies



−(ϕk,h)t− tr(a(x)D2ϕk,h) +Hp(t,x,Dunk
)·Dϕk,h

= (Hp(t,x,Dunh
)−Hp(t,x,Dunk

))·Dϕnh
,

ϕk,h(t) = 0 ,

ϕk,h|∂Ω = 0 ,

then Lemma 3.5 implies

∥ϕk,h∥ 1+α
2 ,1+α ≤ C ∥(Hp(t,x,Dunh

)−Hp(t,x,Dunk
)) ·Dϕnh

∥∞

≤ C ∥Dunh
−Dunk

∥∞ ≤ ω(k,h) ,

where ω(k,h)→ 0 when k,h→∞.
Using (3.30) with (mnk

,ϕnk
) and (mnh

,ϕnh
), for k,h ∈ N, s = t0, subtracting the two

equalities, we get

sup
t∈[t0,T ]

∥mnk
(t)−mnh

(t)∥−(1+α),D ≤ ω(k,h) =⇒ ∃m ∈X s.t. mnk
→m in X ,

hence concluding the compactness part. The continuity is an easy consequence of the previous
arguments.

In particular, we apply Schauder’s theorem and obtain a classical solution of the problem
(3.25). The estimate (3.26) follows from the above estimates for (3.28) and (3.29).

We skip the uniqueness part, which is a standard argument, see, e.g., Proposition 3.3 of
[194].

Step 2. Let (u1,m1) and (u2,m2) be two classical solutions of (3.25), with m1(t0) =
m01, m2(t0) = m02. We take ϕ as the solution of (3.31) related to u1, with ψ = 0, and
we note that ϕ is also a good test function for the equation of m2, since it satisfies, for
ψ = (Hp(t,x,Du2)−Hp(t,x,Du1)) ·Dϕ ∈ L∞,


−ϕt− tr(a(x)D2ϕ) +Hp(t,x,Du2) ·Dϕ= ψ ,

ϕ(t) = ξ ,

ϕ|∂Ω = 0 ,
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Then, subtracting the weak formulations of m1 and m2 related to ψ, we find
ˆ

Ω
ξ(x)(m1(t)−m2(t))dx= (3.32)
ˆ t

t0

ˆ
Ω

(Hp(t,x,Du1)−Hp(t,x,Du2))Dϕm2(s,x)dxds+ ⟨ϕ(0, ·),m01−m02⟩ . (3.33)

By Lipschitz continuity of both ϕ and Hp, with respect to p, we get

ˆ
Ω
ξ(x)(m1(t)−m2(t))dx≤ C

ˆ t

t0

ˆ
Ω
|Du1−Du2|m2(s,x)dxds+Cd1(m01,m02) ,

We want to estimate the first term in the right-hand side with Young’s inequality. To this
end, we consider the quantities

c̃=
ˆ t

t0

ˆ
Ω
m2(s,x)dxds, m̃2(s,x) = m2(s,x)

c̃
.

Then m̃2 is a probability measure in [0, t]×Ω, and Young’s inequality implies that
ˆ t

t0

ˆ
Ω
|Du1−Du2|m2(s,x)dxds= c̃

ˆ t

t0

ˆ
Ω
|Du1−Du2|m̃2(s,x)dxds

≤ c̃
(ˆ t

t0

ˆ
Ω
|Du1−Du2|2m̃2(s,x)dx

) 1
2

≤ C
(ˆ t

t0

ˆ
Ω
|Du1−Du2|2m2(s,x)dx

) 1
2

,

since c̃ is bounded thanks to the Lp bound of m2.
Using the Lasry-Lions monotonicity argument (see Lemma 3.1.2 of [41]), we have

ˆ T

t0

ˆ
Ω
|Du1−Du2|2(m1(t,dx) +m2(t,dx))dt≤

≤ C
ˆ

Ω
(u1(0,x)−u2(0,x))(m01(dx)−m02(dx))

≤ C∥u1−u2∥ 1+α
2 ,1+αd1(m01,m02) .

Hence, we obtain
ˆ

Ω
ξ(x)(m1(t)−m2(t))dx

≤ C
(
∥u1−u2∥

1
2
1+α

2 ,1+α
d1(m01,m02)

1
2 +d1(m01,m02)

)
,

and finally, taking the sup over the ξ with ∥ξ∥−(1+α),D ≤ 1 and over t ∈ [0,T ],
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sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D (3.34)

≤ C
(
∥u1−u2∥

1
2
1+α

2 ,1+α
d1(m01,m02)

1
2 +d1(m01,m02)

)
. (3.35)

Let us now call u := u1−u2, then u solves:

−ut− tr(a(x)D2u) +V (t,x)Du= f(t,x) ,

u(T ) = g(x) , u|∂Ω = 0 ,

where

V (t,x) =
ˆ 1

0
Hp(t,x,λDu1(t,x) + (1−λ)Du2(t,x)dλ ;

f(t,x) =
ˆ 1

0

ˆ
Ω

δF

δm
(t,x,mλ(t),y)(m1(t,dy)−m2(t,dy))dλ ;

g(x) =
ˆ 1

0

ˆ
Ω

δG

δm
(x,mλ(T ),y)(m1(T,dy)−m2(T,dy))dλ,

where mλ is defined as follows

mλ(·) := λm1(·) + (1−λ)m2(·) .

As to apply Lemma 3.5, we estimate the regularity of the data:

sup
t∈[0,T ]

∥f(t, ·)∥α

≤ sup
t∈[0,T ]

ˆ 1

0

∥∥∥∥ δFδm(t, ·,mλ(t), ·)
∥∥∥∥

α,(1+α,D)
dλ∥m1(t)−m2(t)∥−(1+α),D

≤ C sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D ,

analogously

∥g(·)∥2+α ≤ C sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D . (3.36)

So, Eq. (3.15) implies

∥u1−u2∥1,2+α ≤ C sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D . (3.37)
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Coming back to (3.34), we have

sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D

≤ C

( sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D

) 1
2

d1(m01,m02)
1
2 +d1(m01,m02)

 ,

hence, by a generalized Young’s inequality:

sup
t∈[0,T ]

∥m1(t)−m2(t)∥−(1+α),D ≤ Cd1(m01,m02) . (3.38)

Plugging this estimate in (3.37), we finally obtain

∥u1−u2∥1,2+α ≤ Cd1(m01,m02) .

For the Lp inequality, we consider m :=m1−m2. Then m solves the equation

mt−
∑
i,j

∂2
ij(aij(x)m)−div(m(Hp(t,x,Du1)) =

div(m2(Hp(t,x,Du2)−Hp(t,x,Du1))) ,

m(t0) =m01−m02 ,

[m1−m2]|∂Ω = 0 ,

i.e. m is a solution of (3.16) with f = div(m2(Hp(t,x,Du2)−Hp(t,x,Du1))), µ0 =m01−m02,
b=Hp(t,x,Du1). Then estimates (3.19) imply

∥m1−m2∥Lp(QT ) ≤ C
(
∥µ0∥−(1+α) +∥f∥L1

)
.

We estimate the right-hand side term. As regards µ0 we have

∥µ0∥−(1+α) = sup
∥ϕ∥1+α≤1

ˆ
Ω
ϕ(x)(m01−m02)(dx)≤ Cd1(m01,m02) .

For the f term we argue in the following way:

∥f∥L1 =
ˆ T

0
sup

∥ϕ∥W 1,∞ ≤1

(ˆ
Ω
Hp(x,Du2)−Hp(x,Du1)Dϕm2(t,dx)

)
dt

≤ C∥u1−u2∥ 1+α
2 ,1+α ≤ Cd1(m01,m02) ,
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which allows us to conclude.

Previous proposition (3.8) allows to state that

sup
t∈[0,T ]

sup
m∈Psub(Ω)

∥U(t, ·,m)∥2+α ≤ C ,

sup
t∈[0,T ]

sup
m1 ̸=m2

[
(d1(m1,m2))−1 ∥U(t, ·,m1)−U(t, ·,m2)∥2+α

]
≤ C ,

(3.39)

which are two initial regularity results for the function U .

3.9 Linearized system and differentiability of U with respect
to the measure

This section is devoted to the study of the following linearized MFG system:

−zt− tr(a(x)D2z) +Hp(t,x,Du)Dz = δF

δm
(t,x,m(t))(ρ(t)) +h(t,x) ,

ρt−
∑
ij

∂2
ij(aij(x)ρ)−div(ρ(Hp(t,x,Du)))+

−div(mHpp(t,x,Du)Dz+ c) = 0,

z(T,x) = δG

δm
(x,m(T ))(ρ(T )) +zT (x) , ρ(t0) = ρ0 ,

z|∂Ω = 0 , ρ|∂Ω = 0 ,

(3.40)

where zT ∈ C2+α,D, ρ0 ∈ C−(1+α), h ∈ C0,α([t0,T ]×Ω), c ∈ L1([t0,T ]×Ω), and where we
define for F (and for G)

δF

δm
(t,x,m(t))(ρ(t)) :=

〈
δF

δm
(t,x,m(t), ·),ρ(t)

〉
,

where the duality is between C−(1+α),D and C(1+α),D.
The study of this system plays a crucial role in proving the C1 character of U in terms of

m. In particular, if we define the couple (v,µ) as the solution of (3.40) with h= c= zT = 0
and µ(t0) = µ0, we obtain

v(t0,x) =
〈
δU

δm
(t0,x,m0, ·),µ0

〉
. (3.41)

Let us start giving a suitable definition of solution for the previous system.
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Definition 3.10. A couple (z,ρ) is a solution of (3.40) if z ∈ C1,2+α, is a classical solution
of the linear HJB equation and ρ ∈ C([0,T ];C−(1+α),D(Ω))∩L1(QT ) solves the Fokker-Planck
equation, accordingly with Definition 3.8.

Let us underline that c ∈ L1([t0,T ]×Ω) =⇒ div(c) ∈ L1([t0,T ];W−1,∞(Ω)). Therefore
the well-posedness of the Fokker-Planck equation is included in Proposition 3.6.

The following Proposition states existence, uniqueness and regularity for the problem
defined by eq. (3.40). The proof relies on results previously obtained for the Fokker-Planck
equation, and it proceeds as the Neumann case, see Propositions 5.8 and 5.11 of [194]),
therefore we omit it.

Proposition 3.9. Let hypotheses 1 hold for a certain 0<α< 1, and let ρ0 ∈ C−1. Then there
exists a unique solution (z,ρ) ∈ C1,2+α×

(
C([0,T ];C−(1+α),D(Ω))∩L1(QT )

)
for the system

(3.40), satisfying

∥z∥1,2+α + sup
t
∥ρ(t)∥−(1+α),D +∥ρ∥Lp ≤ CM , (3.42)

where C depends on H, p is defined as in section 3.7.1, and M is given by

M := ∥zT ∥2+α +∥ρ0∥−(1+α) +∥h∥0,α +∥c∥L1 . (3.43)

Moreover, the solution (v,µ) related to h= c= zT = 0 satisfies

∥v∥1,2+α + sup
t∈[0,T ]

∥µ(t)∥−(2+α),D +∥µ∥−( α
2 ,α) ≤ C∥µ0∥−(2+α) . (3.44)

Throughout the rest of the chapter, we will denote with (v,µ) a solution to the system
(3.40), with h= c= zT = 0 and µ0 := ρ0. We will refer to this system as the pure linearized
system. Instead, the general system (3.40), with solution (z,ρ), will be called the general
linearized system.

To prove U ∈ C1 as well as the related representation formula (3.41), we have to prove
that the pure linearized system has a fundamental solution, which is the content of the next
proposition.

Proposition 3.10. Let hypotheses 1 hold. Then there exists a function K : [0,T ]×Ω×
Psub(Ω)×Ω→ R such that, for any solution (v,µ), with initial data (t0,m0,µ0), we have

v(t0,x) =−(1+α)⟨µ0,K(t0,x,m0, ·)⟩1+α (3.45)
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Moreover, K is twice differentiable with respect to both x and y, and it holds

sup
(t,m)∈[0,T ]×Psub(Ω)

∥K(t, ·,m, ·)∥2+α,2+α ≤ C , (3.46)

Proof. Let µ0 = δy be the Dirac function at y ∈ Ω. We define K(t0,x,m0,y) = v(t0,x;δy),
where v(·, ·;µ0) indicates the function v related to the pure linearized system with initial data
µ0. Exploiting (3.42), we have that K is twice differentiable w.r.t. x, and it holds

∥K(t0, ·,m0,y)∥2+α ≤ C∥δy∥−(1+α) = C

Furthermore, the linearity character of (3.40) implies

K(t0,x,m0,y+hei)−K(t0,x,m0,y)
h

= v(t0,x;∆i
hδy) ,

where we use the notation ∆i
hδy = 1

h(δy+hei
− δy). The linear character of the pure linearized

system directly implies that the solution (v,µ) is stable with respect to the initial condition
µ0, allowing to pass to the limit and obtain

∂K

∂yi
(t0,x,m0,y) = v(t0,x;−∂yiδy) ,

with the derivative that has to be intended in a distributional sense. As to prove the existence
and second derivatives’ bounds, we consider the incremental ratio

Rh
i,j(x,y) := ∂yiK(t0,x,m0,y+hej)−∂yiK(t0,x,m0,y)

h
. (3.47)

Hence, estimate (3.44) together with Lagrange Theorem imply that, for |l| ≤ 2, we have∣∣∣Dl
xR

h
i,j(x,y)−Dl

xR
k
i,j(x,y)

∣∣∣=
∣∣∣Dl

xv
(
t0,x;∆j

h(−∂yiδy)−∆j
k(−∂yiδy)

)∣∣∣
≤ C

∥∥∥∆j
h(−∂yiδy)−∆j

k(−∂yiδy)
∥∥∥

−(2+α)

= sup
∥ϕ∥2+α≤1

(
∂yiϕ(y+hej)−∂yiϕ(y)

h
−
∂yiϕ(y+kej)−∂yiϕ(y)

k

)
= sup

∥ϕ∥2+α≤1

(
∂2

yiyj
ϕ(yϕ,h)−∂2

yiyj
ϕ(yϕ,k)

)
≤ sup

∥ϕ∥2+α≤1
|yϕ,h−yϕ,k|α ≤ |h|α + |k|α,

for a certain yϕ,h, resp. yϕ,k in the line segment between y and y+hej (resp. y+kej), and
where we have used the same notation as seen above for ∆j

h(−∂yiδy).
The latter proves that (3.47), together with its first and second derivative w.r.t x, are

Cauchy sequences in h, implying that Dl
x

δU
δm is twice differentiable w.r.t. y and for all |l| ≤ 2.
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As to conclude estimate (3.46), we prove the estimate for the second order derivatives
w.r.t. y, the first derivative being simpler. By estimate (3.44) on v, if y,y′ ∈ Ω, then∥∥∥Rh

i,j(·,y)−Rh
i,j(·,y′)

∥∥∥
2+α

=
∥∥∥v(t0, ·;∆j

h(−∂yiδy +∂yiδy′)
)∥∥∥

2+α

≤ C
∥∥∥∆j

h(−∂yiδy +∂yiδy′)
∥∥∥

−(2+α)
.

Passing to the limit for h→ 0, we have

∆j
h(−∂yiδy +∂yiδy′)−→ ∂yj∂yiδy−∂yj∂yiδy′ , in C−(2+α) .

Then, by Ascoli-Arzelà and previously obtained convergence result for Rh
i,j , we have

∥∥∥∂2
yiyj

(
K(t0, ·,m0,y)−K(t, ·,m0,y

′)
)∥∥∥

2+α

≤ C
∥∥∥∂2

yiyj
(δy− δy′)

∥∥∥
−(2+α)

≤ C|y−y′|α ,

which proves (3.46). The representation formula (3.45) is an immediate consequence of the
linear character of the equation and of the density of the Dirac functions generated set, hence
concluding the proof.

We are now ready to consider the main topic of this section: we want to prove that the
function K is actually the derivative of U with respect to the measure. Let us underline that
the differentiability with respect to the measure m will be the key for proving U is indeed a
classical solution of the Master Equation (3.7).

Theorem 3.11. Suppose hypotheses 1 hold. Then the function U defined by (3.9) is differen-
tiable with respect to m, with the derivative given by

δU

δm
(t,x,m,y) =K(t,x,m,y) .

Proof. Within the present proof, given two functions a1,a2, we define a1+τ := τa2 + (1− τ)a1,
for τ ∈ [0,1].

We will prove a more general fact, the representation formula for U being then a direct
consequence of it.

In particular, if (u1,m1) and (u2,m2) are two solutions of (3.25), with initial conditions
(t0,m01) and (t0,m02), and (v,µ) is the solution of the pure linearized system related to
(u2,m2), with initial condition (t0,m01−m02), then a sort of first-order Taylor expansion of
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U with respect to m holds, namely:

∥u1−u2−v∥1,2+α + sup
t∈[0,T ]

∥m1(t)−m2(t)−µ(t)∥−(1+α),D ≤ Cd1(m01,m02)2 . (3.48)

As to prove above expansion, let us start defining (z,ρ) = (u1−u2−v,m1−m2−µ). Then
(z,ρ) satisfies the general linearized system (3.40) related to (u2,m2), with data h= h1 +h2,
c= c1 + c2 and zT given by:

h1 =−
ˆ 1

0
(Hp(t,x,Du1+s)−Hp(t,x,Du2)) ·D(u1−u2)ds,

h2 =
ˆ 1

0

ˆ
Ω

(
δF

δm
(t,x,m1+s(t),y)− δF

δm
(t,x,m2(t),y)

)
(m1(t)−m2(t))(dy)ds,

c1(t) = (m1(t)−m2(t))Hpp(t,x,Du2)(Du1−Du2) ,

c2(t) =m1

ˆ 1

0
(Hpp(t,x,Du1+s)−Hpp(t,x,Du2))(Du1−Du2)ds,

zT =
ˆ 1

0

ˆ
Ω

(
δG

δm
(x,m1+s(T ),y)− δG

δm
(x,m2(T ),y)

)
(m1(T )−m2(T ))(dy)ds.

Applying (3.42) one has

∥z∥1,2+α + sup
t∈[0,T ]

∥ρ(t)∥−(1+α),D ≤ C
(
∥h∥0,α +∥c∥L1 +∥zT ∥2+α

)
. (3.49)

We want to estimate the right-hand side term to obtain the desired Taylor expansion. As
regards h, exploiting eq. (3.27) and Hölder norm properties, we have:

∥h1∥0,α =
∥∥∥∥∥
ˆ 1

0

ˆ 1

0
s⟨Hpp(t,x,Du1+rs)(Du1−Du2) , (Du1−Du2)⟩drds

∥∥∥∥∥
0,α

≤ Cd1(m01,m02)2 ,

Analogously, again by eq. (3.27) and exploiting regularity of both F and G, the same estimate
also holds for h2 and zT . For the function c, we can write

∥c1∥L1 =
ˆ T

0

ˆ
Ω
Hpp(t,x,Du2)(Du1−Du2)(m1(t,dx)−m2(t,dx))dt

≤ C∥u1−u2∥1,2+α∥m1(t)−m2(t)∥ ≤ Cd1(m01,m02)2 ,

then, proceeding as above, we have
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∥c2∥L1 =ˆ 1

0

ˆ T

0

ˆ
Ω

(Hpp(t,x,Du1+s)−Hpp(t,x,Du2))(Du1−Du2)m1(t,dx)dtds

≤ C ∥Du1−Du2∥2∞ ≤ Cd1(m1
0,m

2
0)2 .

Substituting these estimates in (3.49), we obtain (3.48). Using the representation (3.45) for v,
we get wwwwU(t0, ·,m01)−U(t0, ·,m02)−

ˆ
Ω
K(t0, ·,m02,y)(m01−m02)(dy)

wwww
∞

≤ Cd1(m01,m02)2 .

As a straightforward consequence, we have that U is differentiable with respect to m and

δU

δm
(t,x,m,y) =K(t,x,m,y) ,

hence concluding the proof.

Using (3.46) we also obtain the following strong regularity estimate for δU
δm :

sup
t

∥∥∥∥ δUδm(t, ·,m, ·)
∥∥∥∥

2+α,2+α
≤ C . (3.50)

This gives sense to the Master Equation (3.7), since the quantity DyDmU is now well-
defined. However, to apply Theorem 3.4 we still need to prove the continuity of DyDmU in
the measure variable.

In the next result we prove a Lipschitz bound for δU
δm , with respect to the measure m. This

bound plays a key role, since not only it implies the continuity of DyDmU with respect to m,
but it is also used in the next section to apply Lemma 3.14.

Theorem 3.12. Let Assumptions 1 hold. Then the derivative of the solution of the Master
Equation δU

δm is Lipschitz continuous with respect to the measure m:

sup
t∈[0,T ]

sup
m1 ̸=m2

(d1(m1,m2))−1
∣∣∣∣∣
∣∣∣∣∣ δUδm(t, ·,m1, ·)−

δU

δm
(t, ·,m2, ·)

∣∣∣∣∣
∣∣∣∣∣
2+α,2+α

≤ C (3.51)

where C depends on n, F , G, H and T .
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Proof. We consider, for i= 1,2, the solution (vi,µi) of the linearized system (3.40) related to
(ui,mi) .

To avoid too heavy notations, we take t0 = 0 and we define

H ′
i(t,x) :=Hp(t,x,Dui(t,x)) , H ′′

i (t,x) =Hpp(t,x,Dui(t,x)) ,

F ′(t,x,m,µ) =
ˆ

Ω

δF

δm
(t,x,m,y)µ(dy) , G′(x,m,µ) =

ˆ
Ω

δG

δm
(x,m,y)µ(dy) .

Then the couple (z,ρ) := (v1−v2,µ1−µ2) satisfies the following linear system:


−zt− tr(a(x)D2z) +H ′
1 ·Dz = F ′(t,x,m1(t),ρ(t)) +h,

ρt−
∑
i,j
∂2

ij(aij(x)ρ)−div(ρH ′
1)−div(m1H

′′
1Dz+ c) = 0 ,

z(T,x) =G′(x,m1(T ),ρ(T )) +zT , ρ(t0) = 0 ,

z|∂Ω = 0 , ρ|∂Ω = 0 ,

where

h(t,x) = h1(t,x) +h2(t,x) ,

h1(t,x) = F ′(t,x,m1(t),µ2(t))−F ′(t,x,m2(t),µ2(t)) ,

h2(t,x) =
(
H ′

1(t,x)−H ′
2(t,x)

)
·Dv2(t,x) ,

c(t,x) = µ2(t)
(
H ′

1−H ′
2)(t,x) +

[
(m1H

′′
1 −m2H

′′
2 )
]
(t,x) ,

zT (x) =G′(x,m1(T ),µ2(T ))−G′(x,m2(T ),µ2(T )) .

Applying (3.42) we obtain this estimate on z:

∥z∥1,2+α ≤ C
(
∥zT ∥2+α +∥h∥0,α +∥c∥L1

)
.

Now we estimate the terms in the right-hand side.
The term with zT , thanks to (3.44) and the hypothesis (v) of 1, is immediately estimated:

∥zT ∥2+α≤
∥∥∥∥ δGδm(·,m1(T ), ·)− δG

δm
(·,m2(T ), ·)

∥∥∥∥
2+α,2+α

∥µ2(T )∥−(2+α),D ≤Cd1(m01,m02)∥µ0∥−(2+α) .

As regards the space estimate for h, we have

∥h(t, ·)∥α ≤
∥∥F ′(·,m1(t),µ2(t))−F ′(·,m2(t),µ2(t))

∥∥
α +

∥∥(H ′
1−H ′

2)(t, ·)Dv2(t, ·)
∥∥

α .
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The first term is bounded as zT :

∥∥F ′(·,m1(t),µ2(t))−F ′(·,m2(t),µ2(t))
∥∥

α ≤ Cd1(m01,m02)∥µ0∥−(2+α) .

The second term, using (3.27) and (3.44), can be estimated in this way:

∥∥(H ′
1−H ′

2)(t, ·)Dv2(t, ·)
∥∥

α ≤ C∥(u1−u2)(t)∥1+α∥v2(t)∥1+α ≤ Cd1(m01,m02)∥µ0∥−(2+α) .

In summary,
∥h∥0,α = sup

t∈[0,T ]
∥h(t, ·)∥α ≤ Cd1(m01,m02)∥µ0∥−(2+α) .

Finally, we estimate ∥c∥L1 . We have

∥c∥L1 =
ˆ T

0

ˆ
Ω

(H ′
1−H ′

2)(t,x)µ2(t,dx)dt+
ˆ T

0

ˆ
Ω
H ′′

1 (t,x)Dv2(t,x)(m1(t)−m2(t))(dx)dt

+
ˆ T

0

ˆ
Ω

(H ′
1−H ′

2)(t,x)Dv2(t,x)m2(t,dx)dt≤ C∥u1−u2∥ 1+α
2 ,1+α∥µ2∥−( α

2 ,α)

+C∥u1∥ 1+α
2 ,1+α∥v2∥ 1+α

2 ,1+α∥m1−m2∥L1 +C∥u1−u2∥ 1+α
2 ,1+α∥v2∥ 1+α

2 ,1+α .

The first term in the right-hand side, thanks to (3.27) and (3.44), is bounded by

C∥u1−u2∥ 1+α
2 ,1+α∥µ2∥−( α

2 ,α) ≤ Cd1(m01,m02)∥µ0∥−(2+α) .

The second and the third term are estimated in the same way, using (3.26), (3.27) and (3.44).
Then

∥c∥L1 ≤ Cd1(m01,m02)∥µ0∥−(2+α) .

Putting together all these estimates, we finally obtain:

∥z∥1,2+α ≤ Cd1(m01,m02)∥µ0∥−(2+α) .

Since
z(t0,x) =

ˆ
Ω

(
δU

δm
(t0,x,m1,y)− δU

δm
(t0,x,m2,y)

)
µ0(dy) ,

we have proved (3.51) .

We stress the fact that in the bound (3.51) a 2+α norm in the last variable is strongly
required, to make this estimate valid also for the quantity DyDmU .

To conclude, we are still left proving the boundary condition for δU
δm in (3.7) to make true

all the hypotheses needed to apply Theorem 3.4. The latter will be the last result of this
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3.9. LINEARIZED SYSTEM AND DIFFERENTIABILITY OF U WITH RESPECT TO THE
MEASURE

section.

Corollary 3.13. If hypotheses 1 hold true, then we have the following boundary conditions
for U :

δU

δm
(t,x,m,y) = 0 , ∀x ∈ ∂Ω,y ∈ Ω, t ∈ [0,T ],m ∈ Psub(Ω) ,

δU

δm
(t,x,m,y) = 0 , ∀x ∈ Ω,y ∈ ∂Ω, t ∈ [0,T ],m ∈ Psub(Ω) .

Proof. The proof of the first boundary condition is trivial, since δU
δm(t0,x,m0,y) = v(t0,x;δy)

and v satisfies a Dirichlet boundary condition.
For the second condition, let us consider y ∈ ∂Ω. To prove that v(t0,x;δy) = 0, it is enough

to check that v = 0 solves
−vt− tr(a(x)D2v) +Hp(t,x,Du) ·Dv = δF

δm
(t,x,m(t))(µ(t)) ,

v(T,x) = δG

δm
(x,m(T ))(µ(T )) ,

v|∂Ω = 0 ,

(3.52)

where µ is the unique solution, in the sense of Definition 3.8, of
µt−

∑
ij
∂2

ij(aij(x)µ)−div(µHp(t,x,Du)) = 0 ,

µ(t0) = µ0 ,

µ|∂Ω = 0 .

In this way we have mHpp(t,x,Du)Dv = 0, and so the couple (v,µ) turns out to be a solution
of 

−vt− tr(a(x)D2v) +Hp(t,x,Du)Dv = δF

δm
(t,x,m(t))(ρ(t)) ,

µt−
∑
ij

∂2
ij(aij(x)µ)−div

(
µHp(t,x,Du) +mHpp(t,x,Du)Dv

)
= 0,

v(T,x) = δG

δm
(x,m(T ))(µ(T )) , µ(t0) = µ0 ,

v|∂Ω = 0 , µ|∂Ω = 0 ,

which is exactly the pure linearized system.
Due to the linearity character of (3.52), we only need to prove that

δF

δm
(t,x,m(t))(µ(t)) = δG

δm
(x,m(T ))(µ(T )) = 0 .
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Thanks to the hypotheses 1, both δF
δm(x,m(t), ·) and δG

δm(x,m(T ), ·) satisfy a Dirichlet boundary
condition, being also elements of C2+α. Then, choosing ϕ(t,y) satisfying (3.17) with ψ(t,y) = 0
and ξ(y) = δF

δm(t,x,m(t),y), we have

δF

δm
(t,x,m(t))(µ(t)) =

〈
µ(t), δF

δm
(t,x,m(t), ·)

〉
= ⟨µ0,ϕ(0, ·)⟩= ⟨δy,ϕ(0, ·)⟩= ϕ(0,y) = 0 ,

since ψ satisfies a Dirichlet boundary condition. The same computations hold for δG
δm , therefore

we have:

δU

δm
(t0,x,m0,y) =

〈
δU

δm
(t0,x,m0, ·), δy

〉
= v(t0,x) = 0 .

3.11 Convergence of the Nash System

The aim of this section is twofold: proving that, for an integer N ≥ 2, a classical solution
(vN,i)i∈{1,...,N} of the Nash system (3.5) converges in a suitable sense to the solution of the
Master Equation (3.7), and to prove that also optimal trajectories converge.

3.11.1 Finite Dimensional Projections of U

The symmetrical structure of the problem suggests considering suitable finite dimensional
projections of U , along the empirical distributions mN,i

x . Therefore, for i ∈ {1, . . . ,N}, we
define:

uN,i(t,x) := U(t,xi,m
N,i
x ) , (3.53)

where x = (x1, ...,xN ) ∈ ΩN and mN,i
x is defined as in (3.3). Exploiting the regularity of U ,

we already know that
uN

i ∈ C1,2+α

with respect to the couple (t,xi).
In order to prove a regularity result for (xj)j ̸=i, we need two technical results about the

derivative of the solution of (3.7) with respect to m.
Theorem (3.12) implies the following lemma, which turns out to be crucial to prove the

representation formula for the derivatives of uN
i . Since the related proof is analogous to

Proposition 7.1, 7.4 of [41], we omit it.
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Lemma 3.14. Suppose hypotheses 1 are satisfied, then, if m ∈ Psub(Ω) and ϕ ∈ L2(m,Rd) is
a bounded vector field, we have

∣∣∣∣∣∣U(t, ·,(id+ϕ)♯m)−U(t, ·,m)−
ˆ

Ω
DmU(t, ·,m,y) ·ϕ(y)dm(y)

∣∣∣∣∣∣
1+α
≤ C||ϕ||2L2(m) (3.54)

Now we can prove the following representation formula for the derivatives of uN
i :

Proposition 3.15. The following equations for the derivative of uN
i hold for all j ̸= i :

Dxju
N
i (t,x) = 1

N −1DmU(t,xi,m
N,i
x ,xj) , (3.55)

D2
xi,xj

uN
i (t,x) = 1

N −1DxDmU(t,xi,m
N,i
x ,xj) , (3.56)∣∣∣D2

xj ,xj
uN

i (t,x)− 1
N −1DyDmU(t,xi,m

N,i
x ,xj)

∣∣∣≤ C

N2 , (3.57)

where the last inequality holds a.e. x ∈ ΩN .

Proof. We can limit ourselves to prove (3.55) and (3.57), since the second formula is a direct
consequence of the first one. We consider x = (xj)j∈{1,...,N}, v = (vj) s.t. x,v ∈ ΩN , with
xj ̸= xk for any j ̸= k, vi = 0, i being fixed. By density of x with xj ≠ xk in ΩN , it is sufficient
to prove the first formula just in this case.

For ε= minj ̸=k |xj−xk|, we consider a smooth vector field φ : Ω→Rd such that φ(x) = vj

for x ∈B(xj ,ε/3) and x+φ(x) ∈ Ω for all x ∈ Ω. Therefore, since uN
i (t,x + v) = U(t,xi,(id+

φ)♯mN,i
x ), Lemma 3.54 implies:

uN
i (t,x+v) = uN

i (t,x) +
ˆ

Ω
DmU(t,xi,m

N,i
x ,y) ·φ(t)dmN,i

x (y) +o
(
||v||

L2(mN,i
x ))

)
,

exploiting the definition of mN,i
x , we compute the integral obtaining

uN
i (t,x+v) = uN

i (t,x) + 1
N −1

∑
j ̸=i

DmU(t,xi,m
N,i
x ,xj) ·vj +o(|v|) ,

concluding the proof of (3.55). Concerning the last inequality, we first show that D2
xj ,xj

uN
i

exists almost everywhere. Indeed

|Dxju
N
i (t,x)−Dxju

N
i (t,y))| ≤ C

N
|DmU(t,xi,m

N,i
x ,xj)−DmU(t,xi,m

N,i
x ,yj)|

+C

N

(
|DmU(t,xi,m

N,i
x ,yj)−DmU(t,xi,m

N,i
y ,yj)|

)
≤ C

N
|x−y| ,

where the last inequality comes from (3.50) and (3.51). This implies that D2
xj ,xj

uN
i exists a.e.,
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and that it is also globally bounded by C
N . Considering ek

j = (e1
jk, ...,e

N
jk) with el

jk = δljek as a
basis over (Rd)N , we can write

∣∣∣∣∣Dxju
N,i(t,x+hek

j )−Dxju
N,i(t,x)

h
− 1
N −1∂yk

DmU(t,xi,m
N,i
x ,xj)

∣∣∣∣∣
≤ C

N

∣∣∣∣∣
DmU(t,xi,m

N,i

x+hek
j
,xj +hek)−DmU(t,xi,m

N,i
x ,xj +hek)

h

∣∣∣∣∣+ C

N∣∣∣∣∣DmU(t,xi,m
N,i
x ,xj +hek)−DmU(t,xi,m

N,i
x ,xj)

h
−∂yk

DmU(t,xi,m
N,i
x ,xj)

∣∣∣∣∣
≤ C

N

∣∣∣∂yk
DmU(t,xi,m

N,i
x ,xh)−∂yk

DmU(t,xi,m
N,i
x ,xj)

∣∣∣
+ C

Nh
d1

(
mN,i

x+hek
j
,mN,i

x

)
≤ C

N2

for h sufficiently small, xh being in the line segment between xj and xj +hek, thanks to (3.51).
Passing to the limit, as h→ 0, we conclude.

We can prove now that each finite projection (uN
i )1≤i≤N of U is an approximated solution

of the Nash system (3.5).

Theorem 3.16. Assume Assumptions 1 hold, we have that uN
i ∈ C1([0,T ]×ΩN ), uN

i (t, ·) ∈
W 2,∞(ΩN ) and uN

i solves almost everywhere the following equation

−∂tu
N
i −

∑
j

tr
(
a(xj)D2

xjxj
uN

i

)
+H(t,xi,Dxiu

N
i )

+
∑
j ̸=i

Hp(t,xj ,Dxju
N
i ) ·Dxju

N
i = F (t,xi,m

N,i
x ) + rN

i (t,x) ,

uN
i (T,x) =G(xi,m

N,i
x ) ,

uN
i (t,x)|xi∈∂Ω = 0, i= 1, ...,N .

(3.58)

where
∣∣∣∣rN

i

∣∣∣∣
∞ ≤

C

N
.

Equation (3.58) models an approximated version of the Nash system (3.5). The homoge-
neous boundary condition for U implies that uN

i (t,x)
∣∣
xi∈∂Ω = 0 for each i= 1, ...,N . The rest

of the proof follows analogously to the one of Prop. Proposition 6.3 of [41], therefore we omit
it.
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3.11.2 Convergence

The main convergence result is realized by comparing (uN
i ), the projections of the solution of

the Master Equation defined in Equation (3.53), with (vN
i ), namely with the solution of the

Nash system defined in (3.5).
Since both of these solutions are symmetrical, there exist two functions V N and UN :

Ω×ΩN−1→R, such that, for all x ∈Ω, the functions (y1, ... ,yN−1)→ V N (x,(y1, ... ,yN−1) are
invariant under permutations. Therefore, we can write

vN
i (t,x) = V N (t,xi,(x1, ...xi−1,xi+1, ... ,xN )) ,

uN
i (t,x) = UN (t,xi,(x1, ...xi−1,xi+1, ... ,xN )) .

We fix the initial condition and the corresponding initial spatial distribution (t0,m0) ∈
[0,T )×Psub(Ω), also defining M = (M i)i∈{1,... ,N} as a family of independent and identically
distributed (i.i.d) random variables of law m0 ∈ P sub. Let also ((Bi

t)t∈[0,T ])i∈{1,... ,N} be a
family of N independent d-dimensional Brownian motion associated with each player i, being
also independent of (Zi)i∈{1,... ,N}.

We consider the processes (Yt)t and their associated hitting times τY =
[
τ1

Y , ... , τ
N
Y

]
,

solution of the following coupled system of SDEs
dY i

t∧τ i
Y

=−Hp(t,Y i
t∧τ i

Y
,Dxiv

N
i (t,Yt∧τY ))dt+

√
2σ(Y i

t∧τ i
Y

)dBi
t ,

Y i
t0 =M i ,

(3.59)

with Yt∧τY := Yt∧τY =
[
Y 1

t∧τ1
Y
, ...Y i

t∧τ i
Y
... ,Y N

t∧τN
Y

]
while the process dY i

t∧τ i
Y

evolves according

to Eq. (3.59), but only before the corresponding hitting time for t ∈ [t0, τ i
Y ]. Accordingly, the

correspondent processes (Xt)t and τX =
[
τ1

X , ...τ
N
X

]
, being related to the projections uN

i solve
the following system

dXi
t∧τ i

X
=−Hp(t,Xi

t∧τ i
X
,Dxiu

N
i (t,Xt∧τX ))dt+

√
2σ(Xi

t∧τ i
X

)dBi
t ,

Xi
t0 =M i .

(3.60)

with Xt∧τX := Xt∧τX =
[
X1

t∧τ1
X
, ...Xi

t∧τ i
X
... ,XN

t∧τN
X

]
.

Moreover, we define the minimum between τ i
X and τ i

Y as follows τ i := τ i
X ∧ τ i

Y .

Remark 3.17. Let us underline that, evaluating projections over processes Y , uN
i may show

some frozen components corresponding to those players that have reached the boundary. For
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example, if we assume an arbitrate time t= τ i
Y ≥ τ1

Y , uN
i for which a player has already reached

∂Ω, then uN
i reads

uN
i

(
t,Y 1

τ1
Y
, ...{Y i

t }t∧τ i
Y
... ,{Y N

t }t≤τN
Y

)
with a constant, fixed component corresponding to Yτ1

Y
.

The following result holds:

Proposition 3.18. Assume Hypotheses 1 hold, then, for any 1≤ i≤N , we have

E
[

sup
t∈[t0,τ i]

|Y i
t∧τ i−Xi

t∧τ i |
]
≤ C

N
, (3.61)

E
[ˆ t∧τ i

Y

t0

|Dxiv
N
i (t,Yt∧τ i

Y
)−Dxiu

N
i (t,Yt∧τ i

Y
)|2dt

]
≤ C

N2 . (3.62)

Moreover, P-almost surely and for all i= 1, ... ,N , it holds

|uN
i (t0,M)−vi(t0,M)| ≤ C

N
, (3.63)

where C is a deterministic constant not depending on t0, m0 and N .

Proof. First step. The proof proceeds as in Theorem 6.2.1 in [41], but we decided to include
it both for the reader’s convenience and since it is not restricted to the case a(x) = Id .

For the sake of simplicity, but without loss of generality, we can assume t0 = 0. In what
follows we use the following notations:

UN,i
t = uN

i

(
t, Y 1

t∧τ1
Y
, ... ,Y N

t∧τN
Y

)
,

DUN,i,j
t =Dxju

N
i

(
t, Y 1

t∧τ1
Y
, ... ,Y N

t∧τN
Y

)
,

V N,i
t = vN

i

(
t, Y 1

t∧τ1
Y
, ... ,Y N

t∧τN
Y

)
,

DV N,i,j
t =Dxjv

N
i

(
t,Y 1

t∧τ1
Y
, ... ,Y N

t∧τN
Y

)
.

Since vN
i solves the Nash system (3.5), applying the Itô formula, see [5], to

(
UN,i

t −V N,i
t

)2
,

we can deduce the following expansion for d
(
UN,i

t −V N,i
t

)2
:

(At +Bt)dt+ 2
√

2
(
UN,i

t −V N,i
t

) N∑
j=1

[
σ(Y i

t∧τ i
Y

)(DV N,i,j
t −DUN,i,j

t )
]
dBi

t ,
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where

At = 2
(
UN,i

t −V N,i
t

)(
H(t,Y i

t∧τ i
Y
,DUN,i,i

t )−H(t,Y i
t∧τ i

Y
,DV N,i,i

t )
)

−2
(
UN,i

t −V N,i
t

)(
DUN,i,i

t (Hp(t,Y i
t∧τ i

Y
,DUN,i,i

t )−Hp(t,Yt,DV
N,i,i

t ))
)

−2
(
UN,i

t −V N,i
t

)(
(DUN,i,i

t −DV N,i,i
t )Hp(t,Yt∧τ i

Y
,DV N,i,i

t )− rN
i (t,Yt∧τY ))

)
.

and

Bt = 2
N∑

j=1
⟨a(Y i

t∧τ i
Y

)(DUN,i,j
t −DV N,i,j

t ) , DUN,i,j
t −DV N,i,j

t ⟩

−2(UN,i
t −V N,i

t )
N∑

j=1
DUN,i,j

t

(
Hp(t,Y j

t∧τ i
Y

,DV N,j,j
t )−Hp(t,Y j

t∧τ i
Y

,DUN,j,j
t )

)
.

Let us underline that |DUN,i,j
t | ≤M , |DV N,i,j

t | ≤M for a certain M > 0, and that H
and DpH are both locally Lipschitz continuous. Moreover, DUN,i,i

t =DxU(t,Y i
t∧τ i

Y
,mN,i

Yt∧τY
)

is bounded, independently of i,N , DUN,i,j
t = (1/(N −1))DmU(t,Y i

t∧τ i
Y
,mN,i

Yt∧τY
) is bounded

from C/N and, by Theorem 3.16, we also have that rN,i ≤ C/N
Integrating from t to τ i

T the above-squared difference and taking the conditional expectation
given Z, we deduce

EZ
[
|UN,i

t −V N,i
t |2

]
+ 2

N∑
j=1

EZ

[ˆ T

t
|DUN,i,j

s −DV N,i,j
s |2ds

]

≤ C

N

ˆ T

t
EZ
[
|UN,i

s −V N,i
s |

]
+C

ˆ T

t
EZ
[
|UN,i

s −V N,i
s | · |DUN,i,i

s −DV N,i,i
s |

]
ds

+ C

N

N∑
j=1,j ̸=i

ˆ T

t
EZ
[
|UN,i

s −V N,i
s | · |DUN,j,j

s −DV N,j,j
s |

]
ds.

Following a standard convexity argument, as, e.g., in [41], and by the generalized Young’s
inequality we get
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EM[|UN,i
t −V N,i

t |2] +EM
[ˆ T

t
|DUN,i,i

s −DV N,i,i
s |2ds

]

≤ C

N2 +C

ˆ T

t
EZ[|UN,i

s −V N,i
s |

]2
ds

+ 1
2N

N∑
j=1

EM
[ˆ T

t
|DUN,j,j

s −DV N,j,j
s |2ds

]
.

(3.64)

By taking the mean over i ∈ {1, ...,N}, we can get rid of the second term in the left-hand
side.

By the Gronwall’s Lemma (eventually increasing the constant C), we deduce

sup
0≤t<τ i

Y

[
1
N

N∑
i=1

EM[UN,i
t −V N,i

t ]2
]
≤ C

N2 . (3.65)

Plugging Eq. (3.65) into Eq. (3.64), we deduce that

1
N

N∑
j=1

EM
[ˆ T

t
|DUN,j,j

s −DV N,j,j
s |2ds

]
≤ C

N2 .

Inserting this inequality into Eq. (3.64) and applying again Gronwall’s Lemma, we finally
obtain

sup
t∈[0,τ i

Y ]
EM[|UN,i

t −V N,i
t |2] +EM

[ˆ T

0
|DUN,i,i

s −DV N,i,i
s |2ds

]
≤ C

N2 , (3.66)

proving the bound in Eq. (3.62).
Second step. We now derive (3.63).
Evaluating Eq. (3.66) at t= 0, we obtain P-almost surely for i ∈ {1, ...,N}

|UN,i
0 −V N,i

0 |= |uN,i(0,M)−vN,i(0,M)| ≤ C

N
,

hence proving Eq. (3.63).
Third step. We are now in the position to prove bound for optimal trajectories, namely

Eq. (3.61).
In view of the dynamics, encoded in (3.59) and (3.60) and respectively satisfied by processes

(Yi,t)t∈[0,τ i] and (Xi,t)t∈[0,τ i], we know that
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(
Xi

t∧τ i
X
−Y i

t∧τ i
Y

)2
≤
(ˆ τ i

0

(
DpH

(
s,Xi

s∧τ i
X
,Dxiu

N,i(s,Xs∧τX )
)

−DpH
(
s,Y i

s∧τ i
Y
,Dxiv

N,i(s,Ys∧τY )
))
ds

)2

+
(ˆ τ i

0

√
2
(
σ(Xi

s∧τ i
X

)−σ(Y i
s∧τ i

Y
)
)
dBi

s

)2

.

Since DpH is Lipschitz continuous and U is regular, bounds in Prop. 3.15 implies

(
Xi

t∧τ i
X
−Y i

t∧τ i
Y

)2
≤ C

[ˆ τ i

0

|Xi
s∧τ i

X
−Y i

s∧τ i
Y
|+ 1

N

∑
j ̸=i

|Xj
s∧τ i

X

−Y j
s∧τ i

Y

|

ds
+
ˆ τ i

0
DpH

(
s,Y i

s∧τ i
Y
,Dxiu

N,i(s,Ys∧τY )
)

−DpH
(
s,Y i

s∧τ i
Y
,Dxiv

N,i(s,Ys∧τY )
)
ds

]2

+
(ˆ τ i

0

√
2
(
σ(Xi

s)−σ(Y i
s )
)
dBi

s

)2

.

Taking the sup over t ∈ [0,χ] with χ ∈ [0, τ i] and the conditional expectation over M, we
obtain

EM
[

sup
t∈[0,χ]

|Xi
t∧τ i

X
−Y i

t∧τ i
Y
|2
]
≤ EM

[ˆ T

0

∣∣DUN,i,i
s −DV N,i,i

s

∣∣2 ds]

+C
ˆ χ

0

(
EM

[
sup

t∈[0,s]
|Xi

t∧τ i
X
−Y i

t∧τ i
Y
|2
]

+ 1
N

∑
j ̸=i

EM
[

sup
t∈[0,s]

|Xj

t∧τ j
X

−Y j

t∧τ j
Y

|2
])

ds

+ sup
t∈[0,s]

EM
[(ˆ χ

0

√
2
(
σ(Xi

t∧τ i
X

)−σ(Y i
t∧τ i

Y
)
)
dBi

t

)2]
.

(3.67)

By Itô isometry and exploiting the Lipschitz assumption on σ, we know that

sup
t∈[0,s]

EM
[(ˆ χ

0

√
2
(
σ(Xi

t∧τ i
X

)−σ(Y i
t∧τ i

Y
)
)
dBi

t

)2]

= sup
t∈[0,s]

EM
[ˆ χ

0
2
(
σ(Xi

t∧τ i
X

)−σ(Y i
t∧τ i

Y
)
)2
dt

]

≤
ˆ χ

0

(
EM sup

t∈[0,s]

∣∣Xi
t∧τ i

X
−Y i

t∧τ i
Y

∣∣2ds) .
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We now take the sum over players i∈{1, ...,N} and enforce Eq. (3.66). Then, by Gronwall’s
Lemma, we know that

N∑
i=1

EM
[

sup
t∈[0,τ i]

|Xi
t∧τ i

X
−Y i

t∧τ i
Y
|
]
≤ C . (3.68)

Inserting inequality (3.68) in (3.67), and applying again Gronwall’s inequality, we obtain
(3.61).

Coming back to Theorem 3.3, it states the fundamental result about the convergence
of (vN,i)i∈{1,...,N}, the solution of the Nash system (3.58) towards U , namely the classical
solution to the Master Equation (3.7) stated with Dirichlet boundary conditions.

Proof of Theorem 3.3. For the sake of simplicity, we can choose m0 = 1, then apply the
estimate provided by Equation (3.63). Thus,

∣∣∣U(t0,Mi,m
N,i
M )−vN,i(t0,M)

∣∣∣≤ C

N
a.e. i ∈ {1, ...,N} ,

where M = (M1, ...,MN ) are i.i.d. random variables, uniformly distributed in Ω. The support
of M is ΩN , thus from the continuity of U we have

∣∣∣U(t0,xi,m
N,i
x )−vN,i(t0,x)

∣∣∣≤ C

N
∀x ∈ ΩN , i ∈ {1, ...,N} .

Let us underline that latter estimates hold for any x ∈ ΩN . Moreover, since U is Lipschitz
continuous with respect to m, we can replace U(t0,xi,m

N,i
x ) with U(t0,xi,m

N
x ), since

∣∣∣U(t0,xi,m
N,i
x )−U(t0,xi,m

N
x )
∣∣∣≤ Cd1(mN,i

x ,mN
x )≤ C

N
.

To prove (ii) we need the convergence results of empirical measure stated in [2, 79, 108].
First, we move from the sub-probability measure m0, defined over Ω to m∗

0, which
corresponds to a possible probability measure defined over P(Rn), and such that its restriction
on Ω coincides with m0 ∈ Psub(Ω), namely m∗

0(x)|Ω =m0(x),∀x ∈ Ω. We remark that m∗
0 is

one of the possible probability measures since the extension is not uniquely determined. Then,
the following inequality holds

ˆ
ΩN−1

|uN
i (t0,x)−U(t0,xi,m0)|

∏
j ̸=i

m0(dxj)

≤
ˆ
RN−1

|uN
i (t0,x)−U(t0,xi,m

∗
0)|
∏
j ̸=i

m∗
0(dxj) .
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Since U is Lipschitz continuous, and we are now working with probability measures, we
can apply results from [2, 79, 108], obtaining

´
RN−1 |uN

i (t0,x)−U(t0,xi,m
∗
0)|∏j ̸=im

∗
0(dxj)

≤ C
´
RN−1 d1(mN,i

x ,m∗
0)∏j ̸=im

∗
0(dxj)≤ CωN ,

where ωN is defined as the right side in Eq. (3.13).
The latter implies that

||wN
i (t0, ·,m0)−U(t0, ·,m0)||L1(m0) =

=
ˆ

Ω

∣∣∣∣∣
ˆ

ΩN−1

(
vN

i (t0,x)−U(t0,xi,m0)
)∏

j ̸=i

m0(dxj)
∣∣∣∣∣m0(dxi)

≤ E
[
|vN

i (t,M)−uN
i (t,M)|

]
+
ˆ

ΩN

|uN
i (t0,x)−U(t0,xi,m

∗
0)|
∏
j

m∗
0(dxj)

≤ C

N
+CωN ≤ CωN

holds, hence proving both Eq. (3.13) and the Theorem.

3.12 Application to a Toy Model for Optimal Liquidations

We will study a toy model of mean field type which can be seen as the limiting problem of an
N player game. In particular, we adapt the setting described in [43, 127, 145], with multiple
investors, letting players stop their investments when a given, fixed, condition is met. We
consider a variable interest rate - constant for certain periods of time and then variable at the
discretion of the issuer of the loan. The investment ends when the price reaches a certain level,
e.g. one prescribed by the contractor, which could also be (from the low level perspective) the
default one. Thus, we introduce a set in which the players want to operate within a fixed
lower bound l ∈ R and a fixed upper one u ∈ R.

We focus on an N -player game with an Itô-diffusion setting for a model with a controlled
drift and state-independent controls. The N players, indexed by i ∈ I = {1,2, ...,N}, have a
common investment horizon [0,T ]. Each player i uses a self-financing strategy (πi

t)t∈[0,T ] and
can control its own drift. The corresponding wealth, denoted by (Xi

t)t∈[0,T ], represents the
amount of the investment, and it evolves accordingly to the following SDE:

dXi
t = πi

tdt+
√

2σdBi
t , (3.69)
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assuming a control πi
t ∈ A and a constant volatility σ. The self-financing strategies πi belong

to the set of admissible policies A defined as

A=
{
πi

· : [0,T ]→ L2(Ω̃) F-progr. measurable with E
[ˆ τ i

0
σ2π2

sds

]
<∞

}

with τ i corresponding to the hitting time of the ith wealth, which corresponds to the time
when Xi

t reaches one of the critical values defined by the bounds, l or u:

τ i = inf
{
t ∈ [0,T ] : Xi

t = l∨Xi
t = u

}
Following the setting stated in [145], players optimize their expected terminal utility being

also concerned with the performance of their competitors. Accordingly, we fix an arbitrary
policy (π1, ...,πi−1,πi+1, ...,πN ) for the other players, whereas the ith player aims to maximize

J i(t,x,πi
s) = E

[ˆ τ i

t

1
2
(
πi

s

)2
ds+G

(
Xi

τ i ,m
N,i
Xi

τi

) ∣∣Xt = x

]
,

with the terminal payoff G defined as follows:

G(x,m) = x(1−x)
ˆ 1

0
z(1−z)dm(z) .

We underline that functions H(p) = 1
2 |p|

2 and G both satisfy hypotheses 1.
For our 1-dimensional trading example, we enforce a simplified choice of the domain by

prescribing both lower and upper limits, i.e. l = 0 and u= 1. Moreover, we fix the volatility
σ = 1.

Accordingly, the Nash system takes the following form.

−∂tv
N
i −

N∑
j=1

∂2
xjxj

vN
i (t,x) + 1

2
(
∂xiv

N
i (t,x)

)2

+
N∑

j ̸=i

∂xjv
N
j (t,x)∂xjv

N
i (t,x) = 0 ,

vN
i (T,x) = 1

N −1xi(1−xi)
N∑

j ̸=i

xj(1−xj) ,

vN
i (t,x)|xi∈{0,1} = 0 , i= 1, ...,N .

We will study models of mean field type which can be seen as the limiting problem of the
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above-described one. When N →∞, the dynamic for a representative player is described by

dXt = πtdt+
√

2dBt .

The corresponding functional reads

J(x,πt) = E
[ˆ τ

0

1
2πs

2ds+Xτ (1−Xτ )
ˆ 1

0
z(1−z)dmτ (z)

∣∣Xt = x

]
,

where mτ is the density of the process (Xτ ).
The Master Equation for this simplified setting reads

−∂tU(t,x,m)−∂xxU(t,x,m) + 1
2 (∂xU(t,x,m))2 +

−
ˆ 1

0
∂y (DmU(t,x,m,y))dm(y)+

+
ˆ 1

0
DmU(t,x,m,y) ·∂xU(t,y,m)dm(y) = 0

U(T,x,m) = x(1−x)
ˆ 1

0
z(1−z)dm(z)

U(t,0,m) = U(t,1,m) = 0

δU

δm
(t,x,m,0) = δU

δm
(t,x,m,1) = 0 .

Although the solution of the Nash system is not easy to compute, we can directly approach
the Master Equation, using the definition of U accordingly to (3.9). In particular, the
Hamilton-Jacobi equation for our formulation reads as follows:

−ut−uxx + 1
2 (ux)2 = 0

u(T,x) = x(1−x)
ˆ 1

0
z(1−z)dmT (z) , ∀x ∈ [0,1], ,

u(t,0) = u(t,1) = 0 , ∀t ∈ [t0,T ] .

By the change of variable w = e− 1
2 u, see also [42], the equation for the function w becomes


−wt−wxx = 0 ,

w(T,x) = exp
(
−1

2x(1−x)
ˆ 1

0
z(1−z)dmT (z)

)
,

w(t,0) = w(t,1) = 1 .

100



3.12. APPLICATION TO A TOY MODEL FOR OPTIMAL LIQUIDATIONS

hence a classical heat equation whose solution can be computed with standard methods.
Coming back to the change of variable u=−2log(w) and (3.9), the function U(t0, ·,m0) =
u(t0, ·) admits the following representation:

U(t0,x,m0) =−2ln
(

1 +
+∞∑
k=1

bke
−k2π2(T −t0) sin(kπx)

)
,

being bk = 2
´ 1

0 e
− 1

2 y(1−y)
´ 1

0 z(1−z)dmT (z) sin(kπy)dy and mT =m(T, ·), where m is the solution
of the Fokker-Planck equation


mt−mxx− (mux)x = 0 ,

m(t0,x) =m0 , ∀x ∈ [0,1] ,

m(t,0) =m(t,1) = 0 , ∀t ∈ [t0,T ] .
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4 From Optimal Control to Mean Field
Optimal Transport via Stochastic Neu-
ral Networks

4.1 Introduction

In recent years, parametric Machine Learning (ML) applications have shown brilliant per-
formances in capturing relevant symmetries and hidden patterns characterizing the specific
knowledge base. Specifically, Neural Networks (NNs), i.e. systems of interconnected artificial
neurons, constitute a fundamental tool to capture complex patterns and to make accurate
predictions for various applications, ranging from computer vision and natural language pro-
cessing to robotics and reinforcement learning. Their growing popularity steers an increasing
demand for a deep mathematical description of the underlying training procedures, specifically
in high dimensions to tackle the curse of dimensionality.

Along this latter research challenge, we consider a novel class of NNs, termed Mean
Field Neural Networks (MFNNs), which are defined as the limiting object of a population of
NNs when its number of components tends to infinity. Our aim concerns deriving a unified
perspective for this class of models based on existing symmetries between Mean Field Control
(MFC) theory and the Optimal Transport (OT) method. Our approach is based on an infinite
dimensional lifting which allows getting new insights into relationships between data in the
corresponding finite-dimensional scenario.

We start the analysis by looking at the continuous idealization of a specific class of
NNs, namely Residual NNs also named ResNets, whose training process in a Supervised
Learning scenario is stated as a Mean Field Optimal Control Problem (MFOCP). We consider
a deterministic dynamic that evolves in terms of an ordinary differential equation (ODE).
Moreover, the training problem of a ResNet is shown to be equivalent to a MFOCP of Bolza
type, see [93] and [28] for further details.

The next passage in our analysis concerns introducing a noisy component into the dynamics
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of the ODE moving to a Stochastic Differential Equation (SDE) that allows us to consider the
inherent uncertainty connected to the variations in the real-world data, symmetrically allowing
for integrating stochastic aspects into the learning process. Although this second model does
not include any mean field terms, it allows the development of a class of algorithms known as
Stochastic NNs (SNNs). In [7] the authors develop a sample-wise backpropagation method
for SNNs based on Backward SDE that models the gradient (w.r.t. the parameters) process
of the loss function representing a feasible tool for quantifying the uncertainty of the learning
process. Another possible approach for probabilistic learning is studied in [25] where the
authors develop the so-called Stochastic Deep Network (SDN), namely a NN architecture that
can use as input data not only single vectors but also random vectors modelling probability
distribution of given inputs. Following their analysis, the SDN is considered as an architecture
based on the composition of maps between probability measures performing inference tasks
and solving ML problems over the space of probability measures.

In the last passage, we merge the stochastic aspect with the mean field one by considering
the so-called Mean Field Optimal Transport (MFOT) formulation, recently introduced in [13].
We describe the MFC tools relevant to formalize the training process, hence we formulate
the training problem as MFOT in an infinite-dimensional setting. Considering the collective
interactions and distributions of the network’s parameters may facilitate the analysis of the
network behaviour on a macroscopic level, hence improving the interpretability, scalability,
and robustness of NNs models, while adding knowledge by highlighting the hidden symmetries
and relations between data.

We highlight that the symmetry between mean field models and ML algorithms is also
studied in [128], where the authors establish a mathematical relationship between the MFG
framework and normalizing flows, a popular method for generative models composed of a
sequence of invertible mappings. Similarly, in [38], the authors analyze Generative Adversarial
Networks (GANs) from the perspectives of MFGs providing a theoretical connection between
GANs, OT and MFG and numerical experiments.

The chapter is organized as follows: in Section 4.2, we introduce the mathematical formal-
ism of the supervised learning paradigm, while providing the description of the continuous
idealization of a Residual NN stated as a MFOCP; in Section 4.3, we introduce a noisy
component into the network dynamic, thus focusing on Stochastic NNs formalized as Stochas-
tic Optimal Control problems; in Section 4.4 we review the MFG setting in a cooperative
scenario defined in terms of MFC theory. Then, we consider recently developed Mean Field
Optimal Transport methods that allow rephrasing MFC problems into OT ones. We also
illustrate related approximation schemes and possible connection to an abstract class of NNs
that respect the MFOT structure. We conclude by reviewing some methods to learn, i.e.
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approximate, mean field functions that depend on probability distribution obtained as the
limiting object of empirical measures.

4.2 Residual Neural Networks as a Mean Field Optimal Con-
trol Problem

In this section, we present the workflow to treat a feed-forward NN, specifically a Residual
NN, as a dynamical system based on the work in [152]. The main reference for this part is
the well-known paper [93], where the authors introduce a continuous idealization of Deep
Learning (DL) to study the Supervised Learning (SL) procedure which is stated as an optimal
control problem by considering the associated population risk minimization problem.

4.2.1 The Supervised Learning paradigm

Following [88, 153], the SL problem aims at estimating the function F : X →Y, commonly
known as the Oracle. The space X can be identified with a subset of Rd related to input
arrays (such as images, string texts or time series) while Y is the corresponding target set.
Here for simplicity, we consider X and Y Euclidean spaces with different dimensions. Thus,
training begins with a set of N input-target pairs {xi

0 , y
i
T }Ni=1 where

• xi
0 ∈ Rd denotes the inputs of the NN;

• xi
T = F(xi

0) ∈ Rd denotes the outputs of the NN;

• yi
T ∈ Rl the corresponding targets.

We assume the same dimension of the Euclidean space for NN inputs and outputs allowing
to explicitly write a dynamic in terms of a difference equation. Hence, for a ResNet, see [123]
for more details, with T layers, the Feed-Forward propagation is given by

xt+1 = xt +f(xt,θt) t= 0, ... ,T −1 (4.1)

with f : Rd→ Rd being a parameterized function and θt being the trainable parameters,
e.g. bias, weights of layer t–th that belong to a measurable set U with values in a subset of
the Euclidean space Rm.

Remark 4.1. Following [214], we report an example of a domain for parameters of NN with
ReLU activation functions. We define the following parameter domain

Θ =
{

(a,w,b) ∈ R×Rd×R : a2 < ||w||+ b2
}
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with activation functions ϕ : Θ→ R defined as

ϕ(θ;x) = aσ(wTx+ b) , θ = (a,w,b) , σ(z) = z+ =max{z,0},

4.2.2 Empirical Risk Minimization

We aim at minimizing, over the set of measurable parameters Θ, a terminal loss function
Φ : X ×Y → R plus a regularization term L, to derive a Supervised Learning problem as an
Empirical Risk Minimization (ERP) problem, namely

min
θ∈U

[
1
K

N∑
i=1

Φ(xi
T ,y

i) +
T −1∑
t=0

L(θt)
]

(4.2)

over N training data samples indexed by i. We write θ = [θ0, ...θT −1] to identify the set
of all parameters of the network.

If we consider no regularization of the parameters, i.e. L= 0, and a quadratic loss function
in terms of Φ, then Eq. (4.2) reads

JERM (θ) = min
θ∈U

[
1
K

N∑
i=1
||xi

T −yi||2
]

= min
θ∈U

[
1
K

N∑
i=1
||f(xi,θ)−yi||2

]
(4.3)

being xi = [x0, ... ,xT1 ] the discrete state process defined in Eq. (4.1).
Optimizing JERM by computing its gradient is computationally expensive, especially if

the number of data K is very large.
To handle the curse of dimensionality, it is usually common to initialize parameters from

a θ0 from a probability distribution, to then optimize their choice inductively according to a
Stochastic Gradient Descent scheme

θk+1 = θk−ηt
1
K

K∑
i=1
||f(xi,θ)−yi||∇θf(xi,θ) (4.4)

with learning rate ηt over K optimization steps.

For the sake of completeness, before going to the limit (we pass from a discrete set of
training data to the corresponding distribution), we point out in the following remark that
it is also possible to associate a measure corresponding to the empirical distribution of the
parameters when the number of neurons goes to infinity.

Remark 4.2. A different approach, as illustrated, e.g., by Sirignano and Spilipupouls in
[200], consists in associating to each layer the corresponding empirical measure and building a
measure to describe the whole network, hence working with the empirical measure of controls,
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rather than states as done in Section 4.4. Following the perspective of mean-field term in
controls, the SGD equation (4.4) can be formalized as a minimization method over the set
of probability distributions. Moreover, the training of NN is based on the correspondence
between the empirical measure of neurons µN and the function fN that is approximated by NN .
Specifically, it has been proved that the training via gradient descent of an over-parameterized
1-hidden layer NN with infinite width is equivalent to gradient flow in Wasserstein space [57,
88, 93, 102]. Conversely, in the small learning rate regime the training is equivalent to a SDE,
see, e.g., [56].

From here on, we deal with empirical distribution and measures associated to the training
data.

4.2.3 Population Risk Minimization as Mean Field Optimal Control Prob-
lem

In what follows we move from the discrete setting to the corresponding continuous idealization
by:

• going from layer index T to continuous parameter t;

• passing from a discrete set of inputs/output to distribution µ that represents the joint
distribution in W2(Rd×Rl) modelling the input-label distribution;

• passing from empirical risk minimization to population risk (i.e. minimization over
expectation E).

In particular, we pass to the limit in the number of data samples (number of input-target
pairs) assuming also a continuous dynamic in place of layers discretization. The latter limit
allows us to describe the dynamic of the state process x by the following Ordinary Differential
Equation (ODE)

ẋt = f(xt,θt), t ∈ [0,T ] , (4.5)

in place of the finite difference equation (4.1). We identify the input-target pairs as sampled
from a given distribution µ allowing us to write the SL problem as a Population Risk
Minimization (PRM) problem.

In summary, we aim at approximating the Oracle function F using a provided set of
training data sampled by a (known) distribution µ0 by optimizing weights θt to achieve
maximal proximity between xT (output) and yT (target). Thus, we consider a probability
space (Ω,F ,P) and we assume inputs x0 in Rd to be sampled from a distribution µ0 ∈ P(Rd),
with corresponding target yT in Rl sampled from a distribution ν ∈ P(Rl), while the joint
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probability distribution µ, that models the distribution of the input-target pairs, is defined by
µ :=P(x0,yT ), belongs to the Wasserstein spaceW2(R(d+l)) and has µ0 and ν as its marginals.
We recall that given a metric space (X,d), the p-Wasserstein space Wp(X) is defined as the
set of all Borel probability measures on X with finite p-moments.

The marginal distributions are obtained by projecting the joint probability distribution µ
over the subspaces of inputs and output, respectively. We identify the first marginal, i.e. the
projection over Rl, with the distribution of inputs

µ0 =
ˆ

Rl

µ(x,y)dy ,

while the distribution of targets reads

ν =
ˆ

Rd

µ(x,y)dx.

Moreover, we assume the controls θt depend on the whole distribution of input-target
pairs capturing the mean-field aspect of the training data. We consider a measurable set of
admissible controls, i.e. training weights, Θ⊆Rm and we state a Mean Field Optimal Control
Problem (MFOCP) to solve the following PRM problem:

inf
θ∈L∞([0,T ],Θ)

JP RM (θ) := Eµ

[
Φ(xT ,yT ) +

ˆ T

0
L(xt,θt)dt

]
ẋt = f(xt,θt) 0≤ t≤ T x0 ∼ µ0, , (x0,yT )∼ µ

(4.6)

We briefly report basic assumptions allowing us to have a solution for (4.6):

• f : Rd×Θ→ Rd, L : Rd×Θ→ R, Φ : Rd×Rl→ R are bounded;

• f , L, Φ are Lipschitz continuous with respect to x, with the Lipschitz constants of f
and L being independent of parameters θ, and

• µ has finite support in W2(R(d+l))

Problem (4.6) can be approached through two different methods: the first one is based
on the Hamilton-Jacobi-Bellman (HJB) equation in the Wasserstein space, while the second
one is based on a Mean Field Pontryagin Principle. We refer to [112] and [133] for viscosity
solutions to the HJB equation in the Wasserstein space of probability measures, and to [19]
for solving the constrained optimal control problems via Pontryagin Maximum Principle.

For the sake of completeness, let us also cite [10] where the authors introduce a BSDE
technique to solve the related Stochastic Maximum Principle allowing us to consider the
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uncertainty associated with NN. The authors employ a Stochastic Differential Equation (SDE)
in place of the ODE appearing in (4.6) to continuously approximate a Stochastic Neural
Network (SNN). We deepen this approach in the next paragraph.

4.3 Stochastic Neural Network as a Stochastic Optimal Control
Problem

In this paragraph, we generalize the previous setting considering a noisy dynamic, namely
adding a stochastic integral to the deterministic setting described by the ODE in Problem
(4.6). The reference model corresponds to Stochastic NN whose discrete state process is
described by the following equation

Xn+1 =Xn +hF (Xn,θn) +
√
hσnωn , n= 0,1, ... ,N −1 (4.7)

{ωn} being a sequence of i.i.d. standard Gaussian random variables. We refer to [25] for a
theoretical and computational analysis of SNN.

Eq. (4.7) can be generalized in a continuous setting. To this end, we consider a complete
filtered probability space

(
Ω,F ,FW ,P

)
, and we introduce the following SDE

Xt =X0 +
ˆ T

0
F (Xs,θs) +

ˆ T

0
σsdWs , (4.8)

with standard Brownian motion W := (Wt)0≤t≤T and diffusion term σ. Analogously as
for ResNets, the index T > 0 represents a continuous parameter modelling the width of the
layer, being XT the output of the network.

Here, we report the theory developed in [7] to study Eq. (4.8) in the framework of SOC
problem by introducing the control process u= [θ,σ]. Thus we consider also the diffusion σ as
a trainable parameter of the model. We start by translating the SDE (4.8) into the following
controlled process, written in differential form

dXt = f(Xt,ut)dt+g(ut)dWt, 0≤ t≤ T, (4.9)

where f(Xt,ut) = F (Xt,θt) and g(ut) = σt. As in classical control theory applied to ML, the
aim is to select the control u that minimizes the discrepancy between the SNN output and the
data. Accordingly, we define the cost function for our stochastic optimal control problem as

J(u) := E [Φ(XT ,Λ)] , (4.10)
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Λ being a random variable that corresponds to the target of a given input, i.e. X0. Then the
optimal control u⋆ is the one that solves

J(u⋆) = inf
u∈U [O,T ]

J(u)

above the class of measurable control U .
At this point, we are able to write the optimization problem that represents the analogous

of Eq. (4.6) with stochastic evolution (where also the diffusion is considered as a model
parameter) but without reference to the mean field aspect of the learning procedure.

inf
u∈L∞([0,T ],U)

J(u) := E [Φ(XT ,Λ)]

dXt = f(Xt,ut)dt+g(ut)dWt, 0≤ t≤ T
(4.11)

Following in [7], we address the Stochastic Maximum Principle approach to solve the
stochastic optimal control problem stated in (4.11). Firstly, the functional J is differentiated
with respect to the control with a derivative in Gateaux sense over [0,T ]

J ′
u(t,ut) = E

[
f i

u(Xt,ut)TYt +g′
u(ut)TZt

]
. (4.12)

Then, by the martingale representation of Yt, the following Backward SDE is introduced

dYt = f i
x(Xt,u

⋆
t )TYt +ZtdWt , YT = Φ′

x(XT ,Λ) (4.13)

to model the back-propagation of the forward state process Eq. defined in (4.9) associated
with the optimal control u⋆.

Finally, the problem is solved by the gradient descent method with step-size ηk

uk+1
t = uk

t −ηkJ
′
u(t,uk

t ) , k = 0,1,2, ... , 0≤ t≤ T, . (4.14)

The authors also provide a numerical scheme whose main benefit is to derive an estimate of
the uncertainty connected to the output of this stochastic class of NNs.

We remark that here it is not possible to write the chain rule for Eq. (4.14) as previously
done for Eq. (4.4) since the presence of the stochastic integral term that, differently from
classical ML theory, makes the back-propagation itself a stochastic process, see Eq. (4.13).
However, modern programming libraries (e.g., TensorFlow or PyTorch) perform the computa-
tion (4.14) automatically reducing the computational cost, hence allowing to go towards a
mean field formulation (in terms of multiple interacting agents) of previous problems.
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4.4 Mean Field Neural Network as a Mean Field Optimal
Transport

In this section, we focus on the connection between SOC and OT highlighting potential
symmetries specifically for a class of infinite dimensional stochastic games.

4.4.1 Optimal Transport

As seen in Section 4.3, SOC deals with finding the optimal control policy for a dynamic system
in the presence of uncertainty. Conversely, OT theory focuses on finding the optimal map to
transport from one distribution to another. More precisely, given two marginal distribution
µ ∈ P(Rd) and ν ∈ P(Rd), the classical OT problem in the Kantorovich formulation reads

inf
π∈Π(µ,ν)

ˆ
c(x.y)π(dx,dy) (4.15)

where c is a cost function and Π(µ,ν) corresponds to the set of couplings between µ and ν.
We focus on the setting where µ and ν are distributions computed on Rd, i.e. µ ∼

(X1, ... ,Xd) and ν ∼ (Y1, ... ,Yd). The Monge formulation reads

inf
T :T #µ=ν

ˆ
c(x,T (x))µ(dx) (4.16)

where the infimum is computed over all measurable maps T : Rd→ Rd with the pushforward
constraint T#µ= ν.

The possibility to link a SOC problem, hence the related mathematical formulation of a
specific learning procedure, to the corresponding OT formulation relies on lifting the SOC
problem in a proper Wasserstein space. For example, considering the SOC problem introduced
in (4.11), the stochastic process Xt described by Eq. (4.9) can be viewed as a vehicle of mass
transportation under an initial measure µ0.

We mention that there are also specific scenarios where the dynamics of the stochastic
control problem can be interpreted as a mass transportation problem, provided that certain
assumptions on functionals and cost are guaranteed. For example in [167, 168] and similarly
in [205], the authors focus on extending an OT problem into the corresponding SOC formu-
lation for a cost which depends on the drift and the diffusion coefficients of a continuous
semimartingale and the minimization is run among all continuous semimartingales with given
initial and terminal distributions.

For example, in [168] the authors consider a special form for the cost function, namely
c(x,y) = L(y−x) with L(u) : Rd→ [0,+∞] convex in u proving its equivalence to a proper
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SOC problem based on the so-called graph property. Indeed, we can define an image measure
as πg : Rd→ Rd×Rd mapping x into (x,g(x)). Thus, for any measurable map g : Rd→ Rd,
the following equality between the two formulations holds

ˆ
Rd

L(g(x)−x)µ(dx) =
ˆ
Rd×Rd

L(y−x)πg(dxdy) (4.17)

Thus, µg models a probability measure on Rd×Rd with marginals µ and ν.
For the problem stated in (4.17), we know from [209] that an optimal measure π⋆ always

exists. Moreover, if the optimal measure π⋆ is supported by the graph of a measurable map,
we say that the graph property holds; that is, if for any π⋆ optimal for (4.15), there exists a set
Γ satisfying π⋆(Γ) = 1 with Γ = (x,γ(x)) for some measurable mapping γ that resembles the
NN parameters introduced in Section 4.2 and analogously γ(x) represents the corresponding
output according to Eq. (4.1).

4.4.2 Mean Field Games

In the context of Mean Field Games (MFG), i.e. stochastic games where a large number of
agents interact and influence each other, it is particularly explicitable the link between SOC
and OT, specifically according to the variational formulation of MFG which is directly linked
to the dynamic formulation of OT by Benamou and Brenier, see, e.g., [17] for an in–depth
analysis.

In Section 4.2 we focus on deterministic evolution by means of an Eq. (4.5) with the mean
field interactions captured by the loss function as an expectation given a known joint measure
µ between input-target in the corresponding Mean Field Optimal Problem (4.22). On the
other hand, in Section 4.3, we introduce the stochastic process in Eq. (4.8) and state the
learning problem as a SOC as shown in Eq. (4.10) without focusing on the interaction during
the evolution but looking at just a single trajectory. As the final step, the further natural step
relies on extending the previous equation to a McKean-Vlasov setting where the dynamic of a
random variable X depends on the other N random variables by the mean of the distribution
in order to merge the two scenarios presented in Sec. 4.2 and Sec. 4.3 while extending the
problem stated in (4.10) by allowing the presence of a mean-field term.

Indeed, instead of considering a single evolution as in Eq. (4.9), we introduce the following
McKean-Vlasov SDE for N particles/agents

Xi
t =Xi

0 +
ˆ T

0
b
(
Xi

s,m
N
Xs
,θs

)
+
ˆ T

0
σdWs , i= 1, ... ,N (4.18)

with Xi
0 being the initial states. We assume a measurable drift b : [0,T ]×W2(Rd)×Rd→ R,
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a constant diffusion σ and we define the empirical distribution mN
Xs

as

mN
Xs

= 1
N

N∑
j=1

δXi
s
. (4.19)

The main idea would be to model multiple SNNs generalizing the dynamic defined in (4.9),
including the dependence on a mean-field term in the drift allows us to model the shared
connections between the neurons of different SNNs.

At the limitN→∞, the population of SNNs corresponds to the evolution of a representative
SNN while the empirical measure mN tends to the probability measure m belonging to the
Wasserstein space W2(Rd), i.e. the space of probability measures on Rd with a finite second–
order moment, that captures a measure of interaction among SSNs.

More precisely, we introduce the following setting, that we need to define the solution of a
MFG.

• a finite time horizon T > 0;

• Q⊆ Rd is the state space;

• W2(Q) the space of probability measure over Q;

• (x,m,α) ∈Q×W2(Q)×Rk describes the agent state, the mean-field term and the agent
control;

• f :Q×W2(Q)×Rk→R, (x,m,α) 7→ f(x,m,α) and g :Q×W2(Q)→R, (x,m) 7→ g(x,m)
provides the running and, resp., the terminal cost;

• b :Q×W2(Q)×Rk→ Rd represents the drift function ;

• σ > 0 is the volatility of the state.

Definition 4.5 (MFG equilibrium). We consider a MFG problem with a given initial distri-
bution m0 ∈W2(Q). A Nash equilibrium is a flow of probability measures m̂= (m̂(t, ·))0≤t≤T

in W2(Q) plus a feedback control α̂ : [0,T ]×Q→ Rk satisfying the following two conditions:

1. α̂ minimizes JMF G
m over α:

E
[ˆ T

0
f(Xm,α

t ,m(t, ·),α(t,Xm,α
t ))dt+g(Xm,α

T ,m(T, ·))
]
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where (Xm,α
t ) solves the SDE

dXm,α
t = b(Xm,α

t ,m(t, ·),α(t,Xm,α
t ))dt+σdWt

W being a d-dimensional Brownian motion and Xm,α
0 has distribution m0;

2. for all t ∈ [0,T ], m̂ is the probability distribution of Xm̂,α̂
t .

4.5.1 Mean Field Control

Differently from MFG where players are modelled as competitors, Mean Field Control (MFC)
models a framework that considers a large population of agents aiming to cooperate and
optimize individual objectives. In the MFC setting, each agent cost depends on a mean field
term representing the average behaviour of all agents. Accordingly, the solution of a MFC is
defined in the following way:

Definition 4.6 (MFC optimum). Given m0 ∈W2(Q), a feedback control α∗ : [0,T ]×Q→ Rk

is an optimal control for the MFC problem if it minimizes over α JMF C defined by

E
[ˆ T

0
f(Xα

t ,m
α(t, ·),α(t,Xα

t ))dt+g(Xα
T ,m

α(T, ·))
]

(4.20)

where mα(t, ·) is the probability distribution of the law of Xα
t , under the constraint that

the process (Xα
t )t∈[0,T ] solves the following SDE of McKean-Vlasov type

dXα
t = b(Xα

t ,m
α(t, ·),α(t,Xα

t ))dt+σdWt (4.21)

with Xα
0 having distribution m0.

We refer to [47] for an extensive treatment of McKean-Vlasov control problems (4.20).

By considering the joint optimization problem of the entire population, MFC enables
the analysis of large-scale systems with cooperative agents and provides insights into the
emergence of collective behaviour. One possibility relies on stating the dynamic in Eq. (4.6)
in terms of probability measures. For example, we can consider a continuity equation such
as the Fokker-Planck equation to consider the evolution of the density function. Along this
setting, we cite the measure-theoretical approach for NeurODE developed in [28] where the
authors introduce a forward continuity equation in the space of measures with a constrained
dynamic in the form of an ODE. Conversely, within the cooperative setting, we can also
rely on a novel approach, named Mean Field Optimal Transport, introduced in [13], that we
explore in the next paragraph.
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4.6.1 Mean Field Optimal Transport

The Mean Field Optimal Transport deals with a framework where all the agents cooperate
(such as in MFC) in order to minimize a total cost without terminal cost but with an additional
constraint since also the final distribution is prescribed. We notice that the setting with
fixed initial and terminal distributions resembles the one introduced in the Population Risk
minimization problem described in Section 4.2. We follow the numerical scheme introduced in
section 3.1 in [13] to approximate feedback controls, namely we introduce the following model.

Definition 4.7 (Mean Field Optimal Transport). Let Rd, describe the state space and denote by
W2(Rd) the set of square-integrable probability measures on Rd. Let f : Rd×W2(Rd)×Rk→R
be the running cost, g : Rd×W2(Rd)→ R be the terminal cost, b : Rd×W2(Rd)×Rk → Rd

the drift function and σ ∈ R the non-negative diffusion. Given two distributions ρ0 and
ρT ∈ W2(Rd) the aim of MFOT is to compute the optimal feedback control v : [0,T ]×Rd→Rm

minimizing

JMF OT : v 7→ E
[ˆ T

0
f(Xv

t ,µ
v(t),v(t,Xv

t ))dt
]

(4.22)

being µv(t) the distribution of process Xv
t whose dynamics is given by

Xv
0 ∼ ρ0 Xv

T ∼ ρT

dXv
t = b(Xv

t ,µ
v(t),v(t,Xv

t ))dt+σdWt , t ∈ [0,T ]
(4.23)

with ρ0 and ρT are the prescribed initial and terminal distributions.

This type of problem incorporates mean field interactions in the drift and the running
cost. Furthermore, it encompasses classical OT as a special case by considering b(x,µ,a) = a,
f(x,µ,a) = 1

2a
Ta and σ = 0.

The integration of MFC and OT allows to both tackle the weight optimization problem
in NN, and to model the flow of information or mass between layers of neurons, while the
optimal weights may be computed as the minimizers of the functional with respect to controls
v

v⋆ = min
v∈U

JMF OT (v) (4.24)

along all the trajectories Xv,being U the set of admissible controls.
Thus, we look at the MFNN as a collection of identical, interchangeable, indistinguishable

NNs where the dynamic of the representative agents is a generalization of a SNN (4.7) allowing
a dependence on the term µv(t) modelling the mean field interactions. By considering the
MFNN dynamic as a population of interconnected NNs, we can employ mean-field control to
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analyze the collective behaviour and interactions of networks, accounting for their impact on
the overall network performance.

To summarize, we are looking at this novel class of NN, i.e. MFNN, as the asymptotically
configuration of NNs in a cooperative setting.

We remark that the representative agent does not know the mean field interaction terms
since it depends on the whole population but an approximated version can be recursively
learned. For example in [13] the authors present different numerical schemes to solve MFOT:

1. Optimal control via direct approximation of controls v;

2. Deep Galerkin Method for solving a forward-backward systems of PDEs;

3. Augmented Lagrangian Method with Deep Learning exploiting the variational formula-
tion of MFOT and the primal/dual approach.

We briefly review the direct method (1) to approximate controls of feedback type by
an optimal control formulation. The controls are assumed of feedback form and can be
approximated by

g(x,µ) =G(W2(µ,ρT )) , µ ∈W2(Rd) (4.25)

where G : R+→R+ is an increasing function. The idea is to use the function in Eq. (4.25)
as a penalty for being far from the target distribution ρT as the terminal cost to embed the
problem into classical MFG/MFC literature. Intuitively, Eq. (4.25) corresponds to the infinite
dimensional analogous of the loss function of the leveraged NN algorithm, being µ the final
distribution that has to be close as possible in the sense of Wasserstein metric to the target
distribution ρT .

In view of obtaining a numerically tractable version of the SDE (4.23), one may consider
a classical discretization Euler-Maruyama scheme, also requiring the set of controls v to be
restricted to the ones approximated by a NNs vθ with parameters θ. Moreover, approximating
the mean field term m by its finite dimensional counterpart, see Eq. (4.19), allows to develop
a stable numerical algorithm, see Section 3.1 in [13] for further details, particularly w.r.t. the
linked numerical implementation.

4.7.1 Other approaches for learning Mean Field function

For the sake of completeness, we also mention two different methods to deal with the
approximation of mean field function that can be used in parallel with MFOT:
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• the first data-driven approach, presented in [8], has been considered to solve a stochastic
optimal control problem, where the unknown model parameters were estimated in real-
time using a direct filter method. This method involves transitioning from the stochastic
maximum principle to approximate the conditional probability density functions of the
parameters given an observation, which is a set of random samples;

• in [187], the authors report a map that by operating over an appropriate classes of neural
networks, specifically the Bin density-based approximation and Cylindrical approximation,
is able to reconstruct a mapping between the Wasserstein space of probability measures
and an infinite–dimensional function space on a similar setting to MFG.

4.8 Conclusions and further directions

In the present chapter, we provided an all-around overlook of methods at the intersection of
parametric ML, MFC and OT. By assuming a dynamical system viewpoint we considered the
deterministic, ODE–based, setting of the supervised learning problem, to then incorporate
noisy components, allowing for stochastic NNs definition, hence introducing the MFOT
approach. The latter, derived as the limit in the number of training data, recasts the classical
learning process in a mean field optimal transport one. As a result, we gained a unified
perspective for the parameters optimization process characterizing ML models with a specified
learning dynamic, within the framework of OT and MFC, which may concede to efficiently
handle high dimensional data sets.

We empathise that the major limitation of MFOT (4.22) concerns the fact that many of
its convergence results, such as those related to corresponding forward–backward systems,
still need to be verified. Nevertheless, it represents an indubitably fertile and stimulating
research ground that should be enhanced since it permits the derivation of techniques that
may significantly improve the robustness of algorithms, particularly when dealing with huge
sets of training data potentially perturbed by random noise components, while also allowing
to highlight hidden symmetries within data.
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5 Volatility Forecasting with Hybrid
Neural Networks Methods for Risk
Parity Investment Strategies

5.1 Introduction

The capital market environment of the last ten years has been characterized by falling interest
rate levels and rising equity markets. Furthermore, during the last 12 months, volatility levels
have increased significantly as a result of rising inflation risks and growing interest rate levels
in developed markets. As a consequence, efficient risk management techniques are getting
increasing attention since both institutional and private investors are looking for new ways to
assess the risks produced by market change.

Accordingly, we focus our attention on the so-called risk parity portfolio looking for new
approaches to lower risk levels linked to equity markets by means of better forecasts computed
by Machine Learning (ML) approaches. We remark that risk-parity techniques form the
foundation of many portfolio allocation approaches for specific asset classes. These methods
consider the relative risk contribution of each asset, which is typically measured by its realized
volatility, to the overall risk of the portfolio.

As a consequence, an asset class with a low risk level, i.e. lower realized volatility, has
a higher weight in the overall portfolio if compared with an alternative characterized by
higher risk levels, respectively higher volatility. Moving from this landmark, in our analysis
we consider hybrid solutions to estimate risk levels by employing both classical statistical
models, namely Generalized Autoregressive Conditional Heteroscedasticity (GARCH) type
models, and Neural Networks (NNs) methods, specifically different classes of Recurrent Neural
Networks (RNNs) architectures, to forecast volatility levels as input factors for a portfolio
allocation.

As a result, we obtain an improved performance of the forward-looking risk estimators
showing better risk-return profiles for investment strategies.
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Our main contributions can be summarized as follows:

• We use different RNN architectures (LSTM, GRU and a model with mixed hidden units)
combined with a faster forecast computed by a GARCH model to provide accurate and
robust volatility predictions. In particular, we use the GARCH model at the level of
pre-processing stage to get information about the position of volatility clusters, while the
RNNs architectures are later used to improve the precision of the forecasts themselves;

• We perform a comparison analysis between different RNNs solutions in terms of their
performances as well as considering a convex ensemble of them;

• Later, we move from volatility forecast to feed a data-driven version of a Risk Parity
portfolio firstly presented in [20], in a historical perspective for the reference period of
October 2020 - December 2022 where we consider both weekly and monthly re-balancing
procedures.

Organization of the chapter
The chapter is divided into five sections. In Section 5.2, we provide details about the

general Risk Parity framework and recall basic facts about both the GARCH process and
NN tools. We also present an in-depth discussion of GRU and LSTM hidden units, as well
as the specific models we use in our simulation. In Section 5.3, we present the numerical
results obtained for volatility forecasting of the S&P 500 index, which serves as our reference,
and conduct a comparison analysis among different ML architectures. In Section 5.4, we
present our findings regarding the risk-adjusted strategy in light of the obtained ML-based
volatility estimates. We then perform a historical simulation of the Risk Parity portfolio and
re-balancing on both a weekly and monthly basis. Finally, in Section 5.5, we provide our
concluding remarks, highlighting the most interesting aspects of our research and suggesting
possible future research directions.

5.1.1 Related Literature

Over the last years, ML, and in particular Artificial Neural Networks (ANNs) solutions
have received increasing attention within a plethora of industrial sectors. Indeed, the fast
development of efficient, reliable and relatively not expensive, hardware solutions, such as
ensemble, distributed architectures or the use of combined GPUs, has offered the opportunity
to implement a series of well known ML-based solutions for the solution of practical industrial
tasks. This is the case, in particular, of the applications of forecasting solutions in the sectors
of manufacturing, transportation, pharmacy as well as within the financial one.
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Regarding the implications of machine learning (ML) in finance, it is nearly impossible to
provide even a partial summary of the vast amount of studies that have been conducted by
practitioners, mathematicians, and computer scientists from diverse backgrounds. Notably,
the monographs by Cohen and Dixon serve as important landmarks in this field. Additionally,
it is worth noting that there is a considerable body of literature that explores the integration of
recurrent neural networks (RNNs), particularly Long Short-Term Memory (LSTM) networks,
with specific technologies across a wide range of fields. Examples include the use of LSTM
networks for malware threat detection in Internet of Things (IoT) [216], energy consumption
forecasting [182], automated diagnosis support in healthcare [217], and the prediction of air
pollutant concentrations [134].

We will continue by recalling some of the most significant contributions in forecasting
realized volatility. In [173], the authors proposed a novel approach to model stochastic
volatility dynamics by combining Stochastic Volatility (SV) models with Long Short-Term
Memory (LSTM). This resulted in the development of the LSTM-SV model, which overcomes
the short-term memory problem encountered when dealing with numerical approximations of
financial time series where the volatility term is modelled through a stochastic process. The
proposed model has the ability to capture non-linear dependence in the latent volatility process,
providing better forecasting performance than standard SV solutions, such as approximating
Heston-type models using Monte Carlo approaches.

In [156], the authors analyzed the performance of different hybrid models that combine
Artificial Neural Networks (ANN) with GARCH-type models for volatility forecasting. They
demonstrated that the GARCH-ANN model performs better than standard solutions for
volatility forecasting in a Chinese energy market index. In [142], a similar approach was
applied with a pre-processing stage to forecast price volatility levels of cryptocurrencies like
Bitcoin.

In [98], a combination of a Recurrent Neural Network (RNN) with a dimension-reducing
symbolic representation was applied to overcome two fundamental limitations of Machine
Learning (ML) methods trained on raw numerical time series data: high sensitivity to
hyperparameters and the initialization of random weights. The proposed solution was used
for time series forecasting.

Finally, in [138], the authors proposed a new hybrid model that combines the LSTM model
with various generalized GARCH-type models to forecast stock price volatility. The provided
solution showed promising results.

Concerning the integration of LSTM with existing well-known financial method, we
mention [162] where the authors integrate the Merton determinants model to forecast the
credit default swap. Another example of a modification of LSTM is the modified adaptive
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LSTM model (consisting of two LSTM layers followed by a pair of batch normalization (BN)
layers, a dropout layer and a binary classifier) presented in [101]. We also cite [202] and [193]
to have an overview of possible ensemble techniques following a comparison analysis.

More recently, in [223], the authors provide a comparison between different ML methods
finding that NNs dominate linear regressions and tree models for predicting realized volatility,
due to their ability to model complex uncovered interactions in time series. Further, in [86], a
VolTarget approach has been proposed as a risk-adjusted procedure alternative to Risk Parity,
moving from historical realized volatility values then exploiting LSTM steered solutions, see
also [3, 4, 37] for further details. Previous examples are worth to be blended with efforts
conducted within the so-called Risk Parity and Budgeting approach, see [196], as a general
(set of) method(s) to treat the Risk Parity setting, namely the scenario we’re dealing with.

5.2 Methodology and Neural Networks Models

Financial applications such as risk assessment and forecasting have all benefited from the
widespread use of ML, particularly because of the ability of NNs-based algorithms to find
connections among data points in view of reconstructing time-series patterns of interest.
Throughout this section, we provide a theoretical description of models and methods that we
implemented to obtain an effective and robust Risk Parity strategy.

5.2.1 The Risk Parity strategy

A Risk Parity portfolio aims at equalizing the risk allocation across asset classes by over-
weighting safer assets and under-weighting riskier ones in terms of their weights in the market
portfolio. There exist different ways and methods to construct a risk parity portfolio, basically
depending on how we measure and define risk. It is worth mentioning that risk parity
weighting does not require investors to make assumptions about expected returns representing
a significant advantage over mean-variance optimization.

In this chapter, we consider a multi-asset portfolio formed by N indexes indexed by
i= {1, ...,N} whose risk we assume to be proportional to their historical volatility σi.

The log returns of the ith asset are calculated as a time series ri
t by

ri
t = logpi

t+1− logpi
t . (5.1)

with pi
t being the value of daily closing price evaluated of index ith at time t. The log returns

series are used as opposed to the daily closing prices as they often fit a Gaussian distribution
[6].
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We measure the corresponding historical volatility σi
t as the standard deviation of the

log return process conditioned to the σ-algebra F i
t−1 generated by log returns ri

0, ..., r
i
t−1.

Specifically, the volatility time series are computed as the standard deviation over n days,
i.e. the number of samples within that time window, of the log return series, over the time
window given by the interval [τ,τ +n]

σi
t =

√√√√ 1
n

τ+n∑
t=τ

(
ri

t−µi
τ,τ+n

)2
, (5.2)

where µi
τ,τ+n = 1

n

∑τ+n
t=τ r

i
t is the mean of the log returns within a time window of n days.

Throughout this project, we set n equal to 21, hence dealing with 21 days standard deviation.
Generally speaking, the marginal contribution MCi of the ith asset to the total risk of the

portfolio is computed by

MCi
t = wi

tσ
i
tβ

i
t (5.3)

where the coefficients βi depend on all the assets in the portfolio by means of the covariance
matrix

βi
t = Cov(σi

t , σ
p
t )

(σp
t )2 . (5.4)

being σp
t the overall volatility of the portfolio. The goal is to optimize all asset classes’ weights

ωi to have equal marginal contributions MCi for all t in the time horizon.
However, the computational complexity of the covariance matrix estimation is proportional

to the square of the assets number, resulting in a computational, time consuming process.
Thus, in this project, we use a simpler version of risk parity, introduced in [20], to approximate
Eq. (5.3). We construct the portfolio by neglecting the contribution of coefficient βi

t, namely
by dropping the assumption of correlation between indexes. We assume each asset’s weight to
be proportional to the inverse of its standard deviation, i.e. the ith asset weight for each time
step t is computed according to

wi
t =

1
σi

t
N∑

l=1

1
σl

t

(5.5)

for a N indexes portfolio. The result is that on a relative basis, lower volatile assets will have
a higher weight than higher volatile assets, see, e.g., [20, 52].
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5.2.2 The GARCH(1,1) model

Modelling asset volatility is a crucial challenge since accurate forecasts of asset returns volatil-
ity contribute to a precise risk assessment. Some financial models, such as the Black-Scholes
one, have been extensively used to estimate the fair price of European-style options, often over-
looking the presence of heteroskedasticity related effects by assuming a homogeneous volatility.
Latter assumption produces elegant closed-form formula, despite assuming the stationarity of
variance is far from being able to realistically depict financial application, especially within
the investment management arena. To forecast prices and rates of financial instruments, in
1982 Robert F. Engle introduced the Auto-Regressive Conditional Heteroskedasticity (ARCH)
model to provide a more realistic model to estimate financial market volatility, see, e.g., [99]
for more details.

In this model, the log-returns rt defined by Eq. (5.1) are computed in approximated form
r̂t as white noise multiplied by the historical volatility σt, while the conditional variance
process is given by means of an autoregressive structure

r̂t = δtσ̂t, (5.6)

σ̂2
t = ω+

p∑
i=1

αir̂t−i (5.7)

where δt are independent and identically distributed (i.i.d.) random variables with E(δt) = 0
and V ar(δt) = 1, independent of σk, for all k ≤ t. The lag length p≥ 0 is itself a parameter
for the model, and the case p= 0 represents the basic scenario characterized by white noise.

In 1986, Tim Bollerslev improved the ARCH model by allowing σt
2 to have its own

autoregressive structure, see [27, 207] for further details. The equation for the GARCH(p,q)
(generalised ARCH) model is:

r̂t = δtσ̂t, (5.8)

σ̂2
t = ω+

p∑
i=1

αir̂t−i +
q∑

j=1
βjσ

2
t−j . (5.9)

Practically, in applications, the GARCH(1,1) model has become widely used in financial
time series modelling because of its relatively simple implementation. Indeed, the likelihood
function is easier to manage if compared with continuous time models, the latter needing
numerical approximations for the solution of associated stochastic difference equations, see,
e.g., [122, 137, 212], for further details. Taking advantage of the GARCH (1,1) implementation
agility, we use it to forecast the volatility of 4 indexes index over the period 1999–2020. More
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precisely, we apply the GARCH-approach within the preprocessing phase aiming to capture
the so-called volatility clustering with a good compromise in terms of computational efforts
(computational time needed for the task) and accuracy. Indeed, it is known, see, e.g., [60,
121], that financial time series often exhibit a behaviour where large price changes tend to
cluster together, resulting in the persistence of the amplitudes of related financial movements.

Figure 5.1: GARCH(1,1) volatility output w.r.t. S&P500 data from February 1999 to June
2020.

Using historical data, the weighted sum of the observed volatility is computed by Eq.
(5.12). As shown in Figure 5.1, forecasts obtained by GARCH(1,1) are poor in terms of
accuracy, while catching high variance peaks as well as corresponding volatility clusters.

5.2.3 The forecast task

We aim at deriving an algorithm able to exploit GARCH-based predictions to get information
about volatility clusters, then entrusting a NN-steered solution to increase the accuracy of
the forecasts.

The task of the forecast algorithm concerns approximating the non-linear mapping f

represented as
Y i = f

(
X i
)

(5.10)

overall the K batches indexed by ith in a iterative way. At this stage, we remark that a
possible limitation of the model is the fact that it assumes that there exists a function linking
volatility inputs with targets over distinct batches.

We perform a rolling window mechanism to model each observation of the series on its
past recent values, that called lags. Specifically, we can rewrite Eq. (5.10) at the level of each
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minibatch as
y[t,t+5] = f

(
X[t−25,t−1]

)
(5.11)

The choice of the look-back window has been empirically provided. Indeed, the best lag
parameter, which turned out to be equal to 25 days, corresponds to such days providing the
lowest MSE value among different tested configurations.

We tried different lag parameter values, namely 25, 50 and 100 days, obtaining rather
similar results in terms of errors, hence proving the stability of the proposed algorithm w.r.t
the look-back window. Indeed, the predictability of a historical series depends largely on its
most recent values, which are considered to be the most important for the network during the
training phase. This fact is supported by empirical evidence and is widely recognized in the
field.

We report in Figure 5.2 the rolling mechanism used to apply the Supervised Learning
procedure for time series.

Figure 5.2: Rolling Mechanism with the in-sample period equals to 25 days and the out-of-
sample period equals to 5 days.

In the input X, then subdivided into a training and a testing set, we consider supplementary
features, hence going beyond the time series of historical volatility. Specifically, the final
dataset consists of the following time series:

• historical volatility σ computed by Eq. (5.2);

• the volatility forecast σ̂ computed via the GARCH(1,1) model. Equation (5.8) with
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p= q = 1 reads

σ̂2
t = ασ2

t−1 +βδ2
t−1 +ω (5.12)

that is adapted since it depends on volatility values at time (t−1));

• weekly averaged volatility, i.e. the mean of the volatility of the last 5 business days;

• monthly averaged volatility, i.e. the mean of the volatility of the last 20 business days;

In Fig. 5.3, we provide a graphical representation for a subset of the training set for the
considered horizon (January 2000 - December 2020). Then, we evaluate the model over a test
set corresponding from October 2020 to December 2022.

Figure 5.3: An extract from the Training Set for S& P 500

5.2.4 RNNs

Neural network models (NNs) are essentially inspired by the functioning of the human brain,
in terms of mimicking the connections and transmissions of signals among neurons. Indeed, a
hidden unit inside a NN essentially mimics the output transmission of real neurons to other
neurons.

In terms of their applications within the machine learning scenario, the main advantage
of neural networks lies in their ability to reconstruct non-linear functions while recognizing
internal patterns within data.

Most used NNs-based forecasting solutions when dealing with time-series data are those
belonging to the large family of the so-called Recurrent Neural Network (RNN) approaches,
which are widely applied for stock market projections as well as for sales forecasting, see, e.g.,
[91, 176, 199, 215]. In this work, we focus on two specific RNN variants, i.e. LSTM and GRU.
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Our work has been focused on exploiting both the GRU and the LSTM approach since
they have been shown to be very effective when dealing with time series. For the sake of
completeness, ANNs-based solutions have been also tried, which have been discarded because
of poorly obtained results. We have planned to implement Temporal Convolutional NNs
(TCNN), see, e.g., [53, 210], type solutions in future research, particularly trying to capture
possible volatility clusters and huge variations well before they really realized within real
markets.

LSTM hidden units

The Long Short-Term Memory (LSTM) units were designed in 1997 by S. Hochreiter and J.
Schmidhuber [124] to address long-term dependence issues. The main idea behind the LSTM
architecture is to replace the recurrent neural network’s (RNN) hidden layer neurons with a
single set of memory cells, called the ”elaboration unit.” Additionally, the LSTM model uses a
gate structure to filter inputs and keep memory cells up to date. The gate structure includes
input, forget, and output gates. Each memory cell is characterized by three sigmoid layers
and a tanh layer, as shown in Figure 5.4.

Figure 5.4: Structure of a LSTM cell

• f t = σ(xtWf +ht−1Uf + bf )

• it = σ(xtWf +ht−1Ui + bi)

• ot = σ(xtW0 +ht−1U0 + b0)

• Ct = σ(ft×Ct−1 + it× C̃t)

• ht = tanh
(
Ct
)
×ot

In the context of a Long Short-Term Memory (LSTM) network, the notation is typically
defined as follows: xt represents the input vector at time t, ft is the activation vector of the
forget gate at time t, it is the activation vector of the input gate at time t, and ot is the
activation vector of the output gate at time t. The output vector of the LSTM unit at time
t is denoted by ht. Additionally, Ct represents the cell state vector at time t. The weight
matrices and bias vector parameters of the network are denoted by W , U , and b, respectively.

The number of parameters to be learned during the training process by a hidden layer
with n LSTM units is given by:

#parameters,LST M = 4∗ ((n+m)∗+n)∗n (5.13)
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where we’re considering 4 functions, namely: 3 sigmoids (f t it, ot ) and 1 hyperbolic tangent
(ht), whit 1 bias parameter, while n, resp. m, represents the size of the input vector, resp.
the dimension of the output vector, for a given hidden layer, see, e.g., [125, 164], for further
details.

GRU hidden units

As a modification of the standard LSTM approach, Gated Recurrent Units (GRUs), as
presented in [58], preserve the LSTM’s ability to avoid the problem of vanishing gradients.
However, they achieve this with a simpler internal structure, resulting in a more straightforward
training phase, as fewer computations are required to update the internal states. The updated
port controls how much of the past state information is retained in the current state, while the
reset port determines whether the current state should be combined with previous information.
Figure 5.5 illustrates the structure of the GRU memory cells, which are characterized as
follows:

Figure 5.5: Structure of a GRU cell

• zt = σ(xtW zt +ht−1U z + bz)

• rt = σ(xtW rt +ht−1U r + br)

• ht = (1−zt)× h̃t +zt×ht−1.

W z,W r and W being the weight matrices associated with the input vector U z, U r and
U being the weight matrices from previous step, and br, bz and b representing the biases.
Moreover, in this model the logistic sigmoid function is represented by σ, the reset gate is
given by rt, and the update gate is denoted by zt.

According to [80], the total number of parameters in the GRU-RNN for a given layer
equals

#parameters,GRU = 3(n2 +mn+ 2n) , (5.14)

where n, resp. m, represents the size of the input, resp. of the output, vector.

Neural Networks architectures

The key difference between GRU and LSTM is that a GRU unit has two gates, namely the
reset and the update gate, whereas an LSTM has three gates, namely input, output and the
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forget gate. Nevertheless, it has been shown that the performance of a GRU is comparable
to a LSTM if limited to specific applications, like, e.g., classification problems, see [159], or
prediction tasks, see [164].

In this project, we consider the following NN architectures:

1. LSTM-GARCH: 2 layers with LSTM units plus a 1 dense layer;

2. GRU-GARCH: 2 layers with GRU hidden units plus 1 dense layer;

3. LSTM-GRU-GARCH: a mixed architecture with 3 layers combining different units: a
first one with LSTM units followed by a layer with GRU units and a dense layer.

4. An ENSEMBLE model aggregating the results from all previous NNs.

We remark that the presence of GARCH into names would emphasize that the considered
models are the hybrid ones since the presence of the GARCH(1,1) forecast into the NN inputs.

Figure 5.6: Graphical representation of the LSTM-GARCH model.

We selected the set of parameters in Table 1 through a trial-and-error procedure. Our goal
was to optimize the model’s predictive accuracy while also ensuring a comparable number of
parameters across different models. This allowed us to perform a consistent analysis across all
models.

The number of parameters is computed accordingly to Eq. (5.13), for layers with LSTM
units, e.g. 4 ∗ ((48 + 16) ∗16 + 16) = 4160), and via Eq. (5.14), for layers with GRU units,
leading to 3∗ (162 + 16∗64 + 2∗16) = 3936.

We recall that for Dense layer with n neurons, the number of parameters involved equals

#parameters,DENSE = n∗ (#previouslayer + 1)
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giving 85 = 5∗ (16 + 1).

Table 5.1: Neural Network architecture and parameters

LSTM-GARCH GRU-GARCH LSTM-GRU-GARCH

First Layer Units LSTM GRU LSTM
First Layer # Neurons 48 48 48
First Layer # Hidden parameters 10176 7776 10176
Second Layer Hidden Units LSTM GRU GRU
Second Layer # Neurons 16 16 16
Second Layer # Hidden parameters 4160 3168 3936
Dense Layer # Hidden parameters 85 85 85
Total # Hidden parameters 14421 11029 13429
Dropout 0.1 0.1 0.1
Learning Rate 0.01 0.01 0.01
Batch Size 32 32 32
Epochs 80 80 80

The number of parameters is selected empirically using a trial-and-error approach to
optimize predictions and ensure consistency in the analysis across different models, considering
a training dataset size of 22,604 entries. It should be noted that there are alternative methods
available for parameter selection. For example, grid search involves testing all possible
combinations of predefined parameter values and selecting the best-performing set based on a
performance metric. Another alternative is random search, which involves randomly selecting
parameter values from predefined ranges and evaluating the model for each combination.
Bayesian optimization uses probabilistic models to determine the most promising parameter
values for improving performance. Gradient-based optimization involves iteratively updating
parameter values using gradients of the objective function, while evolutionary algorithms
generate a population of parameter sets and iteratively mutate the best-performing sets to
create a new population. The choice of method depends on the specific problem and available
resources. All the aforementioned approaches require proper procedures to be implemented,
and we plan to use a selection of these methods in future research. The results for the present
case are sufficient for our purposes, even though they required a time-consuming activity due
to the specific exploratory nature of the research.
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Measuring predictions errors

To evaluate the model prediction performances of the test error, we use the following error
metrics

• Mean Square Error (MSE)

MSE = 1
n

n∑
j=1

(Yj−Ŷj)2 , (5.15)

• Mean Absolute Error (MAE)

MAE = 1
n

n∑
j=1
|Yj−Ŷj | , (5.16)

• Mean Absolute Percentage Error (MAPE)

MAPE = 1
n

n∑
j=1

|Yj−Ŷj |
|Yj |

, (5.17)

where n is the number of samples used in the test set, Yj represents the real data value
and Ŷj shows the forecast, i.e. the NN output from Eq. (5.11).

We considered two different loss functions during the training process, namely Mean
Squared Error (MSE) and Mean Absolute Error (MAE). It is worth noting that using MSE
implies giving more weight to larger errors than smaller ones, due to the squaring operation.
This can lead to a skewed error estimate, where the contribution of outliers is overvalued.
In contrast, MAE considers the absolute value of errors, so all errors are weighted on the
same linear scale. This provides a more generic measure of error without overvaluing outliers.
However, we observed that using MAE as the loss function generally results in higher test
errors, since it does not penalize large discrepancies caused by outliers.

5.2.5 Ensemble of Neural Networks

An ensemble method relies on a learning paradigm where many NNs-based architectures are
jointly used to solve a problem as, e.g., shown by Fig. 5.7, where we illustrate our (ensemble)
forecasting scheme, see, e.g., [29], [193] and [202] for further details.
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Figure 5.7: Scheme of the aggregated Ensemble forecast.

Extension of the Bates & Granger Technique. Based on the portfolio diversification
theory, the Bates & Granger Technique ignores the correlation between forecasting models.
The idea is to use the estimated mean squared forecast errors to obtain the combining
weights, see, [126, 55] for further details. Following the latter approach, we consider a convex
combination of forecasts obtained by different models, associated coefficients being weighted
according to training loss, with a higher coefficient assigned to the network with lower test
error. We use a power of grade 5, hence penalizing more terms with higher errors, by taking

WLG = (1/MSELG)2

Total Error , WGG = (1/MSEGG)2

Total Error , WGLG = (1/MSEGLG)2

Total Error
(5.18)

where LG stands for LSTM-GARCH, GG for GRU- GARCH, and GLG for GRU-LSTM-
GARCH model, respectively, and

Total Error =
( 1
MSELG

)5
+
( 1
MSEGLG

)5
+
( 1
MSEGG

)5
. (5.19)

5.3 Data analysis and Results

In this section, we present the numerical results. We calibrate the model with real market
data using the daily closing prices of 4 indexes: Standard and Poor’s 500, STOXX Europe
600, Hang Seng Index and Nikkei 225.

During a time interval of 20 years, more precisely:
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• Training Set: January 2000 - June 2020 with validation split set at 0.1. In Fig. 5.8 we
can see the training performance for the NN model with GARCH preprocessing and
GRU hidden units;

• Test Set: October 2020 - December 2022, corresponding also to the period of the
historical simulation for portfolio ruled by the Risk Parity technique.

5.3.1 General Information about the Dataset

It is essential to emphasize that a Risk Parity strategy usually deals with portfolios made by
indexes, bonds and commodities because of the different intrinsic risks of these instruments.
In our setting, we focused on a 4-indexes, representing relevant both USA and international
markets proxies, risk parity portfolio consisting of:

1. S&P500 index or Standard and Poor’s 500 is the market capitalization-weighted index
of 500 large companies listed on stock exchanges in the United States. It is widely
recognized as one of the most accurate indicators of the performance of major American
stocks, and by extension, the stock market as a whole.

2. STOXX Europe 600, or Stoxx600, is the European stock index comprising a fixed
number of 600 components representing major, mid, and small-capitalization companies
from 17 European nations, also with exposure to Great Britain, Switzerland and the
Scandinavian countries. Given the wide market exposure, the STOXX Europe 600 index
is often considered the European equivalent of the S&P 500 index;

3. Hang Seng Index as a proxy for Asia ex Japan (HSI) is a free-float-adjusted market
capitalization-weighted index. It is the primary gauge of Hong Kong’s stock market
performance since it records and monitors the daily changes in the stock prices of the
major businesses listed on the city’s stock exchange;

4. Nikkei is an abbreviation for Japan’s Nikkei 225 Stock Average, being a price-weighted
index comprised of the Tokyo Stock Exchange’s top 225 blue-chip companies, therefore
the Nikkei is similar to the USA index called Dow Jones Industrial Average (DJIA).

5.3.2 Calibration results from the training set

For the sake of simplicity, both for the training results and for the predictions in Section 5.3.3,
we present plots and results related to S&P 500 index, ignoring other indexes since they follow
a similar pattern over years.
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Figure 5.8: Calibration from the training set with GRU-GARCH model for the S&P 500
index.

We can see from the second and third pictures from Fig. 5.9, which correspond to
LSTM-GRU-GARCH and GRU-GARCH, that we obtain comparable training and validation
errors that ensure good behaviour for the model. Conversely, we obtain for LSTM-GARCH a
training loss higher than the validation one as it appears from the first loss function in Fig.
5.9. This behaviour can be due to the fact that the validation set does not consider dropout.

LSTM LSTM + GRU GRU

Figure 5.9: S& P500, Validation and Train errors for all models with 80 epochs
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Figure 5.10: Ranked training MSE for training set of the S&P index

Models MSE RMSE MAE MAPE [%]
GARCH 0.00908571 0.0953190 0.09150850 345.56987
LSTM-GARCH 0.00076309 0.0953190 0.01614862 10.246528
GRU-GARCH 0.0002882 0.095319 0.0915085 6.329703
LSTM-GRU-GARCH 0.00033954 0.0953190 0.01105917 6.7951889

Table 5.2: Training Errors for 2000-2020 simulation, for S&P500

As we highlight within the previous table, on the training set the highest MSE error
has been obtained by the GARCH model. The 345% MAPE in Table 5.2 is due to the
bad-performance related to the GARCH forecast as clearly visible in the plot of Fig. 5.10.
The predictive performance is really improved by adding NN with the best model being the
GRU-GARCH model.

5.3.3 Forecast results of the hybrid algorithms for the S&P500 volatility

In this section, we present daily, weekly and monthly frequency forecasts for historical volatility
for 2021 - July 2022.
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Daily Forecast

Figure 5.11: Daily 21 days RV vs predicted volatility for Ensemble model

Figure 5.12: Ranked MSE errors on daily forecast for S&P500.

As highlighted in Table 5.3, on the test set for daily forecast, the highest MSE error has been
obtained by the LSTM-GARCH model, and modifying this model by NN models significantly
reduces the MSE error. Best performances have been obtained by the GRU-GARCH solution,
the latter showing the lowest MSE error.

Model MSE RMSE MAE MAPE
LSTM-GARCH 0.023628595 0.153715 0.0177804 12.043454
GRU-GARCH 0.013872029 0.120729 0.0013675 5.7662236
LSTM-GRU-GARCH 0.014445018 0.120187 0.0059371 6.6963885
ENSEMBLE 0.01384343 0.11765 0.009488 5.922075
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Table 5.3: ERRORS ON DAILY FORECAST, for S&P500

Weekly Forecast

Figure 5.13: Weekly predictions for the GRU-GARCH(1,1) model

Figure 5.14: MSE errors on weekly forecast for S&P 500 index

Models MSE RMSE MAE MAPE
LSTM-GARCH 0.021117 0.145316 0.016951 10.92226
GRU-GARCH 0.00890 0.09435 0.00644 4.03471
LSTM-GRU-GARCH 0.009724 0.098611 0.007565 5.036304
ENSEMBLE 0.009004 0.094884 0.006649 4.258328

Table 5.4: ERRORS ON WEEKLY FORECAST, for S&P500

As highlighted in the Table 5.4, the highest MSE error has been obtained by the LSTM-
GARCH model. Modifying the latter by NN models reduces the MSE error. In particular,
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the best performances have been those obtained by the GRU-GARCH solution showing the
lowest MSE error.

Monthly Forecast

Figure 5.15: Monthly predictions for GARCH-GRU model

Figure 5.16: MSE errors on monthly forecast

Models MSE RMSE MAE MAPE
LSTM-GARCH 0.0177986 0.133411 0.01510 9.380881
GRU-GARCH 0.004206 0.06845 0.00346 2.25129
LSTM-GRU-GARCH 0.0054082 0.073540 0.004821 3.379187
ENSEMBLE 0.0044469 0.066685 0.006649 2.600597

Table 5.5: ERRORS ON MONTHLY FORECAST, for S&P 500
As highlighted in Table 5.5, the highest MSE on the test set for monthly forecast has been
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obtained by the LSTM-GARCH model, while the best results are related to the GRU-GARCH
model, showing the lowest MSE error.

5.3.4 Discussion of the Results

The main improvements in terms of MSE-decreasing have been obtained by implementing the
following:

• enlarging the space of features: the initial model only uses the daily volatility as input,
while by including the weekly and monthly means as features, the model predictions
ended up being smoother.

• Optimizing the Dropout hyperparameter: this regularization technique improved signifi-
cantly the model performance on test data. It was noted that without it, the model
performed much better on trained data, but worse in test ones.

• Adding a Dense layer: we note that adding as final layer a dense layer, whose neurons
receive input from all neurons in the previous one, considerably improves the overall
accuracy.

• Comparing LSTM and GRU performances: LSTMs remember longer sequences than
GRUs and should outperform GRUs in tasks requiring modelling long-distance relations.
On the other hand, GRUs train faster and perform better than LSTMs on less training
data. Thus, it is crucial to select the opportune fraction of the dataset to have a proper
train-validation split. The choice of this parameter (we have considered values from 0.08
to 0.2) directly affects the specific models giving the best predictions.

• Considering an ensemble algorithm: there are two main reasons to use an ensemble
over a single model. The first one is related to performance: the ensemble has good
predictions behind only the GARCH-GRU representing our benchmark, as shown in
Figures 5.12 and 5.17. The second advantage deals with robustness since an ensemble
reduces the spread or dispersion of the predictions and model performance, limiting the
bias connected to a single model.

Moreover, comparing Tables 5.3 and 5.4, we can see how monthly predictions portfolios are
better than the weekly ones in terms of overall percentage error, with a MAPE of 2,25%
and 4,03% respectively. This behaviour may be explained by the fact that averaging over a
monthly basis provides a smoothing effect over the noise that directly affects the volatility
prediction.
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To summarize, as we can clearly see from Tables 5.2, 5.3 and 5.5, reporting the forecast errors,
and from the box plot in Figure 5.17, the GRU-GARCH solution outperforms other hybrid
models in terms of overall MSE. We also obtain a good performance from the ensemble model,
dealing with the aggregated forecast.

Figure 5.17: Box plot of the comparison for the MSE on the daily forecast for different NNs
architecture with S&P500 data

We report the errors for different simulations in the aggregated results presented in the
Appendix 6.6.

5.4 Risk parity portfolio

In this section, we compare an equally-weighted indexes (S& 500, STOXX Europe 600, Hang
Seng, Nikkei) basket with a risk-parity weighted portfolio of the considered indexes over the
same reference period October 2020 - December 2022.

We use a bottom-up data-driven approach to determine the weights for the portfolio assets.
We refer to Section 5.2.1 for a detailed description of the re-balancing rules.
We begin by calculating the long-term historical volatility for each index, as discussed in
Subsection 5.2.3. Volatility time series are then used as input to update the weights according
to Eq. (5.5).

For the sake of simplicity, we do not consider transaction costs.
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Figure 5.18: Weekly Forecast for the 4 considered indexes

The contract position weight within each asset class is proportional to the inverse of its
standard deviation, see Equation (5.5).

Figure 5.19: Weekly Weights for the 4 considered indexes

According to weights of Fig. 5.19, we compute the return in Fig. 5.20 of an investment over
the considered horizon of 112 weeks (October 2020 - December 2022).
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Figure 5.20: Weekly rebalanced portfolio

In Fig. 5.21, we report the monthly volatility used to compute the corresponding weights
reported in Fig. 5.22.

Figure 5.21: Monthly Forecast for the 4 considered indexes

Figure 5.22: Monthly Weights for the 4 considered indexes
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Fig. 5.23 reports a plot of returns for a monthly re-balanced portfolio over the considered 27
months. We also compare its performance to an equally balanced one.

Figure 5.23: Monthly re-balanced portfolio

5.4.1 Performance Analysis

We report some financial considerations from the analysis of the portfolio performance:

• According to Fig. 5.20 and 5.23 where we consider the evolution of different portfolios,
we can see how Risk Parity techniques outperformed equally balanced portfolios over
the considered period October 2020 - December 2022. The latter suggests that a
diversification based on equalizing risk is able to offer good protection for investments
in periods of market turbulence.

• Figures 5.19 and 5.22 suggest a possible explanation of how the discrete allocation of
the Risk Parity mechanism can benefit overall returns. The real advantages of risk
parity appear only at the end of the first year. For example, we can see that during
2021 positions on the American and European indices are strengthened up to more
than 70% of the allocation in December 2021. While for the previous period with the
redistribution mechanism not rewarding any particular stocks, the difference in returns
between the two portfolios does not grow considerably as it happens during the peaks
of volatility within the 2022 year.

5.5 Conclusions

We presented a hybrid method to compute volatility forecast to perform a risk-controlled
strategy over a portfolio of 4 indexes, namely S&P 500, STOXX Europe 600, Hang Seng,
Nikkei, as a proxy of different international markets.
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We prove how the version of Risk Parity proposed by [20], moving from Eq. (5.5), effectively
produces encouraging results beyond its simplicity, also suggesting to development of more
advanced techniques to include cross-correlation of assets in addition to individual volatility.
Considering an ensemble method helps to achieve an improvement in terms of the accuracy of
predictions.

We emphasize that our findings remain robust when dealing with different indexes, providing
empirical evidence for a universal volatility mechanism among indexed.

Eventually, we present some future research directions:

• When dealing with real applications, the standard deviation is a dangerously limited
estimate of the true risk of an asset class. We believe the model could benefit from using
other risk measures (such as sampled entropy or cross-entropy) as well as improving the
risk analysis;

• We would like to analyze other NN algorithms such as Temporal CNNs or Regression
Trees to analyze the problem even if the considered models already give acceptable
results.

• We assume a portfolio composed only of indexes. It is worth mentioning that dealing
with different assets, e.g., bonds, futures, and options, may increase the effectiveness of
the proposed methodology. It would also raise the potential diversification benefits of a
Risk Parity strategy in terms of risk efficiency, namely the risk-adjusted returns.

• Finally, in [86] the authors consider a portfolio analysis focused on a VolTarget strategy
that, moving from volatility predictions, iteratively balances a portfolio between a risky
investment and a risk-less one. It might be worthy of further investigation running a
comparison analysis between VolTarget and Risk Parity to understand analogies over
long-term horizons and, moreover, to consider a mixed algorithm that includes both the
2 risk-controlled strategies.
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6 Single Agent Reinforcement Learning
for Bidding Strategy Optimization in
the Day Ahead Energy Market

6.1 Introduction

The price of electricity in the European market can be very unstable since it is affected by
various modes of production from different sources, each with its own constraints in terms of
weather, production volume, and storage difficulty. From a financial, economic and ecological
standpoint, forecasting market movements and the situation of the following day’s market is
now a critical issue in order to maximize power output and help the energy transition process.
In general, day-ahead energy markets use a simple auction paradigm: operators on the supply
and demand side submit bids that include a quantity (q) and a price per unit (p) for the
trading period(s) (typically hours) of the following day. In this basic setup, the intersection
point of the demand and supply curves is sought, which ensures a balance of consumption and
production while determining the Marginal Clearing Price (MCP). To facilitate the integration
of European power markets, a market-clearing algorithm called EUPHEMIA (Pan-European
Hybrid Electricity Market Integration Algorithm) has been developed among European power
exchanges. It is a strictly economic dispatch algorithm and provides several options and
products to market participants.
The aim of this project is to develop an algorithm to solve the stochastic optimal control
problem related to an operator aiming at maximizing her profit playing in an electrical market
regulated by the Euphemia algorithm. The optimization problem is solved by Reinforcement
Learning (RL) where an agent, i.e. the operator, interacts with a stochastic environment that
is represented by the values of electrical prices. Rather than directly looking at her profit, the
agent performs an action by selecting a proper offering curve and receives a reward based
on the new state of the environment, i.e. the prices of the next day from which the reward
is computed. The aim consists of computing the (deterministic) optimal policy that links
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to a given state (historical prices) the best action in terms of maximizing the cumulative
discounted reward.
The chapter is organized as follows: in Sec. 6.2 we present the day ahead energy market
and the related auction algorithm and we review some popular RL methods; in Sec. 6.3
we introduce the theoretical setting of the single agent; in Sec. 6.4 we analyse the Deep
Deterministic Policy Gradient (DDPG) method and its adjustment into the electricity auction
framework; in Sec. 6.5 we present some numerical simulations, we review some modelling
assumptions and we report some considerations and limitations of the algorithm. We conclude
the chapter with Sec. 6.6 sketching future directions that may employ this algorithm as a
reference starting point.

6.2 Background and Literature review

Electricity auctions are a crucial feature of power markets because they make it possible
for generators, retailers, and other market participants to trade electricity. The use of
Reinforcement Learning (RL) approaches to boost market participants’ performance and the
general effectiveness of power auctions has gained popularity in recent years. We will explore
the main issues and techniques while providing a brief summary of the state-of-the-art in RL
for electricity auctions.

6.2.1 Energy market

Modern energy networks rely heavily on day-ahead electricity markets, which offer a framework
for the effective purchase of electricity for delivery the next day. The unitary MCP of energy,
also known as PUN (Prezzo Unitario Nazionale) in the Italian market, is established in these
markets by a complicated bidding procedure that involves the interaction of several market
participants, including producers, consumers and traders.
The unitary price represents the cost of producing the last unit of electricity needed to meet
demand and is set at the intersection of the supply and demand curves.
Accurately predicting future unitary prices in day-ahead markets remains a challenging
problem due to the dynamic nature of the electricity system and the complexity of the bidding
process. Unitary prices set by electricity auctions can be determined in various ways, including
the aforementioned day-ahead markets, real-time markets, and capacity markets. Participants
submit bids and offers to buy or sell electricity, and the market operator clears the market
by determining the market clearing price and the amount of electricity to be traded. The
Euphemia algorithm, for instance, is widely used in European day-ahead markets to allocate
cross-zonal capacities and determine market clearing prices [100].
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Euphemia algorithm

The Euphemia algorithm, which stands for ”European Price Formation Mechanism”, is a
pan-European algorithm used to determine electricity prices in the day-ahead market. It was
developed as a collaboration between European Power Exchanges (PXs) and Transmission
System Operators (TSOs) in response to the European Union’s (EU) target to create a single,
integrated energy market.
The day-ahead electricity market consists of a process aiming at matching demand and supply
once the offers by the operators have been submitted. The amounts of energy bought/sold in
the market may come from different zones, thus the optimization of electricity allocations
takes into account also the transmission capacities of the network.
The Euphemia algorithm aims to optimize social welfare, which is the sum of consumer surplus,
producer surplus and congestion revenues. It takes into account several factors, such as supply
and demand, transmission capacities, and market constraints, to calculate the most efficient
and cost-effective allocation of energy resources and cross-border capacities. Essentially, it
could be described according to the following workflow:

1. the algorithm starts taking input data from various sources: bids and offers from market
participants, transmission capacities between bidding zones and market constraints.
Bids and offers contain information about the quantity of electricity, minimum and
maximum prices, and the time at which the electricity will be delivered;

2. the Euphemia algorithm processes the bids and offers to create order books for each
bidding zone. The order books list the bids and offers in descending order of price, thus
creating a demand curve (bids) and a supply curve (offers);

3. the algorithm matches the demand and supply curves for each bidding zone: the
intersection of these curves determines the MCP and the cleared volume of electricity
for each zone;

4. later the algorithm optimally allocates the available cross-zonal capacities between
bidding zones. This process takes into account the transmission capacities and other
constraints to minimize congestion and maximize the efficient use of resources.

5. if there is congestion in the transmission network, the algorithm will re-optimize the
allocation of resources and cross-zonal capacities. This may result in price differences
between bidding zones, known as congestion rent, which is used to cover the costs of
congestion management.

147



6.2. BACKGROUND AND LITERATURE REVIEW

6. finally, the Euphemia algorithm calculates the day-ahead prices for each bidding zone
based on the results of the clearing process and the allocated cross-zonal capacities

Its ability to optimally allocate resources and capacities helps to reduce market inefficiencies,
lower energy costs for consumers, and promote the adoption of renewable energy sources
across the continent.
To give a mathematical description of how the MCP/PUN is computed, we consider the be
the set of P market participants. Each participant P ∈ P submits a series of bids or offers.
Each one of these offers can be represented as a tuple [qP ,sP ], where:

• qP : Quantity of electricity in MWh

• sP : Step price in €/MWh;

Let B be the set of all bidding zones, and C be the set of all connections between the bidding
zones.
For each bidding zone b ∈B, the algorithm creates a demand curve Db and a supply curve Sb.
The demand curve consists of bids sorted in descending order of price, and the supply curve
consists of offers sorted in ascending order of price. Mathematically, the demand and supply
curves can be represented as functions:

• Db(p): Price → Quantity (for bids)

• Sb(): Price → Quantity (for offers)

The market clearing price (MCP) and cleared volume (CV) for each bidding zone b ∈B are
determined by finding the intersection of the demand and supply curves:

MCPb = p∗ such that Db(p∗) = Sb(p∗)

CVb =Db(MCPb) ,

as we can see in Fig. 6.1.
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Figure 6.1: Demand and Offer stepwise aggregated curve ( from [100]).

Let Tbc be the maximum transmission capacity from bidding zone b to c. The algorithm
finds an optimal allocation of cross-zonal capacities (Xbc) that maximizes social welfare while
adhering to the transmission capacities:

max
∑

b,c∈B

(MCPb−MCPc) ·Xbc

subject to:

• 0≤Xbc ≤ Tbc,∀b,c ∈B

• Flow conservation constraints

When there is congestion in the transmission network, the algorithm re-optimizes the allocation
of resources and cross-zonal capacities. This may result in price differences between bidding
zones, known as congestion rent:

CRbc = (MCPb−MCPc) ·Xbc

The final day-ahead prices for each bidding zone b ∈B are calculated based on the results of
the clearing process and the allocated cross-zonal capacities:

Priceb = MCPb
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The initial simplification we introduce in our RL method is that we concentrate just on stages 1-
3 of the workflow, which means that we will only take into account the supply/demand coupling
problem without taking into account the subdivision into the cross-zonal sub-problems.

6.2.2 Reinforcement Learning

Reinforcement learning [204, 131] is a learning paradigm mapping situations to actions to
maximize a numerical reward signal through repeated experience gained by interacting with
the environment. The agent’s objective is to develop a strategy that maximizes the expected
cumulative reward over time by learning a policy that maps states to actions. The most
common algorithms for RL include Q-learning, deep Q-networks (DQN), and policy gradient
methods, such as REINFORCE and proximal policy optimization (PPO).
In a recent survey paper [120], the authors review model-free RL algorithms with infinite
horizon and discounted reward, focusing on some classical value-based and policy-based
methods.

Model-free algorithms: value-based vs policy-based approaches

Model-free algorithms do not require any knowledge about the underlying model and instead
focus on directly optimizing the policy or other value parameters in a goal-oriented approach.
They can be further divided into two categories: value-based approaches and policy-based
approaches. The objective of value-based methods is to find accurate estimates of the state
and/or state-action pair value functions V (s) and Q(s,a). One example of this approach is the
well-known Q-learning algorithm. On the other hand, policy-based methods do not require
the estimation of the value function, but instead use a parameterized policy that represents a
probability distribution of actions over states πθ = Pr[a|s] as a neural network. The policy is
directly optimized by defining an objective function and using gradient ascent to reach an
optimal point. An example of a policy-based method is the Actor-Critic algorithm.
Two networks are trained in the family of algorithms known as Actor-Critic. The critic
evaluates the effectiveness of the action taken, i.e., it approximates the value function, whereas
the actor approximates the policy and chooses which action to take.

ML Electricity forecast.

The problem of price electricity forecasting and energy market modelling have been tackled
by a plethora of methods and predictive algorithms. We refer to [147] for a presentation
and a comparison of several statistical and deep learning algorithms in the field of electricity
price forecasting. In [208], the authors evaluate different Machine Learning models, such as
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Support Vector Machine, Recurrent NN and Deep Learning, for predicting electricity price
forecasting on the day-ahead market over different areas of Europe on separated test periods
focusing on the impact of adding new predictive features. A similar perspective is followed in
[157], where the novel CTSGAN (Conditional Time Series Generative Adversarial Network) is
introduced proving its stability and consistency for forecasting day-ahead electricity prices in
the Australian Electricity Market.

Methodologies for RL in Electricity Auctions

In recent years, there has been increasing interest in applying reinforcement learning techniques
to the modeling of day-ahead electricity markets, with the aim of developing more accurate
and effective strategies for market participants. In [218], the authors models the electricity
auction market by means of a Q-learning algorithm considering each supplier bidding strategy
as Markov Decision Problem where the agents learn from past experience an optimal bidding
strategy to maximize its own payoff. Although there are certain limits in terms of application
for actual case scenarios due to the usage of simple synthetic datasets and Q-tables with
discrete pairings of actions-state, this work still serves as a reference point.
This section presents a selection of RL methodologies that have been applied to electricity
auctions, along with their key contributions and limitations.

1. Q-learning is a popular model-free RL algorithm for learning optimal action-value
functions in discrete state and action spaces [211]. In a discrete Q-learning setting, a
simple data structure that we use to keep track of the states, actions and their expected
rewards is represented by a table, known as Q-table: the Q-table maps a state-action
pair to a Q-value that represents the quality (hence the estimated optimal future value)
of the selected action given a particular space which the agent will learn. At the start of
the Q-Learning algorithm, the Q-table is initialized to all zeros indicating that the agent
does not know anything about the world. Using trial and error aiming to learn each
state-action pair’s expected reward and updating the Q-table with the new Q-value is
called exploration. Conversely, explicitly choosing the best-known action at a state is
called exploitation. In the context of electricity auctions, Q-learning has been used to
learn bidding strategies for market participants, such as generators and retailers [174].
However, the discrete nature of Q-learning can limit its applicability to auctions with
large or continuous state and action spaces.

2. Deep Q-Networks (DQN) extend Q-learning by using Deep Neural Networks (NNs)
to approximate the action-value function, enabling RL in large or continuous state
spaces [169]. DQN has been applied to electricity auctions for learning optimal bidding
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strategies in various market settings, such as day-ahead markets and real-time markets.
However, DQN still assumes discrete action spaces and can be computationally expensive
due to the use of deep neural networks. The idea is to exploit a Neural Network mapping
states to (action, Q-value) pairs to approximate the state-action value function. The
success of Deep RL is based on the following features. The first one is the introduction
of an experience replay mechanism in which every experience tuple et, composed of
state transition, action selected and received reward, is stored in a dataset and then
randomly batched avoiding the correlation between consecutive iterations. The second
feature concerns the use of 2 NNs with the same architecture but different weights in the
learning process. The first NN aims at approximating Q, the Q-network. Conversely, for
every n steps, the parameters from the main network are copied to the target network
that uses the following training loss function, defined as

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r+γmax

a′
Q(s′,a′;θ−

i )−Q(s,a;θi)
)2
]

being θ−
i and θi the parameters of the target network and of the Q-network at iteration

i, respectively.

3. Policy gradient methods have been extended to make use of deep NNs, keeping the
advantage of allowing for policies in the continuous action space. Policy gradient
methods, such as REINFORCE and Proximal Policy Optimization (PPO), directly
optimize the policy by estimating the gradient of the expected cumulative reward [213,
198]. These methods can handle continuous state and action spaces, making them
suitable for electricity auctions with complex market dynamics. Applications of policy
gradient methods in electricity auctions include learning optimal bidding strategies for
generators and demand response aggregators [54]. One limitation of policy gradient
methods is that they may require a large number of samples for stable learning.

4. Electricity auctions involve multiple agents with different objectives and learning dynam-
ics, making it a natural fit for Multi-Agent Reinforcement Learning (MARL) approaches.
MARL algorithms, such as Independent Q-learning, Multi-Agent Deep Deterministic
Policy Gradient (MADDPG), and Centralized Critics with Decentralized Actors (CCDA),
have been applied to learn coordinated bidding strategies for electricity auctions [220].
Although MARL can capture complex agent interactions, it may suffer from scalability
issues and instabilities in the learning process.

5. Actor-critic methods combine the advantages of policy gradient methods and value
function approximation to improve the learning process [140]. The actor is responsible
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for generating actions based on the current policy, while the critic learns to evaluate
the policy by estimating the value function. In electricity auctions, actor-critic methods
have been used to learn bidding strategies and demand response management, offering
a balance between exploration and exploitation [111].

6. Deep Deterministic Policy Gradient (DDPG) is an off-policy algorithm that extends
the idea of the actor-critic method to continuous action spaces [155]. DDPG uses a
deep neural network to approximate the policy and another deep neural network to
approximate the value function. In the context of electricity auctions, DDPG has been
applied to learn optimal bidding strategies for generators and energy storage systems in
day-ahead markets and real-time markets [221].

7. Monte Carlo Tree Search (MCTS) is a tree search algorithm that uses Monte Carlo
simulations to estimate the expected value of actions in a given state [32]. MCTS has
been applied to electricity auctions to handle complex decision-making problems with
large state spaces and uncertainty. For example, MCTS has been used to optimize
bidding strategies in multi-stage electricity auctions, considering the uncertainty in
future market conditions [59].

8. Inverse Reinforcement Learning (IRL) aims to learn the underlying reward function of
an expert agent by observing its behavior [172]. In electricity auctions, IRL has been
used to model the bidding behavior of market participants, allowing for the analysis
of strategic interactions and the development of counter-strategies [206]. By learning
the reward function of other market participants, IRL can provide insights into their
objectives and decision-making processes.

6.3 The Single Agent RL setting

One important issue for electricity suppliers is how to optimally bid into the electricity auction
market in order to maximize their profit. We model this problem into a single agent RL
setting.
In general terms, a RL algorithm includes: a representation of a value function that provides
a prediction of how good each state (or each state-action pair) is; a direct representation of
the policy π(s) or π(s,a); a model of the environment by means of the transition function and
the reward function in conjunction with a planning algorithm (any computational process
that uses a model to create or improve a policy).
The first two components are related to what is called model-free RL. When the latter
component is used, the algorithm is referred to as model-based RL.
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The framework for this chapter falls into the setting of continuous control with DDPG first
introduced in [155]. DDPG is a reinforcement learning algorithm that uses deep neural
networks to approximate policy and value functions in a high dimensional, continuous actions
space.
The reward r : S×A×S→ R is the reward function representing the instantaneous reward
received, transitioning from (s,a) to s′.
At stage t, each seller i ∈N selects and executes an action, that in our setting corresponds
to a step-wise energy/price function, depending on the learned policy πi : S→ P (A), which
maps states from the state space S to a probability distribution over the action space A, that
determines the behaviour of an agent. In Fig. 6.2, we report an example of an offering curve
that we obtain corresponding to an action that the agent can take at time t.

Figure 6.2: Offering Curve: the intersection with the demand (thus the reward) is computed
with the next-day price of electricity.

.

The immediate reward is insufficient for providing insights into the long-term profit. Therefore,
it is crucial to introduce the return value Rt, defined over a finite time horizon T . The return
value Rt is given by the following expression:

Rt = rt+1(st,at)+γt+1rt+2(st+1,at+1)+ ...+γT −1rT (sT −1,aT −1) = rt+1(st,at)+
T −1∑

i=t+1
γiri+1(si,ai)

(6.1)
In this equation, rt+k denotes the instantaneous reward at time t+k, and γ ∈ [0,1] is the
discount factor. The discount factor determines the importance of future rewards compared
to immediate ones, with lower values placing more emphasis on the short-term rewards. The
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term r(si,ai) represents the reward obtained at time i when taking action ai in state si. The
return value Rt is the discounted sum of future rewards, allowing agents to optimize their
actions for long-term profit.
Whereas the rt indicates what is good in an immediate sense, Rt specifies what is good in the
long run.
The goal of the agent is to take actions that will maximize its expected performance over
the long term, in relation to an unknown transition function P. To achieve this, the agent
learns a behaviour policy π : S →P(A) that optimizes its expected performance as it learns.
The system progresses from state st under the joint action at ∈ A, based on the transition
probability function P , to the next state st+1, providing updated information on the aggregated
load, corresponding unitary loads, and new unitary price. Additionally, each agent receives
Ri as immediate feedback for the state transition.
The goal of the agent is to optimize an objective in the form of Rt

J = Eri,si,ai∼π[Rt] (6.2)

that corresponds to learning a policy that maximizes the cumulative future payoff to be
received starting from any given time t until the terminal time T .
The agent’s value function associated with such a control problem is

V (sn) = max
an∈A

E [R(sn,an,sn+1)]

The dynamic programming principle implies that V satisfies the Bellman equation

V (sn) = max
an∈A

E [r(sn,an,sn+1) +γV (sn+1)]

In RL, it is useful to define an action–value function to measure the quality of taking a specific
action a, and hence is called the Q-function Q : S ×A→ R defined as

Q(sn,an) =R(sn,an) +γmax
a
Q(sn+1,a)

that solves a Bellman equation

Q(sn,an) =R(sn,an) +γmax
an+1

Q(sn+1,an+1) (6.3)
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6.4 DDPG for elecrity auction

DDPG is a model-free actor-critic algorithm based on the deterministic policy gradient with
a continuous action spaces.
Both actor and critic are approximated using deep Feed Forward Neural Networks (FFNN)
with a second set of target FFNNs.
The Actor-Network approximates a parameterized actor function µ(s|θµ) which determin-
istically describes the current policy and outputs the best offering curve directly given an
observation of last 7 days prices. In Fig. 6.3, we sketch the Feed Forward NN we use to model
the Actor Network.

Figure 6.3: The Feed Forward Actor Network produces a vectorial output representing the
Offering Curve.

.

The critic network is used to approximate the Q function, for a given state-action pair. On
the other hand, the critic function Q(s,a) approximates the Q-value value function given
a (price-offering curve) pair estimating the expected return by approximating the Bellman
Equation.
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Figure 6.4: The Feed Forward Critic Network approximates the Bellman Equation given
(st,at)

.

The actor is updated by applying the chain rule using the sampled policy gradient

∇θµJ ∼
1
N

∑
i

∇aQ(s,a|θQ)
∣∣
{s=si,a=µ(si)}

∇θµµ(s |θµ)
∣∣
{s=si}

(6.4)

that minimizes the distance between the current policy’s actions and actions that maximize
expected rewards. This technique involves estimating the gradient of the expected cumulative
reward with respect to the policy parameters by using samples collected during interactions
with the environment.
The DDPG algorithm consists of the following steps:

1. Initialize the actor network with weights θµ and the critic network with weights θQ.

2. Initialize the target networks for the actor and critic with the same weights: θ′
µ = θµ

and θ
′
Q = θQ.

3. Sample a minibatch of transitions (s,a,r,s′) from the replay buffer.

4. Update the critic network by minimizing the loss:

L= 1
N

∑
i

(yi−Q(si,ai|θQ))2 (6.5)

where yi = ri +γQ(s′
i,µ(s′

i|θ
′
µ)|θ′

Q) is the target Q-value, and µ is the deterministic policy
from the actor network. The critic loss (6.5) corresponds to Mean Squared Error (MSE)
between the predicted Q-values and the actual rewards plus the discounted Q-value
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of the next state (i.e., the Bellman equation). This loss guides the critic network to
approximate the true Q-values as accurately as possible.

5. Update the actor network using the sampled policy gradient introduced in (6.4);

6. Update the target networks using the soft update rule:

θ
′
µ← τθµ + (1− τ)θ′

µ, θ
′
Q← τθQ + (1− τ)θ′

Q, (6.6)

where τ ≪ 1 is a small constant that controls the rate of the update.

using an exploration strategy based on noise processes, such as the Ornstein-Uhlenbeck one,
to add temporally correlated noise to the actions. Hence, the noise process Xt is defined by
the following SDE:

dXt =−θ(Xt−µ)dt+σdWt (6.7)

that we discretize by the following Euler-Maruyama method:

Xt+∆t =Xt−θ(Xt−µ)∆t+σ
√

∆tξt (6.8)

where ξt represents a random sample from a standard normal distribution.
Finally, the generated noise is added to the actions produced by the Actor network:

at = µ(st|θµ) +Xt (6.9)

where at is the action taken at time t, µ(st|θµ) is the action produced by the actor network
for the state st, and Xt is the noise generated by the Ornstein-Uhlenbeck process.
We report some tools used by DDPG in order to control the stability of the algorithm:

• employing a replay buffer to store past experiences and sample mini-batches of transitions
for training. This technique helps to break correlations in the data, thus improving
stability;

• using separate target networks for both the actor and critic to provide a more stable
target for learning. The target networks are updated slowly, using a soft update rule
with a small mixing factor, which helps to stabilize learning;

• adding regularization techniques, such as L2 regularization, to the loss functions for the
actor and critic networks can help prevent overfitting and improve the stability of the
learned policy.
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• carefully tuning the hyperparameters, such as the learning rates, discount factor, and soft
update rate, can significantly impact the stability of DDPG. Conducting a systematic
search or using optimization techniques can help find the best hyperparameters for a
specific problem.

• clipping gradients during the backpropagation step can help mitigate exploding gradients
and stabilize learning;

Moreover, in order to improve the stability of the algorithm a solution of the algorithm we
work in mini-batches (the so-called experiences arrays) and we add common noise to randomize
the actions.
Therefore, we derive the following scheme:
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Algorithm 1 DDPG for electricity auctions
1: Initialize the Actor network µ(st|θµ) and the Critic network Q(st,at|θQ) with random

weights θµ and θQ.
2: Initialize the target networks µ′(st|θ′

µ) and Q′(st,at|θ′
Q) with weights θ′

µ← θµ and θ′
Q← θQ.

3: Initialize the Ornstein-Uhlenbeck noise process Xt.
4: For each episode:

Initialize the environment and obtain the initial state s0.
For each time step t:

1: Select the action at = µ(st|θµ) +Xt, where Xt is the noise generated by the
Ornstein-Uhlenbeck process.

2: Execute the action at in the environment and observe the reward rt and the next
state st+1.

3: Store the transition (st,at, rt,st+1) in the replay buffer.
4: Update the noise process Xt+∆t = Xt− θ(Xt− µ)∆t+ σ

√
∆tξt, where ξt is a

random sample from a standard normal distribution.
5: If the replay buffer contains enough samples, sample a mini-batch of transitions

(sj ,aj , rj ,sj+1) from the replay buffer.
6: Update the Critic network by minimizing the loss:

L(θQ) = 1
m

m∑
j=1

(
Q(sj ,aj |θQ)− (rj +γQ′(sj+1,µ

′(sj+1|θ′
µ)|θ′

Q))
)2

(6.10)

7: Update the Actor Network using the sampled policy gradient:

∇θµJ(θµ)≈ 1
m

m∑
j=1
∇aQ(sj ,a|θQ)

∣∣
a=µ(sj |θµ)∇θµµ(sj |θµ) (6.11)

8: Update the target networks using soft updates:

θ′
µ← τθµ + (1− τ)θ′

µ, θ′
Q← τθQ + (1− τ)θ′

Q, (6.12)

9: Repeat until the desired level of performance is achieved or a maximum number of
episodes is reached.

6.4.1 Selection of the DDPG hyperparameters

We briefly describe the hyperparameters we use for the DDPG algorithm while referring to
Table 6.1 for the reference values we set for the implementation.
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Table 6.1: DDPG Hyperparamters

Episodes 1000, 1500

Length of an Episode [Days] 15, 20, 30

Batch Size 64

Hidden Size 64

Actor Learning Rate 0.00001

Critic Learning Rate 0.00001

Discount Factor 0.99

Tau 0.01

Max Memory Size 50000

An episode refers to a complete sequence of interactions between the agent and the environment.
The Episodes corresponds to the number of times the agent will engage with the environment
to learn and improve its policy. The Length of an Episode refers to the number of time
steps or interactions the agent experiences within a single episode. It defines how long the
agent operates in the environment before the episode concludes. The Batch Size refers to the
number of experiences (state-action-reward-next state tuples) sampled from the replay buffer
at each iteration of the training process. The Hidden Size refers to the number of neurons or
units in the hidden layers of the neural networks used in the DDPG algorithm. The Actor
Learning Rate and the Critic Learning Rate control the step size of the gradient update at
which the actor network’s weights θµ and the critic network’s weights θQ are updated during
training. The Discount Factor parameter γ introduced in Eq. (6.1) represents the relative
importance of future rewards compared to immediate rewards. A higher gamma value places
more importance on long-term rewards, potentially encouraging the agent to consider the
future consequences of its actions. The Target Update Factor τ is a relaxation factor defining
how often the parameters are copied from the original networks to the target network. for
the copied network parameters. The Max Memory Size determines the capacity of the replay
buffer, which is a crucial component in DDPG. The replay buffer stores past experiences
(state, action, reward, next state) that the agent uses to learn from.
Since DDPG hyperparameters are interconnected, finding the right tuning has a significant
impact on the performance and stability of the algorithm. We calibrate the values of Table
6.1 by an experimental procedure by adjusting them in order to optimize the global reward.
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We refer to next Subsection for a complete overview of the tuning procedure accompanied by
some technical considerations.

6.5 Implementation of the Algorithm

We consider a single agent setting of an energy operator interacting with the market (environ-
ment) in discrete time steps.
At each time step t, the agent:

1. receives an observation xt consisting in of 24-hour PUN array prices Pt of the last d days.
We assume a fully-observable environment: the state of the environment is represented
by the market electricity prices expressed in €/MWh;

Figure 6.5: Bidding settlement in day-ahead auctions (from [161])
.

2. generates an action at, i.e. a step-wise curve modelling the offering curve, corresponding
to the output of the Actor Network;

3. observes a feedback scalar reward rt corresponding to the payoff of the agent.

At hour t, the reward reads

rt =
K∑

i=1

(
Pt−Ci

)
Di

t (6.13)

where P is the unitary electricity price, Ci is the production cost and Di
t is the dispatched

power.
Following the paradigm of a repeated day-ahead electricity auction market, the agent will
attempt to maximize her profit in the long run. We assume a fixed generation capacity and
different production costs corresponding to different sources of energy. More precisely, to
calibrate our result, we consider a constant array of production costs and available power
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for computing a value for the reward function defined in Eq. (6.13). In particular, we set
the number of sources of production K to 3 and we set cost Ci = [10,30,60] and production
capacity Di = [30,200,800]. From a modelling point of view, the source with a low marginal
cost and low capacity, i.e. (10,30) represents a renewable source of production, the one with
high marginal cost and capacity a conventional one (e.g. gas) plus an intermediate one.
Another presumption we make in the model is that the agent only knows about its own
expenses, available resources, and historical electricity prices and nothing about its competitors.
As a result, her bidding strategy can be represented as a stochastic process that adheres to a
decision-making framework.
Each producer in the stochastic bidding strategy strives to maximize her profit over the long
term while meeting the needs of the available

6.5.1 Numerical Results

The dataset consists of Italian electricity prices over 4 years. Precisely, we use hourly data
for PUN from 2017 to 2020 that we download at https://www.mercatoelettrico.org/it/

Download/DatiStorici.aspx plotted in Fig. 6.6.

Figure 6.6: Italian hourly PUN from 01-Jan-2017 to 12-Dec-2020 for a total of 35064 data
points

.

Rewards obtained from the environment might vary significantly in magnitude since they
depend on the price time series that is highly not stationary, as we can see from Fig. 6.6. To
address this issue, we include a normalization factor into the reward to consider the potential
normalized reward that can be obtained at each time t.
The normalized reward, denoted as Rnorm, is calculated by dividing the actual reward r
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introduced in Eq. (6.13) for a given time step by the maximum possible value of the reward
rmax that can be achieved the particular time step conditions. When production costs,
production capacity, and the matching pun for a specific time step are taken into account, the
maximum reward reflects the most profit that may be realized. For more steady and effective
learning, this normalization scales the reward values to a consistent range between 0 and 1:
when the agent receives the maximum reward, the normalized reward will be 1. The normalized
reward ranges from 0 to 1 if the agent performs below the maximum. This option enables the
agent to focus on tailoring its strategy in response to the relative performance improvement,
which improves the consistency of comparisons between various learning contexts.
Besides the normalized reward, we also plot two interesting metrics the Policy Loss and
the Critic Loss. The agent learns to improve its policy by adjusting the actor network’s
weights to maximize the expected cumulative reward J , defined in Eq. (6.2). The policy loss
measures the discrepancy between the actions chosen by the current policy and the actions
that would lead to higher expected rewards and it is approximated by the sampled policy
gradient introduced in (6.4). The Critic Loss introduced in Eq. (6.5) is associated with
training the critic network and it measures the accuracy of the critic’s Q-value predictions and
guides the critic network to approximate Q-values that satisfy the Bellman equation (6.3).
We point out that the algorithm is really sensitive to the initialization of parameters such as
(# episode, # days in the episode, production cost) that have to be carefully chosen.
For this reason, we perform several simulations for different values of Episodes and Length of
an Episodes reporting the obtained results for 5 different simulations for which we obtain the
following plots.
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Figure 6.7: Simulation 1: Episodes = 1000, length of episode = 30

Figure 6.8: Simulation 2: Episodes = 1000, length of episode = 30
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Figure 6.9: Simulation 3: Episodes = 1000, length of episode = 30

Figure 6.10: Simulation 4:Episodes = 1000, length of episode = 20
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In all plots, we see that the policy loss consistently decreases over time, hence the actor
is moving towards a better policy. Conversely, the critic loss shows an initial spike before
gradually decreasing, thus the Q-value estimate improves only after approximately 300
Episodes. This behaviour is a common pattern in the training dynamics of RL algorithms that
can be attributed to the interaction with a stochastic environment. Specifically, in the early
stages of training, the agent’s policy might be far from optimal, leading to higher Q-values and
a larger critic loss. As the agent explores the environment and gathers more experiences, it
gradually refines its policy, causing the critic loss to decrease. Moreover, this delayed learning
is also linked to the target networks which are updated slowly leading to a larger initial critic
loss. As training progresses and the target networks catch up, the critic loss starts to decrease.
However, the gradual decrease in both policy and critic losses as training metrics as well as
the increase of the normalized reward are indicative of the agent’s convergence towards more
optimal policies.

6.5.2 Considerations, Challenges and Limitations of the model

As previously encountered in other settings such as [191], in the single-agent framework, the
market rewards may be highly stochastic and may be unable to converge to a fixed point,
leaving to the oscillatory behaviours of market producers. This behavior is in a sense expected
because generators do not account for the strategies of their competitors, which may evolve
over time. In contrast, the gradual decline in policy loss and the initial spike and subsequent
decline in critic loss are signs of the DDPG algorithm’s learning process. They demonstrate
the agent’s evolution from initial exploration and poorly predicted Q-values to more precise
value estimations and a more developed strategy. These actions indicate that the algorithm is
learning from its training data and adjusting to its surroundings, which are generally expected
behaviors.

The difficulties we run across while building the algorithm can be divided into two groups:
those caused by the way the electrical auction markets are set up, and those that are specifically
related to the RL algorithm. The first type consists of the action space’s partial observability
(the agent can learn about other people’s actions and tactics only through time series of
historical pricing), non-stationarity of the data, and high problem dimensionality. Other
sources of challenges that arise from the stability of the DDPG are connected to inherent
difficulties in learning, such as function approximation errors and non-stationary targets.
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Figure 6.11: Simulation 5: Episodes = 1000, length of episode = 15

Additionally, when we monitor the algorithm’s process, we notice the following observations,
which are mostly concerned with the stability of the DDPG technique and the selection of the
hyperparameters:

• A higher number of episodes allows the agent to explore the environment more extensively,
potentially leading to better policy convergence. Episodes provide opportunities for the
agent to encounter a diverse range of states and situations, which is crucial for learning
a robust policy that performs well across different scenarios. Conversely, the learning
process often exhibits diminishing returns with increasing episodes, see Fig. 6.11 that is
trained with 15 days for episode. Initially, the agent might rapidly learn and improve
its policy but over time, the rate of improvement might slow down as it explores less
novel situations. Hence, the length of an episode appears to be a crucial parameter for
the exploration-exploitation trade–off;

• Also Length of an Episode hyperparameter can influence the learning dynamics and
the exploration strategy of the agent. A longer episode provides the agent more time
to investigate the surroundings thoroughly and make more choices, which might result
in further exploration. A shorter episode, on the other hand, would encourage the
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agent to focus more on using what it already knows, thereby limiting exploration. We
identify a crucial value of 15 days for Length of an Episode below which we do not have
convergence.

• By experimentation, we set an equal learning rate both for the critic and for the actor
network updates to obtain a more stable training by preventing one network from
significantly outpacing the other;

• A larger batch size can lead to more efficient learning as it allows the agent to learn
from more experiences in parallel. However, we note that employing a very high batch
size may increase the amount of noise and volatility in the learning process, resulting
in less consistent training. As each update is based on a smaller subset of the overall
experiences, we selected a batch size that is relatively modest to encourage the agent to
explore more varied encounters.

6.6 Conclusions and possible future directions

The goal of this project concerns the development of an optimizing strategy for a single-agent
setting.
Through an actor-critic architecture, DDPG can learn a deterministic policy while still
making use of a Q-value function to guide its learning. This combination allows DDPG to
effectively handle continuous action spaces, making it a powerful algorithm for a wide range
of applications.
In literature there are studies developing RL algorithms with generated data such as [218]
where the Q learning is first adopted to study the electricity bidding problem. Basically, we
extend the result in [218] introducing NNs, specifically the DDPG method. Another source of
novelty relies on a model that directly uses historical real prices during the decision–making
process.
We conclude the chapter by presenting some extensions of this model that may be worth to
further investigate:

• we solely test feed forward NNs for the implementation of this model. We think the
algorithm’s performance could be enhanced by choosing architectures that are better
suited for time series, including recurrent NNs, such as Long Short Term Memory NN.
the need for thorough data preprocessing in order to execute a recursive method across
several episodes, as well as the growing computing cost of implementing recurrent NNs;

• we model production cost Ct and production capacity as deterministic constant quantity.
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We think that the model may have real benefits by considering stochastic capacities to
model the random fluctuations related to renewable modes of production.

• this project could act as a foundational building block for the creation of an algorithm for
the Multi-Agent or Mean Field system. The construction of a distributed optimization
system—an algorithm based on decentralized coordination such as local rewards or a
consensus scheme—is the foundation for the extension of a single agent into a multi-agent
context.
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Appendix

Appendix: proof of Theorem 1.6

Proof. The existence and the uniqueness are obtained by the Banach fixed point theorem.
We consider ϕ fixed in Λ and we define the map Γ on A with A := C

(
[0,T ] ; S2

0(R)
)
.

For R ∈ A, we define Γ(R) := Y , where, for t ∈ [0,T ], the triple of adapted processes(
Y t(s),Zt(s),U t(s,z)

)
s∈[t,T ] is the unique solution of the following BSDE

Y t(s) = h(Xt,ϕ) +
ˆ T

s
F (r,Xt,ϕ,Y t(r),Zt(r), Ũ t(r),Rt

r)dr

−
ˆ T

s
Zt(r)dW (r)−

ˆ T

s

ˆ
R
U t(r,z)Ñ(dr,dz) , s ∈ [t,T ] . (14)

For s ∈ [0, t] we prolong the solution by taking Y t(s) := Y s(s) and Zt(s) = U t,ϕ(s) := 0.
Step 1. Let us first show that Γ takes values in the Banach spaces A. We take R ∈ A and we
will prove that Y := Γ(R) ∈ A. Thus, for every t ∈ [0,T ] we have to show that

Y t ∈ S2
0(R) ,

and that the application
[0,T ] ∋ t 7→ Y t ∈ S2

0(R) ,

is continuous.
Let t ∈ [0,T ] be fixed and t′ ∈ [0,T ]; with no loss of generality, we will suppose that t < t′ and
t′− t < δ.
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Concerning the solution of the BSDE defined in (14), we obtain the following estimate

E
(
sups∈[0,T ] |Y t (s)−Y t′ (s) |2

)
≤ E

(
sups∈[0,t′] |Y t (s)−Y t′ (s) |2

)
+E

(
sups∈[t′,T ] |Y t (s)−Y t′ (s) |2

)
≤ 2E

(
sups∈[t,t′] |Y t (s)−Y t (t) |2

)
+ 2E

(
sups∈[t,t′] |Y t (t)−Y s (s) |2

)
+E
(
sups∈[t′,T ] |Y t (s)−Y t′ (s) |2

)
.

We start by proving that
E
[

sup
s∈[t,t′]

|Y t (s)−Y t (t) |2
]
→ 0 ,

as t′→ t. By plugging the explicit solution and applying Doob’s inequality, we get

E
(

sup
s∈[t,t′]

|Y t (s)−Y t (t) |2
)

= E
[

sup
s∈[t,t′]

∣∣∣ˆ s

t
F (r,Xt,ϕ,Y t(r),Zt(r), Ũ t(r),Rt

r)dr+

−
ˆ s

t
Zt(r)dW (r)−

ˆ s

t

ˆ
R
U t(r,z)Ñ(dr,dz)

∣∣∣2]
≤ 3E

[ˆ t′

t

∣∣∣F (r,Xt,ϕ,Y t(r),Zt(r), Ũ t(r),Rt
r)
∣∣∣2 dr]+

+ 3E
[

sup
s∈[t,t′]

∣∣∣∣ˆ s

t
Zt(r)dW (r)

∣∣∣∣2
]

+ 3E
[

sup
s∈[t,t′]

∣∣∣∣ˆ s

t

ˆ
R
U t(r,z)Ñ(dr,dz)

∣∣∣∣2
]

≤ 3E
[ˆ t′

t

∣∣∣F (r,Xt,ϕ,Y t(r),Zt(r), Ũ t(r),Rt
r)
∣∣∣2 dr]+

+ 12E
[ˆ t′

t

∣∣Zt(r)
∣∣2 dr]+ 12E

[ˆ t′

t

ˆ
R

∣∣U t(r,z)
∣∣2 ν(dz)dr

]
,

From the absolute continuity of the Lebesgue integral, we deduce that

E
[

sup
s∈[t,t′]

|Y t (s)−Y t (t) |2
]
→ 0 ,

as t′→ t.
Concerning the term E

(
sups∈[t′,T ] |Y t (s)−Y t′ (s) |2

)
let us denote for short, only throughout

this step,
∆Y (r) := Y t (r)−Y t′ (r) , ∆Z (r) := Zt (r)−Zt′ (r) ,

∆U (r,z) := U t (r,z)−U t′ (r,z) , ∆Rr (r) :=Rt
r (r)−Rt′

r (r)

and

∆h := h(Xt,ϕ)−h(Xt′,ϕ),

∆F (r) := F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt
r)−F (r,Xt′,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt

r).
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We apply Itô’s formula to eβs|∆Y (s) |2 and we derive, for any β > 0 and any s ∈ [t′,T ] ,

eβs|∆Y (s) |2 + β

ˆ T

s
eβr|∆Y (r) |2dr +

ˆ T

s
eβr|∆Z (r) |2dr +

ˆ T

s

ˆ
R

eβr|∆U (r,z) |2ν(dz)dr

= eβT |∆Y (T ) |2 − 2
ˆ T

s
eβr∆Y (r)∆Z (r) · dW (r) − 2

ˆ T

s

ˆ
R

eβr∆Y (r)∆U (r,z)Ñ(dr,dz)

+2
ˆ T

s
eβr∆Y (r)

(
F (r,Xt,ϕY t (r) ,Zt (r) , Ũ t (r) ,Rt

r) − F (r,Xt′,ϕ,Y t′
(r) ,Zt′

(r) , Ũ t′
(r) ,Rt′

r )
)

dr

−
ˆ T

s

ˆ
R

eβr|∆U (r,z) |2Ñ(dr,dz) .

We note that the following estimate

ˆ T

s
eβr

(ˆ 0

−δ

(
|∆R (r+θ) |2

)
α(dθ)

)
dr =

ˆ 0

−δ

[ˆ T

s
eβr
(
|∆R (r+θ) |2

)
dr

]
α(dθ)

≤ eβδ ·
ˆ 0

−δ
α(dθ) ·

ˆ T

0
eβr
(
|∆R (r) |2

)
dr ≤ Teβδ sup

r∈[0,T ]

(
eβr|∆R (r) |2

)
,

holds. From assumptions (A3)–(A5), we have for any a > 0,

2
ˆ T

s
eβr∆Y (r)

(
F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt

r) − F (r,Xt′,ϕ,Y t′
(r) ,Zt′

(r) , Ũ t′
(r) ,Rt′

r

)
dr

≤ a

ˆ T

s
eβr|∆Y (r) |2dr + 3

a

ˆ T

s
eβr|∆F (r) |2dr

+6L2

a

ˆ T

s
eβr

(
|∆Y (r) |2 + |∆Z (r) |2 +

ˆ
R

|∆U (r,z) |2λ(z)ν(dz)
)

dr

+3T Keβδ

a
sup

r∈[0,T ]

(
eβr|∆R (r) |2

)
.

Therefore we have

eβs|∆Y (s) |2 +
(
β−a− 6L2

a

)ˆ T

s
eβr|∆Y (r) |2dr

+
(

1− 6L2

a

)ˆ T

s
eβr|∆Z (r) |2dr+

(
1− 6L2

a

)ˆ T

s

ˆ
R
eβr|∆U (r,z) |2λ(z)ν(dz)dr

≤ eβT |∆Y (T ) |2 + 3
a

ˆ T

s
eβr|∆F (r) |2dr

−2
ˆ T

s
eβr∆Y (r)∆Z (r) ·dW (r)−2

ˆ T

s

ˆ
R
eβr∆Y (r)∆U (r,z)Ñ(dr,dz)

+3TKeβδ

a
sup

r∈[0,T ]
eβr|∆R (r) |2 .

We now choose β,a > 0 such that

a+ 6L2

a
< β and 6L2

a
< 1, (15)
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hence we obtain(
1− 6L2

a

)
E

[ˆ T

s
eβr|∆Z (r) |2dr+

ˆ T

s

ˆ
R
eβr|∆U (r,z) |2λ(z)ν(dz)dr

]
≤

E
(
eβT |∆h|2

)
+ 3
a
E
ˆ T

s
eβr|∆F (r) |2dr+ 3TKeβδ

a
E
(

sup
r∈[0,T ]

eβr|∆R (r) |2
)
.

(16)

By Burkholder–Davis–Gundy’s inequality, we have

2E
[

sup
s∈[t′,T ]

∣∣∣∣∣
ˆ T

s
eβr∆Y (r)∆Z (r) ·dW (r)

∣∣∣∣∣
]

≤ 1
4E
[

sup
s∈[t′,T ]

eβs|∆Y (s) |2
]

+ 144E
ˆ T

t′
eβr|∆Z (r) |2dr.

and

2E
[

sup
s∈[t′,T ]

∣∣∣∣∣
ˆ T

s

ˆ
R
eβr∆Y (r)∆U (r)Ñ(dr,dz)

∣∣∣∣∣
]

≤ 1
4E
[

sup
s∈[t′,T ]

eβs|∆Y (s) |2
]

+ 144E
ˆ T

t′

ˆ
R
eβr|∆U (r,z) |2λ(z)ν(dz)dr.

which immediately implies

1
2E
[

sup
s∈[t′,T ]

eβs|∆Y (s) |2
]
≤ E

(
eβT |∆h|2

)
+ 3
a
E
ˆ T

t′
eβr|∆F (r) |2dr

+3TKeβδ

a
E
(

sup
r∈[0,T ]

eβr|∆R (r) |2
)

+ 144E
ˆ T

t′
|∆Z (r) |2dr+

+144E
ˆ T

t′

ˆ
R
eβr|∆U (r,z) |2λ(z)ν(dz)dr .

Hence, we have

1
2E
(

sup
s∈[t′,T ]

eβs|∆Y (s) |2
)
≤ E

(
eβT |∆h|2

)
+ 3
a
C1E
ˆ T

t′
eβr|∆F (r) |2dr

+3TKeβδC1
a

E
(

sup
r∈[0,T ]

eβr|∆R (r) |2
)
,

(17)

where
C1 := 1 + 144

1−6L2/a
.

Exploiting thus assumptions (A3) and (A5) together with the fact that X ·,ϕ is continuous and
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bounded, we have

C1E
(
eβT |∆h|2

)
+ 3
a
C1E
ˆ T

t′
eβr|∆F (r) |2dr→ 0 as t′→ t .

Since R ∈ A, and therefore we have

E
[

sup
r∈[0,T ]

eβr|∆R (r) |2
]
→ 0 ,

as t′→ t, we have

E
[

sup
s∈[t′,T ]

eβs|∆Y (s) |2
]
→ 0 , (18)

as t′→ t.
We are left to show that the term E

(
sups∈[t,t′] |Y t (t)−Y s (s) |2

)
is also converging to 0 as

t′→ t.
Since the map t 7→ Y t (t) is deterministic, we have from equation (14),

Y t (t)−Y s (s) = E
[
Y t (t)−Y s (s)

]
= E

[
h(Xt,ϕ)−h(Xs,ϕ)

]
+E
ˆ T

t
F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt

r)dr

−E
ˆ T

s
F (r,Xs,ϕ,Y s (r) ,Zs (r) , Ũs (r) ,Rs

r)dr

= E
[
h(Xt,ϕ)−h(Xs,ϕ)

]
+E
ˆ s

t
F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt

r)dr

+E
ˆ T

s

[
F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt

r)

−F (r,Xs,ϕ,Y s (r) ,Zs (r) , Ũs (r) ,Rs
r)
]
dr.

Using then the assumption (A3) we have

|Y t (t) − Y s (s) | ≤ E
∣∣h(Xt,ϕ) − h(Xs,ϕ)

∣∣+E
ˆ s

t
L

(
|Y t (r) | + |Zt (r) | +

∣∣∣ˆ
R

U t (r,z)λ(z)ν(dz)
∣∣∣)dr

+

√
K

ˆ s

t
E
[ˆ 0

−δ
(|Rt (r + θ) |2)α(dθ)

]
dr ·

√
s − t +E

ˆ s

t

∣∣F (r,Xt,ϕ,0,0,0,0,0,0)
∣∣dr

+E
ˆ T

s

∣∣F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt
r) − F (r,Xs,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt

r)
∣∣dr

+E
ˆ T

s
L

(
|Y t (r) − Y s (r) | + |Zt (r) − Zs (r) | +

∣∣∣ˆ
R

U t (r,z) − Us (r,z)λ(z)ν(dz)
∣∣∣)dr

+

√
K(T − s)

ˆ T

s
E
[ˆ 0

−δ

(
|Rt (r + θ) − Rs (r + θ) |2

∣∣∣)α(dθ)
]

dr ,
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and therefore we obtain

|Y t (t) − Y s (s) | ≤ E
∣∣h(Xt,ϕ) − h(Xs,ϕ)

∣∣
+L

√
s − t

√
TE sup

r∈[0,T ]
|Y t (r) |2 +E

ˆ T

0
|Zt (r) |2dr +E

ˆ T

0

ˆ
R

|U t (r,z) |2λ(z)ν(dz)dr

+
√

K
√

s − t
√

TE sup
r∈[0,T ]

|Rt (r) |2 + (s − t)M(1 +E||Xt,ϕ||pT )

+E
ˆ T

s

∣∣F (r,Xt,ϕ,Y t (r) ,Zt (r) , Ũ t (r) ,Rt
r) − F (r,Xs,ϕ,Zt (r) , Ũ t (r) ,Rt

r)
∣∣dr

+L
√

T − s

(
TE sup

r∈[s,T ]
|Y t (r) − Y s (r) |2 +E

ˆ T

s
|Zt (r) − Zs (r) |2dr

+E
ˆ T

s

ˆ
R

|U t (r,z) − Us,z (r,z) |2λ(z)ν(dz)dr

)1
2

+
√

K
√

T − s
√

TE sup
r∈[0,T ]

|Rt (r) − Rs (r) |2 .

Taking again into account the fact that R ∈A, previous step and assumptions (A3) and (A5),
we infer that

E
[

sup
s∈[t,t′]

|Y t (t)−Y s (s) |
]
→ 0, as t′→ t. (19)

Concerning the term E
´ T

0 |Z
t (r)−Zt′ (r) |2dr, we see that

E
ˆ T

0
|Zt (r)−Zt′

(r) |2dr = E
ˆ t′

0
|Zt (r)−Zt′

(r) |2dr+E
ˆ T

t′
|Zt (r)−Zt′

(r) |2dr

= E
ˆ t′

t
|Zt (r) |2dr+E

ˆ T

t′
|Zt (r)−Zt′

(r) |2dr ,

hence, by (16),

E
ˆ T

0
|Zt (r)−Zt′ (r) |2dr→ 0, as t′→ t. (20)

Analogously, we can infer that

E
ˆ T

0

ˆ
R
|U t (r,z)−U t′ (r,z) |2λ(z)ν(dz)dr→ 0 ,

as t′→ t.

Step II.
Step 2. We are going to prove that Γ is a contraction on A with respect to the norm

||Y ||A :=
(

sup
t∈[0,T ]

E
[

sup
r∈[0,T ]

eβr|Y t (r) |2
])1/2

,

Let us recall that Γ :A→A is defined by Γ(R) = Y being Y the process coming from the
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solution of the BSDE (14).
Let us consider R1,R2 ∈ A and Y 1 := Γ

(
R1), Y 2 := Γ

(
R2). For the sake of brevity, we will

denote in what follows

∆F t (r) := F (r,Xt,ϕ,Y 1,t (r) ,Z1,t (r) , Ũ1,t (r) ,R1,t
r ) − F (r,Xt,ϕ,Y 2,t (r) ,Z2,t (r) , Ũ2,t (r) ,R2,t

r ),

∆Rt (r) := R1,t (r) − R2,t (r) , ∆Y t (r) := Y 1,t (r) − Y 2,t (r)

∆Zt (r) := Z1,t (r) − Z2,t (r) , ∆U t (r) := U1,t (r) − U2,t (r) .

Proceeding as in Step I , we have from Itô’s formula, for any s ∈ [t,T ] and β > 0,

eβs|∆Y t (s) |2 + β

ˆ T

s
eβr|∆Y t (r) |2dr +

ˆ T

s
eβr|∆Zt (r) |2dr +

ˆ T

s

ˆ
R

eβr|∆U t (r,z) |2λ(z)ν(dz)dr

= 2
ˆ T

s
eβr∆Y t (r)∆F t (r)dr − 2

ˆ T

s
eβr∆Y t (r)∆Zt (r) · dW (r)

−2
ˆ T

s

ˆ
R

eβr∆Y t (r)∆U t (r,z)Ñ(dr,dz) .

(21)

Noticing that it holds

2K

a

ˆ T

s
eβr

(ˆ 0

−δ

(∣∣∆Rt(r + θ)
∣∣2)α(dθ)

)
dr ≤ 2K

a

ˆ 0

−δ

(ˆ T

s
eβr
(∣∣∆Rt(r + θ)

∣∣2)dr

)
α(dθ)

≤ 2K

a

ˆ 0

−δ

(ˆ T +r

s+r
eβ(r′−θ)

(∣∣∆Rt(r′)
∣∣2)dr′

)
α(dθ) ≤ 2K

a

ˆ 0

−δ
e−βθα(dθ) ·

ˆ T

s−δ
eβr
(∣∣∆Rt(r)

∣∣2 ∣∣∣)dr

≤ 2Keβδ

a

ˆ T

s−δ
eβr
(∣∣∆Rt(r)

∣∣2)dr.

we immediately have, from assumptions (A4)–(A6), that for any a > 0,

2

∣∣∣∣∣
ˆ T

s
eβr∆Y t (r)∆F t (r)dr

∣∣∣∣∣≤ 2
ˆ T

s
eβr|∆Y t (r) ,∆F t (r) |dr

≤ a

ˆ T

s
eβr|∆Y t (r) |2 + 1

a

ˆ T

s
eβr|∆F t (r) |2dr

≤ a

ˆ T

s
eβr|∆Y t (r) |2 + 2

a

ˆ T

s
eβrL2

(
|∆Y t (r) | + |∆Zt (r) +

∣∣∣ˆ
R

∆U t (r,z)λ(z)ν(dz)
∣∣∣)2

dr

+ 2
a

ˆ T

s
eβr

(
K

ˆ 0

−δ

(∣∣∆Rt(r + θ)
∣∣2)α(dθ)

)
dr

≤ a

ˆ T

s
eβr|∆Y t (r) |2 + 4L2

a

ˆ T

s
eβr

(
|∆Y t (r) |2 + |∆Zt (r) |2 +

∣∣∣ˆ
R

∆U t (r,z)λ(z)ν(dz)
∣∣∣2)dr

+2Keβδ

a

ˆ T

s−δ
eβr
(∣∣∆Rt(r)

∣∣2)dr .

(22)
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Therefore equation (21) yields

eβs|∆Y t (s) |2 +
(

β − a − 4L2

a

)ˆ T

s
eβr|∆Y t (r) |2dr +

(
1 − 4L2

a

)ˆ T

s
eβr|∆Zt (r) |2dr

+
(

1 − 4L2

a

)ˆ T

s

ˆ
R0

eβr|∆U t (r,z) |2λ(z)ν(dz)dr

≤ 2Keβδ

a
T sup

r∈[0,T ]
eβr|∆Rt (r) |2 − 2

ˆ T

s
eβr∆Y t (r)∆Zt (r) · dW (r)

−2
ˆ T

s

ˆ
R0

eβr∆Y t (r) ,∆U t (r,z)Ñ(dr,dz).

(23)

Let now β,a > 0 satisfying

β > a+ 4L2

a
and 1> 4L2

a
, (24)

we have(
1− 4L2

a

)
E
ˆ T

s
eβr|∆Zt (r) |2dr+

(
1− 4L2

a

)
E
ˆ T

s

ˆ
R0

eβr|∆U t(r,z)|2λ(z)ν(dz)dr

≤ 2TKeβδ

a
E

(
sup

r∈[0,T ]
eβr|∆Rt (r) |2

) (25)

Exploiting now Burkholder–Davis–Gundy’s inequality, we have

2E
[

sup
s∈[t,T ]

∣∣∣ˆ T

s
eβr∆Y t (r)∆Zt (r) ·dW (r)

∣∣∣]

≤ 1
4E
[

sup
s∈[t,T ]

eβs|∆Y t (s) |2
]

+ 144E
ˆ T

t
eβr|∆Zt (r) |2dr ,

and, analogously,

2E
[

sup
s∈[t′,T ]

∣∣∣ˆ T

s

ˆ
R
eβr∆Y t (r)∆U t (r)Ñ(dr,dz)

∣∣∣]

≤ 1
4E
[

sup
s∈[t,T ]

eβs|∆Y t (s) |2
]

+ 144E
ˆ T

t

ˆ
R\{0}

eβr|∆U t (r,z) |2λ(z)ν(dz)dr.
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which implies

E
[

sup
s∈[t,T ]

eβs|∆Y t (s) |2
]
≤ 2Keβδ

a
TE
(

sup
s∈[0,T ]

eβs|∆Rt (s) |2
)
+

+2E
[

sup
s∈[t,T ]

∣∣∣ˆ T

s
eβr∆Y t (r)∆Zt (r) ·dW (r)

∣∣∣]+

+2E
[

sup
s∈[t′,T ]

∣∣∣ˆ T

s

ˆ
R
eβr∆Y t (r)∆U t (r)Ñ(dr,dz)

∣∣∣]

≤ 2Keβδ

a
TE

[
sup

s∈[0,T ]
eβs|∆Rt (s) |2

]
+

+1
4E
[

sup
s∈[t,T ]

eβs|∆Y t (s) |2
]

+ 144E
ˆ T

t
eβr|∆Zt (r) |2dr

+1
4E
[

sup
s∈[t,T ]

eβs|∆Y t (s) |2
]

+ 144E
ˆ T

t

ˆ
R0

eβr|∆U t (r,z) |2λ(z)ν(dz)dr .

Hence, we have

E
[

sup
s∈[t,T ]

eβs|∆Y t (s) |2
]
≤ 4TKeβδ

a
C1E

[
sup

s∈[0,T ]
eβs|∆Rt (s] |2

]
(26)

where we have denoted by C1 := 1 + 144
1−4L2/a

.

Let us now consider the term E
(
sups∈[0,t] e

βs|∆Y (s) |2
)
. From equation (14), we see that,

E
(

sup
s∈[0,t]

eβs|∆Y t (s) |2
)

= E
(

sup
s∈[0,t]

eβs|Y 1,t(s)−Y 2,t(s)|2
)

= E
(

sup
s∈[0,t]

eβs|Y 1,s(s)−Y 2,s(s)|2
)

= sup
s∈[0,t]

eβs|∆Y s (s) |2 =

= sup
s∈[0,t]

E
(
eβs|∆Y s (s) |2

) (27)

so that, exploiting Itô’s formula and proceeding as above, we obtain

E
(
eβs|∆Y s (s) |2

)
≤ 2TKeβδ

a
E
[

sup
r∈[0,T ]

eβr|∆Rs (r) |2
]
. (28)
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Thus from inequalities (25–28) we obtain

E

[
sup

s∈[0,T ]
eβr|∆Y t (s) |2

]
+E
ˆ T

0
eβr|∆Zt (r) |2dr +E

ˆ T

0

ˆ
R

eβr|∆U t (r,z) |2λ(z)ν(dz)dr

≤ 4T Keβδ

a
C1E

[
sup

s∈[0,T ]
eβs|∆Rt (s) |2

]
+ 2T Keβδ

a(1 − 4L2/a)
E

[
sup

r∈[0,T ]
eβr|∆Rt (r) |2

]

+2T Keβδ

a
sup

s∈[0,t]
E

[
sup

r∈[0,T ]
eβr|∆Rs (r) |2

]
.

Then, passing to the supremum for t ∈ [0,T ] we get

||Y 1−Y 2||2A ≤ 2Keβδ

a

(
3 + 289

1−4L2/a

)
max{1,T}

[
||R1−R2||2A

]
.

By choosing now a := 4L2

χ and β slightly bigger than χ+ 4L2

χ , condition (24) is satisfied and,
by restriction (C) we have

2Keβδ

a

(
3 + 289

1−4L2/a

)
max{1,T}< 1 . (29)

Eventually, since R is chosen arbitrarily, it follows that the application Γ is a contraction on
A. Therefore, there exists a unique fixed point Γ(R) = Y ∈ A and this finishes the proof of
the existence and uniqueness of a solution to BSDE with delay and driven by Lèvy process,
described by Eq. (1.14).
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Aggregate Tables for Simulations of Sec. 5.3

ERRORS ON DAILY FORECAST
Indexes Models MSE MAE MAPE

S&P500

LSTM-GARCH 0.0236280 0.0177804 12.04345
GRU-GARCH 0.0138720 0.0013675 5.766220
LSTM-GRU-GARCH 0.0144450 0.0059371 6.696388
ENSEMBLE 0.0138434 0.0094885 5.922075

STXE 600

LSTM-GARCH 0.0248722 0.0380490 0.025007
GRU-GARCH 0.0153641 0.0053930 7.529229
LSTM-GRU-GARCH 0.0162282 0.0042649 7.796152
ENSEMBLE 0.0156058 0.0105275 7.496465

HANG SENG

LSTM-GARCH 0.0336795 0.0967208 9.459470
GRU-GARCH 0.0236604 0.0018508 6.612040
LSTM-GRU-GARCH 0.0250805 0.0118126 7.155621
ENSEMBLE 0.0239497 0.0155571 6.698893

NIKKEI 225

LSTM-GARCH 0.0185359 0.1957084 7.503521
GRU-GARCH 0.0162912 0.0126196 0.012076
LSTM-GRU-GARCH 0.0152084 0.0196809 0.010959
ENSEMBLE 0.0155269 0.0110254 5.960312
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ERRORS ON WEEKLY FORECAST
Indexes Models MSE MAE MAPE

S&P500

LSTM-GARCH 0.021117 0.016951 10.92226
GRU-GARCH 0.008903 0.006445 4.034713
LSTM-GRU-GARCH 0.009724 0.007565 5.036304
ENSEMBLE 0.009004 0.006649 4.258328

STXE 600

LSTM-GARCH 0.022576 0.018520 13.11474
GRU-GARCH 0.010610 0.007814 5.827596
LSTM-GRU-GARCH 0.0116497 0.008487 6.179462
ENSEMBLE 0.0109887 0.008023 5.888007

HANG SENG

LSTM-GARCH 0.0287128 0.018974 8.164507
GRU-GARCH 0.0154987 0.010919 4.730918
LSTM-GRU-GARCH 0.0179641 0.012909 5.534155
ENSEMBLE 0.0164694 0.011768 5.054182

NIKKEI 225

LSTM-GARCH 0.0152089 0.011774 6.542322
GRU-GARCH 0.0119356 0.009215 0.043689
LSTM-GRU-GARCH 0.0106270 0.007949 0.038849
ENSEMBLE 0.0110109 0.008236 4.473878
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ERRORS ON MONTHLY FORECAST
Indexes Models MSE MAE MAPE

S&P500

LSTM-GARCH 0.0177986 0.015100 9.380881
GRU-GARCH 0.0042063 0.003464 2.251295
LSTM-GRU-GARCH 0.0054082 0.004821 3.379187
ENSEMBLE 0.0044460 0.006649 2.600597

STXE 600

LSTM-GARCH 0.0193511 0.016567 9.380881
GRU-GARCH 0.0071429 0.005047 3.442933
LSTM-GRU-GARCH 0.0063606 0.004917 3.413815
ENSEMBLE 0.0067136 0.008023 3.431308

HANG SENG

LSTM-GARCH 0.0191462 0.015369 6.413808
GRU-GARCH 0.0091628 0.006991 2.928284
LSTM-GRU-GARCH 0.0114515 0.008595 3.618165
ENSEMBLE 0.0131702 0.011768 4.199611

NIKKEI 225

LSTM-GARCH 0.0094146 0.008254 4.343089
GRU-GARCH 0.0080447 0.006747 0.030392
LSTM-GRU-GARCH 0.0062053 0.005135 0.023992
ENSEMBLE 0.0067475 0.008236 2.780131
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[146] Ladyženskaja, O. A., V. A. Solonnikov, and N. N. Ural’ceva. “Linear and Quasi-linear
Equations of Parabolic Type”. In: Vol. American Mathematical Society Translations of
Mathematical Monographs 23 (1967) (cit. on pp. 60, 69, 70, 73, 74).

[147] Lago, J., G. Marcjasz, B. De Schutter, and R. Weron. “Forecasting day-ahead electricity
prices: A review of state-of-the-art algorithms, best practices and an open-access
benchmark”. In: Applied Energy 293 (2021). url: https://doi.org/10.1016/j.
apenergy.2021.116983 (cit. on p. 150).

196

https://doi.org/https://doi.org/10.1007/s11063-022-11119-7
https://doi.org/https://doi.org/10.1007/s11063-022-11119-7
https://doi.org/https://doi.org/10.3905/jod.1994.407912
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.002
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.002
http://www.jstor.org/stable/822677
https://doi.org/https://doi.org/10.1016/j.eswa.2018.05.011
https://doi.org/10.1016/j.apenergy.2021.116983
https://doi.org/10.1016/j.apenergy.2021.116983


BIBLIOGRAPHY
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[207] Teräsvirta, T. “An introduction to univariate GARCH models.” In: In Handbook of
financial time series (2009), pp. 17–42. doi: https://doi.org/10.1007/978-3-540-
71297-8_1 (cit. on p. 123).

200

https://doi.org/https://doi.org/10.1016/j.ijepes.2021.107712
https://doi.org/10.1080/03605302.2021.2008965
https://doi.org/10.1080/03605302.2021.2008965
https://doi.org/https://dx.doi.org/10.2139/ssrn.2272973
1707.06347
https://doi.org/https://doi.org/10.9790/487X-1253240
https://doi.org/https://doi.org/10.9790/487X-1253240
https://doi.org/https://doi.org/10.1016/j.epsr.2021.107584
https://doi.org/10.1214/12-AOP797
https://doi.org/10.1214/12-AOP797
https://doi.org/https://doi.org/10.1007/978-3-540-71297-8_1
https://doi.org/https://doi.org/10.1007/978-3-540-71297-8_1


BIBLIOGRAPHY

[208] Tschora, L., P. Erwan, M. Plantevit, and C. Robardet. “Electricity price forecasting on
the day-ahead market using machine learning”. In: Applied Energy 313.11875 (2022),
pp. 306–2619. url: https://doi.org/10.1016/j.apenergy.2022.118752 (cit. on
p. 150).

[209] Villani, C. Topics in Optimal Transportation, Grad. AMS, Providence, RI: Stud. Math.
58, 2003 (cit. on p. 111).

[210] Wan, R., S. Mei, J. Wang, M. Liu, and F. Yang. “Multivariate Temporal Convolutional
Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting”.
In: Electronics 8.8 (2019). doi: https://doi.org/10.3390/electronics8080876
(cit. on p. 127).

[211] Watkins, C. J., and P. Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992), pp. 279–
292 (cit. on p. 151).

[212] Williams, B. “GARCH (1, 1) Models”. In: Ruprecht-Karls-Universitat Heidelberg (2011).
doi: https://math.berkeley.edu/˜btw/thesis4.pdf (cit. on p. 123).

[213] Williams, R. J. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning 8.3-4 (1992), pp. 229–256 (cit. on
p. 152).

[214] Wojtowytsch, S. “On the Convergence of Gradient Descent Training for Two-layer ReLU-
networks in the Mean Field Regime”. In: 2020 (). doi: 10.48550/arXiv.2005.13530
(cit. on p. 104).

[215] Wong, B. K. and Y. Selvi. “Neural network applications in finance: A review and
analysis of literature”. In: Information & Management 34.3 (1998), pp. 129–139. doi:
https://doi.org/10.1016/S0378-7206(98)00050-0 (cit. on p. 126).
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