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Abstract 

We propose a one-step estimator for the vector of regression and error-scale parameters in a linear regression model. 
The estimator is asymptotically normal and fully efficient. Given appropriate initial values it achieves very low bias and 
high breakdown point. © 1998 Elsevier Science B.V. All rights reserved 
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1. Introduction 

We consider the linear regression model defined as y;=xJf3+r.;, i= 1,2, ... ,11, where y; is the ith response 
(dependent) variable, xJ is the ith row of the design matrix X which is of dimensions 11 x p, f3 is an 
element of the parameter space Q which is a subset of the p-dimensional Euclidean space and £; is the ith 
error. We assume that the errors 1:; are independent, identically distributed random variables with distribution 
function FUa ), a> 0. The interest in this model centers on the estimation of and testing hypotheses about 
the parameter vector {J. 

It is well known that not all observations in a set of data play an equal role in determining estimates, tests 
and other statistics; in certain cases the values of these statistics are determined by only a few data points 
while most of the data are ignored. These discordant cases are called outliers. In regression there are two 
types of outliers. Outliers in the response-factor space are points that generate large residuals, while outliers 
in the factor space are points that generate high leverage. Recall that the leverage of the ith observation is 
defined ash; =xJ(Xrx)- 1x; and it is the ith diagonal element of the hat matrix. 

In this article we develop a one-step estimator for the regression parameters and the scale of the error 
distribution. The procedure uses a high breakdown point estimator as an initial value and it is analogous 
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to the one-step maximum likelihood estimator. The new one-step estimator uses the weighting functions 
introduced by Markatou et al. (1995) and Markatou (1996). The resulting estimator downweights points that 
are large residual outliers as well as observations that are both residual outliers and high leverage points. 
Observations that are only high leverage points are not downweighted. This is in line with the statement in 
Krasker and Welsch (1982) that "any downweighting in X space that does not include some consideration for 
how the y values at these outlying observations fit the pattern set by the bulk of the data cannot be efficient". 
Also note that reweighting has been studied, among others, by He and Portnoy ( 1992 ). Another approach that 
gives full efficiency at the model and high breakdown was given in He ( 1991 ). 

The new one-step estimator is fully efficient, it is regression equivariant and has a high breakdown point. 
The paper is organized as follows. Section 2 provides the background by briefly reviewing the main con­

cepts in the development of the weights that are used. Section 3 presents the estimate and discusses its 
properties. Section 4 contains asymptotic distributional and robustness results, while in Section 5 exam­
ples and Monte Carlo simulations are used to exemplify the properties of the new estimator; the new es­
timator is also compared with the one-step estimator of Coakley and Hettmansperger ( 1993) and with the 
Simpson et al. (1992) estimate in terms of bias and standard error. Finally, Section 6 offers concluding 
remarks. 

2. Background 

Suppose that x~.xz, ... ,Xn is a random sample from the density mp(x) corresponding to the probability 
measure Mp. Let u(X; p) = 'Vln[ mp(X)] be the score function, where 'V denotes differentiation with respect to 
p. Under regularity conditions the maximum likelihood estimator of p is a solution of the likelihood equation 
l:u(Xi;P)=O. 

Given any point X; in the sample space, Markatou et al. (1997) and Markatou (1996) construct a weight 
function w(X;;Mp,F) that depends on x;, the chosen model distribution Mp, and the sample empirical distri­
bution F; then estimators for the parameter vector p and the error scale are obtained as solutions to the set 
of estimating equations 2:7=1 w(X;; Mp,F)u(X;; p) = 0. 

The weight function w(X;; Mp,F), by construction, takes values in the interval [0, 1] and it is defined as 

(x.·M F")= . { 1 [A(c5(X;)) +I]+} . h 1 
w ,, p, mm , c5(Xi)+ 

1 
Wit i= ,2, ... ,n. 

The quantity c5(x;) is called Pearson residual and it is defined as b(x;)=[f*(x;)/mp(x;)]-1, where f*(x;)= 

J k(x;;t,h)dF(t) is a kernel density estimator and m';(x;)= J k(x;;t,h)dMp(t) is the smoothed model density. 
The Pearson residual expresses the agreement between the data and the assumed probability model. The func­
tion A(·) is a residual adjustment function (Lindsay, 1994) and it operates on Pearson residuals as the Huber 
t/1-function operates on the structural residuals y; -xJ/1. When A(c5(x;))=c5(x;) the weight w(x;;Mp,F)= 1, 
and this corresponds to maximum likelihood. The function A(c5) = 2{(c5 + 1 )112 - 1} corresponds to Hellinger 
distance. Generally, the weights w use functions A(·) that correspond to a minimum disparity problem. For 
example the weight w(c5)= 1- c52/(c5+2f, used in Markatou et al. (1997), corresponds to the symmetric 
chi-squared distance. 

This weighting scheme provides fully efficient and robust estimators, in the sense of breakdown. To calculate 
the Pearson residuals we need to select the smoothing parameter h. Markatou et al. (1995) select h2 = ka2, 

where k is a constant that is independent of the scale of the model and it is selected so that it assigns a very 
small weight to an outlying observation. In this context, an outlier is an observation which is highly unlikely 
to occur under the assumed probabilistic model. 
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This definition generally does not agree with the more common geometric definition of an outlier as being 
that observation that is far away from the bulk of the data. However, in the normal regression model the two 
definitions are equivalent. 

In the next section we discuss the development of the one-step estimator starting from a high breakdown 
point initial estimator and using the weighting scheme introduced above. 

3. The estimator 

Given (x;, y; ), i = 1,2, ... , n the quantities z; = (y; -xi /3)/u are independent, identically distributed ran­
dom variables if the vector f3 represents the true parameters. Then the z;s represent a random sample from 
a distribution with density f(z) which is completely known. 

The estimation procedure is then as follows. Start with an initial estimate of {3, p0 , and calculate the z;s. 
Treat those as an independent sample and create the Pearson residuals J(z; ), i = l, 2, ... , n. 

Consider now the class of estimators defined as solutions to the equations 

n 

L w( J(z;) )u(x;, y;; Po)= 0, (I) 
i=l 

where u(x;, y;; /3) is the usual score function. As an example, when the model is normal the set of estimating 
equations is given as 2::7= 1 w(J(z; ))z;x; = 0 and u2 2::7= 1 w(J(z; )){ u2 - z1} = 0. A one-step estimator is based 

on an initial estimate Po and it can be constructed by expanding the left-hand side of ( l) about Po· This leads 
us to define the one-step estimator as 

(2) 

Our definition (2) of the one-step estimator is slightly different from what one would obtain by performing 
a one-step Taylor expansion in t~e neighborhood of p0• The Taylor expansion contains an extra term which is 
obtained by differentiating the weight with respect to {3. This term, when evaluated at the model is exactly 0. 
Moreover, by defining the estimator as in (2) we insure that the term 1/n 2::7=1 w(J(z; ))('Vpu(x;, y;; fJ)IP=P) 
is, under the model, always a positive definite matrix. This is because since at least p points follow the model 
and n ~ 2p + l, inf 1 ,._j ,._ P Wj = l. Then, to see that the matrix is positive definite follow Simpson et a!. ( 1992, 
p. 448). 

The initial estimate Po that we use is a root-n high breakdown point estimate, such as the least trimmed 
squares (L TS) estimate for the regression parameters. For the scale we use the least median of squares (LMS) 
as an initial estimate. 

Under the assumption that the initial regression estimates are regression equivariant the one-step estimate 
is also regression equivariant because the weights calculated from the data {y; +xi v,x;} and those calculated 
from {y;,x;} are the same for all i= 1,2, ... ,n. 

4. Asymptotic and robustness properties 

In this section we discuss the asymptotic and robustness properties of the estimator. The conditions required 
for consistency and asymptotic normality are as follows: 
AI. The weight function w(J) is a nonnegative bounded and differentiable function with respect to b. 
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Al. The weight function w(b) is regular, that is, w'(<5)(<5 +I) is bounded, w'(c5) being the derivative of w 

with respect to <5. 
Let ii(x; /3) = 'Vmp(x)/mp(x) and u(x; fJ) = 'Vmp(x )/mp(x) where mp(x ), mp(x) are the smoothed version of 

the model and the true model, respectively. 
A3. For every PoeD there is a neighborhood N(/30 ) such that for fJeN(fJo) the quantities lii(x;fJ)u'(x;fJ)i, 

lii2(x; fJ)u(x; /3)1, lii'(x; fJ)u(x; P)i and iu"(x; P)i are bounded by M;(x ), i =I, 2, 3, 4, where Ep0 [M(X)] 
<oo, and the prime denotes derivative. 

A4. Ep0 [ii2(X; p)u2(X; p)] <oo. 
AS. J(/3) = Ep[u2(X; p)] <oo, that is, the Fisher information is finite. 
A6. (i) J I Vm~(x)ldx=J lu(x;fJ)mp(x)l dx<oo 

m;(x) m;(x) ' 

(ii) J jii(x; fJ)u(x; P)i :£~~~ dx < oo, 
ft 

(iii) f iu'(x;fJ)I:e~~~ dx<oo. 
fl 

A7. The kernel k(X; t, h) is bounded for all x by a finite constant M(h) that may depend on h but not on t 
or x. 

We also need the following lemma from Markatou et al. (1995) which we list here for completeness. 

Lemma 1. Under assumptions Al-A7 

1/21 I~ . R I p n An-;; ~u(x;,y;,po) --t 0, 
1=1 

as n---+ oo, 

I 
1 n 0 I P Bn-;; ~ opu(x;,y;;Po) --1-0, 

I= I 

as n---+ oo 

and 

where An= 1/n 2:7= 1 w(b(z;))u(x;,y;; Po), Bn = 1/n Z:~=l 'Vp{w(b(z;))u(xi> y;; P)}IP=Po• and Cn = 1/n z=;=l fPr 
(w(b(z;))u(x;,y;;P))Ip=fJ•· with P* being between the true value Po and [3. 

Theorem 4.1. Under assumptions A1-A7 and assuming that the high breakdown point starting value is 
a root-n consistent estimate the one-step estimator is consistent and asymptotically normal with mean zero 
and variance-covariance matrix given by the Fisher information matrix. 

Proof. Expand 2:7= 1 w(b(z;))u(x;,y;;/30 ) in the neighborhood of the true value Po. Now using Lemma I and 
observing that J w( o(z) )('Vpu(x, y; p)) dF(x, y) is a continuous function in p, we obtain the desired result. 

We now discuss the robustness properties of the estimator. Let T be an estimator that is a functional or, 
asymptotically, can be replaced by a functional. Consider distributions of the form ( 1 - 6 )Fp + eLlu0(u ), where 
0 < e < I and Llu0 ( u) is the distribution that puts mass 1 at the point u = uo. Then, the influence function of T 
at the distribution Fp is defined by 

IF( T.F )
_

1
. T((I-e)Fp+6Llu0 (u))- T(Fp) 

uo, ' p - Im 
slO 6 

in those u in the sample space for which the limit exists. 
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The importance of the influence function lies in its heuristic interpretation; it describes the effect of an 
infinitesimal contamination at a point u on the estimate, standardized by the mass of the contamination. 

Assume the scale parameter is known and equal to one. In practice the scale has to be estimated from the 
data. Assume (x, y) e ~p+l and let Fp be the probability distribution of z = y- xT {3. Then, the functional that 
introduces the one-step estimator is 

f3(F.(z)) = f3o(F.(z))- [! w(b(z; f3o(F;;))V'pu(y- xT p0(F;;))df;;(z)] -I 

x [! w(b(z;Po(F.)))u(y -xTPo(F;;))dFe(z)]. 

Theorem 4.2. The influence function of the one-step estimator is given by 

IF(x,y,p(Fe))= [-J u'(y -xTp(F))dFr
1 

• u(y -xTp(F)), 

where u' is the derivative of the score function with respect to {3. 

Note that when u(y- xT f3(F)) = (y- xT P(F))x, then the influence function is that of the least-squares 
estimator. The influence function of the initial estimator does not enter into the calculation. The influence 
function here clearly depends on the score function and it is unbounded whenever the score is unbounded. 
Because the one-step estimate has the same influence function as the maximum likelihood, it achieves full 
asymptotic efficiency. Despite the fact that the influence function is unbounded the estimator is robust as it 
possesses a high breakdown point. 

The breakdown point characterizes the global stability of an estimator. There are both asymptotic (Hampel, 
1971; Huber, 1981) and finite sample (Hodges, 1967; Donoho, 1982; Donoho and Huber, 1983) versions of 
the concept of breakdown. Roughly speaking, the breakdown point of an estimator is the distance from the 
assumed distribution of the data beyond which the estimator becomes totally uninformative. 

\ 
I • 

Theorem 4.3. Under assumptions Al, A2, AS and (i) Po has a breakdown point of e* less than or equal 

to 0.5, (ii) 8o has a breakdown point of at least e*, (iii) w(b(y-xT/J0 ))((ajapj)u(y-xTp)Jp) is bounded by 

an integrable function of x, y, and ( iv) ( 1 /n) 2::7= I w( b(y; - xr Po)) V'pu(y; - xr Po) 2..... I (p), positive definite, 

the estimator /J has a breakdown point of e*. 

Note that condition (iii) is satisfied, for example, by the normal model. In fact, it is satisfied by a wide 
variety of models because since n ~2p + 1, supz w(b(z)) = 1, with z = y- xT /J0 • Moreover, (iv) holds at the 
model. 

5. Examples and simulations 

In this section we exemplify the properties of the one-step estimator via examples and simulations. We also 
compare our one-step estimator with the one-step estimator of Simpson et al. ( 1992) and that of Coakley and 
Hettmansperger ( 1993 ). 

The data sets we use are the soft drink delivery time data in Montgomery and Peck (1982, p. 116), the 
stack loss data presented by Brownlee (1965), the salinity data (Carroll and Ruppert, 1985) and the artificial 
data created by Hawkins, Bradu and Kass and reported in Rousseeuw and Leroy (1987, p. 94). Descriptions 
of these data sets can be found in the above references. 
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In both, examples and simulations we used the L TS as an initial estimate of regression and the LMS as 
an initial estimate of scale. Coakley and Hettmansperger ( 1993) used the same initial estimates to calculate 
their"one-step estimator. To calculate our weights we use the Hellinger distance based weights. We also use 
chisquare weights (see Section 2). The normal kernel with mean 0 and h2 =k8~ where a~ is the initial high 
breakdown estimator of the variance is used. The constant k is chosen to correspond to targeted weight of 0.20 
when the percentage of contamination is held fixed at e = 20% and an observation is at least three standard 
deviations away from the mean. 

To calculate the Coakley and Hettmansperger ( 1993) estimator we used the MINIT AB program provided 
in their article, with 1/Jc(t)= min(c,max(t,-c)) and c= 1.345. This choice of constant guarantees a 95% 
efficiency of the location estimate at the standard normal model. 

To obtain the Simpson et al. (1992) one-step estimate we used an S-plus code supplied by D. Simpson 
(personal communication to C. Agostinelli). We use the logistic score function with c = 1.5. The initial 
multivariate location and scatter estimates used were the minimum volume ellipsoid estimates; the exponent 
in the weights used was 0. This corresponds to a Mallows-type weight. For the calculation of the Simpson, 
Ruppert, Carroll estimate we performed only one iteration; generally, it is recommended to iterate four or five 
times in order to obtain the estimates. All computations were performed on a DEC 5000/50 station. 

Table 1 presents the resulting one-step estimates associated with the regression parameters of the above 
data sets, as well as their associated standard errors. The table presents our one-step estimate, the Coakley 
and Hettmansperger (1993, SIS) and the Simpson et al. (1992, SRC) estimates with their standard errors. 

A general inspection of the table shows that the one-step weighted estimator fares very well in terms of 
efficiency when compared with SRC and SIS estimators as it is indicated from its standard error. The last 
column of Table 1 presents the ordinary least-squares (OLS) estimators and their associated standard errors; 
those OLS estimators are calculated after the deletion of the aberrant data points. A comparison of the new 
one-step weighted estimate with those OLS estimates reveals the general superiority of the new estimate. Welsh 
and Ronchetti ( 1993) proved that inferences based on a least-squares analysis on "clean" data, that is data from 
which outliers are removed, are neither valid nor robust. Our estimates have full asymptotic efficiency, and 
inferences based on them are robust and valid. For the delivery data the weights associated with observations 
1, 9, 22 to 24 are 0.555, 0.168, 0.904 and 0.637 respectively. Coakley and Hettmansperger (1993) downweight 
points 1, 4, 9, 11, 18, 20, 23, 24 of the delivery data set with point 22 receiving a full weight. We downweight 
points 1, 9 and 24; point 22 receives almost a full weight. For the stack loss data the weights associated 
with observations I, 2, 3, 4 and 21 are 0.000025, 0.374196, 0.000117, 0 and 0.000127, respectively, while 
for the salinity data the weights associated with observations 3, 5, 16, 23 and 24 are 0.999, 0.007, 0, 0.017, 
0.082. Finally, the weights associated with the first ten observations of the artificial data set are all 0, and the 
weights that observations 11, 12, 13, 14 and 47 receive are 0.998, 0.999, 0.987, 0.998 and 0.239, respectively. 

We note that the observations that are both residual outliers and high leverage points are heavily down­
weighted, whereas the observations that are only high leverage points but fit the model well are not down­
weighted. The Pearson residual associated with the downweighted points are very large. 

We bootstrapped the standard error of the regression estimates for the delivery time data set. The initial 
scale estimates used were MAD, Sn and Qn. The last two estimates are given by formulas 2.1 and 3.3 of 
Rousseeuw and Croux ( 1993) and they are adjusted for the sample size. The number of bootstrap replications 
used was 1600. When Sn is used as an initial estimate the bootstrapped standard error of Po. PI and P2 is 1.829, 
0.354 and 0.006 respectively, almost double the asymptotic standard error. Analogous results were obtained 
when the standard error of the coefficients of the SRC estimate was bootstrapped. However, the delivery data 
set contains only 24 observations. Experimentation with larger samples indicates that the bootstrapped standard 
error is in fair agreement with the asymptotic standard error. 

We now present a small simulation study with the objective to evaluate the performance of the estimators 
in terms of bias and mean-squared error and relate the large-sample theory to the practical small-sample 
situations likely to be encountered. 
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Table I 
Estimates for the parameters of various data sets. The initial estimate of regression is L TS and the scale is 
LMS. In parenthesis the estimated standard error is reported 

Delivery data 

One-step weighted SRC SIS OLS estimate 
Parameters estimate estimate estimate wfo obs. 9 

Po 3.853 (0.965) 3.559 (0.356) 3.884 ( 1.870) 4.447 (0.952) 

PI 1.499 (0.139) 1.356 (0.042) 1.465 (0.183) 1.498 (0.130) 

P2 0.013 (0.003) 0.017 (0.001) 0.013 (0.007) 0.010 (0.003) 

Stack loss data 

One-step weighted SRC SIS OLS estimate 
Parameters estimate estimate estimate wfo obs. 1,2,3,21 

Po -36.488 (4.205) -43.551 (8.130) -40.856 (6.835) -35.484 (4.526) 

PI 0.767 (0.067) 0.990 (0.352) 1.048 (0.367) 0.686 (0.088) 

P2 0.558 (0.146) 0.964 (0.317) 0.684 (0.306) 0.567 (0.153) 

P3 -0.056 (0.056) -0.211 (0. 134) -0.216 (0.191) -0.017 (0.063) 

Artificial data 

One-step weighted SRC SIS OLS estimate 
Parameters estimate estimate estimate wfo obs. 1-10 

Po -0.211 (0.098) -0.208 (0.127) -0.142 (0.110) -0.189 (0.103) 

PI 0.127 (0.064) 0.102 (0.076) 0.093 (0.068) 0.090 (0.065) 

P2 0.030 (0.036) 0.006 (0.031) -0.076 (0.073) 0.036 (0.038) 

P3 -0.058 (0.032) -0.012 (0.036) 0.087 (0.072) 0.033 (0.033) 

Salinity data 

One-step weighted SRC SIS OLS estimate 
Parameters estimate estimate estimate wfo obs. 5,16 

Po 29.775 (4;.182) 3.691 (14.348) 5.767 (8.539) 23.386 (3.902) 

PI 0.583 (0.070) 0.936 (0.209) 0.890 (0.150) 0.700 (0.067) 

P2 -0.231 (0.112) -0.110 (0.158) -0.033 (0.121) -0.250 (0.131) 

Pl -1.068 (0.157) -0.087 (0.537) -0.166 (0.317) -0.836 (0.148) 

The simulated model is given as y; =Po+ p,x; + e;, i = 1, 2, ... , n. The nominal parameter values are Po= 
p 1 = 1 and u2 = I. The error distributions considered are (I -e )N (0, I ) +eN (0, 25 ), ( 1 -e )N (0, I) + eN ( -8, I ). 
The first case corresponds to a heavy-tailed distribution; no leverage points are present. The second choice 
generates a group of residual outliers. 

To generate the normal random variables we use the IMSL library. The subroutine DRNNOR was used 
to generate the standard normal variables. The contaminated samples are generated by taking I OOe% of the 
data from N(O, 1) and then replace it by Jl + uX, X rvN(O, 1 ). We use sample sizes of 20 and 80 with Hellinger 
distance and chisquare weight functions. The number of Monte ~arlo replications is 250. 

An inspection of Table 2 reveals that the one-step weighted estimator performs very well in terms of 
bias even when the sample size is only 20. We also observe that when the percentage of contamination is 
very high, the scale estimate breaks down. This phenomenon is independent from the sample size and it is 
due to the fact that the initial scale estimate breaks down for the high amounts of contamination. We also 
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Table 2 
One-step weighted likelihood and Simpson--Ruppert--Carroll estimates of the regression parameters and scale of the errors. The sample 
size is 20 and the Hellinger weight is used 

(I- ~:)N(O,I) + eN(0,25) (I - ~:)N(O,I) +eN( -8,1) 

Percent One-step Standard SRC Standard One-step Standard SRC Standard 
of cont. Par. estimate error estimate error estimate error estimate error 

0 Po 1.024 (0.207) 1.008 (0.252) 

Pt 1.003 (0.074) 1.003 (0.093) 
r?- 0.748 0.656 

5 Po 1.023 (0.216) 1.019 (0.279) 1.021 (0.213) 0.855 (0.303) 

Pt 1.006 (0.078) 1.004 (0.104) 1.008 (0.077) 1.010 (0.113) 
q2 0.796 0.738 0.758 0.795 

10 Po 1.026 (0228) 1.025 (0.313) 1.022 (0.223) 0.659 (0.370) 

Pt 1.009 (0.082) 1.004 (0.114) 1.008 (0.08) 1.008 (0.135) 
q2 0.875 0.839 0.784 0.954 

15 Po 1.030 (0.244) 1.032 (0.344) 1.012 (0.232) 0.406 (0.450) 

Pt 1.012 (0.087) 1.001 (0.124) 1.009 (0.082) 1.010 (0.160) 
r?- 0.985 0.955 0.803 1.133 

20 Po 1.035 (0.265) 1.017 (0.386) 1.030 (0.240) 0.114 (0.542) 

Pt 1.012 (0.095) 1.007 (0.137) 1.006 (0.085) 1.006 (0.188) 
r?- 1.145 1.106 0.811 1.366 

30 Po 1.037 (0.317) 1.015 (0.482) 0.978 (0.288) -0.773 (0.805) 

Pt 1.015 (0.113) 1.006 (0.168) 1.001 (0.103) 0.997 (0.277) 
q2 1.588 1.515 1.019 2.221 

40 Po 1.049 (0.396) 1.026 (0.582) 0.614 (0.440) -2.013 (1.135) 

Pt 1.014 (0.14) 1.012 (0.199) 0.995 (0.156) 0.973 (0.392) 
q2 2.473 2.182 2.747 4.()45 

50 Po 1.043 (0.514) 1.035 (0.705) -2.970 (0.959) -3.019 ( 1.309) 

Pt 1.023 (0.183) 1.022 (0.245) 0.941 (0.345) 0.980 (0.531) 
r?- 4.253 3.276 15.424 21.626 

experimented with the scale estimates Sn and Qn. We used those, with appropriate scale adjustments, as initial 
scale estimators. The results were very similar to those presented in Table 2, where the MAD was used as 
the initial scale estimator. For high percentages of contamination we still observe breakdown in the initial 
scale estimate. However, Qn is preferable when the contamination is asymmetric, and performs better than Sn 
when high contamination is present. This holds for both sample sizes 20 and 80. 

We did not try S-estimates because on page 208 of Rousseeuw and Leroy (1987) it is stated that " .... 
preliminary experience (both for simple and multiple regression) indicates that S-estimators do not really 
perform better than the LMS, at least from a practical point of view .... ". However, Ruppert (1992) examined 
the performance of S-estimators for both real and simulated data and found that S-estimators performed 
somewhat better than LMS and LTS. 

The use of the chisquare RAF provides similar results with those presented here for both sample sizes. 
On the other hand, as we can see from Table 2 the bias of the regression estimates is very low even for 

high amounts of contamination. Similar observations apply for sample size 80 and for the chisquare weight 
(with the exception of high scale bias for e = 50% when n = 80 ). 
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We also simulated the case where the data contain high leverage points that are not associated with large 
residuals. To generate these points we take the error distribution to be N(O, l) and the distribution of the 
carriers is (1- e)N(0,9)+eN(lO, 1). We use sample sizes of 20 and 80 with the same weight functions as 
before. 

In this case both regression estimates and the scale estimate fare well in tenns of bias and standard error for 
both sample sizes. The regression estimates have extremely low bias even for high amounts of contamination, 
whereas the bias of the scale estimate increases as the amount of contamination increases. When the chisquare 
weight is used, for both sample sizes, we obtain a dramatic decrease in the bias of the scale estimate. The 
regression estimates continue to have a very low bias. 

The last experiment we perfonned was to simulate data which include observations that are both, high 
leverage and large Pearson residual points. To generate such data we took the error distribution to be ( l -
e)N(O, l)+eN(-8, l) and the xs were generated from the distribution (l- e)N(0,9)+eN(8, 1). 

In this case, the bias of the new regression estimates is very competitive with the bias of the SRC estimate, 
the bias of the scale estimate is dramatically lower than that of the SRC estimate and generally low when 
we compare the scale estimate with the true parameter value. The bias is much lower as the sample size 
increases. 

We also simulated data from a t3. The design we use was the one-way ANOVA with two levels and 
sample size equal to 60. We assumed that the underlying error distribution was N(O, I) but in reality the 
error distribution was t3. To generate t3 values we used DRNCHI to generate chisquare variables with three 
degrees of freedom and then we obtained a t3-variable as the ratio of a N(O, l) variable and the square root 
of a xj variable divided by its degrees of freedom. The nominal value for /lt, P2 is I. The initial estimates 
used were L TS for the regression parameters and LMS for the scale parameters. The estimates obtained when 
the chisquare weight was used are Po=0.99630,P1 =0.98754,P2= 1.00607 and 82 = 1.37570, whereas when 
the Hellinger distance based weight is used the estimates are Po= 0.9953o,p. = 0.98879,P2 = 1.00741 and 
~= 1.31844. 

6. Conclusions 

We presented a one-step estimator for the regression parameters in a linear model. Additionally, we estimated 
the scale of the errors simultaneously. The estimators perfonn very well in tenns of bias and standard error. 
However, for high percentages of contamination the scale estimate breaks down as the initial estimate also 
breaks down. The weighted likelihood reweighting scheme downweights points that are both high leverage 
and large residual outliers, and provides estimates that are asymptotically efficient and have high breakdown. 
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