
1

Joint Compute-Caching-Communication Control
for Online Data-Intensive Service Delivery

Yang Cai, Graduate Student Member, IEEE , Jaime Llorca, Member, IEEE ,
Antonia M. Tulino, Fellow, IEEE , and Andreas F. Molisch, Fellow, IEEE

Abstract—Data-intensive augmented information (AgI) services (e.g., metaverse applications such as virtual/augmented reality),
designed to deliver highly interactive experiences resulting from the real-time combination of live data-streams and pre-stored digital
content, are accelerating the need for distributed compute platforms with unprecedented storage, computation, and communication
requirements. To this end, the integrated evolution of next-generation networks (5G/6G) and distributed cloud technologies
(mobile/edge/cloud computing) have emerged as a promising paradigm to address the interaction- and resource-intensive nature of
data-intensive AgI services. In this paper, we focus on the design of control policies for the joint orchestration of compute, caching, and
communication (3C) resources in next-generation 3C networks for the delivery of data-intensive AgI services. We design the first
throughput-optimal control policy that coordinates joint decisions around (i) routing paths and processing locations for live data
streams, with (ii) cache selection and distribution paths for associated data objects. We then extend the proposed solution to include a
max-throughput data placement policy and two efficient replacement policies. Numerical results demonstrate the superior performance
obtained via the novel multi-pipeline flow control and 3C resource orchestration mechanisms of the proposed policy, compared with
state-of-the-art algorithms that lack full 3C integrated control.

Index Terms—Data-intensive services, virtual reality, augmented reality, metaverse, distributed cloud, mobile edge computing, fog
computing, caching, network control, stream processing.

F

1 INTRODUCTION

THE class of augmented information (AgI) services refers
to a wide range of services and applications designed

to deliver information of real-time relevance that results
from the online aggregation, processing, and distribution
of multiple data streams [2]. AgI services such as sys-
tem automation (e.g., smart homes/factories/cities, self-
driving cars) and metaverse experiences (e.g., multiplayer
gaming, immersive video, virtual/augmented reality) are
driving unprecedented requirements for communication,
computation, and storage resources [3]. To address this
need, distributed cloud network architectures such as multi-
access edge computing (MEC) are becoming a promising
paradigm, providing end users with efficient access to
nearby computation resources. Together with continued
advances in network virtualization and programmability
[4], distributed cloud networks allow flexible and elastic
deployment of disaggregated services composed of multiple

• Part of this work was presented at IEEE GlobeCom 2022 [1].

• Y. Cai and A. F. Molisch are with the Department of Electrical and

Computer Engineering, University of Southern California, Los Angeles,

CA 90089, USA.

E-mail: yangcai@usc.edu; molisch@usc.edu

• J. Llorca is with the Electrical and Computer Engineering Department,

New York University, Brooklyn, NY 11201 USA.

E-mail: jllorca@nyu.edu

• A. M. Tulino is with the Electrical and Computer Engineering Depart-

ment, New York University, Brooklyn, NY 11201 USA, and also with the

Department of Electrical Engineering, Universityà degli Studi di Napoli

Federico II, Naples 80138, Italy.

E-mail: atulino@nyu.edu; antoniamaria.tulino@unina.it

• This material is based upon work supported by the National Science

Foundation under CNS-1816699 and CNS-2148315 and is supported in

part by funds from federal agency and industry partners as specified in

the Resilient & Intelligent NextG Systems (RINGS) program.

Fig. 1. Example AR application with one processing function that takes
two inputs (live and static data) to create augmented data.

software functions that can be dynamically instantiated at
distributed network locations.

In addition to the interaction- and compute-intensive na-
ture, an increasingly relevant feature of next-generation AgI
services, such as metaverse applications, is their intensive

data requirements. In these applications, the user experience
results from the combination of live media streams and
pre-stored digital content. Augmented reality (AR), as il-
lustrated in Fig. 1, is a clear example, which enriches source
video streams with scene objects to generate enhanced expe-
riences that can be consumed by end users [5]. Face/object
recognition is another example, where the access to a train-
ing dictionary is required to identify/classify the images
recorded by end users [6].

Indeed, the efficient delivery of data-intensive AgI ser-

vices requires the end-to-end optimization of communica-
tion, computation, and caching (3C) decisions and the joint
orchestration of associated 3C resources. From a network
control perspective, data packet decisions include: (i) packet

processing: where to execute each service function in order
to process associated data packets, (ii) packet caching: where
to place possibly multiple copies of pre-produced content

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

2

items and how to select appropriate copies for correspond-
ing service functions, and (iii) packet routing: how to route
data packets to their corresponding processing locations. In
addition, the joint 3C decision making problem must be
addressed in an online manner, in response to stochastic
network conditions and service demands.

1.1 Related Work
1.1.1 Computation and Communication

The distributed cloud network control problem has received
significant attention in recent literature, especially for ap-
plications that can be modeled as service function chains
(SFCs), which include the single task offloading problem [7]
as a special case [8].

One main line of work studies this problem in a static

setting, where the goal is to allocate communication and
computation resources for function placement and flow
routing in order to optimize a network-wide objective, e.g.,
maximizing accepted service requests [9], [10], [11] or mini-
mizing overall operational cost [12], [13], [14]. While useful
for long timescale end-to-end service optimization, these
solutions exhibit two main limitations: first, the problem is
formulated as a static optimization problem without con-
sidering the dynamic nature of service demands, a critical
aspect in next-generation AgI services; second, due to the
combinatorial nature of the problem, the corresponding
formulations typically take the form of (NP-hard) mixed
integer programs (MIP), and either heuristic solutions or
approximation algorithms are developed, compromising the
quality of resulting solutions.

To address the SFC optimization problem in a dynamic
scenario, one needs to make online packet processing, rout-
ing, and scheduling decisions, in response to stochastic sys-
tem states (e.g., service demands and resource capacities).
Among existing techniques, Lyapunov drift control, firstly
applied to pure communication networks [15], [16], [17], has
proven to be a powerful tool for the design of throughput-
optimal cloud network communication and computation
control policies, such as DCNC [18] and UCNC [19], by
dynamically exploring processing and routing diversity. In
general, centralized routing policies, e.g., UCNC, which
exploit global knowledge (at the expense of additional
communication overhead) to guarantee that packets follow
acyclic paths, can attain better delay performance than dis-
tributed counterparts, e.g., DCNC [20].

1.1.2 Caching and Communication

Over the past decade, the dramatic growth of user demands
for multimedia content has fueled rapid advances in caching
techniques, especially at the wireless edge. By storing copies
of popular content close to end users, the network traffic
and latency for content retrieval and distribution can be
significantly reduced [21], [22], [23].

Caching and delivery policies are two key elements
in content distribution network design, dealing with (i)
content placement in the network, and (ii) content delivery
to users, respectively. Various caching policies have been
designed aiming to optimize different performance metrics,
e.g., throughput [21], delay [22], and energy efficiency [24].
In addition, the overall content distribution performance

can benefit from the joint optimization of the caching pol-
icy and the employed communication technique, e.g., non-
orthogonal multiple access (NOMA) [25], multiple-input
and multiple-output (MIMO) [26], and coded-multicast [27].

In multi-hop networks, flow routing plays an important
role in the delivery policy design, i.e., selecting the caching
location to provision, and the path to deliver, the required
content. Similarly, overall network performance can benefit
from the joint optimization of caching and routing [28].
Some existing studies propose formulations targeting either
throughput maximization [29] or service cost minimization
[30], and approximation algorithms are developed to ad-
dress the resulting MIP problems.

1.1.3 Joint 3C Optimization

While there is a large body of works on the integration of
computation-communication and caching-communication
technologies into network design, 3C integration is a less
explored topic with fewer known results.

Two combinations, computing-assisted information cen-
tric networking (ICN) and cache-enabled MEC, are stud-
ied in [31], as promising directions for 3C integration. In
cache-enabled MEC, a key aspect is service caching, dealing
with service functions (software) with non-trivial storage
requirements [9]; another aspect is data caching, i.e., caching
frequently used data [32], such as processed results (from
previous tasks) that might be repeatedly requested [33], [34],
to save extra computation resources and latency for content
generation.

In this paper, we focus on integrating data caching into
the delivery of data-intensive AgI services (such as meta-
verse applications), assuming that service functions process
a combination of cached digital objects (static data) and
user-specific streams (live data) to generate highly personal-
ized experiences for end users. Under such assumption, [13]
developed approximation algorithms for the data-intensive
service chain embedding problem in a static setting (i.e.,
with known average demands). A dynamic (but simplified)
setting is investigated in [35], where the proposed DECO
policy focuses on static object distribution and processing,
but without considering the live service chain routing and
processing pipeline.

1.2 Problem Statement and Challenges
In this paper, we investigate the problem of joint 3C control

for data-intensive AgI service delivery.
As illustrated in Fig. 2, a data-intensive AgI service

may be composed of multiple functions, and each function
may require input streams of different nature (e.g., F2 in
blue): live data (generated by device sensors), static data
(pre-stored in network), or processed data (generated by
previous processing functions).

Compared with existing service models, such as SFC,
MEC, and DECO (also illustrated in Fig. 2), key new chal-
lenges arise in the delivery of data-intensive AgI services.

On the end-to-end flow control dimension, two new as-
pects arise: (i) processing location decisions impact not only
the resulting computation load, but also the communication
load of all associated live and static input streams, (ii) static
data inputs can be created (via replication) at any caching

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

3

MEC

SFC

Data-intensive
AgI

Edge
server

Sensor
(live data)

Database
(digital objects)

F2

F1

F1

F1

Access
point

F2

Cloud
datacenter

User

User

Service function

DECO

F1

Fig. 2. Network and service models studied in this paper and in related
works. Data-intensive AgI [13] (this paper): distributed cloud network +
service DAG (see Section 2.2) with both live and static data. DECO [35]:
distributed cloud network + one-step processing with static data. MEC
[7]: single server network + one-step processing with live data. SFC [18],
[19]: distributed cloud network + SFC with live data.

location that stores a copy of the required content in an on-

demand manner (i.e., per service function’s request), which
is fundamentally different from live data inputs, associated
with fixed source functions and live streaming rates. Existing
cloud network control policies [7], [18], [19], [35], designed
for simpler service models, cannot efficiently handle these
challenges, let alone their inter-coupling, i.e., the need for
joint selection of processing and caching locations, as well
as live and static data routing paths. We term this challenge
multi-pipeline flow control.

On the data placement dimension, a key element im-
pacting the performance of data-intensive AgI service deliv-
ery is the caching policy design, including “which content
databases to cache” and “where to place the databases”.
As mentioned in existing works on caching-communication
integration, content placement shall be jointly optimized
with flow routing decisions, but going beyond flow routing
to also include flow processing, especially in heterogeneous
networks with highly-distributed 3C resources, is particu-
larly challenging. Furthermore, when the service request dis-

tribution is time-varying, the service delivery performance
shall benefit from the dynamic adjustment of the caching
policy. We collectively refer to these challenges as processing-

aware database placement.

1.3 Contributions
This paper addresses the above problems, and our contribu-
tions are summarized as follows:

1) We characterize the stability region of distributed
cloud networks supporting data-intensive AgI ser-
vice delivery, in the settings of fixed and dynamic
database placement.

2) We design the first throughput-optimal control pol-
icy for online data-intensive service delivery, termed
DI-DCNC, which coordinates joint decisions around
(i) routing paths and processing locations for live
data streams, and (ii) cache selection and distribu-
tion paths for associated static data objects, under a
given database placement.

Fig. 3. Main components of overall methodology and their relationship.

3) We propose a database placement policy targeting
throughput maximization, and derive an equivalent
mixed integer linear programming (MILP) problem
to implement the design.

4) We develop two database replacement policies able
to adapt to time-varying service demand statistics,
based on online estimations of service request dis-
tribution and database score, respectively.

We emphasize that the methodology proposed in this
paper targets the general class of data-intensive AgI ser-
vices characterized by the multi-pipeline service model
introduced in Section 2.2, rather than any specific appli-
cation, although many metaverse applications such as vir-
tual/augmented reality are relevant special cases.

1.4 Paper Organization and Main Components
The paper is organized as follows. In Section 2, we introduce
the system model, including 3C network and data-intensive
AgI service models. In Section 3, we describe the augmented
layered graph (ALG) used to model the multi-pipeline
flow control as a routing problem, and characterize the
network stability region. Section 4 presents the proposed DI-
DCNC algorithm for multi-pipeline flow control, consisting
of 1) a global live and static data routing policy and 2) a
local scheduling policy, shown to be throughput-optimal
under any given database placement. Section 5 describes
a throughput-optimal database placement policy leveraging
an equivalent characterization of the network stability re-
gion, and Section 6 two replacement policies, one guided
by the placement policy (rate-based) and the other by the
routing policy (score-based). Section 7 presents the numerical
results, while conclusions are drawn in Section 8.

The main components of the overall approach presented
in this paper and their relationship are depicted in Fig. 3,
while frequently used notation is summarized in Table 1.

2 SYSTEM MODEL

Fig. 2 illustrates the cache-enabled MEC network as the sup-
porting infrastructure for the delivery of data-intensive AgI

services, described as follows.

2.1 3C Network Model
Consider a distributed cloud network, modeled by a di-
rected graph G = (V, E), with V and E denoting the node
and edge sets, respectively. Each vertex i 2 V represents

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

4

TABLE 1
Table of Notations

Symbol Description
V, E Node and edge sets of the actual network.
Ci, Cij , Si 3C resource capacities.
� Data-intensive AgI service.
K, Fk Set of databases, the size of database k.
(⇠, r, k, ⇣) Scaling factor, workload, object name, merging ratio.
m Processing stage (also used as function index).
s,V(k), d Live source, set of static sources, destination.
a(c)(t),�(c) Number of arrivals of client c, arrival rate.
V(�), E(�) Node and edge sets of ALG for service �.
o0m Super static source (of stage m static packets).
�,Fc(x) Efficient route and the set of them.
a(c,�)(t) Number of service requests selecting ER �.
✓(m) Processing location for function m.
w

(c)
ı| , ⇢

(c,�)
ij Resource load on an ALG edge/actual link.

⇤(x),⇤ Stability region under fixed/dynamic placements.
Q̃(t), Q(t) Virtual queue and normalized virtual queue.
xi,k Caching variable (if database k is cached at node i).
f
(c)
ı| , f

0(k)
ij Live/static flows in ALG/actual network.

p(c) Service request distribution.
Ui,k Score (of database k at node i).

a node equipped with computation resources (e.g., edge
server) for service function processing. Each edge (i, j) 2 E

represents a point-to-point communication link, which can
support data transmission from node i to j. Let ��(i) and
�
+(i) denote the incoming and outgoing neighbor sets of

node i, respectively.
Time is slotted, and the network processing and trans-

mission resources are quantified as follows:

• Processing capacity Ci: the maximum number of pro-
cessing instructions (e.g., floating point operations)
that can be executed in one time slot at node i.

• Transmission capacity Cij : the maximum number of
data units (e.g., packets) that can be transmitted in
one time slot over link (i, j).

The network nodes are also equipped with storage re-
sources1 to cache databases composed of digital objects
whose access may be required for service function process-
ing. Let K denote the set of databases. Define the caching

vector as

x = {xi,k 2 {0, 1} : i 2 V, k 2 K} (1)

where xi,k is a binary variable indicating if database k 2 K

is cached at node i (xi,k = 1) or not (xi,k = 0). Let
V(k) = {i 2 V : xi,k = 1} ⇢ V denote the static sources

of database k, i.e., the set of nodes that cache database k. A
caching vector must satisfy the following storage resource
constraint: for 8 i 2 V ,

X

k2K
Fk xi,k Si (2)

where Fk denotes the size of database k 2 K, and Si the
storage capacity of node i 2 V , i.e., the maximum number

1. In this paper, “storage resource” refers to memory or disk used for
database caching. Data packets emanating from live or static data that
travel through the network are collected in separate buffers, referred to
as “actual queues” (see Section 2.4).

Live data

Static object

F 1 F 2 F

F’

�xtensions in Remark 1

Additional live/static input

�tudied model

Stage 0 Stage 1

packet

packets

. . .

AR application (special case)

Live data: source video stream

Static data: scene objects

F 1: AR Processing

packetspackets

packets packets

Stage Stage

⇣1
(�) ⌅(�)

1 ⇣2
(�) ⌅(�)

M��1⇣
(�)
M�

M����1 M�

⌅(�)
0 = 1 ⌅(�)

1 ⌅(�)
M�

M�

Fig. 4. The studied data-intensive service model composed of multiple
functions (denoted by F), with each function requiring one live data input
and one static data input. We depict an AR application with a single
processing step (F1) as a special case, as well as extensions to multiple
live and static inputs (using F M� as an example).

of static data units (e.g., databases) that can be cached at
node i 2 V , respectively. Let X denote the caching vectors
x satisfying (2).

We assume that there exists a cloud datacenter in
the network, serving as an external trusted source with all
databases stored, from which the edge servers can down-
load databases for caching. We assume that such downloads
happen at a longer timescale and neglect their impact on the
network communication resources.2

2.2 Data-Intensive AgI Service Model

We assume a data-intensive service � is composed of a
sequence of M� functions, through which the user-specific
data, referred to as live data, must be processed to produce
consumable streams, resulting in the end-to-end data stream
divided into M� + 1 stages. We refer to the output stream
of function m 2 {1, · · · ,M�} as stage m live packets, with
source packets denoted as stage 0 packets. In order to
process each live packet, the associated service function
requires access to a pre-stored digital object, referred to as
static data [13], [35]. We then use stage m static packets to
denote the static object input stream to function m+1. Each
processing step can take place at different network locations
hosting the required service functions: for example, in Fig.
2, the two service functions F1 and F2 (in blue) are executed
at different edge servers.

Each service function, say the mth function of service �,
is specified by 4 parameters (⇠(�)m , r

(�)
m , k

(�)
m , ⇣

(�)
m), defined

as follows:

• Object name k
(�)
m : the name (or index) of the

database to which the static object belongs.
• Merging ratio ⇣

(�)
m : the number of static packets per

input live packet.
• Workload r

(�)
m : the amount of computation resource

(e.g., instructions per time slot) to process one input
live packet.

• Scaling factor ⇠
(�)
m : the number of output packets per

input live packet.

2. Database replacement can be supported by the backhaul connec-
tions between the cloud datacenter and edge servers, subject to restricted

communication rates.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

5

We also define the cumulative scaling factor ⌅(�)
m as the

number of stage m live packets per stage 0 live packet (i.e.,
the live packet prior to any processing operation), given by

⌅(�)
m =

(
1 m = 0

⇠
(�)
m ⌅(�)

m�1 m = 1, · · · ,M�
. (3)

Remark 1 (Extended Models). We note that in general, a
data-intensive service may be described by a directed
acyclic graph (DAG) with multiple live and static data
inputs per service function. While for ease of exposition,
we illustrate the proposed design in the context of one
live and one static input per function, the generalization
to multiple inputs is straightforward: (i) For functions
with multiple static inputs, we can extend k

(�)
m and ⇣

(�)
m

(from scalars) to sets. (ii) For functions with multiple
live inputs, we can create a tree node for each service
function and describe its inputs as child-nodes until
reaching the source data (i.e., leaf nodes).

2.3 Client Model
We define each client c by a 3-tuple (s, d,�), denoting
the source node s (where the live packets arrive to the
network), the destination node d (where the final packets
are requested for consumption), and the requested service
� (which defines the sequence of service functions and the
static packets that are required to process the live packets
and create the final packets), respectively.3

2.3.1 Live Packet Arrival

Let a(c)(t) be the number of live packets of client c arriving
to the network at time t. For each client c, we assume the
arrival process {a(c)(t) : t � 0} is i.i.d. over time, with mean
arrival rate of �(c), and bounded maximum arrival number.
Each live packet is immediately admitted to the network
upon arrival.
Remark 2. In Section 5 (and subsequent sections), we as-

sume that there exists a service request distribution (32)�
p
(c) : 8 c

governing the arrival rates of all clients, i.e.,

�
(c)
/ p

(c), when designing database placement policies
targeting throughput maximization.

Remark 3. We assume i.i.d. arrivals for ease of exposition.
The analytical results: Theorem 1, 2, and Proposition
2, are valid under the general assumption of Markov-
modulated arrivals, i.e., the arrival rate is time-varying
and follows a Markov process (see [16, Section 4.9]).

2.3.2 Static Packet Provisioning

Upon a live packet arrival, for each required static packet,
one static source is selected to generate the required copy,
which is loaded into the network immediately.
Definition 1 (Packet-level request). We refer to a live packet

and all static packets required for its (multi-stage) pro-
cessing as belonging to the same packet-level request.

In the following, we use packet-level request and request

interchangeably.

3. We use packet to refer to the minimum data unit that can be
processed independently by the service or application, such as a video
segment or frame in video-based applications.

Waiting queue
(unpaired packets)

Processing queue
(paired packets)

Node

Transmission
queue

Node ij

Fig. 5. Illustration of the paired-packet queuing system. Different shapes
denote packets associated with different requests, blue and red colors
the live and static packets, and solid and dashed lines the current and
subsequent time slot, respectively.

Remark 4 (Static Object). A database is composed of
multiple objects, e.g., the scene object library in an AR
application, and distinct objects may be required by
different service requests. We assume that the live packet
and static packets belonging to the same packet-level
request get associated, i.e., the static packets are dedicated
for the processing of the associated live packet.

2.4 Queuing System
Each packet (live or static) admitted to the network gets
associated with a route for its delivery, and we establish ac-
tual queues to accommodate packets waiting for processing
or routing.

For each link (i, j) 2 E , we create one transmission queue
collecting all packets – regardless of the client, stage, or type
(i.e., live or static) – waiting to cross the link, i.e., packets
currently held at node i and having node j as its next hop
in the route. In contrast, a novel paired-packet queuing

system is constructed at each node i 2 V , composed of
the following queues: (i) the processing queue collecting the
paired live and static packets concurrently present at node
i, which are ready for joint processing, and (ii) the waiting

queue collecting the unpaired live or static packets waiting
for their in-transit associates, which are not qualified for
processing until joining the processing queue upon their
associates’ arrivals.

An illustrative example is shown in Fig. 5. At the current
time slot, the paired-packet processing queue holds a blue
and red circle pair, representing live and static packets be-
longing to the same request, which are ready for processing.
At the next time slot, when node i receives the red square
packet, it gets paired with the blue square packet held in
the waiting queue, and together enter the paired-packet
processing queue to be scheduled for processing.

3 POLICY SPACE AND STABILITY REGION

In this section, we propose an ALG model to analyze and
optimize the data-intensive AgI service delivery problem,
based on which we characterize the network stability region.

3.1 Augmented Layered Graph
Recent studies have shown that the AgI service (modeled
by SFC) control problem can be transformed into a packet
routing problem on a properly constructed layered graph [19].

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

6

Live source Super static source

Stage ŗ live
pipeline

Processor at node

Database at node and

Stage ŗ
live

output

Stage Ŗ
live,
static

inputs

(Actual network) (ALG)

Sensor

s

p

v

d

Stage Ŗ live pipeline Stage Ŗ static pipeline

vd

p
o
0
0

s0

s1

s
0
0

p0

p1

p
0
0

v0

v1

v
0
0

d0

d1

d
0
0

Fig. 6. Illustration of the ALG model for the delivery of AR service.

3.1.1 Topology of the ALG

The ALG associated with service � is composed of M� +
1 layers, indexed by layer 0, · · · ,M�, respectively. Within
each layer m, there are two pipelines, referred to as stage m

live and static pipelines, respectively, except for layer M�,
which only includes the live pipeline. Each live pipeline has
the same topology as the actual network, while the stage m

static pipeline includes an additional super static source node
o
0
m and its outgoing edges to all static sources, i.e., (o0m, v

0
m)

with 8 v 2 V(k(�)m). We note that: (i) The live and static
pipelines in layer m accommodate stage m live and static
packets, respectively, and represent their associated routing
over the network. (ii) With the super static source o0m created
for the static pipeline, it is equivalent to assume that o0m is

the only static source of database k
(�)
m .4 (iii) There are inter-layer

edges connecting corresponding nodes in adjacent layers m
and m + 1, which represent processing operations, i.e., the
stage m live and static packets pushed through these edges
are processed into stage m + 1 live packets in the actual
network.

The example in Fig. 6 illustrates the delivery of a single-
function AR application (as shown in Fig. 4) over a 4-node
network. The stage m = 0 live packet, which arrives to the
network at the source node s, and the stage m = 0 static
packet, which is generated via replication at the static source
v, are routed following the blue and green paths to node p,
respectively. After getting processed at node p, the produced
stage m + 1 = 1 packet is delivered along the red path to
destination d. In the ALG, the highlighted links in different
pipelines indicate the routing paths of each packet; (o01, v01)
indicates selecting the static source v 2 V(k(�)1) = {v, d}

to create the static packet, and (p1, p2) and (p01, p2) indicate
packet processing at node p.

Mathematically, given the actual network G and the
database placement x, the ALG of service �, denoted by

4. To wit, if node o0m can provide static packets to node i0m along the
path (o0m, v0m, · · · , i0m) in the ALG, then, in the actual network, we can
select the static source v to produce the packets and send them to node
i along the rest of the path. And vice versa.

G
(�) = (V(�)

, E
(�)), is defined as

V
(�) =

M�[

m=0

V
(�)
L,m [

M��1[

m=0

V
(�)
S,m (4a)

E
(�) =

M�[

m=0

E
(�)
L,m [

M��1[

m=0

E
(�)
S,m [

M��1[

m=0

E
(�)
m,m+1 (4b)

in which (with L/S in the subscripts denoting live/static)

V
(�)
L,m = {im : i 2 V}, V

(�)
S,m = {i

0
m : i 2 V} [{o

0
m}

E
(�)
L,m = {(im, jm) : (i, j) 2 E}

E
(�)
S,m = {(i0m, j

0
m) : (i, j) 2 E} [{(o0m, v

0
m) : v 2 V(k(�)m)}

E
(�)
m,m+1 = {(im, im+1), (i

0
m, im+1) : i 2 V}.

Remark 5. Note that, on one hand, the proposed ALG model
can capture special cases such as services modeled as
SFCs (in which static objects are not relevant) by re-
moving the static pipelines, which reduces to the layered
graph model in existing works [19]. On the other hand,
extended service models with multiple live/static inputs
(see Remark 1) can be flexibly incorporated by adding
extra pipelines into each layer.

3.1.2 Flow in the ALG

Let fı| � 0 denote the network flow associated with edge
(ı, |) 2 E

(�) in the ALG, defined as the average packet rate
traversing the edge (in packets per slot). In particular:

• fimjm and fi0mj0m denote the transmission rates of
stage m live and static packets over link (i, j) 2 E .

• fo0mv0
m

denotes the local replication rate of stage m

static packets at the static source v 2 V(k(�)m).
• fimim+1 and fi0mim+1 denote the processing rates of

stage m live and static packets at node i 2 V .

The flow rates must satisfy the following constraints:
(i) Live flow conservation: for 8 i 2 V, 0 m M�,
X

j2�+(i)

fimjm + fimim+1 =
X

j2��(i)

fjmim + ⇠
(�)
m fim�1im , (5)

i.e., for stage m live flow, the total outgoing rate of packets
that are transmitted and processed equals the total incoming
rate of packets that are received and generated by process-
ing. Note that processing stage m � 1 live packets at rate
fim�1im (by function m) produces stage m live packets at
rate ⇠

(�)
m fim�1im at node i, by the definition of “scaling

factor” in Section 2.2. Define fi�1i0 = fiM�
iM�+1 = 0.

(ii) Static flow conservation: for 8 i 2 V, 0 m M� � 1,
X

j2�+(i)

fi0mj0m + fi0mim+1 =
X

j2��(i)

fj0mi0m + fo0mi0m , (6)

i.e., for stage m static flow, the total outgoing rate of packets
that are transmitted and processed equals the total incoming
rate of packets that are received and generated via replica-
tion. Define fo0mi0m = 0 for i /2 V(k(�)m), i.e., nodes that are
not static sources.

(iii) Data merging: for 8 i 2 V, 1 m M�,

fi0m�1im
= ⇣

(�)
m fim�1im , (7)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

7

i.e., the processing rates of static and live packets at each
node i are associated by the merging ratio ⇣(�)m , as defined
in Section 2.2.
Remark 6. We note that multiple edges in the ALG are

associated with the same node/link in the actual net-
work. For example, edges (im, jm), (i0m, j

0
m) 8m are

associated with link (i, j), and all operations on these
edges consume the link’s communication resource.

3.2 Policy Space
In the following, we first define the space of policies
for data-intensive service delivery under a given database
placement x (which is optimized via a separate procedure,
as presented in Section 5 and 6), encompassing joint packet
processing, routing, and replication decisions. In line with
[19] and the increasingly adopted software defined net-
working (SDN) paradigm, we focus on centralized/source

routing and distributed scheduling policies. To be specific: for
each arriving packet, the policy selects a route consisting
of (i) routing paths and processing locations for the live
packets, and (ii) cache locations (to replicate each static
packet) and distribution paths for associated static packets;
in addition, each node/link needs to schedule packets for
processing/transmission at each time slot:

Route Selection: For each packet-level request, choose
a set of edges in the ALG and associated flow rates f

satisfying (5) – (7), based on which: (i) the cache selection
decision is specified by the replication rate (i.e., fo0mi0m units
of static packets k

(�)
m is produced at node i), (ii) the routing

path for each packet (live or static) is given by the edges with
non-zero rates in the corresponding pipeline, and (iii) the
processing location selection is indicated by the processing
rates fim�1im and fi0m�1im

, which guarantee that the live
and static packets meet at the same node i due to (7).

Packet Scheduling: At each time slot, for each node i

and link (i, j), schedule packets from the processing queues
(which hold paired live and static packets) and transmission
queues for corresponding operations, without exceeding
associated resource capacities Ci and Cij .

3.2.1 Efficient Policy Space

In this section, we define an efficient policy space in which
the routing path of each packet is required to be acyclic,
without compromising the achievable performance (e.g.,
throughput, delay, and resource consumption).

More concretely, each request gets associated with an
efficient route (ER) � in the ALG, defined as:

• � includes a sequence of processing locations, de-
noted by

�
✓
(m)

2 V : 1 m M�

, with

corresponding edges in the ALG given by
��⇥

✓
(m)⇤

m�1
,
⇥
✓
(m)⇤

m

�
,
�⇥
✓
(m)⇤0

m�1
,
⇥
✓
(m)⇤

m

� M�

m=1

where function m is executed at node ✓(m), and we
define ✓(0) = s and ✓(M�+1) = d.

• � includes acyclic routing paths for all packets, i.e.,

�1,m =
�⇥
✓
(m)⇤

m
, · · · ,

⇥
✓
(m+1)⇤

m

�
, 0 m M�,

�2,m =
�
o
0
m, · · · ,

⇥
✓
(m+1)⇤0

m

�
, 0 m M� � 1,

denote the (multi-hop) paths of stage m live packet
(from

⇥
✓
(m)

⇤
m

to [✓(m+1)]0m) and stage m static
packet (from o

0
m to [✓(m+1)]0m), respectively.

In the efficient policy space, for each client c, the set of
all possible ERs, denoted by Fc(x), is finite, and the route
selection decision can be represented by

A(t) = {a
(c,�)(t) : � 2 Fc(x), c} (8)

where a
(c,�)(t) � 0 denotes the number of requests raised

by client c at time t that get associated with � for delivery,
which satisfies

X

�2Fc(x)

a
(c,�)(t) = a

(c)(t), 8 c. (9)

Note however that Fc(x) includes an exponential num-
ber of ERs, i.e., |Fc(x)| = ⌦(|V|M�).

3.2.2 Decision Variables

To summarize, the decision variables include: i) route selec-
tion A(t) specifying the distribution of arriving packets to
the corresponding ERs at time t, defined in (8); ii) (for each
interface) the set of packets scheduled for operation from
the corresponding queue; iii) caching vector x, specifying
the placement of databases in the network, defined in (1).

3.3 Network Stability Region
In this section, we characterize the network stability region,
which describes the network capability to support service
requests, defined as follows.
Definition 2. The network stability region is defined as the

set of arrival vectors � under which there exists an
admissible policy to stabilize the actual queues, i.e.,

lim
t!1

1

t

hX

i2V
(Ri(t) +R

0
i(t)) +

X

(i,j)2E
Rij(t)

i
= 0

where Ri(t), R0
i(t) and Rij(t) denote the backlogs of the

processing queue for node i, waiting queue for node i,
and transmission queue for link (i, j) at time t.

Let ⇤(x) and ⇤ denote the network stability regions un-
der fixed database placement x and when allowing dynamic
replacement, which are characterized in the following.
Theorem 1. For any fixed database placement x 2 X , an

arrival vector � is interior to the stability region ⇤(x) if
and only if for each client c, there exist probability values

Pc(�) :
X

�2Fc(x)

Pc(�) = 1 and Pc(�) � 0,

such that for each node i and link (i, j):
X

c

�
(c)

X

�2Fc(x)

⇢
(c,�)
i Pc(�) Ci (10a)

X

c

�
(c)

X

�2Fc(x)

⇢
(c,�)
ij Pc(�) Cij (10b)

where ⇢(c,�)i and ⇢(c,�)ij denote the processing and trans-
mission resource loads imposed on node i and link (i, j)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

8

if a packet-level request of client c is delivered by ER �,
given by:

⇢
(c,�)
i =

X

m

w
(c)
im�1im1{(im�1,im)2�} (11)

⇢
(c,�)
ij =

X

m

⇥
w

(c)
imjm1{(im,jm)2�} + w

(c)
i0mj0m

1{(i0m,j0m)2�}
⇤

in which w(c) = {w
(c)
ı| : (ı, |) 2 E

(�)
} is given by

w
(c)
ı| =

8
>>>><

>>>>:

⌅(�)
m r

(�)
m+1 (ı, |) = (im, im+1)

0 (ı, |) = (i0m, im+1) or (o0m, i
0
m)

⌅(�)
m (ı, |) = (im, jm)

⌅(�)
m ⇣

(�)
m+1 (ı, |) = (i0m, j

0
m)

. (12)

Proof: The proof for necessity is given in Appendix
A, and we show the sufficiency by designing an admissible
policy, DI-DCNC, in the subsequent section, and proving
that it can support any arrival vector � 2 ⇤(x).

In Theorem 1: (i) The “sum” operation in (11) results
from multiple ALG edges sharing a common node/link (see
also Remark 6). (ii) A randomized policy for route selection
can be defined based on the probability values Pc(�), oper-
ating as follows: at each time slot, select the ER � 2 Fc(x)
to deliver the requests of client c with probability (w.p.)
Pc(�). (iii) The result is valid under the general assumption
of Markov-modulated arrivals, in which case the stability
region is defined with respect to (w.r.t.) the time average
arrival rate �(c) = limT!1(1/T)

PT�1
t=0 a

(c)(t).
Proposition 1. When allowing database replacement, an

arrival vector � is interior to the stability region ⇤ if
and only if there exist probability values

P(x) :
X

x2X
P(x) = 1 and P(x) � 0,

and (for each database placement x 2 X and client c)

Pc,x(�) :
X

�2Fc(x)

Pc,x(�) = 1 and Pc,x(�) � 0,

such that for each node i and link (i, j):
X

x2X
P(x)

X

c

�
(c)

X

�2Fc(x)

⇢
(c,�)
i Pc,x(�) Ci (13a)

X

x2X
P(x)

X

c

�
(c)

X

�2Fc(x)

⇢
(c,�)
ij Pc,x(�) Cij (13b)

with ⇢(c,�)i and ⇢(c,�)ij given by (11).

Proof: See Appendix D.
In the above proposition, P(x) represents the distribution

of caching vector x over time, resulting from the employed
replacement policy. Pc,x(�) plays an equivalent role to Pc(�)
in Theorem 1, i.e., the probability values specifying the route
selection policy under placement x.

Comparing Theorem 1 and Proposition 1, we find that
allowing database replacement is promising to enlarge the
stability region. To wit, setting P(x) = 1{x=x0} in Proposi-
tion 1 leads to the same characterization as Theorem 1 with
x = x0. The improvement brought by replacement is intu-
itive under the assumption that database replacement can
be performed instantaneously, as one can adjust the database
placement x at each time slot according to the received

requests to optimize the service delivery performance. In
Proposition 3, we will show that such result remains valid
under restricted communication rate for database replace-
ment, in line with footnote 2.

4 MULTI-PIPELINE FLOW CONTROL

In this section, we present the proposed algorithm, referred
to as data-intensive dynamic cloud network control (DI-DCNC),
which makes joint routing and processing decisions for live
and static pipelines, as well as packet scheduling, under
fixed database placement x.

We first introduce a single-hop virtual system (in Section
4.1) to derive packet routing decisions (in Section 4.2). Then,
we present the packet scheduling policy, and summarize the
actions to take in the actual network (in Section 4.3).

4.1 Virtual System
4.1.1 Precedence Constraint

In line with [17], [19], we create a virtual network that has
the same topology as the actual network, with a virtual
queue associated with each node and link. The precedence

constraint, which imposes a packet to be transmitted hop-
by-hop along its route, is relaxed by allowing a packet upon
route selection to be immediately inserted into the virtual
queues associated with all links in the route. The virtual
queue measures the processing/transmission resource load
for the node/link in the virtual system, which is interpreted
as the anticipated resource load for the corresponding
node/link in the actual network.

For example, suppose that a packet gets associated with
the route (i1, i2, i3). Then, it immediately impacts the queu-
ing states of link (i1, i2) and (i2, i3) in the virtual system,
as opposed to the actual network, where it cannot enter the
queue for link (i2, i3) before crossing (i1, i2).

We emphasize that the virtual system is only used for
route selection and it is not relevant to packet scheduling.

4.1.2 Virtual Queues

Let Q̃i(t) and Q̃ij(t) denote the virtual queues for node i 2

V and link (i, j) 2 E , respectively. The queuing dynamics
are given by:

Q̃i(t+ 1) =
⇥
Q̃i(t)� Ci + ãi(t)

⇤+ (14a)

Q̃ij(t+ 1) =
⇥
Q̃ij(t)� Cij + ãij(t)

⇤+ (14b)

where Ci and Cij are interpreted as the amount of pro-
cessing/transmission resource that is “served” at time t;
ãi(t) and ãij(t) are “additional” resource loads imposed
on the node/link by newly arriving packets. Recall that
each request gets associated with a route for delivery upon
arrival, which immediately impacts the queuing states of all
links in the route, and thus:

ãi(t) =
X

c

X

�2Fc(x)

⇢
(c,�)
i a

(c,�)(t) (15a)

ãij(t) =
X

c

X

�2Fc(x)

⇢
(c,�)
ij a

(c,�)(t) (15b)

with ⇢(c,�)i and ⇢(c,�)ij given by (11).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

9

4.2 Optimal Virtual Network Decisions
4.2.1 Lyapunov Drift Control

Next, we leverage Lyapunov drift control theory to derive a
policy that stabilizes the normalized virtual queues:

Q(t) =
�
Qi(t) , Q̃i(t)

�
Ci : i 2 V

[
�
Qij(t) , Q̃ij(t)

�
Cij : (i, j) 2 E

,

(16)

which have equivalent stability properties as the virtual
queues (due to the linear scaling) and can be interpreted
as queuing delays in the virtual system.

Define the Lyapunov function as L(t) , kQ(t)k2/2, and
the Lyapunov drift �(Q(t)) , L(t + 1) � L(t). Then we
can derive (as shown in Appendix B.1) the following upper
bound of the drift �(Q(t)):

�(Q(t))

 B � kQ(t)k1 +
X

c

X

�2Fc(x)

O
(c,�)(t) a(c,�)(t) (17)

where B is a constant, and O
(c,�)(t) is referred to as the

weight of ER �, given by:

O
(c,�)(t) =

X

i2V

Qi(t)

Ci
⇢
(c,�)
i +

X

(i,j)2E

Qij(t)

Cij
⇢
(c,�)
ij (18a)

=
X

i2V

X

m

w̃
(c)
im�1im(t)1{(im�1,im)2�} +

X

(i,j)2E

X

m

h

w̃
(c)
imjm(t)1{(im,jm)2�} + w̃

(c)
i0mj0m

(t)1{(i0m,j0m)2�}

i
(18b)

in which we plug in (11), and

w̃
(c)
ı| (t) =

8
<

:

w(c)
ı| Qi(t)

Ci
(ı, |) = (im, im+1), (i0m, im+1)

w(c)
ı| Qij(t)

Cij
(ı, |) = (im, jm), (i0m, j

0
m)

(19)

with w(c) given by (12).
The proposed algorithm is designed to minimize the

upper bound (17) over the route selection decision A(t)
given by (8), or equivalently,

min
A(t)

X

c

X

�2Fc(x)

O
(c,�)(t) a(c,�)(t), s. t. (9). (20)

4.2.2 Route Selection

Given the linear structure of (20), the optimal route selection
decision is given by:

a
? (c,�)(t) = a

(c)(t)1{�=�?} (21)

where

�
? = argmin

�2Fc(x)
O

(c,�)(t), (22)

i.e., all requests of client c arriving at time t are delivered
by the min-ER, i.e., the ER with the minimum weight, and
the remaining problem is to find the min-ER among the
exponential number of ERs in Fc(x).

To this end, we create a weighted ALG where each edge
(ı, |) in the ALG is assigned the weight w̃

(c)
ı| (t) given by

(19), under which the weight of the ER � (18b) equals to the
sum of individual edge weights. In the rest of this section,
we propose a dynamic programming algorithm to find the
min-ER based on the weighted ALG.

Stage live and static pipelines

Stage live pipeline
. . .

Term 1

Term 2

Term 4

Term 3

. . .

m

m�+�1

. . . o
0
mj

0
mjm

jm+1

im+1

s0

. . .

Fig. 7. Illustration of the weight components in Eq. (23).

Define:

• ER weight matrix W of size (M� + 1) ⇥ |V|, where
W (m, i) is the minimum weight to deliver the stage
m live packet to node i, optimized over all previous
packet processing, routing, and replication decisions.

• Processing location matrix P of size M�⇥|V|, where
P (m, i) is the optimal processing location of function
m, to deliver the stage m live packet to node i.

The ultimate goal is to find W (M�, d) and the associated
ER �

?, and we propose to derive W row-by-row (or layer-
by-layer in the ALG). To be specific, suppose row m of W ,
i.e., {W (m, j) : j 2 V}, is given. Then, we can derive each
element on row m+ 1, e.g., W (m+ 1, i), in two steps:

First, assume that function m + 1 is executed at node j.
Then, we can optimize cache selection and routing decisions
to minimize the weight, i.e.,

Wj(m+ 1, i) = W (m, j) + SPW(o0m, j
0
m)

+ w̃
(c)
jmjm+1

(t) + SPW(jm+1, im+1)
(23)

where SPW(ı, |) denotes the weight of shortest path (SP)
SP(ı, |) from node ı to | in the weighted ALG. As depicted
in Fig. 7, the four terms represent: (i) the min-weight to
deliver the stage m live packet to node j, (ii) the min-weight
to replicate and route the stage m static packet to node j, (iii)
the computation load at node j, and (iv) the min-weight to
route the stage m+ 1 live packet to node i, respectively.

Second, we optimize the processing location decision to
minimize the overall weight, i.e.,

W (m+ 1, i) = min
j2V

Wj(m+ 1, i), (24a)

P (m+ 1, i) = argmin
j2V

Wj(m+ 1, i). (24b)

Repeat the above procedure to derive all entries of W

and P . We then propose the following back-tracing proce-
dure to derive the min-ER �

?, to deliver the stage M� live

packet to node d: starting from destination d, the optimal
processing location of function M�, ✓(M�), is the (M�, d)
entry of matrix P . The remaining problem is to find the
optimal decisions to deliver the stage M��1 live packet to node

✓
(M�), which has the same structure as the original problem

and can be solved by repeating the above procedure, as
described in Algorithm 1 (step 6 to 8).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

10

Algorithm 1 Dynamic Programming to Find the min-ER
Input: w̃(t); Output: min-ER �

?, optimal weight W ?(x).
1: Initialization: W (0, i) SPW(s0, i0) for 8 i 2 V .
2: for m = 0, · · · ,M� � 1 and i 2 V do

3: Calculate row (m+ 1) for W and P by (24).
4: end for

5: Let ✓(M�) = P (M�, d) and �? = SP([✓(M�)]M� , dM�).
6: for m = M�, · · · , 1 do

7: ✓
(m�1)

 P (m� 1, ✓(m)) (note that ✓(0) = s), and

�
?
 �

?
[SP(o0m�1, [✓

(m)]0m�1) [([✓(m)]0m�1, [✓
(m)]m)

[SP([✓(m�1)]m�1, [✓
(m)]m�1) [([✓(m)]m�1, [✓

(m)]m).

8: end for

9: Return (i) min-ER �
? and (ii) W ?(x) = W (M�, d).

4.3 Optimal Actual Network Decisions
Next, we present control decisions in the actual network.

We adopt the route selection decisions made in the
virtual network in Section 4.2. In addition, we adopt the
extended nearest-to-origin (ENTO) policy [19] for packet
scheduling:

At each time slot t, for each node / link, give priority to the

packets which have crossed the smallest number of edges in the

ALG from the corresponding processing / transmission queue.

We note that ENTO is a distributed packet scheduling
policy. The processing queue holds paired live and static
packets, and we define the number of crossed hops for a
packet-pair to be that of its live packet component.

To sum up, the proposed DI-DCNC algorithm is de-
scribed in Algorithm 2.

Algorithm 2 DI-DCNC
1: for t � 0 do

2: For each client c, all requests received at time t get
associated with the min-ER found by Algorithm 1.

3: Each link transmits packets and each node processes
paired-packets according to ENTO.

4: Update the virtual queues by (14).
5: end for

4.4 Performance Analysis
4.4.1 Throughput

Under any fixed database placement, DI-DCNC is through-
put optimal, as described in the following theorem.
Theorem 2. For any fixed database placement x 2 X and

arrival rate � interior to the network stability region
⇤(x), all actual queues are rate stable under DI-DCNC.

Proof: See Appendix B.

4.4.2 Complexity

We can take advantage of the following facts to simplify the
calculation of (23) when implementing Algorithm 1:

SPW(ı, |) = w
(c)
ı| SPW0(i, j), 8 (ı, |) = (im, jm), (i0m, j

0
m)

where SPW0(i, j) denotes the SP distance in the weighted
graph, which has the same topology as the actual network

with the weight of each edge (i, j) 2 E given by Qij(t)/Cij .
In addition, we note that

SPW(o0m, j
0
m) = min

i2V(k(�)
m)

SPW(i0m, j
0
m). (25)

Therefore, we can implement Algorithm 1 as follows:

(i) Calculate the pairwise SP distance, i.e., {SPW0(i, j) :
(i, j) 2 V ⇥ V} by Floyd-Warshall [36, Section 25.2],
with complexity O(|V|3).

(ii) In each iteration (step 3 in Algorithm 1): calculate
SPW(o0m, j

0
m) for 8 j 2 V by (25), with complexity

O(|V|2). Then, calculate (23) for each (i, j) pair, with
complexity O(|V|2). The total complexity to calculate
the entire matrix is thus given by O(M�|V|

2).
(iii) Perform back-tracing, with complexity O(M�).

To sum up, the overall complexity of Algorithm 1 is given
by O(|V|3 +M�|V|

2).

4.4.3 Discussions on Delay Performance

As observed in the numerical experiments (in Section 7),
the designed DI-DCNC algorithm can achieve good delay
performance. Note however that we cannot say DI-DCNC is
delay optimal because: (i) it places the focus on queuing delay

without taking into account the hop-distance of the selected
path, which can become an important delay component in
low-congestion regimes; and (ii) the actual service delay
should be taken as the maximum over the concurrent live
and static pipelines, while the ER weight (18b) is indicative
of the aggregate delay (i.e., the sum of two). Addressing these
challenges is of interest for future work.

5 MAX-THROUGHPUT DATABASE PLACEMENT

The second part of this paper tackles the processing-aware

database placement problem, with this section focusing on
the setting of fixed database placement (and next section
designing dynamic database replacement policies).

5.1 Problem Formulation
The goal is to design a fixed database placement policy to
optimize the network’s throughput performance, together
with the flow (processing and routing) control decisions.

5.1.1 Variables

We define two variables, representing the database place-
ment and flow control decisions, respectively, as follows:

• Caching vector x = {xi,k : i 2 V , k 2 K}, where xi,k

is a binary variable indicating if database k is cached
at node i (xi,k = 1) or not (xi,k = 0).

• Flow variables f = {f
(c)
ı| : (ı, |) = (im, jm) 2 E

(�)
, c}

and f
0 = {f

0(k)
ij : (i, j) 2 E , k 2 K}, where f

(c)
ı|

denotes the flow rate of live packets of client c on
edge (ı, |) 2 E

(�) in the ALG, and f
0(k)
ij the flow rate

of static packets of database k on link (i, j) 2 E in
the actual network, respectively.5

5. The static flow defined in this section represents the sum of the
individual static flows (on the same link (i, j) and of the same database
k) over all clients, i.e., f 0(k)

ij =
P

c,m fi0mj0m
1
{k(�)

m =k}
.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

11

5.1.2 Constraints

We impose two classes of constraints on the variables:
(i) Capacity constraints, which limit the 3C network

resource usage, i.e., the incurred resource consumption shall
not exceed the corresponding capacities. To be specific, the
processing rate at each node i 2 V and the transmission rate
over each link (i, j) 2 E must satisfy
X

c,m

r
(�)
m f

(c)
im�1im Ci,

X

c,m

f
(c)
imjm +

X

k2K
f
0(k)
ij Cij , (26)

and the storage constraint (2):
P

k2K Fk xi,k Si, 8 i 2 V .
(ii) Service chaining constraints, which impose the rela-

tionship between input and output flows as they traverse
network nodes and undergo service function processing.
For live flows, the conservation law is given by:

X

j2�+(i)

f
(c)
imjm + f

(c)
imim+1

=
X

j2��(i)

f
(c)
jmim + ⇠

(�)
m f

(c)
im�1im

+ �
(c) 1{im=s0}, 8 c,m, i : im 6= dM� , (27)

and for the destination node:

f
(c)
dM�

jM�
= 0, 8 j 2 �+(d). (28)

For the static flows (of database k), the conservation law
can be summarized as

(1� xi,k)
⇣ X

j2�+(i)

f
0(k)
ij + f

0(k)
i �

X

j2��(i)

f
0(k)
ji

⌘
= 0, (29)

with the processing rate of static packets at node i given by

f
0(k)
i ,

X

c,m

⇣
(�)
m f

(c)
im�1im1{k(�)

m =k}. (30)

The static flow conservation law (29) can be described as fol-
lows: for each node i that is not a static source, i.e., xi,k = 0, the
static flow of database k must satisfy the flow conservation
constraint (see (6) for detailed illustration):

X

j2�+(i)

f
0(k)
ij + f

0(k)
i =

X

j2��(i)

f
0(k)
ji , (31)

and (29) is true; for any static source i, i.e., xi,k = 1 (and
thus 1 � xi,k = 0), (29) is true. We note that (31) does
not necessarily hold at the static sources, because they can
perform in-network packet replication: an operation known
to violate the flow conservation law [20].

5.1.3 Objective

We assume that the arrival rates of all clients’ requests,
{�

(c) : 8 c}, are governed by a service request distribution.
To be specific, the arrival rates are given by

�
�
(c) = p

(c)
� :

X

c

p
(c) = 1

, (32)

and we use � to measure the throughput performance. This
objective is employed targeting better fairness performance,
compared to another widely used metric of sum arrival

rate, i.e.,
P

c �
(c), which favors service requests with lighter

resource load (to improve the total throughput, provided
the same network resources).
Remark 7. Note that the service request distribution defined

above is w.r.t. clients c = (s, d,�) (see Section 2.3).

The service popularity distribution, which is w.r.t. services
�, can be derived as its marginal distribution. Further-
more, the content popularity distribution, which is w.r.t.
databases k, can be derived based on the service popu-
larity distribution and the associated service parameters
(i.e., scaling factor and merging ratio).

Remark 8. If the actual service request distribution is un-
known, a uniform distribution is used by default. Be-
sides, other than representing the service request distri-
bution, the values of p(c) can be designed for admission
control, customer prioritization, etc.

5.2 Proposed Design
To sum up, the problem is formulated as follows:

max � (33a)

s. t. �
(c)
� p

(c)
�, 8 c (33b)

Capacity constraints (26), (2) (33c)
Chaining constraints (27) – (30) (33d)

x 2 {0, 1}|K|⇥|V| and f, f
0
⌫ 0. (33e)

We note that (33) is a MIP problem due to (29), which is
not a linear constraint due to the cross terms of x and f

0.
To improve tractability, we propose to replace (29) with the
following linear constraint:

X

j2�+(i)

f
0(k)
ij + f

0(k)
i �

X

j2��(i)

f
0(k)
ji C

max
i,k xi,k (34)

where C
max
i,k is a constant, given by

C
max
i,k =

X

j2�+(i)

Cij + Ci max
k(�)
m =k

�
⇣
(�)
m

�
r
(�)
m

�
. (35)

We claim that the resulting MILP problem:

max �, s. t. (33b), (33c), (27), (28), (34), (35), (30), (33e) (36)

has the same optimal solution as (33).
Proof: See Appendix E.

In general, the MILP problem (36) is still NP-hard, which
can incur high complexity to find the exact solution. How-
ever, there are many software toolboxes designed to deal
with general MILP problems, which can find approximate
solutions that trade off accuracy with running time. For
example, we use the widely adopted intlinprog function
in MATLAB to implement the proposed design. In addition,
it can serve as a good starting point for future studies to
design approximation algorithms.

5.3 Performance Analysis
In this section, we present an equivalent characterization of
the stability region under a given database placement.
Proposition 2. For any fixed database placement x 2 X , an

arrival vector � is interior to the stability region ⇤(x) if
and only if there exist flow variables f, f 0

⌫ 0 satisfying
(26) – (30).

Proof: In Appendix C, we show that the sets of �
described in this proposition and Theorem 1 are equal,
completing the proof. Furthermore, the result also applies
to Markov-modulated arrivals, as Theorem 1 does.

Proposition 2 shows that the proposed database place-
ment policy can achieve max-throughput.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

12

6 DATABASE REPLACEMENT POLICIES

In this section, we show that the benefit of database re-
placement to enlarge the stability region remains unchanged
when the communication rate for database replacement
(referred to as replacement rate) is restricted, using the pro-
posed time frame structure, under which we develop two
replacement policies to handle time-varying service demand
statistics.

6.1 Low-Rate Replacement
In Section 3.3, we illustrated the benefit of database re-
placement assuming that replacement can be performed
instantaneously, which can impose a high requirement on
the replacement rate. In the following proposition, we show
that the same throughput performance can be achieved
under arbitrarily low replacement rate.
Proposition 3. For any arrival vector interior to the stability

region, there exists a replacement policy achieving an
[O(T),O(1/T)] tradeoff between average virtual queue
backlog and replacement rate.

Proof: See Appendix D.2.2. We propose the time frame
structure and design a reference policy (including T as a
parameter), shown to achieve the tunable performance.

In the reference policy, we consider a two-timescale sys-
tem, where processing and transmission decisions are made
on a per time slot basis, while database replacement deci-
sions are made on a per time frame basis, with each frame T
including T consecutive slots. The replacement is launched
at the beginning of each frame, which must be completed
by the end of the frame. The policy is throughput-optimal
for any given T , and the required replacement rate can be
arbitrarily close to zero by pushing T !1, with a tradeoff
in queue backlog (and thus delay performance).

In the rest of the section, we adopt the time frame struc-
ture to design two heuristic database replacement policies,
based on estimated service request distribution and database

score, respectively. We note that the proposed design can
flexibly incorporate advanced prediction techniques, which
plays an equivalent role to estimation, but can enhance the
timeliness of the quantities.6

6.2 Rate-Based Replacement
The first policy takes advantage of the max-throughput
database placement policy described in Section 5. To handle
time-varying demand statistics, we calculate the empirical
service request distribution over each frame T as follows

p̂
(c) =

P
t2T a

(c)(t)
P

c0
P

t2T a(c
0)(t)

. (37)

We then solve the MILP problem (36) based on {p̂
(c)

} to
derive the updated database placement, and each node can
perform the replacement accordingly.

While straightforward, this policy exhibits three limita-
tions. First, it neglects the existing resource loads in the net-
work, which can lead to sub-optimal solution. Second, the

6. We note that an estimation-based policy derives estimates over
frame ⌧ and executes the replacement decisions during frame ⌧ + 1.
The new placement will take effect in frame ⌧ + 2.

Node 1
(static source)

Node 2
(static source)

Live source Node 3 (not a
static source)

Destination

Live
packet
paths

Static
packet
paths

Final
packet
paths

Processing location

Fig. 8. The min-ERs (denoted by red, blue, and green arrows) for the
delivery of an AR service over the network, assuming nodes 1, 2, and 3
are selected to provision the static packet, respectively.

updated database placement is designed independent with
the current placement, which can impose a high require-
ment on the replacement rate. Finally, it requires solving the
MILP problem in an online manner, which can reduce the
accuracy of the approximate solution.

6.3 Score-Based Replacement
The second policy is motivated by the “min-ER” rule for
route selection (derived in Section 4.2), in which we propose
to evaluate the benefit for each node i to cache database k

by database score (or score for brevity), defined as follows.
Definition 3 (Score). For each instance, i.e., a given request

and network states (queuing states, database placement),
the score of database k at node i is the difference of
the min-ER weights assuming node i does not cache the
database, and the opposite, i.e.,

ui,k() = W
?(x�(i, k))�W

?(x+(i, k)) (38)

where W
?(x) is the min-ER weight given by Algorithm

1; x�(i, k) and x
+(i, k) denote caching vectors equal to

x, but with xi,k = 0 and xi,k = 1, respectively.

In particular, for a given database k: for a static source
node, the score is the increment of min-ER weight if it does
not cache database k; otherwise, the score is the reduction of
min-ER weight if the node caches database k.

We illustrate the definition by the example in Fig. 8. Let
W1, W2, and W3 denote the min-ER weights assuming that
node 1, 2, and 3 are selected to provision the static packet,
respectively (note that node 3 is not a static source, and it is
assumed to cache the database to derive the green ER and
associated weight W3), with W3 < W1 < W2. Then, node
1 is selected as the static source, serving as the benchmark.
The database score at each node is derived as follows. Node
1: if it does not cache database k, node 2 will be selected,
leading to a greater weight W2, and thus u1,k = W2 �W1.
Node 2: if it does not cache database k, the cache selection
decision does not change, leading to the same weight W1,
and thus u2,k = W1 �W1 = 0. Node 3: if it caches database
k, node 3 will be selected as the static source, leading to a
reduced weight W3, and thus u3,k = W1 �W3.

We note that the above definition of score (i) assumes
unchanged caching policies at the other network nodes, (ii)
requires finding for x�(i, k) and x

+(i, k) the corresponding

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

13

TABLE 2
Clients, i.e., (source, destination, service), and Service Function Specs, i.e., (scaling factor, workload [GHz/Gbps], object name, merging ratio)

Client (s, d,�) (1, 9,�1) (3, 7,�2) (7, 3,�3) (9, 1,�4)

Func 1 (⇠
(�)
1 , r

(�)
1 , k

(�)
1 , ⇣

(�)
1) (0.83, 7.1, 1, 0.92) (0.94, 10.0, 3, 0.52) (0.75, 8.7, 5, 1.48) (0.60, 8.4, 7, 0.91)

Func 2 (⇠
(�)
2 , r

(�)
2 , k

(�)
2 , ⇣

(�)
2) (1.06, 5.8, 2, 1.06) (1.22, 7.7, 4, 0.65) (1.31, 9.2, 6, 1.97) (1.34, 7.4, 8, 1.22)

10
1

3

2

4

6

5

7

9

8

Cloud datacenter

Edge servers

...
...

Fig. 9. The studied edge cloud network, including 9 edge servers (node 1
to 9) and a cloud datacenter (node 10). Arrows of the same color indicate
the source-destination pairs of each client.

min-ERs (which, in particular, can include different process-
ing locations), and (iii) accounts for a single instance, and
the sum score of all instances within a time frame is a proper
metric to evaluate the overall score, i.e.,

Ui,k =
X

t2T

X

 2A(t)

ui,k() (39)

where A(t) denotes the received requests at time t.
Given the obtained scores, we formulate an optimization

problem with the goal of maximizing the total score to find the
updated database placement for each node i 2 V , i.e.,

max
xi2{0,1}|K|

X

k2K
Ui,k xi,k, s. t.

X

k2K
Fk xi,k Si. (40)

The above problem, known as 0/1 knapsack problem, admits
a dynamic programming solution with pseudo-polynomial
complexity O(|K|Si) [37]. Let U?

i and x
?
i denote the optimal

value and solution, respectively.
Finally, we find the node with the largest total score, i.e.,

i
? = argmaxi U

?
i , and only replace its databases according

to x
?
i? , which is referred to as asynchronous update, in line

with the definition of score assuming unchanged caching
policies at the other network nodes.

There are three factors that can impact the performance
of this policy. First, the proposed score metric focuses on
each individual node (for tractability), and cannot capture
the coupling between them. Second, we use the observed
queuing states to calculate the score, which in turn are im-
pacted by the database placement. Finally, the asynchronous
update can be less efficient for database replacement and
lead to slower adaptation.7

7. Multiple nodes, whose database scores are calculated indepen-
dently, can update their caching policies synchronously. While out of
this paper’s scope, this extension is promising to accelerate adaptation.

7 NUMERICAL RESULTS

As mentioned in Section 1.3, the methodology proposed in
this paper targets the general class of data-intensive AgI
services, and the main goal of this section is to illustrate 1)
the effects of multi-pipeline flow control, and 2) tradeoffs
among 3C network resources, under the proposed method-
ology to validate its strength and applicability to a wide
range of scenarios.

7.1 Experiment Setup
Consider a mesh MEC network composed of 9 edge servers
and a cloud datacenter, connected by wired links, as shown
in Fig. 9. Each edge server is equipped with 4 processors of
frequency 2.5 GHz, and each link between them has 1 Gbps
transmission capacity. The cloud datacenter is equipped
with 8 identical processors; it is connected to all edge
servers, and each link has 20 Mbps transmission capacity.8
The length of each time slot is 1 ms.

There are |K| = 8 databases, and each database has
the same size of F = 1 Gb. In the following, we quantify
the storage capacity of edge servers in number of databases.
Assume that the cloud datacenter has all databases stored.

Consider 4 clients requesting different services. Each
service is composed of 2 functions, with parameters
shown in Table 2. In line with the aforementioned goal
of experiment validation, we employ a representative
range of input parameters, including distributed source-
destination pairs, multiple processing functions, different
scaling/workload/merging ratios, and substantial distribu-
tion of databases. The size of each packet is 1 kb, and
the arrivals are modeled by i.i.d. Poisson processes with
� Mbps.

7.2 Multi-Pipeline Flow Control
We first demonstrate the performance of DI-DCNC under
a given database placement, where database k = 1, · · · , 8
are stored at node i = 1, · · · , 4, 6, · · · , 9, respectively. Two
benchmark algorithms are employed for comparison:9

• Static-to-live (S2L), which makes individual routing
decisions for the live packet [19], and then routes
the static packet to the selected processing node from
the nearest static source along the shortest path (in the
weighted ALG).

• Live-to-static (L2S), which makes routing decisions for
the live packet by restricting processing locations to
the static sources (and use local static packet).

8. The communication resources are dedicated for the delivery of
packets belonging to service requests. Requirements for (database)
replacement rate are depicted in Fig. 12b.

9. Both S2L and L2S do not consider joint control of multi-pipelines:
they focus on the communication loads of either live or static packets.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

14

200 400 600 800 1000 1200

Arrival rate [Mbps]

0

50

100

150

200
D

el
ay

 [
m

s]
DI-DCNC

S2L

L2S 920

 1050

 660

(a) Network stability region.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Processing resource 1

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

n
sm

is
si

o
n

 r
es

o
u

rc
e

2

DI-DCNC

S2L

L2S

(50%, 50%)

(57%, 57%)

(76%, 76%)

(b) Resource occupation.

Fig. 10. Performance of DI-DCNC (under a given database placement).

7.2.1 Network Stability Region

First, we study network stability regions attained by the
algorithms, and depict the average delay under different
arrival rates (which is set to1 if the queues are not stable).

As shown in Fig. 10a, DI-DCNC attains good delay per-
formance over a wide range of arrival rates; when � crosses
a critical point (⇡ 1.05 Gbps), the average delay blows up,
indicative of the stability region boundary. Similar behaviors
are observed from S2L and L2S. Comparing the three algo-
rithms, DI-DCNC outperforms the benchmark algorithms
in terms of the achieved throughput: 1.05 Gbps (DI-DCNC)
> 920 Mbps (L2S) > 660 Mbps (S2L); in other words, DI-
DCNC can better exploit network resources to improve the
throughput. We clarify that the throughput attained by S2L
improves when increasing the communication resources,
and can outperform L2S [1].

We also notice that the delay attained by DI-DCNC
is very similar, but not lower, than the benchmarks in
low-congestion regimes. As discussed in Section 4.4.3, DI-
DCNC is designed to reduce the aggregate queuing delay
of both live and static data pipelines; such objective, while
closely related to (especially in high-congestion regimes),
is not exactly equivalent to the actual service delay, which
depends on the maximum delay between the two concurrent
pipelines. In addition, DI-DCNC neglects the hop-distance
of the selected path, which is the dominant component in
the low-congestion regimes.

7.2.2 Resource Occupation

Next, we study the resource occupation of the algorithms.
We assume that the available processing and transmission
capacities of each node and link are given by ↵1 and ↵2

(in percentage) of corresponding maximum budgets, respec-
tively. We then define the feasible region as the collection
of (↵1,↵2) pairs under which the delay requirement is
fulfilled. Let arrival rate � = 500 Mbps and average delay
requirement = 30 ms.

Fig. 10b depicts the feasible regions attained by the
algorithms. Since lower latency can be attained with more
resources, i.e., (↵1,↵2) ! (1, 1), the feasible regions are to

the upper-right of the border lines.10 As we can observe, DI-
DCNC can save the most network resources. In particular,
when ↵1 = ↵2 = ↵, the resource saving ratios, i.e., 1 � ↵,
of the algorithms are: 50% (DI-DCNC) > 43% (S2L) >

24% (L2S). Another observation is: S2L is communication-
constrained, compared to its sensitivity to computation re-
sources. To wit: in the horizontal direction (when ↵2 = 1),
it can achieve a maximum saving ratio of ⇡ 70%, which is
comparable to DI-DCNC; while the maximum saving ratio
is ⇡ 25% for communication resources (when ↵1 = 1),
and there is a large gap between its performance and that
of DI-DCNC (⇡ 50%). The reason is that S2L neglects the
communication load of static packet routing, leading to ad-
ditional communication resource consumption. In contrast,
L2S is processing-constrained, because only the processing
resources at static sources are available for use.

7.3 Processing-aware Database Placement
Next, we evaluate the proposed database placement and
replacement policies, employing DI-DCNC for flow control.

7.3.1 Fixed Placement Policy

First, we focus on the setting of fixed database placement,
assuming that each edge server can cache S databases. We
evaluate the proposed max-throughput policy, employing
two random policies as benchmarks:

• Random selection: each edge server randomly selects
S different databases to cache.

• Random placement: each edge server caches S differ-
ent databases, which are jointly selected to maximize
the diversity of databases stored at edge servers.11

Similar performance metrics, i.e., network stability re-
gion and resource occupation, are studied, and the results
are shown in Fig. 11.

10. We note that the feasible region achieved by S2L is not convex.
11. The cached databases at the edge servers are selected as follows.

Generate a random permutation of sequence {1, · · · , |K|} and repeat
it for d|V|S/|K|e times. Let D and Di denote the resulting sequence
and its ith element, respectively. Then, database D(i�1)S+1, · · · ,DiS
are cached at edge server i (note that these are different databases since
every sub-sequence in D of length S |K| includes distinct values).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

15

1 2 3 4 5 6 7 8

Storage resource

0

0.5

1

1.5

2
N

et
w

o
rk

 s
ta

b
il

it
y

 r
eg

io
n

 [
G

b
p
s]

Optimal placement (MILP)

Optimal placement (dynamic)

Random placement (MILP)

Random selection (MILP)

(a) Network stability region (error-bars denote standard deviations).

1 2 3 4 5 6 7 8

Storage resource

0.6

0.7

0.8

0.9

1

P
ro

ce
ss

in
g
 &

 t
ra

n
sm

is
si

o
n
 r

es
o

u
rc

e Optimal placement

Random placement

Random selection

(b) Resource occupation.

Fig. 11. Performance of max-throughput database placement policy.

(i) Network Stability Region: Fig. 11a shows the through-
put performance of the three policies: for the proposed
policy, we solve the MILP problem (36) and present the
obtained result, as well as the observed stability region
under the derived max-throughput database placement; for
the benchmark policies, we plug in randomly generated
placement x into (36), solve the remaining linear programs,
and present averages and standard deviations of the results
(in 100 realizations).

As we can observe, for each policy, the attained through-
put grows with storage resource. Among the three policies,
the proposed max-throughput policy outperforms the ran-
dom benchmarks, especially when the storage resource is
limited. For example, when S = 1, the proposed policy
achieves the highest throughput (⇡ 1.59 Gbps), which is
37% better than random placement and far beyond random
selection. The results validate the effects of caching policy
design on the throughput performance, including (i) which
databases to cache (comparing random placement and ran-
dom selection), and (ii) where to store the databases (com-
paring proposed policy and random placement). Finally, we
note that results given by the MILP (36) agree with the
observed stability regions, validating Proposition 2.

(ii) Resource Occupation: Next, we study the tradeoff
between 3C network resources, assuming � = 1 Gbps,
average delay requirement = 30 ms, and ↵1 = ↵2 = ↵.
For each random benchmark, we select a representative
placement that attains a throughput performance closest to
the corresponding mean value (shown in Fig. 11a).

As we can observe in Fig. 11b, increasing the storage
resource at the edge servers leads to a larger computa-
tion/communication resource saving ratio. In particular, the
performance of the policies converges when each node has
sufficient space to cache all databases (i.e., S = |K|). When
the storage resource is limited (e.g., S = 1), the proposed
policy can achieve a computation/communication resource
saving ratio (69%) that is close to the optimal value (⇡ 67%),
outperforming the random benchmarks.

7.3.2 Replacement Policies

Finally, we evaluate the proposed database replacement
policies. For each client, we model the arrivals of service
requests by a Markov-modulated process, i.e., the arrival
rate follows a Markov process (described in the following),
and the number of arrivals at a single time slot is a Poisson
variable. At each time slot, the service request distribution
is a permutation of the Zipf distribution with � = 1 [13]: we
sort the clients by the arrival rate in descending order, and
w.p. 10�6, we randomly select ' 2 {1, 2, 3} and exchange
the arrival rates of the '-th and ('+ 1)-th clients.12

Each edge server, except node i = 4, 5, 6, is allowed to
cache S = 1 database.13 The initial database placement is
given by the proposed max-throughput policy assuming
uniform service request distribution. The two proposed
replacement policies are evaluated. For fair comparisons,
we set the same running time for both of them (to calculate
estimated quantities and solve corresponding problems).

Fig. 12a shows the throughput performance of the two
replacement policies, both of which effectively boost the
throughput performance (⇡ 1 Gbps) compared to fixed
placement (⇡ 0.5 Gbps), despite the slightly worse delay
performance in low-congestion regimes (e.g., � 400
Mbps). Fig. 12b demonstrates the effects of time frame size
on the policies’ throughput performance and replacement
rate requirements (i.e., the average downloading rate from
the cloud datacenter to all edge servers). For each policy, as
frame size grows, the frequency of database replacement
reduces, leading to reduced replacement rate, with sub-
optimal throughput.14 Comparing the two proposed poli-
cies, we find that: rate-based policy achieves better through-
put, which is also less sensitive to the frame size (note that
the blue-solid curve is more flat); while score-based policy

12. Under this setting, the expected time for service request distri-
bution to change is 106 ms ⇡ 15min. We note that the time average
arrival rate for all clients are equal (i.e., uniform distribution).

13. Under this setting, the total storage resources at the edge servers
are 6, which cannot support caching all the databases (since |K| = 8).

14. The time frame size controls the tradeoff between the accuracy
and timeliness of the estimates, as can be observed from the score-based
policy (the frame size of 5 ms leads to the largest throughput).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

16

0 200 400 600 800 1000 1200

Arrival rate [Mbps]

0

50

100

150

200

250

300
D

el
ay

 [
m

s]
Rate-replacement

Score-replacement

Fixed placement

(a) Network stability regions (frame size = 100 s).

0.1 0.2 0.3

Frame size [10
3
 seconds]

0

0.3

0.6

0.9

1.2

T
h
ro

u
g

h
p

u
t

[G
b

p
s]

0

2

4

6

8

R
ep

la
ce

m
en

t
ra

te
 [

M
b
p

s]

Rate-based

Score-based

Fixed placement

1 5 10 ms

1.1

1.15

(b) Effects of frame size on throughput and replacement rate.

Fig. 12. Performance of rate- and score-based replacement policies.

imposes a much lower requirement on replacement rate,
due to the asynchronous update of database placement that
is designed depending on current network states.

8 CONCLUSIONS

We investigated the problem of joint 3C control for the
efficient delivery of data-intensive services, composed of
multiple service functions with multiple (live/static) input
streams. We first characterized network stability regions
based on the proposed ALG model, which incorporates
multiple pipelines for input streams. Two problems are
addressed: (i) multi-pipeline flow control, in which we
derived a throughput-optimal policy, DI-DCNC, to coordi-
nate packet processing, routing, and replication decisions
for multiple pipelines, and (ii) processing-aware database
placement, in which we proposed a max-throughput
database placement policy by jointly optimizing 3C deci-
sions, as well as the rate- and score-based database replace-
ment policies. Via numerical experiments, we demonstrated
the superior performance of multiple pipeline coordination
and integrated 3C design in delivering next-generation data-
intensive real-time stream-processing services.

REFERENCES

[1] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Dynamic control
of data-intensive services over edge computing networks,” in Proc.

IEEE Global. Telecomm. Conf., Rio de Janeiro, Brazil, Dec. 2022, pp.
5123–5128.

[2] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “On the deliv-
ery of augmented information services over wireless computing
networks,” in Proc. IEEE Int. Conf. Commun., Paris, France, May
2017, pp. 1–7.

[3] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Compute- and
data-intensive networks: The key to the Metaverse,” in 2022 1st

International Conference on 6G Networking (6GNet), Paris, France,
Jul. 2022, pp. 1–8.

[4] “The programmable cloud network – A primer on SDN and NFV,”
Alcatel-Lucent, Paris, France, White Paper, Jun, 2013. [Online].
Available: https://whitepapers.us.com/.

[5] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Communications, caching,
and computing for mobile virtual reality: Modeling and tradeoff,”
IEEE Trans. Commun., vol. 67, no. 11, pp. 7573–7586, Nov. 2019.

[6] W. Xu, Y. Shen, N. Bergmann, and W. Hu, “Sensor-assisted multi-
view face recognition system on smart glass,” IEEE Trans. Mobile

Comput., vol. 17, no. 1, pp. 197–210, Jan. 2018.
[7] M. Chen and Y. Hao, “Task offloading for mobile edge comput-

ing in software defined ultra-dense network,” IEEE J. Sel. Areas

Commun., vol. 36, no. 3, pp. 587–597, Mar. 2018.
[8] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Mobile edge

computing network control: Tradeoff between delay and cost,” in
Proc. IEEE Global. Telecomm. Conf., Taipei, Taiwan, Dec. 2020, pp.
1–6.

[9] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiu-
las, “Service placement and request routing in MEC networks
with storage, computation, and communication constraints,”
IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[10] M. Huang, W. Liang, Y. Ma, and S. Guo, “Maximizing throughput
of delay-sensitive NFV-enabled request admissions via virtualized
network function placement,” IEEE Trans. Cloud Comput., vol. 9,
no. 4, pp. 1535–1548, Oct.-Dec. 2021.

[11] Y. Yue, B. Cheng, M. Wang et al., “Throughput optimization and
delay guarantee VNF placement for mapping SFC requests in
NFV-enabled networks,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 4, pp. 4247–4262, Dec. 2021.

[12] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and
A. Morell, “IoT-cloud service optimization in next generation
smart environments,” IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 4077–4090, Oct. 2016.

[13] K. Poularakis, J. Llorca, A. M. Tulino, and L. Tassiulas,
“Approximation algorithms for data-intensive service chain em-
bedding,” in Mobihoc ’20, Virtual Event, USA, Oct. 2020, pp. 131–
140.

[14] Y. Yue, B. Cheng, X. Liu, M. Wang, B. Li, and J. Chen, “Resource
optimization and delay guarantee virtual network function place-
ment for mapping SFC requests in cloud networks,” IEEE Trans.

Netw. Service Manag., vol. 18, no. 2, pp. 1508–1523, Jun. 2021.
[15] L. Tassiulas and A. Ephremides, “Stability properties of con-

strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks,” IEEE Trans. Autom.

Control, vol. 37, no. 12, pp. 1936–1948, Dec. 1992.
[16] M. J. Neely, Stochastic network optimization with application to com-

munication and queueing systems. San Rafael, CA, USA: Morgan &
Claypool, 2010.

[17] A. Sinha and E. Modiano, “Optimal control for generalized net-
work flow problems,” IEEE/ACM Trans. Netw., vol. 26, no. 1, pp.
506–519, Feb. 2018.

[18] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Optimal
dynamic cloud network control,” IEEE/ACM Trans. Netw., vol. 26,
no. 5, pp. 2118–2131, Oct. 2018.

[19] J. Zhang, A. Sinha, J. Llorca, A. M. Tulino, and E. Modiano,
“Optimal control of distributed computing networks with mixed-
cast traffic flows,” IEEE/ACM Trans. Netw., vol. 29, no. 4, pp. 1760–
1773, Aug. 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

https://whitepapers.us.com/

17

[20] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Decentralized
control of distributed cloud networks with generalized network
flows,” arXiv:2204.09030. [Online]. Available: https://arxiv.org/
abs/2204.09030, Apr. 2022.

[21] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device
caching networks: Basic principles and system performance,”
IEEE J. Sel. Areas Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[22] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch,
and G. Caire, “FemtoCaching: Wireless content delivery through
distributed caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[23] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire,
“Femtocaching and device-to-device collaboration: A new ar-
chitecture for wireless video distribution,” IEEE Commun. Mag.,
vol. 51, no. 4, pp. 142–149, Apr. 2013.

[24] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz,
“Wireless content caching for small cell and D2D networks,” IEEE

J. Sel. Areas Commun., vol. 34, no. 5, pp. 1222–1234, May 2016.
[25] Z. Ding, P. Fan, G. K. Karagiannidis, R. Schober, and H. V. Poor,

“NOMA assisted wireless caching: Strategies and performance
analysis,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4854–4876, Oct.
2018.

[26] A. Liu and V. K. N. Lau, “Exploiting base station caching in
MIMO cellular networks: Opportunistic cooperation for video
streaming,” IEEE Trans. Signal Process., vol. 63, no. 1, pp. 57–69,
Jan. 2015.

[27] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate
of caching and coded multicasting with random demands,” IEEE

Trans. Inf. Theory, vol. 63, no. 6, pp. 3923–3949, Jun. 2017.
[28] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The

role of caching in future communication systems and networks,”
IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1111–1125, Jun. 2018.

[29] B. Liu, K. Poularakis, L. Tassiulas, and T. Jiang, “Joint caching
and routing in congestible networks of arbitrary topology,” IEEE

Internet Things J., vol. 6, no. 6, pp. 10 105–10 118, Dec. 2019.
[30] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for

arbitrary network topologies,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1258–1275, Jun. 2018.

[31] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Communications, caching,
and computing for next generation HetNets,” IEEE Wirel. Com-

mun., vol. 25, no. 4, pp. 104–111, Aug. 2018.
[32] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on

mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourthquarter
2017.

[33] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato,
and C. S. Hong, “Joint communication, computation, caching, and
control in big data multi-access edge computing,” IEEE Trans.

Mobile Comput., vol. 19, no. 6, pp. 1359–1374, Jun. 2020.
[34] T. X. Tran and D. Pompili, “Joint task offloading and resource

allocation for multi-server mobile-edge computing networks,”
IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[35] K. Kamran, E. Yeh, and Q. Ma, “DECO: Joint computation schedul-
ing, caching, and communication in data-intensive computing
networks,” IEEE/ACM Trans. Netw., vol. 1, no. 99, pp. 1–15, 2021.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-

tion to algorithms. Cambridge, MA, USA: MIT press, 2009.
[37] J. Kleinberg and Éva Tardos, Algorithm design. Delhi, India:

Pearson Education India, 2006.

Yang Cai (S’17) received B.E. and M.S. degrees
from the Department of Electronic Engineering,
Tsinghua University, in 2015 and 2018, respec-
tively. Now he is a Ph.D. candidate in the Depart-
ment of Electrical Engineering at University of
Southern California, with the Annenberg Grad-
uate Fellowship award from 2018 to 2022.

He is currently working on modeling, analysis,
evaluation, and control of next-generation com-
puting networks (e.g., distributed cloud, mobile
edge, and fog computing) and services (e.g., au-

tonomous driving, augmented/virtual reality, and industrial automation).

Jaime Llorca (S’03–M’09) is a Technology Con-
sultant and Research Professor with the NYU
Tandon School of Engineering, NY. He previ-
ously held a Senior Research Scientist position
with the Network Algorithms Group at Nokia Bell
Labs, NJ, a Research Scientist position with the
End-to-End Networking Group at Alcatel-Lucent
Bell Labs, NJ, and a post-doctoral position with
the Center for Networking of Infrastructure Sen-
sors, MD. He received M.S. and Ph.D. degrees
in Electrical and Computer Engineering from the

University of Maryland, College Park, MD. His research interests are
in the field of network algorithms, optimization, machine learning, and
distributed control, with applications to next generation communication
networks, distributed/edge cloud, and content distribution. He has made
fundamental contributions to the mathematics of content delivery and
distributed cloud networks, including pioneering cooperative caching,
network coding, and cloud network control algorithms. He has authored
more than 100 peer-reviewed publications and 20 patents. He currently
serves as Associate Editor for the IEEE/ACM Transactions on Network-
ing. He is a recipient of the 2007 IEEE ISSNIP Best Paper Award, the
2016 IEEE ICC Best Paper Award, and the 2015 Jimmy H.C. Lin Award
for Innovation.

Antonia M. Tulino (F’13) is a full professor at
Università degli Studi di Napoli Federico II. She
held research positions with the Center for Wire-
less Communications in Oulu, Princeton Univer-
sity, a Università degli Studi del Sannio, Italy
and Bell Labs, NJ. Since 2019, she is Research
Professor at Dep. of Electrical and Computer En-
gineering NYU Tandon School of Engineering,
also director of the 5G Academy jointly orga-
nized by the Università degli Studi di Napoli, Fed-
erico II and several leading company in digital

transformation. Her research interests lay in the area of communication
networks approached with the complementary tools provided by signal
processing, information theory, and random matrix theory. From 2011
to 2013, she has been a member of the Editorial Board of the IEEE
Transactions on Information Theory and in 2013, she was elevated to
IEEE Fellow. From 2019 to 2021, she has been chair of the Information
Theory society Fellows Committee.

She has received several paper awards, including the 2009 Stephen
O. Rice Prize in the Field of Communications Theory. She was recipient
of the UC3M-Santander Chair of Excellence from 2018 to 2019 and
selected by the National Academy of Engineering for the Frontiers of
Engineering program in 2013.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2204.09030
https://arxiv.org/abs/2204.09030

18

Andreas F. Molisch (S’89–M’95–SM’00–F’05)
received his degrees (Dipl.Ing. 1990, PhD 1994,
Habilitation 1999) from the Technical University
Vienna, Austria. He spent the next 10 years in
industry, at FTW, AT&T (Bell) Laboratories, and
Mitsubishi Electric Research Labs (where he
rose to Chief Wireless Standards Architect). In
2009 he joined the University of Southern Cali-
fornia (USC) in Los Angeles, CA, as Professor,
and founded the Wireless Devices and Systems
(WiDeS) group. In 2017, he was appointed to the

Solomon Golomb – Andrew and Erna Viterbi Chair.
His research interests revolve around wireless propagation channels,

wireless systems design, and their interaction. Recently, his main in-
terests have been wireless channel measurement and modeling for
5G and beyond 5G systems, joint communication-caching-computation,
hybrid beamforming, UWB/TOA based localization, and novel modula-
tion/multiple access methods. Overall, he has published 5 books (among
them the textbook “Wireless Communications”, third edition in 2022), 21
book chapters, 280 journal papers, and 370 conference papers. He is
also the inventor of 70 granted (and more than 10 pending) patents, and
co-author of some 70 standards contributions. His work has been cited
more than 59,000 times, his h-index is > 100, and he is a Clarivate
Highly Cited Researcher.

Dr. Molisch has been an Editor of a number of journals and special
issues, General Chair, Technical Program Committee Chair, or Sympo-
sium Chair of multiple international conferences, as well as Chairperson
of various international standardization groups. He is a Fellow of the
National Academy of Inventors, Fellow of the AAAS, Fellow of the IEEE,
Fellow of the IET, an IEEE Distinguished Lecturer, and a member of
the Austrian Academy of Sciences. He has received numerous awards,
among them the IET Achievement Medal, the Technical Achievement
Awards of IEEE Vehicular Technology Society (Evans Avant-Garde
Award) and the IEEE Communications Society (Edwin Howard Arm-
strong Award), and the Technical Field Award of the IEEE for Communi-
cations, the Eric Sumner Award.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297598

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on January 25,2024 at 12:08:48 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Computation and Communication
	Caching and Communication
	Joint 3C Optimization

	Problem Statement and Challenges
	Contributions
	Paper Organization and Main Components

	System Model
	3C Network Model
	Data-Intensive AgI Service Model
	Client Model
	Live Packet Arrival
	Static Packet Provisioning

	Queuing System

	Policy Space and Stability Region
	Augmented Layered Graph
	Topology of the ALG
	Flow in the ALG

	Policy Space
	Efficient Policy Space
	Decision Variables

	Network Stability Region

	Multi-Pipeline Flow Control
	Virtual System
	Precedence Constraint
	Virtual Queues

	Optimal Virtual Network Decisions
	Lyapunov Drift Control
	Route Selection

	Optimal Actual Network Decisions
	Performance Analysis
	Throughput
	Complexity
	Discussions on Delay Performance

	Max-Throughput Database Placement
	Problem Formulation
	Variables
	Constraints
	Objective

	Proposed Design
	Performance Analysis

	Database Replacement Policies
	Low-Rate Replacement
	Rate-Based Replacement
	Score-Based Replacement

	Numerical Results
	Experiment Setup
	Multi-Pipeline Flow Control
	Network Stability Region
	Resource Occupation

	Processing-aware Database Placement
	Fixed Placement Policy
	Replacement Policies

	Conclusions
	References
	Biographies
	Yang Cai
	Jaime Llorca
	Antonia M. Tulino
	Andreas F. Molisch

	Appendix A: Necessity of Theorem 1
	Appendix B: Throughput-optimality of DI-DCNC
	Stability of Virtual Queues
	I.I.D. Arrival
	Markov-Modulated Arrival

	Stability of Actual Queues
	An Equivalent Problem
	Stability of R(t)

	Appendix C: Flow-based Characterization
	Necessity
	Capacity Constraints
	Chaining Constraints

	Sufficiency
	Path-Finding for Stage m Live Flow
	Composition of Individual Paths

	Appendix D: Stability Region with Dynamic Replacement
	Necessity
	Sufficiency
	Initial Design
	Low-Rate Replacement

	Appendix E: Equivalence of the MILP Formulation

