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Abstract: Bone tissue engineering has developed significantly in recent years as there has been
increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds
for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected
pores. With the advances in additive manufacturing technology, these requirements can be fulfilled
by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process.
The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate
into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous
structures can regenerate bone, these structures were tested for osteointegration potential by using
human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities
under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover,
cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic
markers at different stages for bone formation were determined by real-time PCR. The results
of the study showed the pore size of the scaffolds had a significant impact on differentiation. A
certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth
and regeneration.

Keywords: bone tissue regeneration; polymer derived ceramics; biocompability; stem cells; osteogenic
differentiation; additive manufacturing; fused filament fabircation; cellular ceramics; open source
3D printing

1. Introduction

Silicon-based ceramic scaffolds for bone regeneration are one of the main strategies
used for the treatment of bone loss and large-scale bone defects [1–5]. Current studies show
that silicon is an essential element for bone development and formation [6,7]. Silicon-based
materials play an important role in the surface bioactivity through the exchange of ions at
the scaffold–tissue interface, which results in the formation of a layer, similar to the mineral
phase of bone [8]. Silicon possesses similar properties to phosphorus when it comes to bone
formation and development [9]. Previous research has shown that the expression of some
osteogenesis-related genes, e.g., alkaline phosphatase (ALP), bone morphogenetic protein-
2(BMP-2), and collagen type I (Col I), are affected by silicon [10]. Silicon also contributes to
the promotion of early deposition of apatite, the growth of osteoblasts, and some genes
that control the induction of cell cycles and progression which enhance osteogenesis [11].
Enhanced apatite mineralization ability, biocompatibility, and bioactivity are also seen. A
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significant increase in the expression of angiogenic factors of human bone marrow-derived
mesenchymal stem cells (BMSCs), osteogenic genes, and alkaline phosphatase activity
were seen due to the presence of silicon [12].

Moreover, the silicon-based ceramic scaffolds for bone regeneration have a highly
porous 3D architecture with interconnected porosities, which is a similar architecture to
that of bone. These porosities allow cells to adhere, proliferate, migrate and invade the
vasculature [13,14]. The pore size, however, can be tailored for the targeted tissue and the
cells, as the size of the pores and the density significantly affect cell adhesion, proliferation,
and spatial distribution [15,16]. It has been shown that the osteogenic differentiation of
human mesenchymal stem cells (hMSCs) was highly dependent on the geometry of the
scaffolds [17,18]. Along with the porosity, the scaffolds should also have similar mechanical
properties to the bone in which the scaffold is to be implanted. Since porosity can act
against the mechanical strength, the scaffolds need to have the right balance of porosity and
mechanical properties [19,20]. Some studies have shown that the best possible properties
for scaffolds would be comparable to the cortical bone, where the ideal porosity would be
around 60–90%, with a pore size greater than 150 microns [21–23]. Undesirable mechanical
properties of scaffolds can lead to undesirable results during osteogenic differentiation.
Thus, it is preferable to have scaffold materials with properties similar to the bones [24–26].

Thanks to the development of additive manufacturing technology, the complex struc-
ture and various pore sizes of the silicon-based ceramic scaffold can be easily obtained.
Various 3D printing methods have showcased the fabrication of ceramic scaffolds, such as
selective laser sintering (SLS) [27,28], stereolithography (SLA) [29], binder jetting, material
jetting, etc. The simplest, most widespread and lowest-cost method of 3D printing is
material extrusion or fused filament fabrication (FFF) [30,31]. Direct (material) extrusion of
ceramics, however, is limited to certain ceramics that can be made into slurries or inks/gels,
and the resolution and details obtained from them are not adequate for many applications.
Polymer-based FFF, on the other hand, has been undergoing rapid open source technical
evolution [32,33] and resolutions better than 100 microns can be achieved [34].

Polymer-derived ceramics, PDCs, are novel multifunctional ceramics obtained from
pyrolysis in a controlled atmosphere of preceramic polymers [35]. PDCs can be processed
in different shapes including porous foams and aerogels [36,37]. PDCs have already been
showcased for biomedical applications such as multidrug delivery systems [38,39]. A novel
method of fabricating SiOC(N) cellular structures with dense struts by integrating FFF 3D
printing with polymer-derived ceramics was reported in our previous paper. The method
utilizes the simplicity of the polymer FFF combined with the polymer-derived ceramics to
obtain high-resolution ceramic scaffolds [40,41] with both tunable pore size and low-cost
fabrication on a RepRap-class 3D printer able to print thermoplastic elastomer [42,43].
Moreover, the preliminary biological evaluations in a previous study showed that the
ceramic material has good cytocompatibility, promoting fast cell adhesion and early-stage
cell activities [40]. This makes it possible to apply the scaffold to mimic the bone tissue
geometry and microenvironment for bone regeneration.

The study presents in vitro testing of the SiOC(N) porous ceramic scaffolds for bone
regeneration applications. C eramic scaffolds with two different pore sizes (300 µm and
500 µm) were tested here to demonstrate the impact of the pore size on cell behavior.
Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on the top
of the scaffolds and cultured in the osteogenic differentiation medium for 21 days. The
cell metabolism, proliferation, alkaline phosphatase (ALP) activity, and morphology were
evaluated. Finally, the gene expression level of the main osteogenic differentiation markers
was investigated by quantitative real-time PCR.

2. Materials and Methods
2.1. Preparation of Ceramic Scaffolds

The samples were designed [44] (OnShape, PTC) as porous discs of 13 mm diameter
and 1.5 mm thickness. The samples were designed with different pore sizes of 300 microns
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(small pores) and 500 microns (large pores) to analyze the effect of pore size on bioactivity
(Figure 1). They were first printed on an open source RepRap-class FFF 3D printer (Lulzbot
TAZ 6, Fargo Additive Manufacturing Equipment 3D, Fargo, ND, USA) using NinjaFlex
TPU with a 0.15 mm nozzle. The scaffolds were printed with the pore sizes of 500 and
700 microns since the pyrolysis process results in 25–30% shrinkage. They were then
impregnated with a solution of acetone, polysilazane preceramic polymer (Durazane 1800,
Merck Gmbh, Darmstadt, Germany), and catalyst platinum divinyltetramethyldisiloxane
complex, Pt 2% in xylene (CAS number: 68478-92-2, Sigma-Aldrich, St. Louis, MO, USA).
The discs were then dried for 24 h in the air and pyrolyzed in a tube furnace (Gero tube
furnace) at 1200 ◦C for 1 h in a nitrogen atmosphere with 400 cc/min flow. The obtained
scaffolds were first rinsed with deionized water (DI water) and then sterilized by autoclave
at 121 ◦C for 15 min.
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2.2. Silicon Release

The release of silicon ions was tested by submerging the samples in PBS solution
(EuroClone). The samples were submerged into 5 mL of PBS solution and kept in the
incubator at 37 ◦C. At each time point, a 2 mL solution was extracted and replaced by a fresh
PBS solution. The extracted solution was tested for silicon ions using ion coupled plasma
employing optical emission spectroscopy (ICP-OES) (SPECTRO Analytical Instruments,
Kleve, Germany). Eight replicates were used for each pore size at each time point. The
final results were calculated as the total released amount.

2.3. Cell Culture

Human bone marrow-derived mesenchymal stem cell line (hMSCs, ATCC number:
PCS-500-012) was cultured in α-MEM medium supplemented with 10% Fetal Bovine
Serum (FBS, EuroClone) and 1% Antibiotic/Antimycotic (AA, EuroClone), in a humidified
atmosphere of 5% CO2 at 37 ◦C. The medium was changed every two days. Once they
reached 70% confluence, the cells were detached by 1% trypsin-EDTA solution, counted,
and re-suspended in standard medium with the concentration of 500,000 cells/mL.

2.4. Cell Seeding and Differentiation

After placing sterilized samples into 24-well plates, 0.6 mL cell suspensions (standard
medium) were added directly to the samples (300,000 cell/well) and tissue culture plates
(TCP), which were the control group (only cells without samples). The plates were incu-
bated in a humidified atmosphere of 5% CO2 at 37 ◦C to promote cell adhesion. Twenty-four
hours after the seeding, the samples with cells were moved to new plates and the medium
was switched into the differentiation medium: standard medium with 0.1 µM dexametha-
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sone (DEX), 0.1 mM ascorbic acid 2-phosphate (AP) and 10 mM β-Glycerophosphate (BGP).
The differentiation medium was changed every two days until 21 days.

2.5. AlamarBlue Assay

The cells’ viability activity on different pore sizes (300 µm and 500 µm) after 7 days,
14 days, and 21 days of culture was determined with AlamarBlue Cell Viability assay
(Invitrogen, Carlsbad, CA, USA), which quantifies cellular metabolic activity. AlamarBlue
reagent was added directly to each well at 10% of the cell culture medium volume. Then,
the well plates were incubated at 37 ◦C in a humidified atmosphere with 5% CO2 for 3 h.
From each well, 100 µL of the solution was collected. The fluorescence signal was measured
with a Tecan Infinite 200 microplate reader (Tecan Group, Männedorf, Switzerland) with
an excitation wavelength of 560 nm and an emission wavelength of 590 nm. TCP was used
as the control group and eight replicates were considered for each experimental condition.

2.6. DNA Quantification Assay

To evaluate cell proliferation on the different pore sizes (300 µm and 500 µm), a
PicoGreen DNA quantification assay (Quant-iT PicoGreen dsDNA Assay, Invitrogen,
Carlsbad, CA, USA) was used. TCP was used as the control group. After 7 days, 14 days,
and 21 days of culture, the culture medium was removed, and the samples were washed
with PBS. Samples were then covered with 300 µL of 0.05% Triton-X PBS solution and
incubated at 37 ◦C for 1 h. Before analysis, the samples were sonicated for 10 s with a
Hielscher ultrasonic homogenizer (UP400S, 400 W-24 kHz, cycle 1, amplitude 40%, from
Hielscher Ultrasonics, Teltow, Germany). Subsequently, 100 µL supernatant of each sample
was placed in a black 96-well plate and mixed with 100 µL of PicoGreen working solution,
prepared following the manufacturer’s instructions. Fluorescence intensity was measured
with a Tecan Infinite 200 microplate reader (Tecan Group, Männedorf, Switzerland) using
an excitation wavelength of 485 nm and an emission wavelength of 535 nm. A calibration
curve was created using a double-stranded DNA standard provided by the kit and was
used for the calculation of the DNA content. Finally, the approximate number of cells per
sample was determined from DNA content by the conversion factor of 7.7 pg DNA per
cell. Eight replicates were considered for each pore size at each time point.

2.7. Alkaline Phosphatase (ALP) Activity Assay

ALP activity of the cells on scaffolds with different pore sizes was evaluated by the
Alkaline Phosphatase assay kit (abcam, Cambridge, UK). The preparation procedure of
the samples is the same as for the DNA quantification assay, in which the supernatant was
obtained after washing, incubating, and sonication. Non-fluorescent 4-methylumbelliferyl
phosphate disodium salt (MUP) substrate and MUP reaction solution were prepared
following the instructions of the manufacturer. The reaction wells were set up in a black
96-well plate by mixing supernatant with MUP reaction solution and stop solution, using
the volume suggested by the instruction. A standard curve was also created using the ALP
enzyme. The fluorescence intensity was measured at excitation wavelength 485 nm and
emission wavelength 535 nm. The readings of the samples were applied to the standard
curve to obtain the amount of MUP generated by the ALP sample, and the activity of ALP
in the tested samples was calculated by dividing the amount of 4-MU by the volume of the
sample. Eight replicates were considered for each pore size at each time point.

2.8. RNA Isolation

Total mRNA was isolated from the scaffolds directly by NucleoZLO reagent (MACHEREY-
NAGEL, Düren, Germany) according to the protocol from the manufacturer. The isolated
RNA of the samples was dissolved in 20 µL RNase-free water; the final concentration
of RNA was determined by a NanoDrop (ND-1000 Spectrophotometer, Thermo Fisher
Scientific, Waltham, MA, USA) and then diluted into 10 ng/µL.
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2.9. cDNA Synthesis

The isolated RNA was reverse transcribed into cDNA by iScropt Reverse Transcription
Supermix kit (BIO-RAD, Hercules, CA, USA). Then, 4 µL iScript RT Supermix was mixed
with 16 µL of isolated RNA (total RNA 160 ng) for each reverse transcription reaction
well. Then, the complete reaction mix was incubated in Bio-Rad CFX96 Touch (BIO-RAD,
Hercules, CA, USA) using a thermal cycling protocol provided by the manufacturer.

2.10. Gene Expression by Quantitative Real-Time PCR (RT-qPCR)

The quantification of gene expression was performed by Bio-Rad CFX96 Touch (BIO-
RAD, USA). SsoAdvanced Universal SYBR Green Supermix kit was used, and the primer
assays used in this study were listed in Table 1. The tested samples were mixtures that
consisted of 5 µL SsoAdvanced Universal SYBR Green Supermix, 0.5 µL primer, and 5 µL
cDNA sample, which led to a final amount of 40 ng cDNA per well. The PCR amplification
was carried out as follows: polymerase activation and DNA denaturation at 95 ◦C for 42 s,
followed by 40 cycles at 60 ◦C and 30 s for each cycle. Then, the melt curve was performed
between 95 to 65 ◦C with 0.5 ◦C increments at 2 to 5 s/step. The PCR results were relatively
quantified with the comparative ∆∆CT method by CFX Manager Software, comparing
to the housekeeping mRNA expression of glyceraldehyde-3 phosphate dehydrogenase
(GAPDH). The analysis of each gene was processed in duplicate and there were eight
replicates for each sample.

Table 1. Selected primers for gene expression.

Code Gene Primer Catalog No.

ALP Alkaline phosphatase ALPL, human qHsaCID0010031
COL1 Collagen type I COL1A1, human qHsaCED0043248

RUNX2 Runt-related transcription factor 2 RUNX2, human qHsaCED0044067
SPARC Osteonectin SPARC, human qHsaCID0010332

GAPHD glyceraldehyde-3 phosphate dehydrogenase GAPDH, human qHsaCED0038674

2.11. Cell Morphology, Distribution, and Immunofluorescence Staining

Cell morphology and distribution were visualized by Oregon green phalloidin and 4′6-
diamidino-2-phenylindole (DAPI) staining. Oregon green phalloidin stains actin filaments
of cytoskeleton resulting in green fluorescence while DAPI stains nuclei resulting in blue
fluorescence. After 7 days, 14 days, and 21 days of culture, the cell-seeded samples
were fixed with 4% paraformaldehyde, washed three times with PBS, and then were
permeabilized using 0.2% Triton X-100 PBS solution for 30 min. After washing with PBS
3 times (15 min each time), cells were incubated in Oregon green phalloidin (5.0 µL/well)
and DAPI (1.0 mL/well, 5.4 µL dilute in 25.0 mL PBS) solution for 1 h at room temperature.
After three rinses with PBS, samples were observed using Zeiss LSM 510 Meta confocal
laser scanning microscope.

2.12. Statistical Analysis

GraphPad Prism 9 (La Jolla, CA, USA) was used for statistical analysis for all the
data obtained from each independent experiment. Where applicable, data were expressed
as mean ± SD. The statistical analysis was performed by two-way ANOVA using the
all-pair-wise multiple comparison procedure, in which * p < 0.05 were set as the level of
significance.

3. Results
3.1. Structural Characterization of SiOC(N) Ceramic Scaffolds

Two different pore sizes (500 µm and 300 µm) (Figure 2) were selected to mimic the
pore size of human bone. The theoretical surface area of the porous discs was calculated
using OnShape and the results are shown in Table 2. The structure of the final products
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was observed by an optical microscope. Theoretically, the total surface of discs with small
pores is 1.26 times larger and the top/bottom surface is 1.36 times larger, compared to the
total surface area of discs with large pores.
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Table 2. Sample information.

Large Pore Size Small Pore Size

Diameter (mm) 13 13
Thickness (mm) 1.5 1.5
Pore size (µm) 500 300

Theoretical total surface area (mm2) 1077.00 1358.84
Theoretical top/bottom surface area (mm2) 53.88 73.81

3.2. Silicon Iron Release of SiOC(N) Ceramic Scaffolds

The release of silicon ion was monitored for 21 days by ICP-OES, and the total amount
of the released silicon ion was calculated and plotted in Figure 3. Scaffolds with large pore
size and small pore size had almost the same releasing curve and amount. Until day 10,
the amount of released silicon kept increasing, and after 10 days of release, the released
amount of Si ion reached a plateau.
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3.3. Characterization of Proliferation, Metabolism of hMSCs during Osteogenic Differentiation

Cell proliferation and metabolic activity of hMSCs seeding on SiOC(N) ceramic scaf-
folds with different pore sizes were performed on day 7, day 14, and day 21 in the presence
of the osteogenic medium, using PicoGreen DNA quantification assay and AlamarBlue
assay, respectively. The results are shown in Figure 4. The small pore size scaffolds induced
a higher proliferation rate than the large ones. Interestingly, the cell number did not change
over time in all the groups during 21 days of culture. Metabolic activity was normalized by
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cell numbers for each group at each time point. Except for day 7, in which the data of large
and small pore size scaffolds showed no significant difference, cells cultured on the large
pore size scaffold showed, in general, a higher metabolism activity than those cultured of
small pore size scaffold, in particular on day 21.
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3.4. Visualization of Cell Morphology and Distribution by Confocal Laser Scanning Microscopy

The confocal images were taken in both low and high magnification on scaffolds with
different pore sizes (Figure 5). Cell morphologies during the osteogenic differentiation
were evaluated by staining the cell cytoskeleton with Oregon green phalloidin (green). In
general, the scaffolds could promote very good cell adhesion during the cell culture period.
In the first week, the adhered cells morphology exhibited a high degree of spreading with
many cell/cell connections due to filopodia and lamellipodia formation (Figure 5b,d) in all
groups, which was even more evident on small pore size scaffolds (Figure 5d). Instead, at
2–3 weeks of culture, adhered cells of all the groups penetrated in the pores, colonizing the
3D structure. A difference in cell behavior, however, was observed during the 3 weeks of
culture. Despite a large number of cells on the scaffolds, the spatial organization of cells
was quite different. On the large pore size scaffolds, the cells were aligning on the surfaces,
but were not able to cross the empty space. However, the cellular structure of the small
pore size scaffold was small enough for the cells to bridge the pore and the pores were
almost filled by cells over time.
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3.5. Characterization of ALP Activity of hMSCs during Osteogenic Differentiation

ALP production is widely used as a marker of bone cells because it is associated
with osteoblastic differentiation. In this work, ALP activity was measured by the Alkaline
Phosphatase assay kit, and the results are presented in Figure 6. In the first two weeks of
differentiation, both groups had similar levels of ALP activity. A dramatic increase in the
ALP activity occurred on day 21, which was more than two times higher than on day 7 and
day 14, which is particularly relevant on the small pore size scaffold on day 21.
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3.6. Expression of Osteogenic Marker Genes in the Presence of the SiOC(N) Ceramic Scaffold

The relative mRNA expression levels of the osteogenic markers: alkaline phosphatase
(ALP), collagen type I (COL 1), runt-related transcription factor 2 (RUNX2), and osteonectin
(SPARC) were monitored on day 7, 14, and 21 using RT-qPCR. The total RNA was isolated
from cells seeded on SiOC(N) scaffolds with different pore sizes and cultured in the
osteogenic medium. The results were presented in Figure 7 and the heat map of the gene
expression overview were presented in Figure 8.
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Generally, the gene expression trends of the selected markers were similar in both
sample groups (Figure 7) and these trends were different from TCP during the 21 days of
culture (Supplementary Materials, Figure S1). An increasing level of ALP expression was
observed in both groups. It should be noted that the ALP expression of the small pore size
scaffold was significantly higher at the first experimental time point (day 7), compared with
the large pore size samples. Additionally, both groups reached a similar expression level of
ALP on day 21. The expression of COL 1 for both groups showed a peak on day 14 and
dropped almost to zero on day 21. No significant differences showed in the expression of
COL 1 during 21 days between the two groups at the same time point. A downregulation
of RUNX2 was observed in both groups during the three weeks, but the small pore size
scaffold showed a higher level in the first week compared with the large pore size group.
The expression of osteonectin (SPARC), for both groups, showed the same trend along with
the three weeks of culture and similar levels.
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4. Discussion

Tissue engineering is based on the use of instructive scaffolds that should provide
3D templates for initial cell attachment, proliferation, and subsequent tissue formation.
Therefore, the materials used as well as the geometry of the scaffold have relevant impacts
on the biological performance. In our previous study [40], the fabrication procedures were
optimized and the physical, mechanical, chemical, and preliminary biological properties of
the SiOC(N) ceramic scaffolds were already thoroughly characterized. The results demon-
strated that the novel method eliminates the possibility of having pores or defects inside
the struts with complete impregnation of the preceramic polymer in the TPU structures.
Another issue with biomedical implant structures is that they are very expensive to man-
ufacture. The research also showed that the scaffolds can be manufactured, with high
reproducibility and industrial tolerances, at an affordable and thus accessible price. The
preliminary biological studies proved the material to be non-cytotoxic, promote fast cell
adhesion, and early-stage cell activations [40]. In the present study, the research is focused
on the impact of the geometry of the scaffold on the osteogenic differentiation of hMSCs.

Different biological results were obtained by comparing two groups of scaffolds
that are different in total surface areas and pore sizes, and, according to the literature,
these differences can affect the releasing amount of silicon ions. In the current work,
despite the scaffold with the small pore size having a larger surface area (26% more) the
results of silicon ion release showed that there is no significant difference in the release
amount between the two groups (Figure 3). This suggests that the only parameter that
causes differences in cell behaviors is the pore size (in terms of morphology, proliferation,
metabolic activity, ALP activity, and gene expression).

The ability of the materials to induce good cell adhesion and proliferation was con-
firmed with a higher cell number on small pore size scaffolds due to the larger surface
area available. It is interesting to observe that, for both groups, cell numbers (Figure 4a)
from one week to three weeks remained constant, demonstrating that the cells were dif-
ferentiating in the very early stage (first week). As reported in the literature [45], during
the differentiation process, cell proliferation and differentiation are two interdependent
processes that have a counteracting relationship, and this correlated with the obtained
results. Cell spatial organization, detected by confocal images (Figure 5), shows that the
cells on the small pore size scaffolds were able to build a 3D network, migrating into
the structure and connecting to each other crossing the pores (Figure 5d,h,i). The 3D cell
distribution is a more physiological cell organization, promoting stem cell differentiation
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into the bone cells [46]. When the pore size is too large, the 3D structure is not able to
drive cells forming the 3D organization, slowing down the differentiation. In fact, this is
confirmed by the gene expression (Figure 7) that the cells on small pore size scaffolds were
able to differentiate in an earlier stage, particularly in the expression of ALP (Figure 7a)
and RUNX2 (Figure 7c).

The geometry differences in the scaffolds also had an impact on the cell activities dur-
ing the osteogenic differentiation. In the presented work, general and phenotypic-specific
metabolism were determined by AlamarBlue assay and ALP production, respectively. It
is reported in the literature that an increase in ALP activity should be associated with
osteoblastic differentiation. ALP is thought to increase and then decrease when mineraliza-
tion is well progressed [47]. The cells on small pore size scaffolds showed a lower general
metabolic activity (Figure 4b), but higher ALP activity (Figure 6) compared to cells on large
pore size scaffolds, especially on day 21. The significant increase in this enzyme between
the second and third week suggested that cells on small pore size scaffolds were shifting to
a more differentiated state.

The mRNA levels of osteogenic genes (ALP, COL 1, RUNX2, and SPARC) were evalu-
ated during the 21 days of differentiation, using RT-qPCR. The positive impact of Si-based
materials on osteogenic differentiation has been investigated in numerous studies [48,49],
in which the water-soluble silicon was proved to enhance osteoblast proliferation and
differentiation under in vitro conditions. The investigated expression levels of osteoblast-
specific marker genes in terms of osteoblast differentiation, have shown a special pattern
that could help to have a perception of the functional bone construct (Figure 8). RUNX2, a
member of the runt homology domain transcription factor family, plays a crucial role in
osteoblast development. It is a major gene responsible for the early orientation of stem
cells towards osteoblastic lineage and directly activates the transcription of genes such as
osteocalcin, COL 1, and ALP. Moreover, it is typically downregulated in three or four weeks
of culture, which is an important indicator of matrix maturation and mineralization [50]. In
fact, there was a significant decrease in the expression of RUNX2 observed in both groups
during the second and the third week, suggesting the acceleration of the differentiation.
COL 1 plays an important role in biomineralization. It is expressed in high levels near the
end of the proliferation state and during the period of matrix deposition. It is also known
to decrease with time and an ongoing calcification of the bone tissue [51]. The increase
in COL 1 expression showed a peak on day 14 and then dropped to a very low level in
both scaffolds between the second and the third week. This observation is in accordance
with the expression profiles reported in the literature for the osteogenic differentiation
of hMSCs [52]. The ALP gene is first detected in osteoblast progenitor cells which are
committed to differentiate into osteoblasts. The expression of ALP is dependent on the mat-
uration stages of osteoblasts. It increases when mineralization is well progressed and then
decreases in later stages [53]. In this case, upregulation of ALP expression was observed in
both scaffolds in 21 days. Although, the expression level showed significant differences on
day 21 between the samples with large pore size and small pore size. It is worth noting that
hMSCs on small pore size expressed a significantly high level of ALP on day 7 compared
to that on large pore size, suggesting the cells on the small pore size scaffolds had an earlier
differentiation. Osteonectin (SPARC) is a phosphorylated glycoprotein that plays a role in
regulating the initiation, and promotion of mineralization as well as crystal growth [54]. In
this work, it is revealed that the expression of osteonectin is increased in hMSCs during
differentiation on both groups, this may be due to the osteoprogenitor culture conditions.

5. Conclusions

In summary, the bioactivity and osteogenic differentiation ability of this open-source
3D printing process for SiOC(N) ceramic scaffolds with different pore sizes was investigated
by in vitro cell culture of hMSCs. The results showed that the material of the scaffold has a
good ability to release water-soluble silicon ions and the total amount of released silicon
ions was not affected by the pore size. Moreover, the scaffolds were able to improve the
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differentiation while retaining the cell number. It has been demonstrated that the pore size
of the scaffold has a strong impact on cell behaviors including cell number, metabolism,
ALP activity, distribution, and the speed of osteogenic differentiation. This open-source 3D
printing process for SiOC(N) ceramic scaffolds is promising and provides opportunities to
have more complex and precise structural matrices with controllable bioactivity for bone
regeneration applications. Future work, including in vivo testing, is warranted in order to
improve the technology to be used as bone implants.
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