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Abstract. We consider a SIR age-structured model with immigration of in-
fectives in all epidemiological compartments; the population is supposed in de-
mographic equilibrium between below-replacement fertility and immigration;
the spread of the infection occurs through a general age-dependent kernel. We
analyse the equations for steady states; because of immigration of infectives
a steady state with a positive density of infectives always exists; however, a

quasi-threshold theorem is proved, in the sense that, below the threshold, the
density of infectives is close to 0, while it is away from 0, above the thresh-
old; furthermore, conditions that guarantee uniqueness of steady states are
obtained. Finally, we present some numerical examples, inspired to the Italian
demographic situation, that illustrate the threshold-like behaviour, and other
features of the stationary solutions and of the transient.

1. Introduction.

The current demographic trend in many Western countries is characterized by
transition to sustained below replacement fertility and a sizeable immigration[16,
25]. Among the many aspects influenced by this major transition, it has been sur-
mised that the dynamics of childhood infectious diseases (such as measles) could
be substantially affected [20]). Understanding the possible consequences of such a
transition with the help of mathematical models is important in planning public
health policies, for example vaccination strategies aimed at the control and elimi-
nation of an infectious disease in a population [18].

In this paper we analyse a SIR age-structured model for the spread of an infec-
tious disease in a population subject to below replacement fertility and immigration.
The model is built, on the one hand, on the stable population model with immi-
gration under conditions of below replacement fertility[4, 7, 19], on the other hand
on the theory of age-structured epidemic models [2, 6, 9, 13].

We will therefore assume that the population demographic rates are below re-
placement (in the demographic literature the acronym BRF, below replacement
fertility is often used), but that an immigration inflow helps in in driving the pop-
ulation to stationarity. In order to focus the attention on the interaction between
epidemiologgy and demography per se, and not on the interaction among social
groups, we assume that immigrants are indistinguishable by residents, as they ar-
rive. The current setting can be easily extended to more realistic assumptions, such
as considering separately residents and immigrants, but letting the children of the
latter (first-generation) be identical to residents, but the resulting models would cer-
tainly be more complex. Finally, we assume, following the usual approach in models
for infectious diseases aiming at analytical results [8, 9, 13], that the population is
in a demographically stationary state. Hence, we assume that the population has
reached the equilibrium [4, 7, 12] between below-replacement-fertility and immigra-
tion. This assumption allows us to obtain the results discussed in Sections 4 and 5;
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in Section 6, we present the results of some simulations that compare the epidemic
processes obtained under the assumption of a demographically stationary state,
with those that start from an initial state close to the current Italian demography
and that have a very long transient period.

Threshold theorems are an important contribution of mathematical epidemiol-
ogy, starting from the pioneering work of Ross and Kermack-McKendrick. For the
SIR model, without age structure, one can refer to Hethcote [10]. The case of the
age-structured SIR model has been thoroughly analysed by Inaba [13] in terms of
R0, defined as the spectral radius of a certain positive linear operator: when R0 ≤ 1,
there exists only the disease–free equilibrium (DFE), and it is globally stable; on
the other hand, when R0 > 1, the DFE is unstable, and there exists (at least one)
endemic equilibrium.

How do the properties of the model change when immigration is included in the
model? It is rather clear that, if a constant flow of infectives enters the population,
there cannot be a disease-free equilibrium. Brauer and Van den Driessche (2001,[5])
in their analysis of an SIR model, without age structure, but with a constant flow
of new members into the population a fraction p of which is infective, started from
the observation that, if p > 0 there is a unique endemic equilibrium u∗(p) for
all parameter values. However, they recovered a threshold-like behaviour in the
following sense: as p goes to zero, if R0 < 1, then u∗(p) tends to the DFE as p
goes to zero; otherwise if R0 > 1 then for p = 0 the model has a unique endemic
equilibrium u∗, and u∗(p) tends to u∗ as p goes to zero. R0 is defined as in the SIR
model without immigration [10].

In this paper we extend the threshold result by Inaba [13] considering immigra-
tion of infective individuals, in the same spirit as Brauer and Van den Driessche
[5]. We then briefly discuss conditions that guarantee the uniqueness of the steady
state in this model. The equilibrium dynamics of age-structured SIR models in the
framework of populations with BRF and immigration has already been considered
in Iannelli and Manfredi [11] but under the assumption of proportionate mixing.
In this paper we consider instead fully general age structured mixing patterns that
include what is generally used in realistic simulations of childhood diseases (see, for
instance, [3]).

2. The equations of the model.

We start from the equations for a population with age-strucured fertility and
mortality rates m(a) , µ(a) and subject to a constant (as age structure and total
number of individuals) immigration inflow I(a). The evolution of the density n(a, t)
of individuals aged a at time t can be described by the following McKendrick-Von
Foerster PDE with boundary and initial conditions:

(1)















(

∂
∂t

+ ∂
∂a

)

n(a, t) = −µ(a)n(a, t) + I(a) 0 < a < ω , t > 0

n(0, t) = B(t) =
∫ ω

0 m(a)n(a, t)da t ≥ 0

n(a, 0) = n0(a) 0 < a < ω

In (1) ω represents the maximum life span of the individuals, and B(t) is the

number of newborns per unit time at time t. Technical conditions to ensure the
well-posedness of the problem are that the mortality rate µ(a) lies in L1

loc

(

[0, ω)
)

,

with
∫ ω

0 µ(a)da = +∞ , and that the fertility rate m(·) ∈ L∞(0, ω).
We will consider these equations under the conditions of below replacement

fertility (BRF). If Π(a) = e−
R

a

0
µ(s)ds is the proportion of individuals who are

still living at age a (because of the assumptions on µ(·), we have Π(ω) = 0),
R =

∫ ω

0 m(a)Π(a)da represents the net reproduction rate, i.e. the average number
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of newborn individuals an individual is expected to produce during his reproductive
life. The BRF condition is then R < 1. Equation (1) is the basis of the so called
stable population model with immigration (SPI model), used in demography to an-
alyze the long term behaviour of populations with BRF and subject to immigration
[4]. Cerone [7] and Inaba [12] proved that the stationary solution of (1), given by

(2) n(a) = BΠ(a) +

∫ ω

0

I(s)
Π(a)

Π(s)
ds , 0 ≤ a ≤ ω

with B given by:

(3) B =
1

1 −R

∫ ω

0

m(a)Π(a)

∫ a

0

I(s)

Π(s)
ds da ,

is globally asymptotically stable.

As stated in the introduction, we study the spread of an epidemic under the
condition that the population is in the demographical stationary state (2). We
consider a SIR age-structured epidemic model where X(a, t), Y (a, t), Z(a, t) are
the densities of susceptible, infective and removed individuals of age a at time t;
we assume that the contact process between individivduals is summarised by the
transmission coefficient β(a, a′), that is β(a, a′)X(a, t)Y (a′, t)da da′ is the number
of susceptibles aged in (a, a+ da) that contract the disease by means of a suitable
contact with an infective aged in (a′, a′ + da′) in the time unit at time t: i.e. we
assume for the force of infection λ(a, t) (FOI for short) the functional form (see
[2, 24])

(4) λ(a, t) =

∫ ω

0

β(a, s)Y (s, t) ds .

Remark 1. The functional form (4) basically assumes that the force of infection
scales linearly with population density. As observed by Manfredi and Williams [20],
such a choice makes the force of infection too much sensitive with respect to changes
in population size, in case of demographical instabilities. Other choices have been
used in the literature, such as

(5) λ(a, t) =

∫ ω

0

β(a, s)
Y (s, t)

n(s, t)
ds or λ(a, t) =

1

N(t)

∫ ω

0

β(a, s)Y (s, t) ds .

If population density is stationary, different choices correspond to a redifinition of
β, and we may in any case study the problem using (4). If, on the other hand,
population density fluctuates, different choices for λ(a, t) may give rise to different
qualitative behaviours; this will be explored in the future through simulations.

We denote IX(a), IY (a), IZ(a) the densities of susceptible, infective and re-
moved immigrants that enter the population in the time unit. For consistency with
equation (1), we require IX(a) + IY (a) + IZ(a) = I(a) .

Finally, we let γ is the removal rate, so that 1/γ is the average infectious period.
Then the spread of the disease can be described by the following non homogeneous
system of PDE’s a-la Lotka-McKendrick:















(

∂
∂t

+ ∂
∂a

)

X = −(λ(a, t) + µ(a))X + IX(a)
(

∂
∂t

+ ∂
∂a

)

Y = λ(a, t)X − (µ(a) + γ)Y + IY (a)
(

∂
∂t

+ ∂
∂a

)

Z = γY − µ(a)Z + IZ(a)

0 < a < ω , t > 0(6a)

To complete system (6), boundary and initial conditions are to be given

X(0, t) = B , Y (0, t) = 0 , Z(0, t) = 0 t ≥ 0(6b)
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with B given by (3). Finally, the initial conditions are

X(a, 0) = X0(a) , Y (a, 0) = Y0(a) , Z(a, 0) = Z0(a) 0 < a < ω .(6c)

Condition (6b) amounts to assuming that all newborn individuals are susceptibles,
that is we assume there is no vertical transmission of the disease (nor, maternally
transmitted immunity).

Moreover, the initial densities (6a) satisfy X0(a) + Y0(a) + Z0(a) = n(a), the
stationary density. Hence, we have

X(a, t) + Y (a, t) + Z(a, t) = n(a) ∀ t ≥ 0 .

The problem to be considered is then given by (6), completed by the relation (4).
Well-posedness can be obtained, as in [13] by setting it as an initial value problem
in the Banach space L1(0, ω). Using standard methods, one can obtain

Theorem 1. Let Ix, Iy , Iz ∈ L1
+(0, ω) , β ∈ L∞

(

(0, ω)× (0, ω)
)

≥ 0. Assume that
the initial data X0, Y0 satisfy

X0(·), Y0(·) ∈AC
(

[0, ω]
)

with X0(0) = B, Y0(0) = 0 ,

X0(a) ≥ 0 , Y0(a) ≥ 0 a.e. a ∈ (0, ω).
(7)

Then there exists one and only one classical solution of system (6)–(4), which is
defined for all t ≥ 0.

3. Steady states.

We now consider existence, uniqueness and threshold behaviour of steady states
of system (6). We start by making suitable assumptions on the contact coefficient
β(·, ·) and the age profile of the immigrants to be used.
We assume again Ix, Iy, Iz ∈ L1(0, ω), β ∈ L∞

(

(0, ω) × (0, ω)
)

to be nonnegative
functions. Further we assume

Assumption 1. β(·, ·) satisfies

lim
h→0

∫ ω

0

|β(a+ h, s) − β(a, s)|da = 0

uniformly for s ∈ R , with β(·, ·) extended by setting β(a, s) = 0 for a, s ∈ (−∞, 0)∪
(ω,+∞) ;

Assumption 2. There exists m > 0 , 0 < α < ω such that β(a, s) ≥ m for a.e.
(a, s) ∈ (0, ω) × (ω − α, ω).

Assumption 3. There exist 0 ≤ a1 < a2 ≤ ω such that Iy(a) > 0 a.e. a ∈ (a1, a2).

The equations for the steady states of (6) are as follows:

(8)



















d
da
X∗ (a) = −

(

λ∗(a) + µ(a)
)

X∗(a) + Ix(a)

d
da
Y ∗ (a) = λ∗(a)X∗(a) −

(

γ + µ(a)
)

Y ∗(a) + Iy(a)
0 < a < ω

X∗(0) = B, Y ∗(0) = 0

with

λ∗(a) =

∫ ω

0

β(a, s)Y ∗(s) ds.



SIR MODEL WITH AGE STRUCTURE AND IMMIGRATION 5

By solving (8) directly we obtain:

X∗(a) = Bπ(a)e−
R

a

0
λ∗(s) ds +

∫ a

0

Ix(σ)
π(a)

π(σ)
e−

R

a

σ
λ∗(s) dsdσ(9a)

Y ∗(a) =

∫ a

0

e−γ(a−σ) π(a)

π(σ)
(λ∗(σ)X∗(σ) + Iy(σ)) dσ(9b)

Then we obtain for the force of infection λ∗(·):

λ∗(a) =

∫ ω

0

β(a, ξ)Y ∗(ξ) dξ =

∫ ω

0

(

Bλ∗(σ)e−
R

σ

0
λ∗(s) dsπ(σ)

+ λ∗(σ)

∫ σ

0

Ix(s)e
−

R

σ

s
λ∗(τ) dτ π(σ)

π(s)
ds+ Iy(σ)

)

φ(a, σ)dσ

(10)

where φ(·, ·) is given by:

(11) φ(a, σ) =

∫ ω

σ

β(a, ξ)e−γ(ξ−σ) π(ξ)

π(σ)
dξ.

We consider

(12) L1
+(0, ω) =

{

f ∈ L1(0, ω) s.t. f ≥ 0 a.e. on (0, ω)
}

,

the cone of the nonnegative functions in the Banach space L1(0, ω), and define the

positive nonlinear operator Φ : L1
+(0, ω) −→ L1

+(0, ω) by setting

(Φψ)(a) =

∫ ω

0

(

Bψ(σ)π(σ)e−
R

σ

0
ψ(s) ds

+ ψ(σ)

∫ σ

0

Ix(s)e
−

R

σ

s
ψ(τ)dτ π(σ)

π(s)
ds + Iy(σ)

)

φ(a, σ)dσ,

(13)

a ∈ (0, ω).
Each fixed point of Φ in the positive cone is a force of infection λ∗(·) that satisfies

(10); hence, through (9), it yields an equilibrium solution of (6); and viceversa.
Just by looking at (9b) we see that, because of assumption 3, in any equilibrium

solution of (6) the density infectives Y ∗(·) satisfies Y ∗ > 0. This means that in pres-
ence of infectives in the immigrant population, there is no disease–free equilibium
(DFE), as was noted by Brauer-Van den Driessche [5] for a SIR model without age
structure.

Furthermore, if we define

(14) u0(a) =
(

Φ (0)
)

(a) =

∫ ω

0

Iy(σ)φ(a, σ)dσ , a ∈ (0, ω);

we see that any fixed point λ∗ of (13) satisfies λ∗(a) ≥ u0(a) a.e. Under Assumption
2, we have

(15) φ(a, σ) ≥ m

∫ ω

max{σ,ω−α}

e−γ(ξ−σ) π(ξ)

π(σ)
dξ ≥ me−γω

∫ ω

max{σ,ω−α}

π(ξ) dξ = φm(σ).

It is easy to see that φm(σ) > 0 for all σ < ω; moreover, φm(·) is continuous and
non-increasing. Then, because of Assumption 3,

u0(a) ≥

∫ ω

0

Iy(σ)φm(σ)dσ = u > 0.

This means that at an equilibrium solution of (6), the force of infection λ∗ is strictly
positive at all ages.

We study fixed points of (13) using the theory of positive operators defined on
a cone in a Banach space.

We first note that there exists R > 0 such that ‖Φψ‖1 ≤ R ∀ψ ∈ L1
+(0, ω) .
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In fact, using the definition, we have

φ(a, σ) ≤ ‖φ‖∞ ≤ ‖β‖∞ω.

Then,

Φ(ψ)(a) ≤ ‖φ‖∞

(

B

∫ ω

0

ψ(σ)e−
R

σ

0
ψ(s) ds dσ

+

∫ ω

0

Ix(s)

∫ ω

s

ψ(σ)e−
R

σ

s
ψ(τ) dτdσ ds+ ‖Iy‖1

)

= ‖φ‖∞

(

B
(

1 − e−
R

ω

0
ψ
)

+

∫ ω

0

Ix(s)
(

1 − e−
R

ω

s
ψds

)

+ ‖Iy‖1

)

≤ ‖φ‖∞ (B + ‖Ix‖1 + ‖Iy‖1) ,

(16)

and R can be obtained easily.
Define now

(17) D =
{

ψ ∈ L1
+(0, ω) : ‖ψ‖1 ≤ R

}

∩
{

ψ ∈ L1
+(0, ω) : ψ ≥ u0

}

.

We have the following

Theorem 2. Let assumptions 1-3 hold. Then

i): D is closed, bounded, convex and such that Φ(D) ⊆ D ;
ii): Φ is completely continuous.

Hence, there exists ψ ∈ D such that ψ = Φ(ψ).

Proof. i) follows immediately from the definition, and the previous considerations.
ii) There exists C > 0 s.t. ‖Φ(ψ1) − Φ(ψ2)‖1 ≤ C‖ψ1 − ψ2‖1 ∀ψ1, ψ2 ∈ L1

+(0, ω) ;
in fact

(Φ(ψ1))(a) − (Φ(ψ2))(a)

=

∫ ω

0

B
(

ψ1(σ)e−
R

σ

0
ψ1(τ)dτ − ψ2(σ)e−

R

σ

0
ψ2(τ)dτ

)

π(σ)φ(a, σ) dσ

+

∫ ω

0

Ix(s)

∫ ω

s

π(σ)

π(s)

(

ψ1(σ)e−
R

σ

s
ψ1 − ψ2(σ)e−

R

σ

s
ψ2

)

φ(a, σ) dσ ds .

(18)

For the first term in (18) we have
∣

∣

∣

∣

B

∫ ω

0

π(σ)
(

ψ1(σ)e−
R

σ

0
ψ1 − ψ2(σ)e−

R

σ

0
ψ2

)

φ(a, σ) dσ

∣

∣

∣

∣

≤ ‖φ‖∞B

∣

∣

∣

∣

∫ ω

0

d

dσ

(

e−
R

σ

0
ψ2 − e−

R

σ

0
ψ1

)

dσ

∣

∣

∣

∣

= ‖φ‖∞

∣

∣

∣e−‖ψ2‖1 − e−‖ψ1‖1

∣

∣

∣ ≤ ‖φ‖∞ ‖ψ2 − ψ1‖1 a.e. a ∈ (0, ω)

and a similar inequality holds for the second term in (18). Then in particular Φ is
continuous.

Let us consider the operator T : L1(0, ω) −→ L1(0, ω) defined as

(19) (Tψ)(a) =

∫ ω

0

ψ(σ)
(

Bπ(s) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

)

φ(a, σ)dσ

for a ∈ (0, ω), ψ ∈ L1(0, ω).
T is linear, continuous and positive (furthermore, T is the Frechet derivative of

Φ in zero, Φ′(0) ). From Assumption 1 and the Riesz–Frechet–Kolmogorov theorem
on compactness, it follows that T is a compact operator.

Compactness of Φ now follows from the inequality

(20) u0 ≤ Φψ ≤ Tψ + u0 ∀ψ ∈ L1
+(0, ω).
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Hence Φ is completely continuous.
From (i) we know that Φ(D) ⊆ D, with D closed, bounded and convex. From

Schauder’s principle it follows that Φ has at least a fixed point in D. � �

4. Threshold-like results.

In the SIR model without immigration Inaba [13] proved that the spectral radius
of T is a threshold for the infection. He proved

Theorem A (Inaba).

1) If ρ(T ) ≤ 1, the only fixed point of the operator Φ is the null vector ψ ≡ 0;
2) if ρ(T ) > 1 there is at least a non-zero fixed point of Φ.

If the rate of infected immigrants Iy is not zero, then we know (Theor. 2) that
a positive equilibrium is present both if ρ(T ) > 1 and if ρ(T ) ≤ 1, and that there
exists no DFE.

In the SIR model without immigration it is still possible to distinguish between
two different situations for the steady states in terms of the limiting behaviour of
the fixed points of Φ as ‖u0‖1 goes to zero.

We proceed as follows: for fixed Ix(·), Iz(·), we consider a sequence Iy,n ∈
L1

+(0, ω) such that Iy,n(a) −→
n

0 a.e. a ∈ (0, ω) .

Φn and un are the analogous of (13), (14) in which Iy,n has been inserted in
place of Iy with the corresponding change in the stationary population Bn because
of (3). Moreover, we let Φ0 to be defined as (13) with Iy = 0.

We also define Φ̃n = Φn − un, noting that Φ̃n depends on n only because of the
term Bn. Finally, consider the positive linear operators on L1(0, ω) Tn = Φ′

n(0),
T0 = Φ′

0(0) :

(Tnψ)(a) =

∫ ω

0

ψ(σ)
(

Bnπ(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

)

φ(a, σ)dσ

(T0ψ)(a) =

∫ ω

0

ψ(σ)
(

B0π(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

)

φ(a, σ)dσ

(21)

Consider a sequence {ψn} ⊂ L1
+(0, ω), where ψn is a fixed point for Φn. Our

main result is the following

Theorem 3.

1) If ρ(T0) ≤ 1 then lim
n→∞

ψn = 0;

2) if ρ(T0) > 1 then there exists δ > 0 such that ‖ψn‖1 ≥ δ ∀n ∈ N .

Before proving the theorem, we need some preliminaries. First, we use the
following

Proposition 4. There exists a converging subsequence of {ψn}. Let ψ = limk→∞ ψnk

for any converging subsequence {ψnk
}; then ψ = Φ0(ψ). In other words, the set of

limit points of {ψn} are fixed points for Φ0.

Proof. Since 0 ≤ ‖ψn‖ ≤ R, where R = maxnRn found from (16), and Φ0 is
compact, there exists a converging subsequence {Φ0(ψnk

)}.
Let ψ = limk→∞ Φ0(ψnk

). We have

(22) ψnk
= Φnk

(ψnk
) = Φ0(ψnk

) + (Φnk
(ψnk

) − Φ0(ψnk
)) .
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Furthermore

(Φnk
(ψnk

))(a) − (Φ0(ψnk
))(a)

= (Bnk
−B0)

∫ ω

0

ψnk
(σ)π(σ)e−

R

σ

0
ψnk

(τ)dτφ(a, σ) dσ

+

∫ ω

0

Iy,nk
(σ)φ(a, σ) dσ.

Since, by assumption, lim
n→∞

Iy,n = 0 a.e., and clearly from (3) lim
n→∞

Bn = B0,

lim
k→∞

[Φnk
(ψnk

) − Φ0(ψnk
)] = 0 a.e., hence in L1.

Substituting this in (22), we have

lim
k→∞

ψnk
= lim

k→∞
Φ0(ψnk

) = ψ

so that {ψnk
} converges to ψ. Furthermore, since Φ0 is continuous,

lim
k→∞

Φ0(ψnk
) = Φ0(ψ) and ψ is a fixed point for Φ0.

The same arguments can be applied to any converging subsequence {ψnk
}. �

�

We also need some results about the spectral theory of positive operators, that
we briefly recall.

Definition 1. Let E be a Banach space, K ⊂ E a cone. The cone K is called total
if it satisfies

K −K = {ψ − ϕ : ψ, ϕ ∈ K} = E.

Theorem B (Krein-Rutman (1948)). Let E be a real Banach space with the total
order cone K. Let A : E −→ E be linear, compact and positive with respect to K,
and with ρ(A) > 0. Then ρ(A) is an eigenvalue of A and A∗ with eigenvectors in
K, K∗, respectively.

Krein and Rutman [17] present several conditions that ensure the positivity of
ρ(A), and guarantee that it has multiplicity 1. Since L1

+(0, ω) has empty interior, we
cannot use their results, but instead use the following theorem on kernel operators.

(23) Af(t) =

∫

K(s, t)f(s)dµ(s).

Theorem C ([23], Theor.V6.6). Let E = Lp(µ), where 1 ≤ p ≤ +∞ and (X,Σ, µ)
is a σ−finite measure space. Suppose A ∈ L(E) has the form (23) where K ≥ 0 is
a Σ × Σ-measurable kernel, satisfying the two assumptions:

i) some power of A is compact;
ii) S ∈ Σ and µ(S) > 0 , µ(X \ S) > 0 implies

(24)

∫

X\S

∫

S

K(s, t)dµ(s)dµ(t) > 0 .

Then ρ(A) > 0 is an eigenvalue of A with a unique normalized eigenfunction f
satisfying f(s) > 0 µ-a.e.; moreover if K(s, t) > 0 (µ ⊗ µ)-a.e. then every other
eigenvalue λ of A has modulus |λ| < ρ(A) .

We can apply this theorem to T0 obtaining

Lemma 5. ρ(T0) is an eigenvalue of T0 and T ∗
0 with unique normalized strictly

positive eigenfunctions ψ and f .
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Proof. T0 is a kernel operator and, as shown in the proof of Theorem 2, is compact.
Moreover, from (15), it is easy to see that condition (24) is satisfied. Then Theorem
C applies, so that ρ(T0) > 0 and ρ(T0) is the only eigenvalue of T0 of maximal
modulus with a unique normalized eigenvector ψ ∈ L1

+(0, ω) and satisfying ψ(a) > 0
a.e.
T ∗

0 has the same non zero eigenvalues as T0 with the same multiplicity. Thus
ρ(T0) is an algebraically simple eigenvalue of T ∗

0 and by Theorem B (L1
+(0, ω) is a

total cone) it corresponds to a (unique normalized) eigenfunctional f . It remains
to be proved that f is strictly positive.
T ∗

0 acts from L∞(0, ω) in itself as follows:

(25) (T ∗
0ϕ)(a) =

∫ ω

0

ϕ(σ)
(

B0π(a) +

∫ a

0

Ix(s)
π(a)

π(s)
ds

)

φ(σ, a)dσ.

Using Assumption 2 as in (15), it can be proved that there exists a continuous
function g : [0, ω] −→ R s.t. g(ω) = 0, g(a) > 0 ∀a ∈ [0, ω) such that

(

B0 π(a) +

∫ a

0

Ix(s)
π(a)

π(s)
ds

)

φ(σ, a) ≥ g(a) a.e. a, σ ∈ (0, ω) .

Then

(26) f(a) =
1

ρ(T0)

(

T ∗
0 f

)

(a) ≥
1

ρ(T0)
g(a)

∫ ω

0

f(σ)dσ > 0 a.e. a ∈ (0, ω)

because f ∈ L∞
+ (0, ω) \ {0}. Then f is strictly positive. � �

Remark 2. This fact can be stated in a more general context by observing that, as
a consequence of Assumption 2, T0 is an irreducible operator on the Banach lattice
L1(0, ω) ([23], V.6). This roughly corresponds to the definition of non-supporting
operator used by Inaba [13].

Lemma 6. The following inequality holds:

e−‖ψ‖1T0ψ ≤ Φ̃ψ ≤ T0ψ ∀ψ ∈ L1
+(0, ω) .

Proof. Let ψ ∈ L1
+(0, ω), then:

(Φ̃ψ)(a) =

∫ ω

0

ψ(σ)π(σ)
(

B0 e
−

R

σ

0
ψ(s)ds +

∫ σ

0

Ix(s)

π(s)
e−

R

σ

s
ψ(τ)dτ ds

)

φ(a, σ)dσ

≤

∫ ω

0

ψ(σ)π(σ)
(

B0 +

∫ σ

0

Ix(s)

π(s)
ds

)

φ(a, σ)dσ = (T0ψ)(a) ;

(Φ̃ψ)(a) ≥ e−
R

ω

0
ψ(s)ds

∫ ω

0

ψ(σ)π(σ)
(

B0 +

∫ σ

0

Ix(s)

π(s)
ds

)

φ(a, σ)dσ

= e−‖ψ‖1(T0ψ)(a).

� �

Remark 3. By induction a more general inequality can be proved:

e−
Pn−1

k=0
‖Tk

0
ψ‖1 T n0 ψ ≤ Φ̃n ψ ≤ T n0 ψ ∀ ψ ∈ L1

+(0, ω), ∀ n ∈ N .

All of what has been proved for T0, holds obviously also for Tn, ∀n ∈ N. More-
over,

Lemma 7. lim
n→∞

ρ(Tn) = ρ(T0), and ρ(Tn) ≥ ρ(T0) for all n.

Proof. As seen above Bn −→
n

B0, hence Tn tends to T0 uniformly. Since they are

compact positive operators, ρ(Tn) [and ρ(T0)] are isolated eigenvalues of Tn [and
T0]. Then standard results in perturbation theory (see [15], Section IV.3.5) show
that ρ(Tn) −→

n
ρ(T0).
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As for the second claim, from (3), one sees B0 < Bn, hence T0 ≤ Tn. From
a comparison result about positive operators (see [22]) then follows that ρ(Tn) ≥
ρ(T0). � �

We can now prove the main threshold result:

of Theorem 3.

i) Using Proposition 4, we see that any converging subsequence {ψnk
} ⊂ {ψn}

tends to ψ fixed point of Φ0. Since, for ρ(T0) ≤ 1, Φ0 has only 0 as fixed
point (Theorem A), ψ = 0, i.e. the whole sequence converges to 0.

ii) From ρ(T0) > 1 it follows that ρ(Tn) > 1 ∀ n by virtue of Lemma 7. Let
fn ∈ (L1

+(0, ω))∗\{0} be the strictly positive eigenvector of T ∗
n with respect

to the eigenvalue ρ(Tn). Then we have, ∀ n ∈ N,

< fn, ψn > =< fn,Φn ψn >=< fn, Φ̃n ψn + un >

≥< fn, e
−‖ψn‖1 Tnψn + un >>< fn, e

−‖ψn‖1 Tnψn >

= e−‖ψn‖1 < T ∗
nfn, ψn >= e−‖ψn‖1ρ(Tn) < fn, ψn >,

(27)

where the first inequality follows from Lemma 6. Since ψn ≥ un > 0 and
fn is a strictly positive functional, we have that:

1 > e−‖ψn‖1 ρ(Tn) ∀ n ∈ N

that is

(28) ‖ψn‖1 > log(ρ(Tn)) ≥ log(ρ(T0)).

The thesis then holds with δ = log(ρ(T0)).

� �

5. The issue of uniqueness.

Several sufficient conditions guarantee the uniqueness of positive equilibria for
the SIR model without immigration, but there exist no general results. Indeed,
there exist examples [Franceschetti, in preparation] with multiple positive equilibria
of the model without immigration. Hence, we expect that no general results may
exist for this model too, and we consider only the extension to this case of the
sufficient conditions found for the model without immigration.

Iannelli and Manfredi [11] deal with the case of a separable kernel, i.e. β(a, s) =
β1(a)β2(s), where the search for equilibria reduces to a one–dimensional fixed point
problem. We consider here instead the other cases, whose proof [13] is based on
the concept of monotonicity for sublinear operators [1], which we briefly review.

Given a Banach space E partially ordered by means of a cone C, let u,w ∈ E be
such that u ≤ w, the order interval of extremes u,w is the set [u,w] = {v ∈ E : u ≤
v ≤ w} = (u + C) ∩ (w − C). A nonlinear mapping A : D(A) ⊆ E −→ E is called
increasing if, for all u, v ∈ D(A) such that u < v we have Au ≤ Av; is called strictly
increasing if the strict inequality sign Au < Av holds; and is called e-increasing if
there exists e ∈ C \ {0} such that for every u, v ∈ D(A) with u < v there exists
constants α = α(u, v) > 0, β = β(u, v) > 0 such that α e ≤ Av −Au ≤ β e.

A nonlinear mapping A : [v, w] −→ E is called sublinear with respect to [v, w] if
the following holds:

A
(

v + τ(u − v)
)

−
(

v + τ(Au − v)
)

≥ 0 ∀ u ∈ [v, w], ∀ τ ∈ [0, 1];

A is called strictly sublinear if it holds the strict inequality sign for every u ∈
(v, w] = [v, w] \ {v} and τ ∈ (0, 1); A is called e-sublinear if there exists e ∈ C \ {0}
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such that for every u ∈ (v, w] and every τ ∈ (0, 1) there exists δ = δ(u, τ) > 0 such
that

A
(

v + τ(u − v)
)

−
(

v + τ(Au − v)
)

≥ δ e .

The following uniqueness result is due to Amann [1].

Theorem D. Let E be an ordered Banach space. Let us set [v,∞) = {u ∈ E :
u ≥ v} and suppose A : [v,∞) −→ E is e-sublinear and e-increasing and suppose
there exists γ > 0 such that 0 ≤ Av − v ≤ γ e. Then A has at most one fixed point
in (v,∞) = [v,∞) \ {v}.

We can consider the operator Φ as operating from the order interval [u0,∞) into
itself, Φ : [u0,∞) −→ [u0,∞) , in view of the fact that Φψ ≥ u0 ∀ψ ∈ L1

+(0, ω) .
We have

Proposition 8. Φ is e-sublinear on [u0,∞) with e(a) ≡ 1.

Proof. Given ψ ∈ L1
+(0, ω) with ψ > u0, τ ∈ (0, 1) we have:

Φ
(

u0 + τ(ψ − u0)
)

(a) −
(

u0 + τ(Φψ − u0)
)

(a)

=(1 − τ)

∫ ω

0

u0(σ)

(

Bπ(σ)e−
R

σ

0
((1−τ)u0(η)+τψ(η))dη

+

∫ σ

0

Ix(s)e
−

R

σ

s
((1−τ)u0(η)+τψ(η)) ds

)

φ(a, σ)dσ

+ τ

∫ ω

0

ψ(σ)

(

Bπ(σ)e−
R

σ

0
ψ(η)dη

(

e(1−τ)
R

σ

0
(ψ(η)−u0(η))dη − 1

)

+

∫ σ

0

Ix(s)e
−

R

σ

s
ψ

(

e(1−τ)
R

σ

s
(ψ(η)−u0(η))dη − 1

)

ds

)

φ(a, σ) dσ

(29)

Since φ(a, s) ≥ φm(s) > 0 a.e. (see (15)), we obtain

(30) Φ
(

u0 + τ(ψ − u0)
)

(a) −
(

u0 + τ(Φψ − u0)
)

(a) ≥ δ

where δ = δ(ψ, τ) > 0 is the constant obtained substituting φm(s) to φ(a, s) in
(29). � �

Following Inaba [13], an assumption on the kernel φ(·, ·) that guarantees the
monotonicity of the operator Φ is the following

Assumption 4.

(31) −
dφ

ds
(a, s) = β(a, s)n(s) − γφ(a, s) ≥ 0 a.e. (a, s) ∈ (0, ω) × (0, ω)

We then have

Proposition 9. Under assumption 4, the operator Φ is e-increasing with respect
to the order interval [u0,∞) .

The proof is identical to that of Inaba.
Hence, we obtain

Theorem 10. Under the assumptions 1-4 there always exists a unique equilibrium
of (6).

Proof. The existence part comes from Theorem 2.
As for uniqueness, we use Theorem D. Sublinearity and monotonicity have

already been discussed. It remains to check the condition

∃ γ > 0 : 0 ≤ Φu0 − u0 ≤ γ e.

We have Φu0 − u0 = Φ̃u0 > 0. Moreover, we have
(

Φu0

)

(a) − u0(a) ≤ γ e(a) a.e.
with e(a) ≡ 1 as in Proposition 8 and γ = ‖Φu0‖∞ + ‖u0‖∞. � �
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Note that, for the case without immigration, Inaba showed, under assumption
4, that there exists a unique positive equilibrium, if ρ(T ) > 1, and no positive
equilibrium if ρ(T ) ≤ 1; moreover, for all parameter values there exists the disease–
free equilibrium. The present results shows clearly the effect of immigration.

Another result of Inaba concerning uniqueness is that, when ρ(T ) ≤ 1, there are
no positive equilibria of the system without immigration. A related result holds also
for the system with immigration, but requires some qualifications and preliminaries.
First, we state the following

Lemma 11. If ρ(T ) < 1, ψ ∈ L1
+(0, ω) is a fixed point of Φ then we have:

(0 ≤)ψ ≤ (I − T )−1u0 .

Proof. We have 0 ≤ Tψ + u0 − Φψ = Tψ + u0 − ψ.
Since ρ(T ) < 1, there exists (I−T )−1 and, because T ∈ L+(L1(0, ω)), (I−T )−1 ∈

L+(L1(0, ω)). Then we have:

0 ≤ (I − T )−1
(

Tψ + u0 − ψ
)

= (I − T )−1
(

u0 − (I − T )ψ
)

= (I − T )−1u0 − ψ ,

which is the thesis. � �

The following lemma establishes that, if ‖v0‖ is small enough, Φ is monotone on
the order interval [0, v0].

Proposition 12. Let

(32) ‖v0‖e
‖v0‖ < e−γω.

Then the operator Φ is e-increasing on the order interval [0, v0].

Proof. Given ψ1, ψ2 ∈ L1
+(0, ω) such that ψ1 < ψ2 ≤ v0 we have:

(Φψ2)(a) − (Φψ1)(a)

= B

∫ ω

0

π(σ)
(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

0
ψ2(τ)dτ φ(a, σ) dσ−

−B

∫ ω

0

ψ1(σ)π(σ)

(

e−
R

σ

0
ψ1(τ)dτ − e−

R

σ

0
ψ2(τ)dτ

)

φ(a, σ) dσ

+

∫ ω

0

Ix(s)

π(s)

∫ ω

s

(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

s
ψ2(τ)dτ φ(a, σ) dσ ds

−

∫ ω

0

Ix(s)

π(s)

∫ ω

s

ψ1(σ)

(

e−
R

σ

s
ψ1(τ)dτ − e−

R

σ

s
ψ2(τ)dτ

)

φ(a, σ) dσ ds

≥ B

∫ ω

0

π(σ)
(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

0
ψ2(τ)dτ φ(a, σ) dσ

−B

∫ ω

0

ψ1(σ)π(σ)

∫ σ

0

(

ψ2(τ) − ψ1(τ)
)

dτ φ(a, σ) dσ

+

∫ ω

0

Ix(s)

π(s)

∫ ω

s

π(σ)
(

ψ2(σ) − ψ1(σ)
)

e−
R

σ

s
ψ2(τ)dτ φ(a, σ) dσ ds

−

∫ ω

0

Ix(s)

π(s)

∫ ω

s

ψ1(σ)π(σ)

∫ σ

s

(

ψ2(τ) − ψ1(τ)
)

dτ φ(a, σ) dσ ds

=

∫ ω

0

(

B +

∫ σ

0

Ix(s)

π(s)
ds

)

(

ψ2(σ) − ψ1(σ)
)

×
(

π(σ)e−
R

σ

0
ψ2(τ ′)dτ ′

φ(a, σ) −

∫ ω

σ

ψ1(τ)π(τ)φ(a, τ)dτ
)

dσ

(33)

Moreover, we have, for τ ∈ [σ, ω],

π(τ)φ(a, τ) =

∫ ω

τ

β(a, ξ)e−γ(ξ−τ)π(ξ) dξ ≤

∫ ω

σ

β(a, ξ)π(ξ) dξ.
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Then we obtain
∫ ω

σ

ψ1(τ)π(τ)φ(a, τ) dτ ≤ ‖ψ1‖1 max
τ∈[σ,ω]

π(τ)φ(a, τ)

≤ ‖ψ1‖1

∫ ω

σ

β(a, ξ)π(ξ) dξ

(34)

and

π(σ)e−
R

σ

0
ψ2(τ

′)dτ ′

φ(a, σ) ≥ e−‖ψ2‖1

∫ ω

σ

β(a, ξ)e−γ(ξ−σ)π(ξ) dξ

≥ e−‖ψ2‖1e−γω
∫ ω

σ

β(a, ξ)π(ξ) dξ.

(35)

Substituting (34) and (35) in (33), we obtain

(Φψ2)(a) − (Φψ1)(a)

≥ B
(

e−‖v0‖1e−γω − ‖v0‖1

)

∫ ω

0

(ψ2(σ) − ψ1(σ))

∫ ω

σ

β(a, ξ)π(ξ) dξ dσ.
(36)

We have ψ2 > ψ1, (32) holds, and, because of assumption 2,
∫ ω

σ

β(a, ξ)π(ξ) dξ ≥ φm(σ) > 0 for all σ ∈ (0, ω);

hence, the definition of e-increasing operator is satisfied with e(a) ≡ 1

α(ψ1, ψ2) = B
(

e−‖v0‖1e−γω − ‖v0‖1

)

∫ ω

0

(ψ2(σ) − ψ1(σ))φm(σ) dσ

β(ψ1, ψ2) = 2 max
{

‖Φψ1‖∞, ‖Φψ2‖∞
}

.

� �

Combining Lemma 11 and Proposition 12, we obtain

Theorem 13. Let ρ(T ) < 1 and assumptions 1-2 hold. Then, for ‖Iy‖1 small
enough, there exists a unique equilibrium of (6). Moreover, the corresponding force
of infection λ∗ satisfies λ∗ ≤ (I − T )−1u0.

Proof. Lemma 11 shows that all solutions lie in [0, (I − T )−1u0], while Proposition
12 shows that, if

(37) ‖(I − T )−1u0‖e
‖(I−T )−1u0‖ < e−γω,

Φ is e-increasing on [0, (I − T )−1u0].
Finally, when ‖Iy‖1 is small enough, (37) is satisfied (remember the definition

(14) of u0), and Theorem D can be applied. � �

Probably a sharper condition for Φ to be an increasing operator on [0, (I −
T )−1u0] can be found, but (37) suffices for our aims.

6. A numerical example

We illustrate our model by an example somehow inspired by the Italian demo-
graphic setting, and with epidemic parameters similar to what generally used for
measles.

Precisely, fertility and mortality rates are taken from females’ demographic data
of Italy in 2004 [14]. In Fig. 1 we show the functions m(·) and Π(·) used. The
corresponding value of R is approximately 0.6, so that it is definitely a below-
replacement population.

The age-dependent immigration rate has been parametrized as

(38) Ix(a) = Iix(a) Iy(a) = Iiy(a) Iz(a) = Iiz(a)
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Figure 1. The fertility m(·) and survival Π(·) functions used in
the simulations.

where i(a) = ix(a) + iy(a) + iz(a) is such that

∫ ω

0

i(a) da = 1. Hence, I represents

the total immigration rate, and will be used as a free parameter, while the function
i(a) represents the age profile of immigration. As the age profile of immigration
we have used the profile reported in in Fig. 2, that was fitted by Manfredi and
Valentini [19] to Italian immigration data prior to 2000. The profile shows the
typical features of work migrations with a marked peak at young workers ages, plus
a smaller peak at zero age.

From the demographic parameters and the immigration rate, one can compute
through (2) the stationary population. Assuming I = 100, 000 (time is measured
in years), we obtain the population shown in Fig. 2; total population is slightly
above 9,500,000 inhabitants. Note however that the demographic rates consider
only females, so that, assuming 1 : 1 sex ratio and equal survival of males and
females, the total population would be around 19 millions.

As for the distribution of the immigrants among the epidemic classes, we have
chosen

(39) ix(a) = i(a)e−λia iy(a) = i(a)
λi

γ − λi

(

e−λia − e−γa
)

with λi = 4 (year)−1 and γ = 52 (year)−1; clearly iz(a) = i(a) − ix(a) − iy(a).
This amounts to assume that the source population (i.e the population where the
migrants come from) is homogeneously mixing by age, with an average age at
infection around 4 years, and moreover that migrants are not selected from an
epidemioloigcal point of view. Since γ is the recovery rate, this corresponds to an
average infectious period of 1 week.

The contact rates are assumed to follow a WAIFW matrix, with values tailored
to the dynamics of measles in Italy [18].

Precisely, we assume that

(40) β(a, s) =
∑

i,j=1,...,n

βijχIi
(a)χIj

(s) = βij , if a ∈ Ii, s ∈ Ij , i, j = 1 . . . n
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Figure 2. The immigration function used in the simulations, and
the resulting stationary population. Age-dependent immigration
rate I(a) = Ii(a), where I = 100, 000 and i(·) is the function
shown in the figure. The stationary population is obtained with
I(a) and the functions m(·) and Π(·) shown in Fig. 1.

where Ii = [ai−1, ai] are intervals partitioning [0, ω], i.e. 0 = a0 < a1 < . . . an = ω.
In this case, we have

(Tψ)(a) =
∑

i

χIi
(a)

∫ ω

0

ψ(σ)n(σ)gi(σ) dσ

where

n(σ) = Bπ(σ) +

∫ σ

0

Ix(s)
π(σ)

π(s)
ds

and

gi(σ) =
∑

j

βij

∫ ω

σ

χIj
(ξ)e−γ(ξ−σ) π(ξ)

π(σ)
dξ

so that the range of T is in the subspace, Vn, generated by {χIi
(·), i = 1, . . . n}.

Hence, the eigenvalues of T (and so its spectral radius) can be found by looking
at the finite-dimensional operator T : Vn → Vn that (after some computations) can
be represented by the matrix

(41) Tij =

∫ aj

aj−1

k(σ)



βijQj(σ) +
∑

l>j

βilQl(al−1)e
−γ(al−1−σ)



 .

where

k(σ) = B +

∫ σ

0

Ix(s)

π(s)
ds, σ ∈ (0, ω),

Qj(σ) =

∫ aj

σ

e−γ(ξ−σ)π(ξ)dξ, σ ∈ (aj−1, aj), j = 1 . . . n.

In the example, we chose n = 5 and the age grouping 0−2, 3−5, 6−10, 11−19, 19+
corresponding to main school grades in Italy. As regards the matrix β the following
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structure used in epidemiological studies of the transmission dynamics of measles
in Italy [21, 20] was adopted

(42)













β1 β1 β1 β1 β5

β1 β2 β4 β4 β5

β1 β4 β3 β4 β5

β1 β4 β4 β3 β5

β5 β5 β5 β5 β5













so that, through (41), we are reduced to the computation of the spectral radius of
a 5 × 5 matrix.

If (38) holds, it is easy to see that all terms of the matrix T are linear in the
parameter I (remember the definition (3) of B), so that the spectral radius of T is
a linear function of I. It is then easy to find the threshold value of I, i.e. the value
at which ρ(T ) = 1 that, with the numerical values specified in Fig. 3, is I ≈ 74.6.

In Fig. 3 we show the equilibrium values of the proportion infected, Y/N , vs. the
value of the immigration rate. It can be seen that, below the threshold (I < 74.6),
the proportion infected is very close to 0, while above the threshold it rises sharply.
As can be seen from (3)–(2),the population density at demographic equilibrium

 0
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Figure 3. The solid line shows the proportion infected, i.e.
R

Ȳ (a) da
R

n(a) da
, at the equilibrium value of system (6) for different values

of total immigration rate I. Π(·) as in Fig. 1, relative immigration
rate as in Fig. 2. The contact rate has the structure (40) with
the matrix β given by (42). The dashed line shows the proportion
infected in a population with the same population densities, mor-
talities and contact rates, but without immigration. Parameter
values are β1 = 1.254 · 10−5, β2 = 4.68 · 10−5, β3 = 1.16 · 10−4,
β4 = 1.986 · 10−5, β5 = 1.042 · 10−5; the ages used in (40) are
a1 = 3, a2 = 6, a3 = 11, a4 = 19; γ = 52.

is an increasing function of total immigration. Thus, since the force of infection
increases linearly with population density, the infection prevalence increases with
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I, as shown in Fig. 3. However, the joint action of BRF and immigration yields a
stationary population density which is significantly older compared to an underlying
stationary through births and deaths only population, as can be seen in Fig. 2.

In order to disentangle the effect of age structure from that of overall popula-
tion density, we considered a stationary population without immigration, that has
however the same population density (and the same mortality, but higher fertili-
ties) as the population with immigration studied here. The dashed line in Fig. 3
shows, for each immigration level I, the equilibrium infection prevalence in a pop-
ulation without immigration with the same population density as the population
with immigration level I.

Comparing the solid and dashed line in Fig. 3, one immediately sees that a BRF
population maintained by immigration has a much lower infection prevalence (and a
higher threshold for persistence) than a population where stationarity follows from
the balance of births and deaths only. This is because the former population has a
much older age structure that is a much smaller fraction of young individuals (and
in our example contact rates are generally higher among younger age-classes and
most immigrants will have already been naturally immunized in their countries).

Looking carefully, one can also see a qualitative difference between the shapes
of the solid and dashed lines. The dashed line shows a sharp threshold, with
no infection below the threshold. On the other hand, one may note that with
immigration (the solid line) the proportion of infected individuals, while displaying
a sharp bend at the threshold, grows steadily also below the threshold (we have a
‘quasi-threshold’). If we had chosen a smaller proportion of infective immigrants,
the curve would look sharper, as Theorem 3 states.
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Figure 4. The age distribution of the population with constant
fertility, mortality and immigration rates at different times. See
the text for more explanation.

Finally, we analyse through simulations the importance of transients for the
model. To this purpose, we consider again system (6a), but with initial conditions
based on the current Italian demographic structure so that n(a, t) = X(a, t) +
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Y (a, t) + Z(a, t) is not constant in time; hence, we also changed the boundary
condition (6b) to

X(0, t) =

∫ ω

0

m(a)n(a, t) Y (0, t) = Z(0, t) = 0.

In Fig. 4, we show the predicted demographic evolution starting from the current
Italian demographic structure with constant fertility and mortality rates shown in
Fig. 1, and immigration rate shown in Fig. 2.
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Figure 5. Total number of infectives vs. time. The solid line
shows the solution of (6) starting from the stationary population
(3)–(2); the dashed line the solution starting from the population
shown, at t = 0, in Fig. 4. Parameter values are as in Fig. 3 with
I = 100, 000.

In Fig. 5, we show the predicted evolution of the total number of infectives under
two different scenarios: in the first, we start from an initial population inspired by
the current demographic situation, as outlined above; in the second, we start from
the stationary population shown in Fig. 2; in both simulations the initial fractions
of susceptibles, infectives and immune are close to what would be a stationary
solution consistent with the force of infection estimated for measles in the Italian
population [18]. It can be seen that the two simulations are rather different: starting
from the current demographic situation, initially there are oscillations, close to a
biennial period, in the number of infectives, while starting from the stationary
population one needs (because the overall population density is lower) several years
for the susceptibles to build up enough to sustain an epidemic, followed by longer
and milder oscillations. Further on, however, the oscillations in the solution “from
current” damp out quickly, and, after a few decades, the number of infectives
decreases steadily towards the equilibrium; on the other hand, the oscillations in
the solution “from stationary” persist over all 200 years of simulations. It apppears
then that the demographic transient has a strong stabilizing effect on the epidemic
oscillations, and this fact, not easily explained, has been verified with several other
initial conditions.
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Moreover, the influence of initial conditions can still be seen after 200 years of
simulations, since the two solutions are still noticeably different. Hence, the analysis
of the stationary case, while it may emphasize relevant quantities to consider, is
not an adequate predictor of the dynamics of the infection over a reasonable time
horizon.
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