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We present a framework for performance prediction of distributed and
mobile systems. We rely on process calculi and their structural operational
semantics. The dynamic behaviour is described through transition sys-
tems whose transitions are labelled by encodings of their proofs that we
then map into stochastic processes. We enhance related works by allowing
general continuous distributions resorting to a notion of enabling between
transitions. We also discuss how the number of resources available af-
fects the overall model. Finally, we introduce a notion of bisimulation that
takes stochastic information into account and proves it to be a congruence.
When only exponential distributions are of interest our equivalence induces

a lumpable partition on the underlying Markov process.
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1. INTRODUCTION

The wide dissemination of Internet sites and the emerging paradigm of global
computations based on the mobility of both code and computations make quant-
itative analysis of specifications as important as qualitative analysis. The need
for integration of qualitative and quantitative analyses in developing complex sys-
tems since the early stages of projects has been well-accepted. Full integration is
presented as a challenge for the future of computer science in [14].

An attempt at integration is given by Markovian and stochastic process algebras
[24, 27, 9, 15, 30, 16, 31, 4, 11, 44, 45, 7, 8]. Process algebras are foundational
calculi used to describe the concurrent and distributed structure of systems. They
are made up of a few operators such as: 1) a.— that which describes sequential com-
position of actions, ii) — | — that which is the parallel composition of processes, iii)
— + — that which denotes a nondeterministic choice. We can view process algebras
from different levels of abstraction. A common interpretation is seeing these calculi
as specification languages that must be refined towards a real code. The theory of
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behavioral analysis developed for process algebras (see [35]) postulates that refined
descriptions are still expressed in the same calculus but through different programs.
Then, some relations (usually a bisimulation) are established between the two de-
scriptions of the system to ensure that an implementation behaves according to its
specification. We are proposing here a different use of process algebras. We inter-
pret these calculi as an intermediate language into which programs written in real
languages can be translated. For instance, languages like Facile [23], CML [39] and
Pict [42] can be easily mapped to process algebras being defined as directly extend-
ing them. We will come back to this interpretation of process algebras when we
describe our approach to quantitative analysis. For the time being, we assume the
classical interpretation as specification languages to survey stochastic extensions of
these calculi.

Stochastic process algebras enrich the actions of classical calculi with continuous
probabilistic distributions, yielding prefixes such as (a, F). The distributions F
are assumed to be exponential in almost all the proposals. Unfortunately, many
phenomena that arise in practice are naturally described by non exponential dis-
tributions. Consider, for instance, the routing of a message on a network. Even
if the transfer of the message between two adjacent nodes exposes an exponential
delay, the overall routing may not. Furthermore, the industrial environment calls
for general distributions, especially in the areas of workflow models, robot systems
and ATM networks [29]. Another limitation of stochastic process algebras concerns
the modification of the syntax of the language by inserting probabilistic distribu-
tions within prefixes. Therefore, the designer must specify the intended behavior
of a system once he has in mind all the features of the architecture on which the
specification will be implemented. Otherwise, there is little hope of associating
suitable distributions with prefixes. For instance, the usage of a mobile agent or
of a remote procedure call for an interaction must be decided when designing a
system. But the fewer details needed at specification time, the better.

Our idea is to retain the advantages of stochastic process algebras without modi-
fying the syntax of calculi that remain independent of the architectural aspects of
implementations. We only change the abstraction level at which process algebras
are interpreted. The association of probabilistic distributions with actions is then a
matter of the compiler or the interpreter of the language that necessarily has all the
relevant information about the target architecture. In this paper we concentrate on
how the compiler associates quantitative information with actions. The translation
of real languages to process algebras is out of the scope of this work (some examples
can be found in the literature [23]). We start with a description of the system given
via a process algebra allowing for code mobility. For instance, the m-calculus [36],
Plain-CHOCS [52], the join calculus [22], Dm [50] and the ambient calculus [12]
have recently been proposed as an evolution of classical process calculi and they
handle mobility naturally. Here we use the m-calculus that permits port names to
be transmitted from one process to another in communications. Consequently, the
interconnection structure of a network is no longer static, but can vary dynamic-
ally when processes communicate. This simple conceptual extension is sufficient to
describe the mobility of processes [51].

The quantitative parameters that we associate with actions are determined on
semantic grounds along the lines of [41, 10, 40]. Here we use structural operational



semantics (hereafter abbreviated as SOS) [43], the usual way of assigning meaning to
process algebras. The advantages of SOS are twofold. First, we obtain a description
of the abstract machine that executes process algebra programs. Thus we have a
precise description of the low-level operations needed to execute the actions of the
program. Second, the SOS definitions are logical in style, mathematically simple
and appealing. An example is the rule for the parallel composition of processes:

P4 p
PIQ5 PIQ

The interpretation of this inference rule is that whenever the premise occurs (that
is, satisfied), the conclusion occurs as well. Therefore, if P can move to P’ via a
6 action, the parallel composition P|@ can perform the same action and becomes
the configuration P’|Q.

We can now see the derivation tree of a transition (i.e., the set of inference rules
applied in the derivation) as an encoding of the low level operations of the abstract
machine needed to perform the action corresponding to the transition. We thus
enrich transition labels with a linearization of their deduction trees. Look again at
the rule for parallel composition:

Pt p
PIQ % P/l

In the conclusion label we recorded the application of the rule via the tag ||o, where
0 means that the left component is moving. The new operational semantics is called
proved [6, 18]. A version of this semantics is available for the m-calculus [20] and
for the real programming languages Facile [21] and Esterel [34].

We implement a $ function that takes as arguments the new transition labels and
provides us with a parameter expressing the execution cost (duration) of the trans-
ition. The $ function encodes the cost of executing the run-time support routines
of the language to perform the action corresponding to a transition. Unfortunately,
this is only possible when the history of the system does not influence the execu-
tion of the current transition. In other words, the system must have a memoryless
property. Consequently, a function such as the one above is only suitable when
durations of transitions are exponentially distributed. But we have already poin-
ted out the limitation of exponential distributions. Therefore we need to know the
enabling relation between the transitions of the system in order to handle general
distributions. This allows us to keep track of the time spent by an action in the
states in which it was enabled but not selected to fire. Once again the deduction
trees (or better their linearizations) help us in the definition of enabling. In fact,
we only need to establish a prefix relation on the strings of tags in the label of two
transitions to see whether one of the two enables the other [20]. The intuitive idea
is that two actions sequentially nested into a chain of prefixes are derived by using
the same initial set of SOS rules. We then use this information together with the $
function to compute the firing distributions of transitions.

The distribution of a # transition must be influenced by those of all the transitions
fired from the states where # was enabled. This was called enabling memory dis-



cipline in [1]. The Author proposed in [46] a stochastic extension of the m-calculus
with general distributions, but in that case the syntax was enriched by putting
distributions within prefixes.

We then introduce an enhanced version of the enabling memory discipline by
using a different notion of timer associated with a transition. In classical stochastic
process algebras the duration of a transition is computed by calculating the time
necessary to finish its work when scheduled on a CPU. Transitions do not consume
time when the processes which perform them are not active. Therefore performance
measures are ideal: any process always has a free processor for it. On the other
hand, the measured performance of a system is in terms of CPU time consumption.
This is a good index for comparing the performance of two systems, but it is far
from being significant as far as the response time is concerned. In fact, most of the
user’s waiting time is due to scheduling activities and idle times. To better express
response time, we assume that the timer of a transition starts when it is enabled
the first time and stops when the corresponding activity is performed, counting
idle times as well. Under this interpretation of transition timers, the stochastic
semantics can no longer assume that any process has its own processor. In fact,
the number of available processors greatly influences the idle times and hence the
response time of systems. According to the above discussion, we recover in the
stochastic field the classical interpretation that interleaving descriptions actually
correspond to uniprocessor architectures. Therefore, we modify the semantics of
the m-calculus to take into account the number of available processors.

Two concurrent transitions can be executed on different processors and hence
their durations are independent. If we consider the transition system representation
of the two concurrent transitions, we have two computations starting from the same
state and leading to the same target that differ only in the order of transition
executions. This representation is adequate for a uniprocessor architecture where
only one process is running at a time. This interpretation leads to the definition of
enabling memory discipline as given in [46] and described above. If two processors
are available, the two transitions are executed on different machines and therefore
their durations must be independent. To model the number of processors available
within the semantic definition of processes, we resort to higher dimension transition
systems briefly outlined in [20]. Essentially, transitions can carry over as many
labels as the number n of processors. We include in the transition systems the
diagonal of the concurrency diamond of dimension n. In this case, we only need to
extend the definition of concurrency to higher dimension transitions and then apply
the definition of enabling memory discipline adapted to multi-labelled transitions
(see also [47]).

A major problem in using general distributions to evaluate systems is their dif-
ficult tractability. In fact, it 1s difficult to find closed form solutions of stochastic
processes and often extensive simulation is required. To improve feasibility, we in-
troduce a class of transition systems (that of maximal parallelism) for which the
computation of performance measures, still using general distributions is easy. Un-
fortunately, we cannot derive ezxact measures, but only upper bounds to system
response time.

To ease the integration of qualitative and quantitative analyses of systems, we
define a bisimulation-based equivalence to compare program performance. It ex-



tends the late bisimulation for the m-calculus [37] in the style of [33, 30, 28]. We
keep track of the enabling relation between transitions when comparing two systems
to get a congruence result for the full m-calculus without matching similarly to [5].
Since equivalences are often used to implement model minimization to speed up
quantitative analysis, we prove that our bisimulation induces a lumpable partition
on the underlying Markov process when distributions are restricted to exponential
ones.

This article i1s organized as follows: in the next section we introduce the ba-
sic notions of the m-calculus. Section 3 defines its stochastic semantics. Enabling
and concurrency are defined in Sect. 4. They are then used to compute the dis-
tributions of transitions and eventually the stochastic process associated with a
transition system. Section 5 refines the enabling memory discipline introduced in
the previous section to cope with the amount of resources available. The case of un-
bound resources is discussed as well. Section 6 introduces a notion of performance
bisimulation to cope with the stochastic properties of systems. Section 7 instanti-
ates our framework to exponential distributions. Finally, we discuss related work
in Sect. 8.

2. THE =n-CALCULUS

In this section we briefly review the m-calculus [36], a model of concurrent com-
municating processes based on the notion of naming.

DEFINITION 2.1. A is a countable infinite set of names ranged over by @, b, ..., z,y, ...

and 8§ = {my, 71,7, ...} is a countable infinite set of invisible actions ranged over
by 7;, with A NS = (. We also assume a set of agent identifiers, each with an arity,
ranged over by A, Ay,.... Processes in P, ranged over by P, @, R, ... are defined
as

P:=0|X|mnP|(vz)P|[z=y|P|PIP|P+P| Ay, ---,¥n)

where ™ may be either z(y) for input, or Ty for output (where z is the subject and y
is the object) or 7; for silent moves. The order of precedence among the operators is
the order (from left to right) listed above. Hereafter, the trailing 0 will be omitted.

In the above definition we used a set of silent moves to distinguish their different
durations. We sometimes write (v, y) P for (vz)(vy) P. Each agent identifier A has
a unique defining equation in the form A(g) = P (hereafter, § denotes y1,...,yn),
where the y; are all distinct and are the only free names in P.

The operational semantics of the w-calculus is defined in the SOS style. We
use u as a metavariable for transition labels. We introduce set .4 of visible actions
ranged over by «a (i.e., z(y) for input, Ty for free output, and Z(y) for bound output



1), Note that the transition labels differ from prefixes m because of the presence
of bound outputs.

We recall the notion of free names fn(y), bound names bn(p), and names n(u) =
fn(p)Ubn(p) of alabel p; only the bound names are the objects of input and of the
bound output. Functions fn, bn and n are extended to processes by inducing on
their syntax and considering input prefixes and v operators as binders. We define
the structural congruence = on processes as the least congruence that satisfies the
following clauses:

e P =@ if P and @ differ only in the choice of bound names (a-equivalent),
o (vz)(vy)P = (vy)(vx)P.

We define our enhanced labels in the style of [17, 6, 20]. A transition label records
the inference rules used during its deduction, besides the action itself. We call proof
term the encoding of the proof in an enhanced label. Finally, we introduce an /¢
function that takes an enhanced label to the corresponding standard action label.

DEFINITION 2.2. If £ = {||o, |1} with x € L*, O = {40, +1,=m, (vz), (§)} with
o€ OUL, and if ¥ € (LUQO)*, then the set © of enhanced labels (with metavariable
6) is defined by the following syntax:

0 :=da | I | 9{|oVoan, [1P101)

where ag = 2(y) iff a; is either Ty or Z(y), and vice versa.

Function £ is defined as £(Ja) = a, £(I7;) = £(I{||oV0a0, [1P101)) = T.

A +g (+1) tag means that a nondeterministic choice has been made in favour
of the left (right) component. Similarly, a [|o (||1) tag records that the left (right)
component of a parallel composition is moving. Restriction is reported on the labels
to record that a filter has been passed. We record the resolution of a matching
through =,, tag, where m is the size of the data to be compared. Communications
are labelled by a pair instead of a 7 to show the components which interacted (and
proof of the relevant transitions). We also record in the labels the actual parameters
y of a definition because their number and size affect the instantiation cost.

Our transition system for the m-calculus is shown in Tab. 1. A variant of P 25
is a transition which only differs in that P and @ have been replaced by structur-
ally congruent processes, and g has been a-converted, where a name bound in g
includes @ in its scope [37]. For instance, z(y).yz.P M} yz.P{y/w} is a variant of

z(w).wz.P ﬂ) wz.P. The transitions in the conclusion of each rule stand for all

their variants. The Com; and Closeq rules are obvious and are therefore omitted.

IThe effect of a bound output is vanishing a v operator. Consider for instance the transition

Q = (vz)yz.P M} P. The intuition behind this operation is to make the private name z of

@ available to the external environment. In fact, operator v can be interpreted as a delimiter of
an environment, while the bound output is an open of that environment. This is why the bound
output is sometimes referred to as scope extrusion in the literature.



Table 1

Proved transition system for the mw-calculus.

)
P{j/3} = P’
Act:n. P 5 P ]de:%,@(f)zp
Q(y) — P
P4 p _ P4 p
Parg : T,bn([(@)) NM(Q)=0  Sumg: ———
PIQ =5 P'|Q P+@Q =P
pLp _ pLp
Pam : T},bn([(@)) ﬂfn(Q) = @ Sum1 : 7+191
Q|P — Q|P Q+P—P
pLp N P pr
Res : On .z € n(£(8)) Open : — 0" #+y
(vz)P —= (vz)P’ (vy)P 2y, p!
P STy P/7 Q ¥ z(w) QI
Comyg : — py
P|Q (llovzy,|[19 z(w)) P1|Ql{y/w}
9T (y) , ﬁl.r(w) f
P P,Q Q .
Closeg : . yEMm(Q)

{llo 9T (y), |11 0" 2(w))

PlQ (vy)(P'|Q{y/w})

Just to show how enhanced labels are inductively built while deducing transitions,
consider the process

(I/ I)(EI.PQ + Eypl | Pg) + P3.

The derivation of the output of z on channel a starting from the axiom is

az.Py =5 Py
ar.Py+by. Py %% py
@w.Py + by. Py | Py oo™
(vz)(az.Po+ by. Py | Ps)

(1/ :L‘)(E,LPQ + Eypl | P2) + P3

Sumyg

, Parg
Py| Py

[lo+oa(z) PO | P2

+ollotoa(z ’
olloto®@),  py | Py) + Py

, Open

Sumg

Hereafter, we write a transition as P N @ only if it is deductible according
to the inference rules in Tab. 1; furthermore, we simply write it as #, when it is
unambiguous.

DEFINITION 2.3. A proved transition system is a quadruple (P, ©, —, Py), where
P is the set of states (processes), O is the labelling alphabet, — is the transition
relation defined in Tab. 1, and Py € P is the initial state.



Standard semantics of the m-calculus is obtained by relabelling each transition
shown in Tab. 1 by using function ¢ in Def. 2.2.
We now define proved computations.

DEeFINITION 2.4. If Py i) P; is a transition, then P 1s the source of the transition
and Py is its target. A proved computation of Py is a sequence of transitions Py bo,
P L1, .. such that the target of any transition is the source of the next one.
We let &, ¢’ range over proved computations. The notions of source and target are
extended to computations.

3. STOCHASTIC SEMANTICS

We now show how to derive a probabilistic distribution F' from a 6 label. The
intended meaning of F is the cost of execution (duration) of the action p = £(6).
The actual cost of @ depends on the basic operations that the run-time support of
the target architecture performs for firing p. For example, the resolution of a choice
imposes various operations on the target architecture such as checking the ready list
or implementing fairness policies. An action fired after a choice costs more than the
same action occurring deterministically. The other operations of our calculus reflect
analogous routines of the run-time support and delay the execution of an action
as well. Therefore, we first assign a cost to the transition corresponding to u on a
dedicated architecture that only has to perform p. We then model the performance
degradation due to the run-time support by introducing a scaling factor for any
routine implementing the transition. The new semantics takes into account the
target architecture on which a system is run.

We derive the distributions of transitions by inspecting the syntactical contexts
into which the actions which originate them are plugged. In fact, the context in
which a p action occurs represents the operations that the target machine performs
for firing p just because the structural operational semantics of a language specifies
its abstract machine in a syntax-driven logical style. Accordingly, a linearization of
a transition deduction (a proof term #) represents the execution of the corresponding
run-time support routines on the target machine.

For instance, look again at the sample deduction § = +¢||o +0¢ @(z) reported at
the end of the previous section. The enhanced label expresses that the abstract
machine resolves two choices in favour of the left alternatives, thus adding extra
costs to the output operation. Similarly, the selection of the left component of the
parallel composition will have a cost depending on the allocation of processes and
scheduling policies. The bound output means that the abstract machine has to
handle the data structure representing the process environment in order to export
the name x which is required to be fresh.

The tight connection of our cost model to the program syntax is a design choice.
In fact, the way programs are written influences their performance. Consider two
programs that only differ in some superfluous assignments or irrelevant loops. An
example in our framework could be a P process that does not contain the name z
and the (v z) P process. A check on the name z is performed by the run-time support
in the second process although z does not occur in P so that the two processes are



behavioral equivalent, but (v )P is slower than P. To further support our design
choice, we recall that context-free performance prediction can produce results that
are inadequate an order of magnitude.

Following what is discussed above, we assign a cost to each inference rule of
the operational semantics via a $ function. In other words, the occurrence of a
transition receives a duration time computed according to its deduction. The $
function encodes the delay that the abstract machine adds to the execution of
an action in order to handle the data structures of the run-time support of the
language. Of course, the nearer the abstract machine to the target architecture,
the more accurate the prediction of execution costs will be. Note that our approach
allows us to estimate the performance of the same program on different architectures
simply by changing the cost function. The classical comparison of different programs
(but equivalent as far as functionalities are concerned) on the same architecture is
possible as well by fixing a unique $ for all of them.

There is no need to fix a $ function here, and we let it be a parameter of the
definition of our model. For the sake of simplicity, we assume that $,(u) = F, €
F (hereafter, we use F to denote a set of continuous probabilistic distribution
functions) and that the slow-down factor is $,() = r € [1, +00). $, can be defined
by inducing on the structure of ¥J. For instance, we can sum the slow-down factors
of any o € 9 as:

r=8,(9) = Z$O(o)

o€

where

So(lli) = ro, So(+i) =71, So((v@)) =12, $o(=m) =13, 3.((9)) = ra

where 7; € [1,400), i = 1,..,4. Of course, F, and r depend on architectural
parameters as well. See [41, 40] for a complete definition of $, in the case of
exponential distributions, and [10] for the description of an implementation.

We now consider synchronizations. The two partners perform independently
several low-level operations locally to their environment in order to set up the
structures they need to communicate. These operations correspond to the rules
applied to satisfy the premises of the C'om and Close rules, which are recorded
by pairing the proof terms corresponding to the local operations of the partners.
Afterwards, in order to pass through the context common to the two partners, a
few operations are necessary. The cost of these additional operators is derived using
$,. For instance, consider the process

R+ ((va) (@ +by) | ((a(x) [ b(z)) + Q).

The communication along link @ has the label +1(||o+0@(2), ||140||oa(z)). The two
components of the pair are the local operations of the partners, while the leftmost
+1 is a common operation performed after the C'loseg rule has been applied.

We then use the function fiy : £* x £* — [1,400) to take the distance of the
two partners into account. For encoding locations, we use xo, x1 € {|lo,|[1}" = £*.
To understand why, consider the binary abstract syntax tree of a process, where
the parallel composition | is the only syntactic operator. Then, a sequence Y is the



T
N Y

P
V *
P; Py

Figure 1. Syntax tree of (Py |P1)|(P2|(Ps | Ps)).

access path from the root (the whole process) to a leaf (a sub-process). Consider
for instance (Py | P1) | (P2 | (Ps| Ps)) and its syntax tree shown in Fig. 1. The access
path |]1]]1]|o from the root uniquely identifies the process Ps, while ||o||; is the path
for P;. Therefore, the allocation of processes can be described by All : £* — Loc,
where Loc 1s the set of physical locations. We do not explicitly introduce the
function All here for the sake of presentation. Actually, All is only a degree of
indirection from strings in £* (that hereafter by abuse of wording we call locations).
The two arguments of f(y, together with allocation tables, can be used to determine
where the two communicating processes actually reside. Note that binary trees are
only used to generate names of locations and they are completely independent of
the topology of the interconnection network.

To apply function fiy, we need an auxiliary function - : (LU O)* — L~ that
extracts the parallel tags from proof terms, inductively defined as (e is the empty
string)

o a = {l T

- ¥ otherwise

The tags that we discard from enhanced labels only specify characteristics of se-
quential components of the system. Thus they are not relevant for allocation tables.

Hereafter, we use f for the density function corresponding to the distribution
function F' of a continuous random variable. Remember that the relation between
density and distribution functions is f:o f(t)dt = F(T), or equivalently F'(t) = f(t),
where F’ is the derivative of F.

Function $ is defined by using the auxiliary functions $, as the basis along with
$, and f;y. To slow down the firing time of the transitions, we use a homotety 2
on the arguments of the distribution functions. In other words, given a function
F(z), we define G(z) = F(z/t) with t € RT. When F is a distribution function,
limg_ 400 F(z) = 1 and the speed at which F' approaches its asymptotic value 1

2Given a vector space V on IR and t € R, t > 0, the function t1 : V — V with & — tz is
a homotety. If V' is equipped with a scalar product (e.g., IR™), a homotety with ¢t < 1 (¢ > 1)
makes the distance between any two points in the space smaller (greater). By abuse of wording,
sometimes the term homotety is used to refer to the constant ¢, as well. In our setting, we use the
constant ¢ to tune the arguments of distribution functions and we still call the transformation a
homotety.



makes the time interval described by a random variable T with distribution F' vary.
The faster ' approaches 1, the smaller the time interval, and hence the faster the
transition corresponding to 7. The homotety z/t makes G faster than F when
t < 1, and G slower than F when ¢ > 1. This is why we let the codomain of $, and
f() be [1,+OO).

Note that one may resort to density functions f(z) to slow-down transition
speed. The idea is to increase the expectation of the time interval which is EX; =
[ zf(x)dz. We still apply the homotety z /¢, yielding a function fi(z) = f(z/t).
The expectation becomes

EX, = /ijt(ﬂf)dl‘It/(a?/t)f(l‘/t)dl‘/t =tEX;.

This result agrees with the homotety applied to distribution functions because ¢ > 1
increases the expectation and thus slows-down the corresponding transition.
We can now define our cost function $.

DEFINITION 3.1. Given a set F of continuous probabilistic distributions, the func-
tion $ : @ — F is defined as follows:

$(00) = g 55) i $al) = F(2),
$(9(Voao, P101)) = F( - ) if min{$(Joao),$(Y101)} = F(x)

$,(9) @ f() (9o, 91)

where o : [1,+00) x [1,+00) = [1, +00) is monotonic and such that z e y > z with
z€{x,y}

For instance, the sum and multiplication on IR satisfy the requirements for e.

Note that determining the distribution of synchronizations is a key point in dis-
tinguishing different proposals of stochastic process algebras. Here we demand its
computation to function $. This means that the distributions of synchronization
vary according to the context into which they are plugged and to the architectures
on which the partners run. We thus reduce the selection of distributions to the se-
lection of suitable architectures and placement of processes. This way the designer
may abstract from stochastic details and concentrate on the characteristics of the
hardware. Examples of application of this mechanism can be found in [40, 10].

Since we are dealing with performance evaluation, we need to eliminate the non-
determinism introduced by the choice operator from stochastic transition systems.
Hence, we introduce a race condition that selects the transition to be fired among
the ones enabled in a state. All the enabled transitions attempt to proceed, but
only the fastest one succeeds. This mechanism makes the nondeterministic choice a
probabilistic one. Note that the continuous nature of probabilistic distributions en-
sures that the probability of two transitions ending simultaneously is 0. Moreover,
as the duration of transitions is expressed by random variables, different transitions
are selected on different attempts.

Hereafter the apparent rate of an action a in P (written r4(P)) will be the rate
captured by an external observer of the system, which can only register actions
and their occurrence frequency (for a formal definition see the theorem below)



[30]. Also, T; denotes the random variable describing the time interval associated

with a P 2% P; transition. The following theorem shows how to compute useful
probabilities and transition distributions.

THEOREM 3.1. The probability of P BN P is

pi:Awfi(t)' II (-s@)@)d:

8
P—>P;
iZ£]

the distribution of the random variable T; which describes the time interval associ-
ated with P i) P; s

Jo 5@ T1 o, (1= 8(65)(2)da
Fi(t) = #jpi ;

the apparent rate of an a action in P is

ra(P)= > pi;

el
P—P;
£(8;)=a

the probability of P LN P;, £(6;) = a, given that an a action occurred is

ra(P)’

Proof. By race condition, the probability that P BN P; occurs is ”Pr(/\i;éj T <
T;). To compute this probability, consider the conditional probability distribution

Fryo; =Pr( \ Ti<Ti|Ti=t)=Pr( \ Ti>t|Ti=t)=

8 8
P—P; P—P;
i£] i£]

by independence of the variables T}

Pr( N\ Ti>t)= T (1-506)1).

8 8
P—P; P—P;
i£] i£]

Then, the probability of P RN P; 1s given by the continuous version of the theorem
of total probability

/fﬁ-(t» T (1 -806;)0)dt = pi.

8;
P—P;
i



Now consider the second statement. By definition of distribution function,

F)y=PrT;<t] N\ Ti<T)=

8
P—P;
i£]

by the continuous analog of Bayes’ rule

o Fi(@) Pr(\ o, Ti<Tj|T; < t)de
P—P;
i£] .
I Fi@) - Pr(N o, Ty <Tj| Ty < t)da
P—>P;

i

We can write Pr(A,,; Ti < Tj|Ti < 1) as Pr(\ s, Tj > z), and by independ-
P—2p;

J
7

i£]
ence of the variables Tj, we obtain

Pr( N\ Ti>a)= [ PrTy>2)= [] (1-$06))(x)),

8 8 8
P—P; P—P; P—P;
1#£] i£] i£]

from which the thesis follows.

The apparent rate in the statement can be written as

ro(P)= |J Pr( \ Ti<Ty) =

8; 6;
P—P; P—>Pj

£(8;)=a iZ]
because Vi 1. (A o, T <T)N(A o, Ti<T;)=0
P—>P; P 3
i#] I#7
S e\ B<n)= Xom
P p, pipj pip,
£(0;)=a iZj £(8;)=a

The conditional probability of the statement can be written as

Pr( N\ T<Til /) ( N\ Tu<Ty)=

6, 8y, 6
P—P; P—>P; P—5P;
i£] £0r)=a  h#j

by definition of conditional probability

(A o Th <Tj))

7)r(/\Pi)P Ti<di A VPG—”>P P_yp.
i fn)=a  h#j _

PrV ow (Ao Th<1y)

%h
P—>P;
L(0r)=a h#j



because T; is associated with an a-transition and because the denominator is r,(P)

Pr(N o, Ti<T)

P—5p;
i _ _bi
ra(P) ra(P)’

To get performance measures from our transition systems, we must update the
distributions of the random variables that express the time interval associated with
transitions in correspondence with branching points. We also compute the occur-
rence probability for any transition and record it in the transition labels. The
first two statements of Theorem 3.1 allow us to compute the correct occurrence
probabilities and distributions. The new transition system is called stochastic.

DEFINITION 3.2. The quadruple (P, 0 x F x [0..1], =, Py) is the stochastic trans-
ition system associated with process Py, where the real in [0..1] denotes transition
occurrence probability. The relation — is defined as

plip
p foliry, p
where
[ f@) T o, (1—$(6))(x))de
P—>P;
Fi= — i#] and
TR@ I ., (1-80)@)d’
P—P;
1#£]
pi:/o £y T (0—=8(8;)(1))dt.
Pi)Pj
127

The labels distinguish stochastic transitions from proved ones.

4. ENABLING MEMORY DISCIPLINE

We now introduce a relation of enabling between the transitions of a computa-
tion simply by looking at their labels [20]. This relation between transitions will
be used in the next section to deal with general distributions when the random
variables associated with the transitions of a computation are not independent.
Hereafter we write 9 in place of & for the sake of readability. Also, we define the
enabling relation on proved computations. Its extension to stochastic computations
only amounts to applying the definitions to the first component of the stochastic
transition labels. Consequently, enabling could be computed simultaneously with
stochastic information. We prefer to present it as a further step simply to improve
readability.

4.1. Enabling and concurrency
We first define structural dependencies. A transition labelled ¥y depends on a
previous transition labelled 'y’ if ¥ is a prefix of ¥ (the tuning needed to cover



communications is explained below). The underlying idea is that the two transitions
have been derived using the same initial set of rules and are thus nested in a prefix
chain (or they are connected by communications in a similar way).

DerFINITION 4.1. If Py ﬁ) P i) i} Pn41 1s a proved computation, and
hereafter 7,7 € {0,1}, then 6, has a direct structural dependency on 6, h < n,
(0 =1, 0,) iff

str

o 0, =Vpu, 8, =¥y and ¥’ is a prefix of ¥; or

o O = 9p, O = &' (Dhuy, 9 puy) and Fi.¥'9; is a prefix of 9J; or

o 0, = 9(opo, F1p1), O = 'y’ i . ¥ is a prefix of 99;; or

o 0 = 9{(Jopuo, V1p11), Op = V' (Fppg, dipy), 31,5 . 19’19;» is a prefix of ¥4;.

The structural dependencies of 8,, are obtained by reflexive and transitive closures
of =1, ie., =<sr = (ZL,)%.

str —str

The last two items in Def. 4.1 say that a # transition enables a communication
if it enables one of its components. Also, we need the transitive closure of <!, to
implement the cross inheritance of the causes of the communication partners for
the residual processes.

Consider the process

Py = (vb)(a.b| d.b.(vz)(F2 | 72))

and its proved computation (here only labelled with tags ||;; (v b) which prefixes
all labels is omitted)

[loa [l1d

Py Py

P2 <||Db;||1b> P3 ||1||UE(Z) P4 ||1||1?Z (Vb)(0|(0|0)) (1)

Since ||1, the proof term of b, is a prefix of the proof term ||1||o of the bound output,
Z(z) depends on the communication, thus it also inherits the causes of the sender
(the first transition). The bound output Z(z) also depends on the second transition
whose proof term is a prefix of its own.

The second step defines name dependencies that are only generated by bound
outputs. This is because a name dependency between an input, which binds a name
y, and its following usage always induces a structural dependency as well (see [20]
for more details).

DerFINITION 4.2. If P, i} P, i> o ﬁ) P, 41 1s a proved computation, then the
name enabler of 0, if any, is (the unique) 0 (0n <nam 0n) such that £(6,) = T(a),
Vi.h < j<nagbn(t(d;)), and £(60,) € {az,a(z),a(z),ya}.

Look again at computation (1). The output on link z depends on the bound
output, as z has been extruded by Z(z).

All the dependencies of a transition are the union of its structural dependen-
cies, its name dependency #, and the set containing the name and the structural
dependencies of §. Thus the enabling relation is

== (jstr ) ‘<nam)*~



We also need the definition of a concurrency relation (—) between transitions
that we recall from [20]. Roughly, two transitions are concurrent if they result from
firing two prefixes lying on opposite sides of a | and there is no way of sequentializing
them.

DeFINITION 4.3. If P ﬁ> P i) i} P,41 is a proved computation, then
the concurrency relation between transitions is — such that 6, — 6, < 0,460,.

The above definition allows us to form the following theorem, which is proven in

[20].

THEOREM 4.1. If Cle,e],C'[e, ] Co[e,e] and Ci[e,e] are (non-empty) contexts
with (ezxactly) two holes, then the proved transition system contains the diamond

C[ﬂ'o.P, 7T1.Q]
PN
C()[}DJ 7I'1.Q] Cl[ﬂ-O~Pa Q]

x g

C'[P, Q]

with actions 0y (61) originated by the same prefiz my (1) if and only if 6y — 6;.

4.2. Distribution of transitions
We now use enabling to keep track of the history of a system to determine the
firing distribution of transitions. Here we use the enabling memory discipline with
race defined for stochastic Petri nets [1] and used in TIPP stochastic process algebra
[24] (although implemented with a different mechanism; see below). The firing
distribution of a transition accounts for the work performed by the corresponding
action once it becomes enabled.
Consider for instance the process alb, and its computation

alb 2% o[ 1% 1o

Since the transition alb LN al0 is possible as well because ||gaZ||1b, and the
selection of the one labelled @ does not prevent b from occurring, the random
variable describing the time interval Ty associated with the first transition is not
independent on T associated with the second one. In fact, the time interval of the
b-transition in the computation above overlaps with and continues after Ty. Thus,
according to the enabling memory discipline, the variable 77 must account for the
time elapsed during the firing of a, plus the extra-time up until the completion of
b.

In [1], the enabling memory discipline with race is implemented through so-called
age variables associated with transitions. Instead, [24] modifies the syntax of the
language (and hence its semantics) in order to keep track of the number of time



intervals during which a transition was enabled, but a concurrent one was selected
for firing. We show here that we do not need to modify the syntax of the w-calculus

or the states of its transition system to handle general distributions.
80,Fo,po 01,F1,p1 O, Frn,pn
Let P() > P1 RN

P, 41 be a stochastic computation, and
assume that one wants to determine the firing distribution of #,,. Since mutual
exclusive (or conflicting) transitions are represented by branching points in the
structure of transition systems, any pair of transitions in a given computation is
either in an enabling or in a concurrency relation (see Def. 4.3 and also [20]).
Therefore, we only need to find the maximum ¢ (0 < i < n), if any, such that
6; < 6,. Then, all the transitions following #; and preceding 6, are concurrent
with 6,,. (Note that there is at least one such transition if i < n — 1.) All the time
periods 1in which these transitions occurred must influence the firing distribution of
f,. We first need an auxiliary definition of immediate dependency. A transition 6;
immediately enables #,, iff there is no transition between 6; and 6,, that enables 6,,.
We denote the new relation <. because 1t 1s the covering relation of <.

f0,Fo,p 01,F1,p 05, Fn\pn . .
DEFINITION 4.4. If Py — 2% pp 2212, — Pp41 1s a stochastic

computation, then 0; immediately enables 6, (0; <. 0,) iff 6; < 0,,and ¥j. i < j <
n, 6]' ﬁ Hn

Note that the new relation <. only differs from <!,  because the latter rela-
tion can select transitions which are not the immediate enablers of the current
one. For instance, consider computation (1) again. It is |[;d <I,. ||1][oZ(z), but
|ld Ze [l1lo(2).

We can now define the distribution of the random variable 7, associated with

O .

f0,Fo,po, P 01,F1,p1 Or, FrsPr P
1 -

DerFINITION 4.5. If P wt1 18 a stochastic

computation, then the distribution of T, is

n—1 n—1
Pr(Ty <t+ > Ty|T,> > Ty) with6; <. 6,
h=i+1 h=i+1

assuming as usual that )", 7Tj = 0.

As described in [20], many semantic models (causal, local, interleaving) suitable
for behavioral analysis can be retrieved from the proved transition system of -
calculus through simple relabelling functions of transition labels. Here we apply
the same idea to yield a transition system suitable for performance analysis by
relabelling stochastic computations.

We apply the relabelling function to transition 6, only after relabelling trans-
itions #;, and 0 < ¢ < n. This is necessary to correctly compute the distribution
of ZZ;;—H Th. We can thus inductively relabel any transition of a stochastic com-
putation by replacing the distribution of the transition with the one computed
according to Def. 4.5. Once again, note that the distributions of transitions can be
directly computed while building the stochastic transition system simply by com-



posing what follows with the calculations described in Def. 3.2. We think that this
separation of concerns can help to understand or make things clearer.

fo,Fo,p 61,F1,p 0n,Fr,pn
DEFINITION 4.6. If§y = Py ———5% P} ——5 . y

computation, the corresponding performance computation is

w+1 18 a stochastic

8o,F 61,F; 6., F)
€n+1:P0 ﬁpl — ... — I'n41

and is obtained by applying the function S, 0 S,_10...0 5y to & with

Sile) = & {(P 25 pry) /(P 22D Py

where F] = Pr(T; <t—|—2:h_]_|_1f1“;l|T>Z:h_]+1 h), J < h<i 0; <06

4.3. Stochastic processes

In this subsection we show how to raise the relabelling of stochastic transitions
from computations to stochastic transition systems.

The second firing of the same transition in a computation can be interpreted as
a re-sampling of an experiment. Of course, two distinct experiments must be done
independently of one another to be meaningful. In fact, under the firing policy of
race with enabling memory, a new delay has to be sampled if a disabled transition
becomes re—enabled (see also [1]). Consequently, the history of the system that
leads to a P 2%y P’ transition must not be taken into consideration to compute
the distributions of its following occurrence.

We first need an auxiliary definition to identify the computations whose trans-
itions occur once at the most, and their source state i1s the initial state of the
transition system.

DEFINITION 4.7. Ifts = (P,0 x F x [0..1], =, Py) is a stochastic transition
system, and P,, one of its states, then the set of the acyclic computations from Py
to P, 1s

AC(ts, P,) = {&; | source(§;) = Po, target(&;) = Pn, Py M Pai1 ¢ &,

3P Ok, Fr Pk
VP —J> Py, Pp —————= Py € & .

p;

. i F5 O, Fx,
j;ﬁk:}Pj#)Pj_H;éPkk—kpk)Pk_H}

The following theorem establishes that a finite state transition system (that may
have loops) gives origin to a finite set of finite acyclic computations.

THEOREM 4.2. Ifts = (P,0 x F x [0..1], >, Py) is a finite state stochastic
transition system, then

VP €ts. AC(ts, P) is finite, and V¢ € AC(ts, P).¢ is finite.



Proof.  Since the proved transition system is finite branching (see the rules in
Tab. 1), the stochastic transition system is finite branching as well. In fact, we define
it by relabelling proved transitions. Hence, a finite state transition system has a
finite number of transitions. So they are the combination of its transitions as well as

the length of its acyclic computations. M

Hereafter, we use Pr(£) to denote the occurrence probability of the last transition

of &, 1.e.,

n
80,Fo,po 01,F1,p1 O, Fn,prn
PT’(&IPO P1 Pn+1):Hpi~
=0

On,Frn,prn

To compute the distribution of a P, P, 41 transition under the firing

policy of race with enabling memory, we rely on the set AC(ts, P,). We apply
Def. 4.6 to &; BALT LN P,y forany & € AC(ts, P,), which yields F! as distribution
for #,. We eventually obtain the distribution of #, under the enabling memory
discipline by mediating the F’s through the occurrence probabilities of §,, as a last
transition of the computations in AC(¢s, Py,).

DEFINITION 4.8. TIf ts = (P,0 x F x [0..1], =, P) is a stochastic transition
system, the corresponding performance transition system (P, AU{r} x F,—, P) is

. . L ) OBV sk (3 enVFn
obtained by relabelling any transition P, u} Poty1 as P, — P, 41 where

Fl=pax Y. Pr(&)xF;
£, €AC(ts,Pr)

. ; C . . . Or,Fn,pn
with F} as the distribution associated with P, RALAL AN

O, Fnypr
to &; F

P41, by applying Def. 4.6

Poy1.

Note that the above definition is effective for finite state transition systems accord-
ing to Theorem 4.2. Furthermore, performance transition systems can be induct-
ively derived from processes without relying on stochastic transition systems (see
the discussion immediately before Def. 4.6; the idea is to build the transition system
from a breadth-first strategy and treat the generation of all the transitions exiting
a state as atomic).

The enabling memory discipline as defined in this section, though it coincides
with some proposals in the literature [1, 24], has certain limitations. The next
section introduces a refined discipline.

5. REFINING THE ENABLING MEMORY DISCIPLINE

As announced in the Introduction, here we use a different notion of timer as-
sociated with transitions. We are not only interested in the CPU consumption of
transitions, but rather in their response time. Therefore, we let our timers count
the time during which transitions are enabled and not scheduled on a CPU as well.

Consider the proved computation again

b
alb 2% o1p 122 o).



The random variables Ty and 77 associated with ||ga and ||1b are considered de-
pendent in Sect. 4.2 because the time period of ||1b overlaps with that of ||ea.
The motivation was that ||ga and ||1b are concurrent transitions, thus their execu-
tion ordering is irrelevant from a behavioral point of view. This is certainly true
when we run the system on a single processor. Hence, concurrency is simulated by
interleaving concurrent transitions and the dependency of the variables shows up.

Now consider a network of at least two machines and run a|b on it. A suitable

allocation of sub-processes permits a truly concurrent execution of ||ga and || that

.- 16 .
can be represented by the transition alb M) 0]0. In this case, the dependency

of the random variables Ty and 77 is no longer valid. In fact, the two transitions
are executed by different and independent machines. Thus it is evident that the
number of available resources influences the stochastic structure of the system at
hand. We can generalize the dual machine network to any number n of nodes
without modifying our discussion. We only need to resort to transitions that carry
up to n enhanced labels.

Note that communications impose synchronization points between independent
threads of computation. Consider for instance the system (ve)(a.c.d|b.¢.e) where
the communication over ¢ imposes a synchronization between the concurrent exe-
cutions of a with b and of d with e. This synchronization works independently of
the number of processors and therefore it is imposed by the structure of the system.

Given the operational semantics of the m-calculus, we can discuss how to generate
transitions with multiple labels. We only need to label those transitions carrying
a single # with a singleton. Given a set of labels 7, we write # € I for the more
precise, yet verbose, (#, F,p) € I. To improve readability, we write ¢(f) for the
distribution F' associated with # in the labels of performance computations.

DEFINITION 5.1. Assuming that standard labels are actually singletons, the fol-
lowing rule composes transitions labelled by sets of actions to yield higher-dimension
transitions

Io

plyp prlyo 1, <1

; |IOU11|§TL
P Ioul, Q

where n is the number of processors available, |I| the cardinality of the set I, and
Iy and I; sets of labels with

Iy — 1 & Vb, EIO,V01 Efl, By — 6.

Of course, the above definition can be applied to stochastic and performance
transitions as well. The same strategy used to generate performance transition
systems from processes applies here to generate higher-dimension transition systems
as well as their stochastic and performance versions.

As an example, consider the computation (1) again which, by allowing higher
dimension transitions, becomes

{lloa;ll1d} P, {(llad/1118)} {Illllof(Z)}/ p! {Illllﬁz}/

Po P3 P6



if at least two processors are available.
We now modify Def. 4.6 to compute the distributions of the higher dimension
transitions. Consider the higher dimension stochastic computation ¢

I I I,
Py P ... -5 Puy

and assume that one wants to determine the firing distribution of 6/ € I,,. According
to the enabling memory discipline, we must look for a # € I; with § <. . Then, the
activities belonging to any I;, where ¢ < [ < n, are all concurrent with 6’. However,
we do not need to consider the time elapsed for all the activities in I; to compute
the distribution of #’. For any set I;, we only need to consider the slowest activity.
Since all 8’s in [; are executed independently, the time period of the slowest one is
given as

Mer, (1 —1(0)(x)).
Note that this is a simplification. Indeed, the execution of ¢’ can partially overlap
with the one with the slowest activity in I;, if it does not enable #'. For instance,
consider a.b|c.d|e and its higher dimension computation

a.ble.dle 122 pldjo 2D ojo]o.

The execution of d in the second transition can overlap with that of a, if a is much
slower than ¢. What we get with our assumption is actually an upper bound to
the response time of the system. Finally, note that this assumption can be used to
work with synchronous systems as well.

DerFINITION 5.2. If Py i> P i} i} P, 41 1s a higher dimension stochastic
computation, then the distribution of the random variable T associated with ¢ &

I, 1s
n—1 . R n—1 R
Pr(T <t+ Z Ty | Ty has distribution Tlger, (1 — ¢(6)(z)) and T > Z Th)
h=i+1 h=i+1

where 6 € I;, 6 <. 0.

We can now adapt Def. 4.6 to higher dimension transitions. We only need to

change the definition of S;(&;).

I I I, . . . .
DeFINITION 5.3. If §g = Py — P, — ... == P,y is a higher dimension
stochastic computation, the corresponding higher dimension performance compu-

. 1] 1] 1 . . . .
tation €41 = Py — P — ... = P,y is obtained by applying the function

SpoSp_10...08; to & where

Si(&) = &1 {(P I—I> Pit1)/ (P Ly Piy1)}

where I = {0;, F/|0; € I;} and F is defined according to Def. 5.2.



5.1. Unbound processors

Here we study the cases where an unbound number of processors is available.
We call this hypothesis mazimal parallelism assumption. The weaker assumption
of having a number of processors greater than or equal to the maximum number
of simultaneously enabled transitions works as well. We can further weaken the
assumption by assuming as many processors as the cardinality of the greater subset
of enabled transitions such that no two transitions in the set are conflicting. This set
identifies the maximal number of transitions that can be executed simultaneously
and independently.

We now report a property of higher dimension transition systems (we omit the
distributions of transitions in the labels). We write —™ for the reflexive and trans-
itive closures of a transition relation —.

ProrosiTiON 5.1. Given a Py M} Py 41 transition in a higher dimension
transition system, there are n! computations Py —* P,41 whose transitions are
labelled by the n! permutations of the {61}, ... ,{0,} singletons.

{61,...,0.} {61}

Proof. From Py P,41 we obtain Py, —— P; ﬁ) .. Poy
by repeated decompositions of the premises of the rule in Def. 5.1. Then, we

. {6}

apply Theorem 4.1 to any pair of consecutive concurrent transitions for as long
as possible. Since any pair of enhanced labels in {61,...,6,} describes concur-

rent transitions, we can build the n! computations of the statement exactly right. H

Actually, we have many more computations leading from Py to P,41 under the
assumptions of the above proposition. This depends on the decompositions that we
can choose for the set {,...,6,}. It is possible to consider sets with 2,... n—1
elements and all their combinations such that the cardinality of the decompositions
along with a computation from Py to P,41 adds up to n. We can then apply
Theorem 4.1 generalized to higher dimension transitions to this computations. This
discussion and Proposition 5.1 allows us to state the following theorem.

. f1,...,0n .- . . . .
THEOREM 5.1. Given a Py M P41 transition in a higher dimension

transition system, there are

h=1 1

computations leading from Py to P,41 whose transitions are labelled by subsets of
{61,...,0,} and for any computation Py —* P,y1; its transitions are labelled by
Loy Iy (k<n) withY o || =n, 0f_ I =0 and US_, T; = {61, ... ,0,}.

This theorem is a generalization of the classical result of the permutation of con-
current transitions. The number of computations in the theorem above is obtained
by simple combinatorial reasoning. The empty intersection derives from the irre-
flexivity of the concurrency relation.



We want to avoid all the computations that originate from generalized permuta-
tions of concurrent sets of transitions (see Def. 5.1) to satisfy the maximal paral-
lelism assumption.

DEFINITION 5.4. A mazimal parallelism transition system is an higher dimension
transition system ts generated according to the rule in Def. 5.1 and such that

evP L pre ts, there isno Py, .., Phy1 € ts, Py Loy Iny Put1 with Py = P,
P,y1 = P’ and U?:o L =1.

A property of maximal parallelism transition systems is that their branching
structure is only caused by nondeterministic choices. More formally, we have the
following proposition.

ProrosiTiON 5.2. If P o, Py and P EEN P, are two transitions of a mazrimal
parallelism transition system, then Iy & Iy. More precisely,

36; 610,9]' el .0; 71/9]

Proof. By contradiction. Assume that Iy — I;. By a generalization of The-
orem 4.1, there is P’ such that P D, proand Py To, P, We can now apply the

rule in Def. 5.1 to derive the transition P —221% p’ against the condition stated in

Def. 5.4. W

The maximal parallelism assumption allows one to simultaneously fire all the
transitions enabled in a given state. Therefore, the notion of enabling is useless
because the activity enabling the current transition is always fired by the transition
immediately preceding it. More formally, we have the following proposition.

I I I, . . 4 .
ProPosITION 5.3. If Py =% Py = ... = P41 is a higher dimension compu-
tation, then, under the maximal parallelism assumption,

VOeL,30 cL,_1.0 <40

where 0 < 1 < n. In other words, the enabling relation between the transitions of a
computation coincides with the temporal ordering of the transitions.

Proof. By contradiction. Assume that V8’ € I,_; .6’ — 0, 0 € I;. Then, accord-
ing to the rule in Def. 5.1, in the higher dimension transition under the maximal

. . . (4 Il .
parallelism assumption, P/ exists such that P; i} P/ —5 Py with {0} U T = 1.
Furthermore, by applying the generalization to higher dimension transitions spe-

cified in Theorem 4.1 we can deduce that P;_; ﬂ) P’ i>

=1

P! and P;_; I—)

P; ﬂ) P!. Now, Def. 5.1 suffices to derive the transition P;_; M P!,

(3

against the maximal parallelism assumption of the computation in the statement. W



As a consequence of the above proposition, the sum ZZ;;_H Ty, in Def. 5.2 always
reduces to zero. The distribution of the ' activity is then P(T’ < t|T’ > 0) and it
turns out to be ¢(#). This discussion allows us to state the following theorem.

THEOREM 5.2. Under the mazimal parallelism assumption, the enabling memory
discipline reduces to temporal ordering discipline; i.e., the distribution in Def. 5.2
reduces to (0').

The above theorem states that the enabling memory discipline is helpful only
when the resources of the system are limited; that is, enabling is needed when
concurrent transitions are sequentialized in some order due to a lack of resources
(e.g. processors). An immediate corollary follows.

COROLLARY 5.1. Any continuous distribution computed according to the enabling
memory discipline enjoys the memory-less property under the mazimal parallelism
assumption.

The above corollary holds only because the history of the system is condensed to
the transition that immediately preceeds it. In other words, a transition is fired as
soon as it becomes enabled.

6. PERFORMANCE BISIMULATION

In this section we extend the notion of late bisimulation of the 7-calculus to cope
with transition distributions. We call the new bisimulation performance bisimula-
tion. We follow the approach introduced in [33] for CCS and arranged for PEPA in
[30] and for TTPP in [28]. Since we relabelled the computations of our system with
the distributions updated to consider both the branching structure and the history
of the system, we simply need to compare the labels when checking bisimulation.
This is the same idea adopted in [20] to define non-interleaving bisimulations for a
qualitative analysis of systems. The uniform framework makes the integration of
the analysis of qualitative and quantitative properties easy.

We must first recall the definition of parametric late bisimulation [20]. To de-
termine the labels of transitions to be compared, we rely on a relabelling function
that may inspect all the previous computation steps. Therefore our bisimulation
will relate pairs (P, &), where P is the target state of the computation ¢. 3 We now
adapt the definition of parametric bisimulation to performance transition systems.

DEFINITION 6.1. Given arelabelling function f, a binary relation S on pairs (P, £)
of processes and performance computations is a late f-simulation if (P, &) S(Q,¢")
implies that

o 1t P25 prand £(0) is T, Tz or F(y) with bn(£(F)) &€ fn(P,Q), then for some
Q. Q2 p9) = £0) and (P e 25 Py s (e 25

3 Although ¢ uniquely determines P, we prefer to explicitly write out the process for readability.
Also recall that the empty computation of P has P both as a source and target state.



o if P M) P’ with y ¢ fn(P, @), then for some @', ﬂx—(y)> @' and for all

we N, (P{w/y}.€ 28 priw/y)y (@ {w/y}, € LY Q' {w/y}).

The relation S is a late f-bisimulation if both & and S~' are late f-simulations. P
is late f-bisimilar to @ (written P = @) if there exists a late f-bisimulation §
such that (P, ¢) S(Q,¢).

If we put f = £ in the above definition, we recover the classical late bisimulation of
the m-calculus [36].

The notion of f-bisimulation completely ignores the F' component of the labels
of performance transitions and thus it is only suitable to investigate the qualitative
properties of processes. To cope with the quantitative information encoded in
F', we raise the conditions in Def. 6.1 on transitions between states to conditions
on transitions between equivalence classes of states. This is implemented via the
function 7g in the following proposition that provides an alternative characterization

of ¢ in the style of [33, 30, 28].

ProPosITION 6.1. Guwen a relabelling function f, a binary relation S on pairs
(P, &) of processes and performance computations is a late f-bisimulation if
(P, &) 8(Q, ") implies that for any equivalence class C' which originated from S

Vo £(0) € {Zy, Z(y), 7, 2(y)} - 0 ((P.€),0,C) = 7n(Q.£), ¢, C),
F(0) = f(8') and bn(£(6)) & fn(P, Q)

where

1if 3P e 25 pry e €. 0(0) € {7y, F(y), 7}

o((P,€),0.C) = { 1 ifYwe N, 3(P'{w/y}, ¢ L priw/yl) € C.
0o) = z(y)

0 otherwise

Proof. Consider the case £(f) = z(y). According to Def. 6.1, (P,£) S{(Q,&")
implies that whenever P LALN P’ there exists @)’ such that @ o, Q' with f(0) =

FO) and Yo € N, (P'{w/y}, & 25 P w/yl) S(Q Tw/v} & L5 Q{w/y)).
Consequently,

Vw € N (Q'{w/y), & 5 Q{w/y)) € [(P{w/y}, ¢ 25 P'{w/y})]s. By defini-

tion of 7y we can conclude that
Yo((P,€), 0, [(P'{w/y},& =55 P'{w/y})s) = 1
= %((Q. &), 0, [(P'{w/y},& =55 P'{w/y})]s).

Since we imposed f(0) = f(#'), we proved that S is a late f-simulation. Repeating

the above starting with @ BELIN @', we can conclude that =1 is a late f-simulation
as well, and hence that § is a late f-bisimulation.

The cases ((0) € {Ty,Z(y), 7} are simpler and similar. W



We instantiate the late f-bisimulation with our structural enabling relation <. *
The motivation is twofold. First, since we cope with general distributions, we feel
it is natural to include in the definition of bisimulation the same notion of de-
pendency used to correctly compute the distributions of performance transitions.
Second, structural enabling allows us to state a congruence property for our equi-
valence relation that is missing for classical m-calculus late bisimulation (see [5]).
We can now define an enabling relabelling function to instantiate the f function in
Def. 6.1.

. . 80,Fo 61,F

DEFINITION 6.2. Given a performance computation { = Py —— P, ——

. M} P,, its associated enabling computation Et(£) is derived by relabelling
any transition 0y, Fj as ety, where

P B if 6(0;) =T
o (€(Or), {h # k|On <str O, £(0n) # T}), Fi, otherwise

By abuse of notation we will sometimes write F#(f) in place of ety.

To introduce our performance bisimulation we also need to modify the definition
of the function 7¢ in Proposition 6.1 in order to take the duration of transitions into
account. (Remember that we write 7; for the random variable, which describes the
time interval of a P M> P; transition.)

DEFINITION 6.3. A binary relation S on pairs (P, {) of processes and performance
computations is a performance bisimulation if (P,£)S(Q,¢&') implies that for any
equivalence class C' originating from §

Vo . £(0) € {Zy, B (y), 7, 2 (¥)} . 7 ((P,€),0,C) = v((Q,€), ¢, C),
Et(0) = Et(0') and bn(£(0)) € fn(P, Q)

where

Pr(Ty < t|T, =min{T;}, AP ¢ 25 Py eC.
P21 piy it o) £ ¢(y)

Y(P,€),6,0) = Pr(Ty <t|Th = min{T}},Yu € N,

3P {w/y}, € 255 P{w/y}) € C.

p &0, P{w/y}) otherwise

P is performance bisimilar to @ (written P ~p @) if there is a performance bisim-

ulation § such that (P, €) S(Q, ).

In the above definition we consider the maximum transition speed from one
equivalence class to another via the same action label u (indeed Et(8) = FEt(6')
implies £(6) = £(6')). In other words, we compare two systems on their fastest
runs. Hence, the usage of the min operator in the definition of ~.

4We can use the full enabling relation < without altering the following results. We prefer to
rely on <s¢r to simplify the technical presentation.



An important issue in the definition of equivalences in the setting of stochastic
process algebras concerns the compositional minimization of system descriptions.
We prove a congruence result for our performance bisimulation below, following the
same pattern used in [5] for their causal bisimulation. We start with some auxiliary
definitions and lemmas.

DEFINITION 6.4. A substitution o : N' — A is $,-preserving iff ¢(z) = y implies
that $,(z) = $4(y).

Hereafter we write o meaning o applied to £(f) and assume any substitution as
being $,-preserving.
The following lemma shows how substitutions affect transitions.

LEMMA 6.1. If o is a $,-preserving substitution and P a process, then

1.P 25 P Po 12 Pl (9) # 7, EL(6) = Et(00);

97, F 97, F
2.P 5 P = Po 25 Plo;

g.p Wl b py KN by py(98,) = Et(0600), Et(96;) =
Et(’lngO'),'

Proof. The proof is clear by noting that ¢ only affects the action names that are
not considered at all by the definition of <, (see Def. 4.1) and by applying the same

result for standard late bisimulation [36]. W
We now use a simple proof technique developed in [36] and based on ground
bisimilarity.

DEFINITION 6.5. A binary relation § on pairs (P, ) of processes and perform-
ance computations is a ground performance bisimulation up to = and restriction if
(P, &) S{Q, &) implies that for any equivalence class C' originating from S

Y ((P,&),60,0) =4 ((Q,&),8,C), Et(6) = Et(0') and bn(£(6)) & fn(P, Q)
where
’ _ . 1 e OF o (6,F)
Y (P, &),0,C)=Pr(Ty, <t|Tp, = min{T;},HP & — PHYeC.P—> P
and (P',6 25 Py (@' ¢ 55 @) € C and P = (wh) Py, Q' = (vB)Q1.
P is ground performance bisimilar to @ (written P % @) if there is a ground
performance bisimulation § such that (P, e) S(Q,¢).

Standard concurrency theory [36] establishes the relation between ground and
non ground bisimulations for the w-calculus.

LEMMA 6.2. IfS is a ground performance bistmulation up to = and restriction,
then § C ~p.

The theorem below states that ground performance bisimulation is preserved by
substitutions.



THEOREM 6.1. Ifo is a $,-preserving substitution, then (P, &) ~% (Q,&') implies
(Po, o) ~p (Qo,&'o)

Proof. Mimicking [5], we show that
S ={({(Po,t0),(Qa,&'a)) (P, &) =% (Q, &) A o is $,-preserving}

is a ground performance bisimulation up to = and restriction. For any Po O pr
we have to find P, Q1, b, ¢’ such that Qo ﬂ) Q' with P' = (vb)Pio’, Q' =
(VB)Qlo", Et(0) = Et(¢') and v/ ((Po,£0),0,C) = v'((Qo,&'c),0',C). Theorem
4.11in [5] and Lemma 6.1 guarantee the first two conditions of the statement above.
We only have to check the equality of the two 4/-functions. Since $,-preserving sub-
stitutions do not affect the duration of transitions (Lemma6.1), and since (P, £) ~%

(Q, &) implies v/ ((P,£),0,C) = v'((Q, &), 0',C), we have proven the theorem. R

Since to obtain congruences one has to expect that bisimilarity is preserved by
substitutions, a corollary of Theorem 6.1 states a congruence result for &%.

COROLLARY 6.1. =% is a congruence for the m-calculus without matching.

Eventually we prove that our performance bisimulation is indeed a congruence.

THEOREM 6.2. =p is a congruence for the m-calculus without matching.

Proof. We only need to show that ~% and ~p coincide on the considered
subset of the m-calculus. To prove the inclusion ~pC=a%, we only need to note
that all the requisites in the definition of &% also occur in the definition of ~p. To
prove the converse inclusion we show that &% is a performance bisimulation. The
only point that needs to be checked is the input clause in Proposition 6.1, which

is satisfied because &% is closed under $,-preserving substitutions (Theorem 6.1). H

7. EXPONENTIAL DISTRIBUTIONS

In this section we show how our definitions and results change when only expo-
nential distributions are around. This is actually the only case considered in most
papers on Markovian process algebras. We start by remembering what exponential
distributions are.

An exponential distribution with rate r is a function F(t) = 1—e~"", where ¢ is the
time parameter. The parameter r determines the shape of the curve. The greater
the r parameter, the faster F(¢) approaches its asymptotic value. The probability
of performing an action with parameter » within time ¢ is F(¢t) = 1 — e~ so r
determines the time At needed to obtain a probability near to 1. The exponential
density function is f(t) = re~"".

Exponential distributions have the memoryless property. Roughly speaking,
transitions occur independently of when the last transition occurred. In other
words, how long the transition waits before completion does not depend on how

long it has already waited. Thus, the time elapsed by an activity in a state where



another one is the fastest is useless. This means that any time a transition becomes
enabled, it restarts its elapsing time just as it would the first time it is enabled.
Consequently, the treatment of enabling memory discipline has no counterpart in
a pure exponential setting.

Let us discuss how the definition of the cost function $ changes. First, we say
$4(p) = A € R*, where ) is the single parameter uniquely describing an exponential
distribution. Then, $,(9) = r € (0..1]. We can define $, as in Sect. 3 by simply
exchanging > ., with [] ., to ensure that $,(J) < 1. Since we will use r as a
multiplicative factor for A in the definition of $, the interval (0..1] is the domain of
a slowing-down parameter. Similarly to $,, we have fy : £* x £* —= (0..1]. Finally,
Def. 3.1 becomes

DEFINITION 7.1. The function $ : © — R* is defined as

$(9p) = $o(V) x $a(p)
$(’(9<’l90(10, 191&1)) = f<> (%, ﬁ) X Hliﬂ{$(191900[0), $(’l9’l91(11)}

Our knowledge on the kind of distributions we are dealing with enables us to
simplify the expression of Theorem 3.1. The proof of the following theorem only

amounts to computing the integrals in Theorem 3.1 by letting Fj(¢) be 1 — e~*it.

THEOREM 7.1. Guen a process P,

Rp = Z Ai

8,2

P——P;

15 the exit rate of P. Then, the probability of P BLLIN P; s

Ai
Rp’

the distribution of the random variable T; which describes the time interval associ-
ated with P M) P; s

E(t) =1— e firt,

the apparent rate of an action a in P is



We can now instantiate performance bisimulation to exponential distributions.
In spite of the interleaving nature of exponential distributions, we still use the
structural enabling relation in order to preserve the congruence result of our equi-
valence. We only need to work on function 74 in Def. 6.3 by putting any distribution
F; =1 —e™i'. To make understanding it easier, we denote the resulting function 4.

DEFINITION 7.2. The ezponential performance bisimulation (written =%) is
defined as in Def. 6.3 except that function = is replaced by ¥, defined by interpreting
(P;, &) as a singleton equivalence class as follows:

W(PE8,C)= X APEG(PLEN= Y
(Pi £)EC L(8:)=0(9) (Pi€)ECL(6:)=2(6)

where 7; is the exponential distribution associated with a P ’—’rl> P; transition

where £(6;) = £(6).

Remember that the condition Et(6) = E¢(#') in the above definition ensures that
4 defines the total conditional transition rate as defined in [30] for PEPA.

We can now show how the exponential performance bisimulation induces a lump-
able partition on the underlying Markov process. First we need some auxiliary
definitions and lemmas.

DEeFINITION 7.3. Given a Markov process with state space {X1, Xs,...,X,},
the state space of the aggregated process is some partition p = {X17, X2, ..., X[n]}
with N < n obtained through an equivalence relation on the states of the original
process.

A Markov process is lumpable compared to a p partition if for every initial distri-
bution the aggregated process is a Markov process.

The following lemma establishes that two exponential performance bisimilar pro-
cesses have the same total unconditional transition rate of entering a C' equivalence
class.

LEMMA 7.1. If(P,&) =% (Q, &) and p((P,£), C) denotes the probability of reach-
ing step a state P' € C' from P in just 1, then

Yepyen VP01, 0)  Dpipnen 1L €D, 0, C)
Z 6,,r; T E 6;,r 73 .

P——5p, Q——Q;

We eventually prove the lumpability result by defining the state space of a P

process as ds((P,¢)) = {(P;,&)|3& =P AN P LEILENSNIN P}

THEOREM 7.2. For any P process, ds((P,¢)),_. induces a lumpable partition on
the state space of the Markov process which corresponds to P.

Proof. Let Cj,C; € ds({P,¢)

)/_. and consider P/, P/ € C;. According to
Lemma 7.1, it is Zz DEN Y({(P!, ¢

/ P
), 0, C;) = Ze EN'y((P” &N, 65, C;) because



P/ =% P/'. Since [32] proved that a Markov process is lumpable compared to a
p = {Xp1} partition if and only if for any Xy, Xy € p, Xi, X; € X[ the total
transition rate from X; and X; to X[y is the same, we have proven the theorem. m

We now outline how the distribution of synchronizations can be specified in our
approach which is similar to that of the PEPA language. We first recall that a

PEPA-like synchronization rule establishes that the rate of a r-transition between
a {(a,rq) prefix of a process P and a (@, r1) prefix of a process @ is

X min{Ra(P)a RG(Q)}

r_ o % ™
Rq(P) ~ Ra(Q)

The corresponding transition in the proved semantics is labelled ¥(||¢¥oa, ||191@).

To recover the rate r’ we only need to define
min{Ra(P), Ra(@))
Ra(P) x Ra(Q)

with e of Def. 3.1 being the multiplication. Recall that ¥||odg and 9||;1¢; uniquely
identify the sequential components that fire the complementary transitions. There-

Foy (@llodo, 9][191) =

fore we can compute R4(P) and R,(Q)) according to Theorem 7.1. Then we replace
min{$(Jdoag), $(991a1)} from Def. 7.1 with $(9||edoa) x $(PI||191@) and define
$(9||ovoa) = ro and $(¥||191@) = r1. Note that 9||gdge and I||191@ uniquely
identify the prefix corresponding to the transition. Thus we can define $ in a
tabular way because the prefixes of a program are finite.

We end this section by referring any reader interested in exponential distributions
to [41, 40, 10] for case studies based on our framework.

8. RELATED WORK

The earliest study of stochastic process algebras with general distributions can
be found in [25], which adds structure to the states of TTPP transition systems.
The operational semantics uses counters to keep track of how many times an ac-
tion occurring in a parallel composition has not been selected to happen. Similar
semantics are studied in [9, 31] through a stochastic extension of bundle event struc-
tures with phase-type distributions. This model copes more naturally with general
distributions because activities that are not causally dependent are not related in
the model (as in our approach) contrarily to what happens in interleaving models.
The authors present a process algebra as well whose semantics is defined in terms
of the stochastic event structures. There is also a stochastic extension to LOTOS
where distributions are not limited to exponential ones [2], provided that all the
synchronizations are known at the top level.

A process algebra for discrete event simulation is introduced in [27]. A timer is
set randomly and its expiration determines the actions to be fired. Since urgent and
delayable prefixes are considered, it i1s possible to cope with both open and closed
systems. A similar approach is presented in [16, 15] for the process algebra Spades
where the finiteness of semantic objects is maintained. There is an expansion law
for decomposing parallel compositions of Spades processes.

A general semi-Markovian process algebra is obtained by working on EMPA in
[7, 8], which interpret processes in ST-semantics which allows for the refinement of
actions. This process algebra represents the GSMP model in a complete way.



The main differences between the approaches above and ours are that they do
not cope naturally with mobility and they need to incorporate the stochastic in-
formation into the calculus syntax.

Finally, note that the literature presents other attempts at including quantitative
information in process algebras for performance evaluation proposed. There are two
approaches: the probabilistic and the temporal. Probabilistic process algebras rule
out nondeterminism by attaching probabilities to branching points. For instance
see [53, 33, 26], but almost all proposals deal with synchronous calculi, thus limiting
expressiveness. Temporal process algebras (for a survey see [38]) use time inform-
ation to evaluate the duration of a specific execution either by associating fixed
durations to all actions with the same name or interleaving explicit timed steps
with action steps. The absolute duration of actions is sometimes unreal because
the time needed by an action heavily depends on the state of resources, the conflicts
for accessing them and so on. In any case, the duration of a specific execution does
not provide the grounds for a performance evaluation of the whole system.

9. CONCLUSIONS

We have proposed a general framework for handling performance and behavioral
analysis within the same model. The uniqueness of the model is a necessary con-
dition to implement our ideas within compiler tools. Our approach is distinctly
different from stochastic process algebras because it does not require the designer
to know architectural constraints at the time of specification. In fact, no prob-
abilistic information is inserted in the syntax of the language. In spite of this,
we can derive the quantitative information we need by looking at the derivation
trees of transitions encoded in their labels. The intuitive idea is that the semantic
rules correspond to low-level routines of the run-time support of the language. We
applied this framework in [41, 40] to model a network management system which
yields the same performance results reported in [3] and obtained through informal
reasoning. We also studied a distributed data base application and recovered the
same quantitative parameter obtained in [13] by informal reasoning. These analyses
were carried out by using a tool which implements our framework in an exponential
setting [10].

We use the information carried over by our enhanced labels to handle general
continuous distributions as well. In particular, we resort to the notion of enabling
between transitions [20] to take the history of the system into account. The notion
of enabling naturally leads to the enabling memory discipline for selecting which
transitions to fire [1]. We prove that this notion works properly with limited re-
sources. Under a maximal parallelism assumption (unbound resources), we refined
the enabling memory discipline so that the history of the system is no longer needed
even for general continuous distributions. The main reason is that a transition is
either fired as soon as it becomes enabled or it is discarded.

Our current studies concern refinement of the definition of function $ to obtain
sensible transition costs and to characterize its algebraic properties. We also plan
to extend this framework to real distributed languages and to test how 1t is scalable
on real applications. Furthermore, we implemented a stochastic version of the full
m-calculus to simulate the behavior of complex systems [49, 48].



As a further investigation, it would be interesting to see how generalized semi-
Markov processes, which are receiving great attention in the literature relate to our
approach.

This paper is a further step towards defining a kernel of an integrated environ-
ment for creating distributed and mobile systems. To this purpose, we feel it is
essential not to modify the syntax of the language in order to retrieve or restore the
information needed to carry out both qualitative and quantitative analyses. This
amounts to saying that the designer of a system only needs to know the syntax
of the (specification) language. Implementation-dependent information is encoded
in the compiler. Furthermore, the topic of this paper further stresses the motto
proof as transitions described in [19] where the authors claim that enhanced labels
encode almost all the information needed for software development.
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