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model. We analyze both local and global properties of the networks
formed by the agglomerations of droplets for various system sizes. We
focus on the differences of these properties for monodisperse and poly-
disperse systems of droplets. For the mean degree, we obtain different
values for critical exponents.

Keywords: Network analysis · monodisperse · polydisperse ·
droplets · cluster · agglomeration

1 Introduction

Within the scope of the European Horizon 2020 project ACDC – Artificial Cells
with Distributed Cores to Decipher Protein Function, we intend to develop a
probabilistic compiler [2,20] to aid the three-dimensional agglomeration of par-
ticles filled with various chemicals in a specific way in order to e.g. create macro-
molecules via a gradual chemical reaction scheme [10,11]. Hereby we aim at
the creation of some specific macromolecules, but in contrast to the work of
[7], we govern the successive reaction process by a specific design of the three-
dimensional structure of the agglomeration. Furthermore, we are interested in the
question of which molecules could be produced to which extent within randomly
created agglomerations in comparison to the production within the primordial
soup in order to have a closer look at the origin of life [9].

In such an agglomeration, neighboring droplets can form connections, either
by simply touching each other or by getting glued to each other by matching
pairs of single-stranded DNA, which are attached to hulls enclosing their sur-
faces. Chemicals contained within the droplets can move to neighboring droplets
either directly, as hydrophobic compounds can be exchanged between adjacent
oil droplets at the contact face, or, if the oil droplets are contained in a hull com-
prised of amphiphilic molecules like phospholipids, through pores within bilayers.
Thus, a complex network is created, with the droplets being the nodes of this
graph and the existing connections being the edges between the corresponding
droplets.

In this paper, we present computational results for basic simulations of sim-
plified agglomeration processes of oil droplets in water to mimick experiments. In
the experiments performed by our co-authors at Cardiff University, a microflu-
idic approach is used to generate droplets: A stream of fluid within another fluid
is split up in a series of spherical droplets of (almost) equal size after passing
through a t-junction if the ratio of the pressures between the two fluid streams is
chosen in an appropriate range [6]. In contrast, the manual emulsion method [3]
called Rakka, which is used by our co-authors in experiments at the University
of Trento, mechanically sends excitations in a large oil drop lying at the bot-
tom of a container filled with water and containing amphiphilic molecules, thus
splitting it in a polydisperse system of droplets with a wide range of radii. The
droplets sink to the bottom of the cylinder where they agglomerate, while form-
ing connections. Thus, this scenario of droplets randomly placed in a cylinder
defines the starting point for the simulations.
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Within the scope of this paper, we focus on the question of how polydispersity
influences the agglomeration process of the particles and some specific properties
of the networks created. In order to deal only with this question and to exclude
effects from other experimental properties, we simulate the droplets as hard
spheres and ignore details of the surface structure of the particles, attractive
forces as well as adhesion effects. As the extension of the bilayers is very small and
as due to their small radii [1], the droplets keep their spherical shape during the
experiments, hence, this simplified approach is justified. This paper is organized
as follows: In Sect. 2, we describe our simulation technique in detail, before
presenting our computational results of a network analysis of the agglomerations
both for polydisperse and for monodisperse systems of various system sizes in
Sect. 3. Section 4 provides a summary of the results and an outlook to future
work.

2 Simulation Details

At the beginning of the simulations, we randomly place N spherical particles in
a cylindrical container with radius 1 mm and height 4 mm in a way that they
do not overlap with each other and that they do not overlap with the walls of
the cylinder, as shown in the left part of Fig. 1. For the polydisperse system,
we randomly choose the particle radii ri uniformly from the interval [10–50]µm,
whereas we set all radii ri ≡ 30µm for the monodisperse system.

Fig. 1. Initial (left) and final (right) configuration generated in a simulation of the
agglomeration process of a multidisperse system of 2,000 spherical particles in a cylin-
der.

After this initialization, we perform the main simulation which is comprised
of 107 time steps of a duration of δt = 10−5 s. In each time step, the particles
are subjected to various forces:

– They sink in water due to gravity FG reduced by the buoyant force F b:

FG(i) − F b(i) =
4π

3
r3
i (�oil − �water) g (1)
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For the oil density, we use the value �oil = 1.23 kg/l, just as in the experiments
of our co-authors in Trento.

– Secondly, the spatial components vx,y,z(i) of the velocity vectors v(i) are
subjected to random velocity changes: They are randomly altered by up to
±5% of their absolute values in order to take at least in this small random
way into account that the containers are moved by the experimentalists in
the laboratory in Trento.

– The particles are also subjected to the Stokes friction force F S :

F S(i) = −6πηriv(i) (2)

The viscosity of water at 25 ◦C is η = 0.891mPas.
– As in classic hydrodynamics, the concept of added mass [19] is used. When

applying Newton’s second law, we have to consider an effective mass of the
particle, i.e., F (i) = meff(i)a(i). This effective mass is composed of the mass
m(i) of particle i and of the added mass madded(i). This added mass is caused
by the inertia of the surrounding fluid, which needs to be deflected or attracted
if the particle itself is accelerated or decelerated in the water, and can be
determined to being half of the mass of the water displaced by oil particle i.
Thus, we use for the deceleration caused by the Stokes friction the equation

aS(i) =
F S(i)

m(i) + madded(i)
. (3)

When working with such a set of second order differential equations governing
the laws of motion for the particles, the question arises as to which integrator
to use. Due to the stochastic nature of random velocity changes, only an Euler
scheme with very small time intervals is suitable for the determination of new
velocities and positions [4]. In the case of collisions between pairs of particles
or between particles and walls, a mostly elastic collision dynamics is imposed.
Overlaps occurring at the end of each time step are resolved as in [8,12].

When simulating a polydisperse and a monodisperse system of droplets, gen-
erating movies from these simulations, and watching them, one sees at first sight
a striking difference between polydisperse and monodisperse systems: While the
droplets in a monodisperse system sink to the bottom of the cylinder with almost
equal speed, in the case of the polydisperse system the largest droplets rush down
fastest, whereas the smallest droplets sink comparatively very slowly towards the
bottom of the cylinder. Also the agglomeration processes at the bottom of the
cylinder look different as the final agglomerations themselves. Thus, we evaluate
these agglomerations and their time evolutions with some standard measures
from network analysis in order to quantify these differences.

For this purpose, we performed 100 simulation runs each both for the poly-
disperse and for the monodisperse system for the system sizes N = 10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250,
300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2500, 3000, 3500, 4000,
4500, and 5000. From each simulation run, we store each 1000th configuration,
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such that we have a set of 104 configurations per simulation run, with a time
interval of 0.01 s between successive configurations. The results presented for the
network analysis in the next section are averaged over the measurements taken
from the 100 simulations. Thus, for each curve in Figs. 2, 4, 6, and 8 in total 106

configurations had to be evaluated.

3 Network Analysis

For network analysis, first of all a network related to the problem to be consid-
ered has to be defined. As we are interested mainly in structures resulting from
neighborhood relationships, we have a look at the adjacency matrix η with

η(i, j) =

{
1 if droplets i and j are neighbors of each other
0 otherwise.

(4)

We consider a pair (i, j) of droplets as neighboring each other, meaning (almost)
touching each other, if the condition√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≤ ri + rj + 0.1µm (5)

is fulfilled, i.e., if the distance between their midpoints is smaller or equal to
the sum of their radii plus some small offset. Please note that one usually sets
η(i, i) ≡ 0 for all nodes i. The matrix η contains all the information about the
network.

When analyzing a network, one mostly takes either an atomistic view, looking
at the various nodes and determining their network related properties, or a global
view, determining clusters of nodes and dealing with questions like whether the
network is percolating [18]. We present basic results both for the atomistic and
for the global view.

3.1 Degrees of the Particles

As an example for local network analysis, we consider the degrees of the particles.
A degree k(i) of a node i is defined as the number of nodes it is attached to via
edges in the network. It can be easily calculated by

k(i) =
N∑

j=1

η(i, j). (6)

We are interested in the average 〈k〉 of all degrees, its time evolution, and its final
value for various system sizes, both for the polydisperse and for the monodisperse
systems.

Figure 2 shows the increase of 〈k〉 over time t for various system sizes N .
The increases are steeper for the monodisperse system and approach their final
values less smoothly than in the case of the polydisperse system. Furthermore,



Networks Created by Polydisperse and Monodisperse Systems of Droplets 99

 0

 1

 2

 3

 4

 5

 6

10-2 10-1 100 101 102

<
k>

(t
)

t [s]

polydisperse system

N=5000
N=4000
N=3000
N=2000
N=1000
N=500
N=250
N=100

10-4
10-2

1

10-2 1 102

 0

 1

 2

 3

 4

 5

 6

10-2 10-1 100 101 102

<
k>

(t
)

t [s]

monodisperse system

N=5000
N=4000
N=3000
N=2000
N=1000
N=500
N=250
N=100

10-4
10-2

1

10-2 1 102

Fig. 2. Time evolution of the average value 〈k〉 of the degrees for various system sizes:
On the left, results for the polydisperse system are presented, on the right, results
for the monodisperse system are shown. In the insets, the curves are redrawn in a
double-logarithmic way to put more emphasis on short time scales.

the insets reveal that 〈k〉 increases in a double-sigmoidal way for the polydisperse
system, while this is not the case for the monodisperse system, for which only
one sigmoidal increase can be observed. The final values for 〈k〉 are larger for
small and large system sizes for the monodisperse system, such that we now have
a closer look at the final values also for other system sizes.

Figure 3 depicts the final values for various system sizes, both for the poly-
disperse system and for the monodisperse systems. In both cases, we find that
there are regimes of system sizes in which we can fit the data points to various
specific fit functions well known from the studies of phase transitions and order
parameters in statistical physics [17]. Besides the linear or quadratic increase for
small N , we find an interesting critical behavior. When investigating the data
points for the polydisperse system in Fig. 3, we get the overall behavior [15]

〈kf 〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1N for N ≤ 40
c1N + c2N

2 for N ≤ 80

c3
Nα

(Ncrit,1 − N)γ for 40 ≤ N ≤ 900

c4 tanh
(
c5 (N − Ncrit,2)

β
)

for 850 ≤ N

(7)

with the prefactors c1, . . . , c5, the critical exponents α, β, and γ, and the critical
numbers Ncrit,1 and Ncrit,2 of particles. Various fits of the functions in Eq. 7 with
similar fitting qualities result in α = 1 . . . 1.1, γ = 0.4 . . . 0.5, β = 0.1 . . . 0.18,
Ncrit,1 = 940 . . . 1000, and Ncrit,2 = 780 . . . 845. Please note that the prefactor
c4 = 6 . . . 7 provides an estimate for 〈kf 〉 in the limit N → ∞. While the values
for prefactors and critical numbers of particles will change if altering the sim-
ulation parameters, the theory of critical phenomena decrees that the critical
exponents α, β, and γ and the form of the functions stay identical [17].

For the monodisperse system, we find striking similarities, but also differences
to the polydisperse system. Here we get a linear increase of 〈kf 〉 for N ≤ 160,
a critical increase for 200 ≤ N ≤ 900 according to the same law as for the
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Fig. 3. Final values 〈kf 〉 for the averages of the degrees for various system sizes N :
Both for the polydisperse (left) and for the monodisperse system (right), we find
ranges of N for which we can fit the data points to specific fit functions: for the
polydisperse system, the data points are fitted to 1.2 × 10−3N + 1.5 × 10−6N2

for N ≤ 80, to 2.222848282 × 10−2 × N1.064929/(982.95 − N)0.4597383 for
40 ≤ N ≤ 900, and to 6.4592928303905470 tanh(0.41066892597996169 × (N − 843.
037477864008)0.14512724870611132) for 850 ≤ N ≤ 5000. For the monodisperse
system, we display the fit functions 3.5 × 10−3N for N ≤ 160, 4.996256
8900578735 × 10−2 × N0.78025269698399657/(1008.0838515966243 − N)0.22394426252398117

for 200 ≤ N ≤ 900, 2.85 + 1.5 × 10−3 × N for 950 ≤ N ≤ 1700, and 5.86060
51850230925 tanh(7.4870316562044323 × 10−4 × (N − 923.869567521402
70)1.1002364522169625) for 1900 ≤ N ≤ 5000. The more exactly given fit parame-
ters were determined with an altered conjugate gradients method [16].

polydisperse system, but then in contrast to the polydisperse system a linear
increase for 950 ≤ N ≤ 1700, and finally we tried to fit a tangens hyperbolicus
also to the data points in the regime of large N ≥ 1900. However, this last fit to
a tangens hyperbolicus is of a worse quality, the data points are not sufficient to
prove that we have this same behavior here. The small value for c4 here suggests
that the assumption of a tangens hyperbolicus might be wrong in the case of a
monodisperse system. For the largest values N ≥ 3000, the measured averages
of 〈kf 〉 might simply fluctuate in the range [5.84 − 5.87]. These results do not
prove but seem to hint that in the limit N → ∞, the final average value for
〈kf 〉 is significantly larger for the polydisperse system than for the monodisperse
system.

In the next step, we have a look at the time evolutions of the maximum
degree kmax = max{k(i)} for various system sizes, which are shown in Fig. 4.
For the polydisperse system, we find a sigmoidal increase. In the case of the
monodisperse system, the increase is steeper, but is then stopped rather abruptly
when reaching the final values kmax,f . These final values are shown in Fig. 5. We
find that kmax,f is slightly larger for the monodisperse system for small system
sizes, but then the curves cross in the range 500 ≤ N ≤ 700. From then on,
kmax,f is larger for the polydisperse system. For the monodisperse system, kmax,f
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Fig. 5. Final values kmax,f of the maximum of the degrees for various system sizes,
both for the polydisperse system (left) and for the monodisperse systems (right).

is bounded by the kissing number of 12 in three dimensions [5,13]. Also the
polydisperse system contains such a bound, depending on the ratio between the
radii of the largest and of the smallest particles, but this bound is considerably
larger in our case, in which this ratio is 1:5 [13], such that it does not play a role
here as kmax,f is much smaller for the system sizes we consider here.

3.2 Clusters of Particles

As an example for global network analysis, we present results for the decrease of
the number of clusters and the increase of the maximum cluster size. A cluster
is defined as a subset C of nodes in the network for which the condition holds
that for each arbitrarily chosen pair (i, j) of nodes with i, j ∈ C, a path from i to
j exists on which one walks only over edges starting at a node in C and ending
at a node in C, and for which no node is left out which fulfills this condition.

We are interested in the number Nc of clusters and its time evolution for
various system sizes both for the polydisperse and for the monodisperse systems.
As the droplets are placed in the cylinder at the beginning of the simulation
without touching each other, we generally get Nc = N at the beginning of the
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polydisperse system (left) and for the monodisperse systems (right): The fit function
for the polydisperse system is given by 260−0.00115×(N−480)2, for the monodisperse
system by 153 − 0.00145 × (N − 321)2.

simulation, as each node forms a cluster of its own at the beginning. (Please
note that we also count these “one-node clusters”.) With an increasing number
of edges, clusters unite and Nc decreases. In order to better compare the results
for various system sizes, we plot the number Nc renormalized by the system size
N in Fig. 6. We get a sigmoidal decrease for the polydisperse system, but again
we find an abrupt end of the decrease for the monodisperse system when the
final value Nc,f is reached, which is plotted in Fig. 7. Both for the polydisperse
and for the monodisperse system, we find that the final number of clusters can
be fitted almost quadratically for small system sizes N . For large system sizes,
the number of clusters does not decrease to 1, but a small number of clusters
remains.

Thus, the question arises whether the system is split in various clusters of
almost equal size or in various clusters with strongly differing sizes or whether
the system is dominated by one large cluster. Therefore, we have a look at the
size Cmax of the largest cluster, which is the number of nodes contained in this



Networks Created by Polydisperse and Monodisperse Systems of Droplets 103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10  100

C
m

ax
(t

)/
N

t [s]

polydisperse system

N=5000
N=4000
N=3000
N=2000
N=1000
N=500
N=250
N=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10  100

C
m

ax
(t

)/
N

t [s]

monodisperse system

N=5000
N=4000
N=3000
N=2000
N=1000

N=500
N=250
N=100

Fig. 8. Time evolution of the size Cmax of the largest cluster, renormalized by the
number N of particles for various system sizes, both for the polydisperse system (left)
and for the monodisperse system (right).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  1000  2000  3000  4000  5000

N
-C

m
ax

,f

N

polydisperse system

data points

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1000  2000  3000  4000  5000

(N
-C

m
ax

,f)
/N

N

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  1000  2000  3000  4000  5000

N
-C

m
ax

,f

N

monodisperse system

data points

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1000  2000  3000  4000  5000
(N

-C
m

ax
,f)

/N

N

Fig. 9. Deviation of the final values of the size Cmax,f of the largest cluster from the
system size, for various system sizes, both for the polydisperse system (left) and for
the monodisperse system (right). In the insets, the data points are replotted to display
the relative deviation of Cmax from the system size.

cluster. In order to again better compare the results for the time evolution of this
observable, we renormalize it with the system size and plot Cmax/N in Fig. 8.
This ratio increases sigmoidally over time, reaching a value of (almost) 1 for large
system sizes. Again, the increase stops abruptly for monodisperse systems when
the final value Cmax,f is reached. When plotting Cmax,f versus the system size N ,
one only sees a linear increase of Cmax,f for medium and large N [15]. Thus, we
here have a look at the absolute deviations N −Cmax,f of these final values from
the corresponding system sizes and at the relative deviations (N − Cmax,f)/N ,
which are plotted in Fig. 9. Both for the polydisperse and for the monodisperse
system, we see an almost linear increase of the absolute deviation at small system
sizes, which is reflected by a virtually constant value of the relative deviation,
which is slightly smaller than 1. Then the absolute and the relative deviation
decrease to relatively small values till N = 1000. For larger system sizes, only
12–28 droplets are on average not part of the largest cluster for the polydisperse
system. In the case of the monodisperse system, this number is even smaller,
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here only 1–2 droplets are not part of the largest cluster for most large system
sizes. Thus, we generally find that the systems always end up with a dominating
cluster containing almost all particles.

4 Conclusion and Outlook

In this paper, we presented results of simulations for the agglomeration of poly-
disperse and monodisperse systems of droplets. As we are interested in the effects
of polydispersity on the agglomeration process and on the resulting droplet
networks, we study a very simplified system, in which the droplets are repre-
sented as hard spheres (There are no other attractive or repulsive forces imple-
mented.), subjected to gravity reduced by buoyancy, as well as Stokes friction,
added mass effect, random velocity changes, and almost-elastic impacts. Con-
nections between these particles are virtually formed if they (almost) touch or
overlap. The particles gradually agglomerate at the bottom of the cylindrical
container. The analysis of this agglomeration process from a local and a global
point of view shows that the results for the time evolution and the final outcome
strongly depend both on the number of particles and on the question whether
we have to deal with a polydisperse or a monodisperse system. In particular, we
find two transition regimes: at small numbers N of particles, we find an over
time gradually increasing number of droplets lying finally at the bottom of the
cylinder where they either stay isolated or gradually form pairs and then some
slightly larger groups with other particles reaching the bottom as well. When
increasing N even further, a network of droplets is created at a bottom layer
of the cylinder. During this regime, we find first an increase of the number of
clusters and then a decrease again due to the formation of one gradually more
dominating cluster containing most droplets.

We intend to continue our investigations by measuring clustering coefficients,
fractal dimensions, the locations of droplets with differing radii, and the impor-
tance some droplets might have for the overall network. Furthermore, we will
perform simulations also with other simulation parameters, like another size of
the cylinder and with other polydisperse radius distributions in order to better
understand the values for the critical exponents and for the critical numbers and
their dependencies. We also plan to extend our investigations first to binary sys-
tems, in which two particle types A and B are present and connections can only
be forged between pairs of A−B but not A−A or B−B [14] and then to ternary
systems, in which there are three particle types A, B, and C with connections
between adjacent pairs of A−B particles but in which the additional C-particles
are unable to form any connections. Hereby we want to study the breakdown of
the size of the largest cluster with increasing density of C-particles. Furthermore,
we want to add gluing forces between particles to find out how they change the
results.
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