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ABSTRACT

The question of why individuals choose to explore or exploit as their learning accumulates remains largely unexplored in organizational literature in a strictly causal
sense. To bridge this gap, we conducted an experimental laboratory study of individual decision-making sequences using a real-effort task that involved a training
phase and an active phase. In the training phase, the participants used their skills to solve the same task in eight rounds to simulate the development of individual-
level learning. In the active phase, we observed sequential choices over exploring or exploiting. The participants were financially incentivized to abandon a familiar
task (that they learned in the training phase) by providing higher performance-related payoffs for exploring novel task environments. Interestingly, we not only found
that different kinds of performance feedback affected the exploration-exploitation choice, but that the feedback-choice linkage is contingent upon the initial con-
ditions of the task environment in terms of its simplicity or complexity. We found that when individuals are initially exposed to simpler tasks, they are more likely to
continue exploiting a familiar task; and when they are initially exposed to more complex tasks, they are more likely to explore new and more profitable tasks and then
continue exploiting the new tasks they learned. These findings contribute to the literature on individual search by demonstrating the important role of initial

conditions and path dependence in exploration and exploitation behavior.

1. Introduction

Organizational decision-makers constantly make choices to explore
or exploit (Lavie et al., 2010). These decisions are embedded in a process
of individual search, where the decision-makers choose to continue
exploiting their knowledge of a previously known task or choose to
explore new tasks (Billinger et al., 2014). The exploration-exploitation
choice is ultimately driven by the expected differences in the perfor-
mance of these alternative models of learning, considering that the
returns of exploration are uncertain while the returns of exploitation are
more predictable (March, 1991). Therefore, given the lower cognitive
requirements and the higher certainty of expected performance,
decision-makers are often more prone to exploit than to explore, which
sometimes leads to “overexploitation” and the “competency trap”
(Denrell and Le Mens, 2020; Levinthal and March 1993). On the other
hand, too much emphasis on exploration also takes place and can be
harmful to decision performance (Billinger et al., 2014). Therefore, the
exploration-exploitation choice remains a critical subject of study for
organizational scholars, especially because according to Puranam et al.
(2015), “The conditions under which people switch between exploration
and exploitation are not yet fully understood” (p. 352). Furthermore,
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individuals’ search behavior has been shown to affect
organizational-level explorative and exploitative innovation (Enkel
etal., 2017), driven by organizational structures and practices (Ali et al.,
2022), and ultimately embedded in organizational-level explorative and
explorative intents and logics (Chadwick and Raver, 2015; Ko et al.,
2021). Therefore, examining the microfoundations of
exploration-exploitation choices represents an important, untapped
research opportunity for scholarship and practice of innovation man-
agement and organization studies.

The features of exploration-exploitation choice have been theorized
in the growing body of literature on individual search (Puranam et al.,
2015). Empirically, the most prominent causal evidence of the ante-
cedents of individual search comes from two strands of experimental
literature. The first strand builds on the premises of behavioral literature
and aspiration adaptation (Cyert and March 1963; Greve 1998; Simon
1955) and views the exploration-exploitation choice as a function of
performance feedback. This literature includes experimental designs
where the decision problem is modeled as a decision-maker’s choice
between previously unknown probabilistic properties, such as choosing
among the arms of a multi-armed bandit (Puranam et al., 2015), and
searching for unknown features on rugged landscapes, including the NK
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models (Billinger et al., 2014, 2021; Levine et al., 2019). The main
findings of this suggest that underperformance related to aspirations
often leads to exploration, and performing according to aspirations often
leads to continuing exploitation. The second strand of literature focuses
on path dependency in learning processes and, more specifically, on the
nature of the decision landscape in which the decision-makers are
trained to perform a given task (Luchins, 1942; Egidi and Narduzzo,
1997; Egidi, 2015; Hoeffler et al., 2006). This literature typically uses
tasks that require individual learning and apply a set of rules aimed at
building sequences of “actions” that translate into the desired outcome.
The main findings from this literature imply that once subjects learn a
task, they tend to stick to it even if it is inefficient (Luchins 1942), which
is recognized later in the literature as a variety of biases that make
exploitation more likely than it would ideally be (Denrell and Le Mens,
2020; Levinthal and March 1993).

Importantly, there is increasing evidence that exploration-
exploitation decisions are prone to various preconditions and triggers
that alter how this choice is being made. In the current study, we argue
that the complexity of the task environment under which learning oc-
curs is a key condition in the latter choices to deviate from or stick to the
initially learned task. This intuition is supported by literature that has
demonstrated that exploration-exploitation choice involves a lot of
inertia, stickiness, and attachment to past success (Hoeffler et al., 2006;
Brusoni et al., 2020) and that such choice is affected by the task envi-
ronment (MacLeod and Pingle 2005; Rahmandad et al., 2021). There-
fore, to model the exploration-exploitation choice that takes into
account these features, in this study we put forward an experimental
design that accommodates both the qualitative features of learning (i.e.,
the complexity of the task environment under which the initial task
learning occurs) and the situations in which the choice is made to stick
to or deviate from a specific task.

Empirically, we examine what triggers an individual’s adherence to or
abandonment of a particular task that has been learned initially in more or
less complex task environments. To that end, we devised a laboratory
experiment with 240 participants, internal conceptual replication, two
abstract experimental designs (visual and numeric), and four different
tasks that allowed the participants to explore and exploit. Following
previous experimental literature, our experiment utilized a “real-effort
task” (Briiggen and Strobel 2007). The real-effort task setting mimicked
a process of learning by doing as a function of repetition and task success
(Benndorf et al., 2019; Weiss and Ilgen 1985, p. 59), thereby capturing
the “incremental refinements achieved by internalizing or combining
existing knowledge” (Laureiro-Martinez et al., 2015, p. 321). An
important feature of our experimental design is the training phase, which
forced the participants to perform the same task multiple times to
manipulate the build-up of learning and the related path-dependency,
“imprinting” (Levine et al., 2019) or “attachment” (Brusoni et al.,
2020) to particular tasks. During the training phase, the participants
were randomly assigned to two tasks: a relatively simple memory task
and a more difficult building task to simulate the establishment of
learning in diverse task environments. Then, in the second phase,
namely, the active phase, the participants had to decide whether to
continue exploiting the training task, explore an unknown and different
task in subsequent rounds, and potentially continue to exploit such task
or retreat to the training task. To further simulate an environment in
which exploring new alternatives can deliver higher rewards albeit with
greater uncertainty (March, 1991), our experimental design offered
increased payoffs if the newly explored task was successful.

Our main findings demonstrate the important role of initial condi-
tions in exploration-exploitation choice. When individuals are initially
exposed to simpler tasks, they are more likely to continue exploiting a
familiar task. When they are initially exposed to more complex tasks,
they are more likely to explore new and more profitable tasks and then
continue exploiting the new tasks they learned. In the following, we
briefly review the relevant literature, discuss the experimental design,
and follow up with results, implications, and future research
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suggestions.
2. Theoretical background

2.1. Exploration-exploitation at the individual level: bounded adaptive
rationality model

The seminal literature on exploration and exploitation is grounded
on the organizational level, and it was initially concerned with organi-
zational learning (March, 1991; Levinthal and March 1993). While
much of this research builds upon March’s work, primarily at the
organizational level (e.g., Hoang and Rothaermel, 2010; Smith and
Tushman 2005; Junni et al., 2013), March acknowledged the role of
individual decision-makers, influenced by Simon’s early notions of
adaptive aspirations and exploration choices (Simon 1955; March, 1991;
Lee and Meyer-Doyle 2017).

Recent studies in organizational literature emphasize variations in
individual decision-makers’ exploration and exploitation capabilities
(Mom, Van den Bosch, and Volberda 2007; Mom, Van den Bosch, and
Volberda 2009). Experimental designs investigating the impact of past
performance on these choices (Billinger et al., 2014; Levine et al., 2019)
and micro-level behavior patterns under different performance in-
centives (Lee and Meyer-Doyle 2017) support the importance of
individual-level examination. Neuroimaging research also underscores
cognitive disparities between exploration and exploitation (Laureir-
o-Martinez et al., 2010; 2015). However, the precise conditions gov-
erning switches between these modes remain incompletely understood
(Puranam et al., 2015, p. 352).

Building on March’s original definition (1991, p. 71), we conceptu-
alize exploration-exploitation choice at the individual level. With
exploitation, the key issue is that the decision-maker knows the task
based on previous experience and, thus, a process of learning and
refinement can take place (Ericsson and Lehmann 1996). With explo-
ration, the opposite is true: the decision-maker chooses to abandon their
current task to find a new, potentially more profitable task (March,
1991; Laureiro-Martinez et al., 2015). These choices serve performance
goals: learning through task repetition or experimenting with new tasks.
This dynamic process allows exploration to transition into exploitation
and vice versa, mirroring changing task environments (Posen and Lev-
inthal 2012; Lee and Meyer-Doyle 2017). Research suggests a tendency
to overexploit due to a preference for existing competencies and
risk-aversion, but overexploration can also occur, cutting short perfor-
mance improvements (Levinthal and March 1993; Wiseman and
Gomez-Mejia 1998; Greve 1998; Billinger et al., 2014). Therefore, in-
dividual exploration-exploitation patterns vary based on performance
and task environment.

Our approach draws from Herbert Simon’s concept of bounded ra-
tionality with adaptive aspirations (Simon 1955) and behavioral theory
on problemistic search (Cyert and March 1963; Gavetti et al., 2012). The
trade-off between exploration and exploitation relates to dynamic
sequential decision-making processes. This process aligns with rein-
forcement learning theory (Sutton and Barto, 1998; Cohen et al., 2007)
and Thorndike’s "Law of Effect." Together, these assumptions can be
conceptualized under the bounded adaptive rationality model (Puranam
et al., 2015).

Our experimental approach follows the bounded adaptive rationality
model’s main components. The task environment represents a decision-
maker’s objective reality with various actions leading to different per-
formance outcomes. The decision-maker aims to reach an acceptable
performance level (Cyert and March 1963; Posen et al., 2018). The
choice process is often incomplete, with limited information, and may
prioritize "satisficing" over maximizing performance (Simon 1955; Cyert
and March 1963). Performance feedback, varying in availability and
quality, informs the decision-maker’s representation of the task envi-
ronment. This feedback triggers changes in the choice process, such as
seeking alternatives in response to poor performance or repeating
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behaviors linked to strong performance (Greve 1998; March, 1988). Our
application of the bounded adaptive rationality model views
exploration-exploitation choice as dynamic, with the decision-maker
comparing options and adjusting aspirations based on both recent and
past experiences.

2.2. The role of initial conditions on learning and exploration-exploitation
choice

Based on the bounded adaptive rationality model, we move to
discuss how individual exploration-exploitation choice is potentially
constrained by path dependency of learning and a variety of behavioral
biases. At the individual level, when a problem solution is experienced
through a process of learning via repetitions, it is ultimately applied
automatically (Narduzzo and Warglien, 2008). According to Egidi (2015;
see also Narduzzo and Warglien, 2008), this result is related to the
cognitive characteristics of individual learning and more precisely, to
the mechanization of thought introduced by Luchins (1942), one of the
first and few scholars who investigated the relationship between initial
conditions (problems framing) and solutions-search behavior, induced
by being exposed repeatedly to the same class of problems. In Luchins’s
experiment, once the participants were required to solve a similar
problem for a set of repetitions, they started to develop a procedure that
they then mechanically applied to new problems, although the new
problems required abandoning the original procedure to look for new
and more efficient ones. This phenomenon of “habituation to a repeat-
edly used procedure” (Luchins 1942, p. 3) to solve a given problem is
called the Einstellung effect. As Narduzzo and Warglien (2008) noticed,
the situation does not change even when other factors are added to the
experimental setting (e.g., incentives to reward efficiency or more
realistic experimental conditions aimed at increasing the reflexivity of
the participants; Luchins and Luchins 1950).

Based on the experimental evidence discussed above, and the theo-
retical intuition of aspiration adaptation, decision makers are likely to
favor continuing exploitation once they have learned to perform a
certain task, ceteris paribus. However, whether and how different initial
experiences in (exploitative) learning affect search behavior has been
less examined (Billinger et al., 2021). Understanding better the role of
initial conditions is crucial, as learning takes place within a context, and
this context will matter in the later exploration-exploitation choice. The
reason for this gap in the literature is that most of the experimental
studies did not use a training phase or a “learning phase” to simulate the
stabilization of exploitative learning (and exploitation choice) under
different task environments. A rare exception is the study of Betsch et al.
(2001), where micro-world computer simulation was used to investigate
the role of the “routine strength” in the search for information and in the
decision to stick to the learned task. The main finding is that the
strong-routinization participants relied on the beliefs built in the
training phase much more than the weak-routinization participants.
This translates to a greater reluctance to give up the exploitation and
demonstrates that initial conditions matter for exploration-exploitation
choice.

For the current study, we are particularly interested in the
complexity of decision making in the context in which learning occurs, i.
e. the task environment (Puranam et al., 2015). Task complexity is a
crucial feature of decision-making as it affects the goal setting of actors
and is related to the different strategies for solving a task (Campbell
1988). While some task environments are perceived as more challenging
(due to their complexity), others are perceived as easier. A complex task
environment includes many interacting variables, making it difficult to
understand, which leads to a particular level of task performance; and
the inverse is true for simple task environments where the sources of
performance are more visible and where there are fewer interacting
decision variables (Rahmandad et al., 2021).

In the context of individual search, the task complexity regulates the
process of aspiration adaptation. MacLeod and Pingle (2005)
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demonstrated that with complex tasks, the decision-maker experiences
uncertainty when facing a problem and, relatedly, experiences uncer-
tainty as to where the aspiration should be set. Conversely, they found
that with simple problems, aspirations are easier to set, which further
encourages individual search behavior. The question remains that while
complex task environments seem to be initially more challenging for a
decision-maker, what happens when learning takes place over multiple
repetitions in such an environment as opposed to a simple task envi-
ronment? In this regard, we expect that learning taking place in simpler
task environments may offer less cognitive flexibility or room to ma-
neuver later on when exploring new tasks. Multiple repetitions in a
simple task environment lead to learning that helps the decision-maker
to conserve cognitive effort and thus may discourage the decision-maker
from exploring other tasks even with incentives to do so. Indeed, there is
evidence that favorable initial task experiences may limit explorative
search. Hoeffler et al. (2006) found that especially individuals who
enjoy favorable results of particular tasks, can become dependent on
those initial experiences, and lead to a “biased search process in which
entire regions of potentially attractive alternatives are relatively un-
likely to be discovered” (p. 218). Therefore, since we expect a simple
task environment to be more likely to provide such favorable experi-
ences (in terms of performance), there is an inherent bias to continue
exploitation. For learning taking place initially in complex environ-
ments, we expect the inverse to be true. Decision-makers need to learn to
perform under a state of complexity, which imposes initially high
cognitive demands on them (Rahmandad et al., 2021). When the situ-
ation stabilizes, however, the decision-makers will have experienced a
learning process that conditioned them to face higher levels of uncer-
tainty and complexity, which we expect to be carried over to the sub-
sequent exploration-exploitation choice. Experiences in facing
uncertainty will prime the decision-maker to encounter further uncer-
tainty, and in our context, to make more likely choices to explore new
tasks.

3. The experiment

This section outlines the experimental design employed to examine
how individuals navigate between exploitation and exploration in their
decision-making. Our research design consists of two key elements: first,
a computer-based decision-making game, which we discuss in Section
3.1, serves as the central experiment. Second, we utilize the Bomb Risk
Elicitation Task (BRET; Crosetto and Filippin, 2013) to assess partici-
pants’ risk preferences, detailed in Section 3.2. Section 3.3 elaborates on
our approach to conceptualizing exploration-exploitation choices.
Finally, Section 3.4 provides an overview of the study’s participants and
the experimental procedures.

3.1. The main experiment

The main experiment utilized a computer game based on a real-effort
task (Briiggen and Strobel 2007). This allowed us to analyze
decision-makers performance and learning, leading to choices between
exploitation and exploration during the experiment. The game unfolded
over 18 rounds and was divided into two main phases: the training phase
(eight rounds) and the active phase (10 rounds). During the training
phase, the participants were randomly assigned to what we call a
“building task™ (learning a technique for constructing a visual puzzle or
a number), or to what we define as a “memory task” (learning a tech-
nique for memorizing a figure or a number). This procedure forced the
subjects to gain practical experience and establish a learning path in two
distinct task environments with different difficulty levels. This experi-
mental expedient was introduced to verify the effect of different degrees
of complexity of the training environment on the subsequent exploration
and exploitation decisions of the participants in the active phase of the
experiment. The building task proved to be more challenging than the
memory task because the subjects who were required to train on it
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achieved lower average performances compared to those who were
trained on the memory task (see section 4.1).

The training phase plays a crucial role in inducing learning by doing.
This phase is compulsory, forcing the decision-makers to repeat the
same task for 8 rounds. In the subsequent active phase, the decision-
makers can choose to exploit the same task in multiple rounds or
explore another task from a total of four tasks (Memory — labeled in the
instructions “Modality Y” —, Building — labeled in the instructions “Mo-
dality X” —, Combine — labeled in the instructions “Modality Z” -, and
Destroy — labeled in the instructions “Modality K” -), including the
training phase task. The decision to choose neutral rather than
descriptive terminology to present the tasks is aimed at avoiding the risk
of uncontrollable factors that can influence the participants’ choices.
Regardless of the specific task chosen, participants aimed to approxi-
mate a "target" as closely as possible, which served as a proxy for various
types of goals in decision-making scenarios.

The tasks in the main game were framed in two ways: visually or
numerically." In the visual frame, the participants were asked to select or
construct an abstract target figure. As in Mittone and Papi (2017), all the
figures used in this experiment were grids with red or beige cells. Each
cell is called a pixel, and a set of four adjacent cells is called a block. The
numeric frame corresponds closely to the visual frame regarding task
design, but in this case, the participants were asked to select or construct
a target number. Thus, our experiment relies on 4 tasks: one learned in
the training phase and the other three unknown tasks that, in addition to
the learned one, could be chosen by subjects during the active phase.
Table 1 provides a detailed description of each task.

When examining the task descriptions, it becomes evident that the
"Destroy" task mirrors the "Building" task, but it compels the subjects to
view the game solution as a simplification of the initial frame rather than
a progressive complexification of it. As for the "Combine" task, it is
derived from a fusion of the "Building" and "Memory" tasks. Notably,
each round gave each participant a different figure or number.

3.1.1. Information on task performance: availability of performance
updates versus No updating

Alongside the task presentation format, which was either numerical
or visual, we also manipulated the provision of performance feedback to
participants: participants either received continual updates on their
performance after each round or did not receive any performance
feedback at all.

Informed decision-making about whether to explore or exploit de-
pends on performance feedback (Greve 2003; Puranam et al., 2015;
Simon 1996). Decision-makers typically receive some form of perfor-
mance feedback, but the availability of useful performance updates
(feedback) varies. While updating performance data is sometimes im-
mediate (e.g., in stock markets), the organizational literature confirmed
that in many situations, individuals make decisions in the absence of
complete or even partial information about the immediate consequences
of their actions (e.g., Posen and Levinthal 2012; Ritala et al., 2016;
Weick 1993). For that reason, our experiment tested two distinct sce-
narios: decision-making with constant explicit updates on performance
and decision-making in the absence of any such updates. Feedback is
generally thought to contribute positively to individual performance
(Larson 1984). Extensive organizational and economic experiments that
analyzed the role of feedback (Diehl and Sterman 1995; Roth and
Malouf 1979; Smith 1962) confirmed that the information provided
often supports the participant’s ability to choose the best option or
task-performing strategy. On that basis, we expect the availability of
explicit feedback updates on performance to improve task performance
when other things remain constant.

! For a better understanding of our design, detailed instructions provided to
the participants during the experiment can be accessed at https://osf.
io/8j3gz/?view_only=6e7c37d42a1d4873983fcec74f28f14b.
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To test the influence of the availability of updates on performance,
we created two versions of the game. In the version with explicit per-
formance updates, the participants received information on their per-
formance in each of the 18 rounds. Specifically, the participants were
updated about their performance regarding the extent to which they had
fulfilled the requirements of the given task (expressed as a percentage).
These participants received an update on their performance but not on
the associated payoffs; they were informed about the payoff scheme at
the beginning of the game but not after each round. This design sought
to reproduce the incomplete information environment in which man-
agers often operate.” The performance-update (feedback) version of the
experiment was replicated in both numeric and visual scenarios.

In the no-performance-update (no-feedback) version, the partici-
pants received no information about their performance in any round of
the game (although they were informed about the payoff scheme at the
beginning of the experiment). As in the performance-update version of
the experiment, we replicated the no-performance-update sessions for
both the numeric and visual scenarios.

Thus, within the main experiment, four separate sub-studies were
conducted, each distinguished by two factors: whether participants
receive feedback on their performance or not, and the frame-
work—either numerical or visual—used for the tasks. Therefore, the
experiment includes four distinct settings: numeric feedback study (NF),
numeric no-feedback study (NNF), visual feedback study (VF), and vi-
sual no-feedback study (VFN) (see Table 2).

3.1.2. Performance and payoff computation

In our experimental setting, realization of the decision-maker’s
objective function depends both on the decision-maker’s performance
level and the associated monetary reinforcement (payoff). For all ver-
sions of the experiment, we assessed performance in terms of the
resulting distance from the target figure (or number) using the following
formula:

Fimess(%) =100 — (lOO*@)%. [3.1]

In the visual frame, d;(c,s) is the number of mistakes made by partici-
pant i for choice problem c in scenario s = visual. Following Mittone and
Papi (2017), our design recorded a mistake each time a pixel of the
chosen (or constructed) figure differed from the corresponding pixel of
the target figure. In the numeric frame, d;(c, s) is the difference between
the absolute value of the target number and that of the number selected
(or constructed) by participant i for choice problem c in scenario s =
numeric. In the visual frame, T is equal to dpe(c, s), which is the
maximum number of mistakes a participant can make for choice prob-
lem c in scenario s = visual. In the numeric frame, T is equal to the target
number.”

The participants received monetary incentives based on the standard
paradigm in experimental economics (Smith 1976). To pay the partici-
pants, we computed their performance in terms of their correct
approximation of the target, after which we valued their performance
with experimental currency units (ECU) using the conversion formula in
Table 3. We fully informed the participants about this approach.

2 For example, describing the task of a manager who is responsible for a
complex set of organizational resources, Kantola concluded that “In a way,
managers in many cases are forced to work and make decisions with partial
information and in violation of right decision” (2016, p. 8).

3 It is important to note that in the Building (Destroy) task in the visual frame,
when the participants did not use the available blocks but left the figure as it
was (i.e., partitioned into blank or red spots), the performance was, by defi-
nition, higher than zero because some pixels were already correctly positioned
in relation to the corresponding pixels in the target figure. To make the numeric
frame comparable, we assumed that the initial performance was higher than
zero by placing a given number in the provided formula.


https://osf.io/8j3gz/?view_only=6e7c37d42a1d4873983fcec74f28f14b
https://osf.io/8j3gz/?view_only=6e7c37d42a1d4873983fcec74f28f14b

L. Mittone et al.

Table 1

Task descriptions: visual and numeric frames.
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Task description

Visual Game

Numeric Game

Building task. To the best of
their ability, the
participants must
construct a target figure
(visual) or number
(numeric), using a set of
blocks in the visual frame
or numbers in the numeric
frame, as displayed on
their computer screen for
the entire duration of each
round.

Memory task. The
participants are shown a

target figure or number
for a predetermined time
(20 s).

The target is then hidden,
and the participants are
presented with a set of 18
figures (including the
target) or 18 numbers
(including the target).
They must choose
whichever item they
believe to be the target
within 120 s in the visual
frame or 60 s in the
numeric frame.

The Combined task includes
elements of both the
memory and building
tasks. The participants are
presented with a target
figure or number for a
given time (20 s).

The target is then hidden,
and the participants must
build it (as in the building
task); the difference is that
on this occasion, the
target figure or number is
no longer visible while
building. The participants
must construct the target
figure or number within

Tampo rmasts pe complerare cuss cagne 150

ewdna

s00cHiBsE

The participants are shown several white and red blocks (along the top),

a target figure (made up of red and white blocks), and a blank matrix

(totally white) partitioned into blank spots with the same dimensions as

the blocks. Starting from the figure provided, the participants are asked

to construct a figure by placing the blocks in the slots within 120 s. Any

block may be placed and replaced in any slot until the time expires.
T——

Aundn 4
Quarva bane livmagne seguarte.

Numero da ricordare: 1400082504

Teno 1mag p cor e

Hounin
[ p——

h

Numero da ricordare: 9329

target da raggiungere:

The participants are shown a target number (at the top) and four
numbers (along the bottom). Using a predetermined formula, they are
asked to construct a number by assigning the available numbers to empty
cells within 60 s. Any number may be assigned and reassigned to any cell

until the time expires.

1550683903 1400182504 1436852007 1016317706

1402082504 1400085204 1900082504 1085183441

905879828 31691237

822120342 112667463 1009095432 1400082604

1400082514 759971450 1290864805 1269776924

(continued on next page)
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Table 1 (continued)

Technovation 129 (2024) 102895

Task description Visual Game

Numeric Game

120 s (visual frame) or 60
s (numeric frame).

The Destroy task is the
mirror-image of the
Building task. The only Feundr. 15
difference is that the
participants are shown a
figure partitioned into red
rather than white spots in
the visual frame. In the
numeric frame, they see a
target formula.

Tompa Fmsta pat copire queta pagre: 155

o N Pl
o N EE N jus)

Target

Selecicns I bbazon base s pei checs
suls ~eircn detoy

PROSEGU AL PROSSIMO ROUND.

The participants are shown several blocks, including a target figure (on
the right) and a figure partitioned into red spots (on the left) with the

same dimensions as the blocks. Starting from the figure on the left, they
are asked to complete a figure by placing the blocks in the slots within

120 s. Before the time expires, they are allowed to place and replace any

block in any slot.

The participants are shown a target number (at the top) and four
numbers (along the bottom). Using a predetermined formula, they are
asked to compute a number by placing the available numbers into filled
cells within 60 s. Before the time expires, they are allowed to place and

replace any number in any cell.

During the active phase, a participant who chose to abandon the
training task could obtain a higher payoff (see Table 4).

A higher-performance ECU ratio was introduced to compensate for
the costs of learning a new task. That is, the payoff was calibrated to
make it less profitable to exploit the familiar task learned in the training
phase and more profitable to explore a new task (and to continue to
exploit this new task). This feature was designed to motivate exploration
and to mimic the issue at the core of the exploitation-exploration
dilemma (March, 1991): that exploitation generates more certain
low-cost benefits but may generate inertia, while exploration offers
potentially higher benefits but also entails higher risks (Greve 2007,
Laureiro-Martinez et al., 2015). The higher potential monetary reward
for abandoning a familiar was also aimed at counterbalancing the effects
of performance-based incentives, which have been shown to reduce
exploration and increase exploitation of previously acquired knowledge
(Lee and Meyer-Doyle 2017). In our analyses, we will exclusively focus
on the payoff.*

3.2. The risk elicitation task

After completing the main experiment (the training and active
phases), the participants were asked to play the BRET (bomb risk elici-
tation task) to determine their risk preferences (Crosetto and Filippin
2013). In this task, they were presented with 64 boxes and were
informed that one box contained a bomb while each of the remaining 63

4 Here, the decision-maker is not interested in improving performance as such
but in reaching a higher level of achievement of an objective function associ-
ated with a monetary reward. In this regard, we follow the Induced Value
Theory of Vernon Smith (1976), which is a standard technique in experimental
economics.

boxes contained one ECU. The participants were asked to collect
whatever number of boxes they wished, knowing that if they collected
the box that contained the bomb, it would “explode” and nullify their
earnings for this part of the experiment. The participants’ earnings
increased each time they opened a box, provided they did not collect the
box that contained the bomb; and if they selected the box with the bomb,
their earnings were wiped out. This procedure provided an index of
risk-taking; the more boxes the participants collected, the higher their
propensity for taking risks.

3.3. Conceptualization of exploration-exploitation choices

To conceptualize exploration-exploitation choice at the individual
level, we build on March’s original definition (1991, p. 71). Exploitation
refers to the accumulation of decision-making experience through task
repetition and related processes of learning and refinement (Ericsson
and Lehmann 1996, Laureiro-Martinez et al., 2015). Exploration involves
the opposite, as decision-makers choose to abandon their current task to
find a new and potentially more profitable task (Laureiro-Martinez et al.,
2015; March, 1991, Smith and Tushman 2005). This disengagement
facilitates “the pursuit of new knowledge, of things that may come to be
known” (Levinthal and March 1993, p. 105). According to this defini-
tion, in our study’s context, we categorize exploration as behavior that
involves switching to a task that differs from the task performed in the
previous round or in the training phase. Exploitation, in contrast, is
sticking with the same task. Specifically, we define two types of
exploitation:

1. "Exploitation of a familiar task environment" (ExploitFT) occurs when
individuals stick with the task learned during the training phase.
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Table 2
Overview of the four studies in the main experiment.
Frame
Numeric Visual

visual no-feedback
study (VNF)
visual-feedback
study (VF)

numeric no-feedback
study (NNF)

Yes  numeric-feedback
study (NF)

Update about performance No
in each round

Table 3

Conversion scheme: Performance incentives if
the chosen task is the one learned in the
training phase.

Performance ECU
100%-95% 400
94%-80% 200
79%-65% 70
64%-50% 20
49%-0% 0

Note. ECU stands for Experimental Currency
Units.

2. "Exploitation of a novel task environment' (ExploitNT) takes place
when individuals opt to continue a new task that was initially
explored (i.e., a task that differs from the one they learned in the
training phase).

During the training phase (i.e., during the first eight rounds), par-
ticipants gained confidence by repeatedly performing the same task,
which aligned with March (1991)’s definition of exploitation as: “the
refinement and extension of existing competences, technologies, and
paradigms ... returns are positive, proximate, and predictable” (p. 81).
In the active phase, beginning with the ninth round, participants faced
the choice of either continuing the familiar task from the training phase
or exploring a new and unknown one (whose outcome is largely un-
certain). Subsequently, from the tenth round on, participants had three
options:

1. Persist with the well-known familiar task from the Training Phase
(ExploitFT), which assumes a well-known environment (Laureir-
o-Martinez 2014; Oehler et al., 2019).

2. Maintain the course with the recently explored task (ExploitNT). This
essentially means exploiting a new task that was recently explored in
the active phase and chosen as an alternative to the one from the
training phase.

3. Decide to abandon the current task for another task that differs from
the one learned in the training phase or performed in the previous
round. We refer to this as the “Exploration of a task environment”
(ExploreT). This entails a choice to switch to a task that deviates from
ExploitFT or ExploitNT.

Fig. 1 summarizes this temporal framework, considering a partici-
pant trained on the memory task who, for example, had chosen the
following sequence of tasks.

In the initial stage, decision-makers are induced to learn a task. Then,
they must decide whether to continue exploiting the same task
(ExploitFT) or to switch to a new task (ExploreT). If they choose to
explore a new task, they can decide to continue with that task to learn
and exploit this task (ExploitNT), to go back to the training task (Selten,
1998), or to explore another task.

3.4. Participants and experiment procedures

The experiments were conducted at the Cognitive and Experimental
Economics Laboratory (CEEL) of the University of Trento (Italy). The
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Table 4

Conversion scheme: Performance incentives if
the chosen task differs from the one learned in
the training phase.

Performance ECU
100%-95% 600
94%-80% 300
79%-65% 100
64%-50% 30
49%-0% 0

participants were recruited using customized software implemented at
the laboratory, and the experiment was programmed and administered
using oTree software (Chen et al., 2016, Holzmeister and Pfurtscheller,
2016). To facilitate replication and extensions of our study, we shared
the software and study data in an open-access repository.” In total, 240
people participated in the experiment; 132 were female and 108 were
male.

The average age of the participants was 21.80 years (sd = 2.36). Most
were students of economics (54.17%), while the remainder included
students of law (21.25%), engineering (7.50%), mathematics and nat-
ural sciences (7.50%), social sciences (4.58%), humanities (3.33%), and
psychology (1.67%).

Each participant participated in only one study—=81 in the numeric-
feedback study (NF); another 81 in the visual-feedback study (VF); 39 in
the numeric no-feedback study (NNF); and 39 in the visual no-feedback
study (VNF). Upon arriving at the laboratory, the participants were
randomly assigned to a computer, where they read the instructions for
the first part of the experiment (the training phase). An experimenter
also read the instructions aloud, and the participants were invited to ask
questions to ensure that they understood the instructions.

The participants were told that the experiment would involve two
main phases (the training phase and the active phase). They knew that
they would participate in both phases, but none of them knew in
advance the purpose of the second phase. After completing the training
phase, they received instructions regarding the active phase. Finally,
they were asked to play the BRET (Crosetto and Filippin 2013) and to
answer a short demographic questionnaire. The experiment lasted
approximately 40 min. Besides being given a show-up fee of €3, the
subjects received a certain amount of experimental currency units (ECU)
depending on the choices they made in the two parts of the experiment
and the BRET. They were informed that their payment would be based
on the results that they would obtain in two rounds, which would be
randomly extracted at the end of the experiment—one from the training
phase and one from the active phase. Based on a conversion rate of 100
ECU =1 euro, the average payment was €11.07 (including the show-up
fee).

4. Results

In this section, we begin by presenting our analysis of the perfor-
mance results and the response time evolution during the first phase of
the game, that is, during the training phase (section 4.1). Then we
present our analysis of the data during the second phase of the game,
that is, during the active phase (section 4.2). This is followed by a
multivariate analysis of several determinants of explorative-exploitative
behavior in the active phase (section 4.3).

4.1. Training phase with two different initial conditions

Table 5 reports the means and standard deviations of the

5 The software and data can be accessed at https://osf.io/8j3gz/?
view_only=6e7c37d42a1d4873983fcec74f28f14b.
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L. Mittone et al.

participants’ performance in each experimental condition during the
training phase. Regardless of the frame, their average performance
increased significantly when they were asked to play the memory task
rather than the building task. A post-hoc statistical power analysis
conducted with G*Power (Faul et al., 2009) revealed an achieved power
(1-p) greater than 0.9 at the standard 0.05 alpha error probability. Only
in the Numeric (with feedback) scenario, we achieved a power greater
than 0.59 at the standard 0.05 alpha error probability.®

Thus, we can deduce that the two training tasks had different degrees
of complexity.

Based on the arguments outlined in Section 2, we expected that the
training phase would trigger the participants’ learning processes. As
their learning deepens, participants are likely to become more efficient,
that is, their performance should improve over time, and/or they should
be able to complete their tasks sooner (Laureiro-Martinez 2014).
Therefore, we computed the average round-by-round performance
during the training phase, and we also measured the average
round-by-round response time needed to perform the task (Cohen and
Bacdayan, 1994; Laureiro-Martinez, 2014; Oehler et al., 2021). As
shown in Fig. 2, the average performance first increased quickly and
gradually stabilized after the first three rounds among the participants
who performed the building task; and for those who performed the
memory task, the average performance remained relatively stable. This
finding highlights the tasks’ different degrees of cognitive complexity;
the memory task was simpler, and the participants could make better use
of their pre-existing skills. Fig. 3 shows that the average response time
needed to accomplish the task diminished during the training phase,
regardless of the task (building or memory) or frame (visual or numeric).
The only exception to this general tendency is the experimental condi-
tion of numeric memory no-feedback. It is important to note that
although the memory task was simpler, the participants completed it
with increasing efficiency as the rounds progressed—that is, the average
time needed to complete the task decreased.

Figs. 2 and 3 also reveal differences in the average performance and
response time with and without performance updates. These results
support our expectations based on the literature. Specifically, the par-
ticipants who received updates on their performance in each round
performed better throughout the building task than those who played
the no-feedback version. The t-tests revealed significant differences in
average performance for all rounds other than round 4 of the numeric
frame (p < 0.05 to p < 0.0005); and in contrast, the visual frame
exhibited significant differences only in rounds 1, 3, and 4 (p-values
0.099, 0.035, and 0.067, respectively). On the other hand, feedback
seemed to have played no role among the participants in the memory
task, with significant differences noted only in rounds 4 and 7 in the
numeric frame (p = 0.09 and p = 0.079, respectively).

In terms of response times, the participants who received updates on
their performance in both the visual and numeric frames were faster
than those who did not receive any performance updates. The t-tests
revealed significant differences in the majority of the rounds for both the
building and memory tasks in the numeric frame, with the p-values
ranging from <0.1 to <0.005. In the visual frame, significant differences
were detected only in rounds 2 and 5 (the memory task) and in rounds 4
and 5 (the building task), with the p-values ranging from <0.1 to < 0.05.

4.2. Path-dependent behaviors that emerged from the experimental data

In the previous section, we revealed that individual responses to
learning in the training phase differ significantly based on the
complexity of the task environment—whether the task is simple
(memory) or complex (building). A compelling question then arises:

6 We share this analysis in the same open-access repository where we share
our software and data (https://osf.io/8j3gz/?view_only=6e7c37d42ald487
3983fcec7428f14b).
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Fig. 1. Temporal framework: Exploitation and Exploration behaviors. ExploreT
(exploration of a task environment); ExploitFT (exploitation of a familiar task
environment); ExploitNT (exploitation of a novel task environment).

How do the two distinct groups of participants, each exposed to different
training sets (memory and building), perform in the subsequent active
phase of the tournament? Specifically, we are interested in under-
standing how learning in two different sets affected the decision to
exploit or to explore. We operationalized ExploreT, ExploitFT, and
ExploitNT as dummy variables (see Table 7).

Fig. 4 illustrates how exploitation (both ExploitFT and ExploitNT)
and exploration (ExploreT) decisions alternated across successive
rounds during the active phase (i.e., from round 9 to round 18).

We have evidence that the initial conditions of the game trigger
different strategies in the active phase: players who had originally
learned a simple task (the memory task) decided more frequently to
choose the same task in the second tournament of the game. On the other
hand, players trained on the complex task (the building task) opted to
exploit a new task more often, that is, a task learned in the second
tournament of the game. Fig. 5 reports how many times each of the four
available tasks was chosen during the active phase (i.e., from round 9 to
18).

The results reported in Fig. 5 confirm that the majority of the par-
ticipants trained on the memory task were stuck on it in the active phase,
and at the same time, that the memory task was also the most frequently
chosen for exploiting a novel task environment/ExploitNT. Indeed, it could
be observed that the participants trained on the building task, once they
discovered the memory task, prevalently got stuck on it in the active
phase. However, the most frequent choice of the memory task for both
groups is the outcome of two completely distinct decision processes. For
those trained on the memory task, the fact that it was the most frequent
choice was merely the consequence of a lock-in effect of the task that
they were forced to learn during the training phase. For those trained on
the building task, it was the consequence of the “discovery” of a simpler
task and the ensuing decision to invest the necessary effort to exploit a
novel task environment. The results allow us to say that the lock-in effect
of the memory task was very robust, that is, it was applied indepen-
dently from having been exogenously imposed by the experimenters for
a set of repetitions.

A natural question that emerges is why those who were trained on
the simpler memory task repeatedly employed the same task even in the
presence of explicit incentives to explore, while the participants trained
on the more complex building task were able to learn new ones. The
answer might be found in the role played by the previously mentioned
mechanization of thought (the Einstellung effect), which enabled “in-
dividuals to pass from effortful mental activity to partially automatic,
unconscious, and effortless mental operations” (Egidi 2105, p. 198). Our
results in section 4.1 show that the participants who played the memory
task immediately reached the high-performance level. It is, therefore,
possible to argue that the cognitive process involved in solving the
memory task becomes automatic and effortless quite soon. According to
Egidi (2015), such an automatic process can direct players’ attention
towards a familiar task. In other words, the strength of the learning
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Table 5
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Performance across experimental conditions (training phase): Mean (standard deviation).

Frame Average performance (Memory task) Average performance (Building task) Difference (Memory-Building) Mann-Whitney U test)
Visual (with feedback) 98.20 (8.92) 88.26 (12.41) (p < 0.0001)
Numeric (with feedback) 98.67 (9.8) 88.09 (22.19) (p < 0.0001)
Visual (no feedback) 98.82 (7.54) 84.83 (14.38) (p < 0.0001)
Numeric (no feedback) 98.64 (9.89) 70.26 (39.37) (p < 0.0001)
All 98.53 (9.18) 84.78 (23.21) (p < 0.0001)

experience in capturing participants’ attention has a key role in trig-
gering the search for a new alternative (Egidi 2015; see also Bilali¢ et al.,
2008, 2010).

In terms of ex-post speculation, our experimental results can be
interpreted through the framework of cognitive strategy, understood in
terms of well-structured versus ill-structured problems, as well as Type 1
and Type 2 mental processes (Laureiro-Martinez and Brusoni, 2018).
The literature mainly refers to Type 1 and Type 2 as “System 1” and
“System 2” respectively (Kahneman, 2003). The key distinction between
decision-making tasks performed using System 1 or System 2 lies in the
cognitive processes involved. System 1 is cognitively effortless, fast, and
automatic, whereas System 2 is cognitively demanding, slow, and
rule-governed.

In our specific case, the difference between memory and building
tasks lies in the cognitive process required to solve the decision problem.
Memorization is a well-known cognitive tool, often employed by
experimental subjects in their everyday lives, classifying the ‘memory
task’ as a well-structured cognitive problem, thereby allowing subjects
to be more likely to activate System 1 (Type 1). The Einstellung effect
facilitated participants in swiftly reaching high-performance levels by
automating the cognitive process. This automation induced a form of
cognitive inertia, deterring them from venturing into new tasks even
when incentivized, making them overly reliant on a particular mental
framework.

Conversely, the ‘building’ task, which necessitates understanding the
game’s rules and applying them to achieve different objectives, belongs
to the ill-structured cognitive problems. This necessitated the activation
of System 2 (or Type 2) mental processes, which are slower and demand
greater cognitive control for thoughtful deliberation. This implies that
when subjects were engaged in the unfamiliar building task, they were
more likely to activate System 2 (or Type 2) and start a costly learning
process to find the most efficient strategy to reach high-performance
levels. This translated into the acquisition of a problem-solving
method that subjects could exploit in the active stage of the experi-
ment, progressively shifting from the use of System 2 to System 1,
exploiting the acquired knowledge of the task. This ultimately translates
into the rise of a tendency towards sticking to the learned task. This
phenomenon is more prevalent in those subjects trained in the memory
task because this task implies using a cognitive skill already owned by
the subjects without the need to learn it.

In summary, participants engaged in the well-structured memory
task often found their learning to be a double-edged sword: it solidified
existing knowledge but also led to cognitive inertia, inhibiting the
exploration of novel tasks. Conversely, the ill-defined nature of the
building task demanded a more flexible cognitive approach, promoting
adaptability and encouraging the exploration of new tasks. It is crucial to
acknowledge that these are speculative interpretations, and further
empirical work is needed.

4.2.1. Person-by-person analysis of the results

We have analyzed the results of the overall merged data. We have
identified the existence of cognitive traps (the Eistellung effect) in the
learning process, which in turn affected the decision to explore-exploit.
We now concentrate on the individual respondents and analyze the re-
sults by focusing on the choice patterns of each participant (see also
Egidi and Narduzzo 1997; Laureiro-Martinez et al., 2015).

We start checking two extreme types of behaviors: the “strong
ExploitFT-participants” and the “strong ExploitNT-participants”. The
former are participants who never switched from the task learned during
the training phase. The latter, in contrast, explored only one or two tasks
at the very start of the active phase (in rounds 9 and 11) and then slacked
on that task to the end of the experiment.”

Additionally, we individuate Retreaters, that is, participants who,
after the training phase, explored a new task only once at the very start
of the active phase (between rounds 9 and 12) before deciding to revert
to the training task for the entire duration of the game. Their tendency to
avoid tasks with a lower outcome on the first trial can be interpreted as
the “hot stove effect” (Denrell and March 2001), which entails retreating
to the training task because of their inherent resistance to exploring new
alternatives.

Table 6 presents descriptive statistics related to the game design,
training task type, and which kind of exploitation (ExploitFT or
ExploitNT) they engaged in (for their demographic statistics, see Ap-
pendix A2).

The effects of the training task show clearly that exposure to the
memory task is strongly associated with Retreaters, 87% of whom
received training on the memory task. Table 6 reports a similar result for
the strong ExploitFT-participants, 76% of whom were trained on the
memory task. Interestingly, 85% of the strong ExploitNT-participants
(who explored once or twice before quickly choosing to exploit a new
task) were trained on the more complex building task. Taken together,
these findings further confirm that the type of learned task in the
training phase fundamentally influences the decision to explore or
exploit.

The broader implication is that any individual who achieves very
high performance on a simple task is more likely to repeat the same task,
even when there are strong incentives to abandon it. Conversely, an
individual who learns a more challenging procedure (reflecting the
greater intrinsic difficulty of the task), where low initial performance
gradually improves with practice, is less likely to be trapped in the
established task and is more likely to explore new options. Indeed,
searching for new alternatives implies facing a dilemma: on the one
hand, a short-term desire to experience the familiar and favorable out-
comes, and on the other hand, a long-term desire to explore new and
potentially more promising tasks that may increase utility in the future
(Hoeffler et al., 2006). We argue that the participants who had a more
favorable experience were more likely to be trapped in the

7 This category includes one subject who switched in the last round and one
subject who switched once in round 14 before immediately returning to the
training task.
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Table 6
Composition of types.
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Choice pattern Training (Memory)

Game (Numeric) Type of Exploitation

76%
87%
15%

Strong ExploitFT-participants (N = 29)
Retreaters (N = 23)
Strong ExploitNT-participants (N = 54)

41% ExploitFT
39% ExploitFT
35% ExploitNT

mechanization of thought, which in turn triggered a more myopic
8
search.

4.3. Determinants of exploitation and exploration behavior

Here, we investigate the effect of initial conditions and performance
feedback as antecedents of the decision to explore or exploit. That is, we
assume that decision-makers engage in satisfying behavior, adapting
their aspiration level based on the results of past experiences. Before
introducing our regression analyses, we will explain how the indepen-
dent and dependent variables were operationalized (as summarized in
Table 7).

Dependent Variables. Our main variables of interest are exploration
of a task environment (ExploreT),g exploitation of a familiar task envi-
ronment (ExploitFT), and exploitation of a novel task environment
(ExploitNT). As anticipated in the previous section, we operationalized
these variables as dummy variables. Based on our observations during
the active phase, we ran a set of logit regressions (including individual
random effects) to investigate the determinants of these three variables.

Independent Variables. We start by considering the effect of the kind
of training task played from rounds 1 to 8 (the Training variable). Then,
we analyze the role of feedback on exploration-exploitation behavior.
Specifically, inspired by the most recent experimental literature (Bill-
inger et al., 2021), we consider different feedback variables. First, the
literature highlights the role of feedback based on recent experiences (e.
g., Billinger et al., 2014; Van Rijnsoever et al., 2012), as there was a
progressive decline in the impact of older experiences. In particular, if
the outcomes of the decision-makers’ most recent choices are perceived
as failures, the decision-makers are less likely to make those choices
again and are more likely to explore a different choice. Conversely, if the
decision-makers perceive the outcomes of their most recent choices as
successes, they are likely to repeat those choices (Hoeffler et al., 2006;
Lave and March 1993; Sitkin and Pablo 1992; Van Rijnsoever et al.,
2012). To test the effects of recent experience, we measured the payoff
from the previous round (Last Payoff Experienced). Second, while the
decision-makers’ most recent experience arguably matters the most, the
behavioral research stream also suggests a role for longer-term aspira-
tion levels (Cyert and March 1963, Greve 1998, Lant TK Montgomery,
1987; Levitt and March 1988, March, 1988). This means that the
decision-makers revise their aspiration level based on all the feedback
that they have received relative to their recent performance (Billinger
et al., 2014; MacLeod and Pingle 2005). This argument is supported by

8 Evidence of this effect has been demonstrated by Hoeffler et al. (2006) (p.
218): “If people are overly focused on extracting immediate utility, they should be
more likely to select an experience that is similar to the favorable one they recently
enjoyed. However, people who have a neutral or moderately negative experience
should not be affected to the same degree. Ironically, such dependency on the quality
of earlier experiences also implies that favorable initial experiences may prevent
people from experimenting with dissimilar other products, leading to a biased search
process in which entire regions of potentially attractive alternatives are relatively
unlikely to be discovered. The starting point may heavily influence which particular
region people select from initially, and favorableness and myopic search are the
mechanisms that limit their search in that particular region”.

% In Appendix Al, we include an alternative analysis of antecedents of
exploration conceptualized as a unique instance of trying a new task. Our main
exploration variable refers only in general to trying new tasks that deviate from
an established task or from a previous task.
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the prospect theory of Kahneman and Tversky (1979), which suggests
that decision-makers evaluate their ongoing performance against a
subjectively fixed reference point. On that basis, current performance is
perceived as a failure if it falls below such a reference point, increasing
the likelihood of exploration (Bromiley 1991; Greve 1998, March,
1988). Exceeding aspiration levels leads to risk aversion and more
exploitative behavior (Billinger et al., 2014; Levinthal and March 1993).
Accordingly, following Levine et al. (2019), we consider the difference
between the current round payoff and the past best payoff as an assumed
proxy of the variable Aspiration-Payoff Gap. Third, we also include the
variable Average Payoff, as recent experimental literature suggests that
the higher the average payoff is, the less likely exploration is (Billinger
et al., 2021).

Our econometric analysis additionally controlled for the training
task and its interactions with the three variables (Aspiration-Payoff Gap,
Last Payoff Experienced, and Average Payoff) to check whether the effect
of these three forms of feedback varied across the two different training
experiences.

Finally, we added control variables, including the participants’ de-
mographics. Specifically, we included a set of dummy variables to
isolate the presence or absence of updates on performance (the Feedback
variable) and the different frames (the Game variable), and we
controlled for the impact of risk preferences (BRET), Age (in years), a
dummy variable for gender (Male), a dummy variable for economics
students (Economics), and a dummy variable to capture participation in
previous experiments (Number of Experiments). Regarding risk, it is well
established in the decision-making literature that individuals exhibit
different attitudes to risk (see, for example, Diamond and Stiglitz 1974),
which may affect explorative behavior. Based on organizational data,
Miller and Chen (2004) found empirical support for March and Shapira’s
(1987) model, which includes risk-taking when performance falls below
the aspiration level. On that basis, it was also considered important to
control for individual attitudes to risk. We also controlled for gender
since the exploration-exploitation literature presents evidence of
gender-related differences in behavior (Mehlhorn et al., 2015).

Regression Results. Table 8 displays the results of the logit re-
gressions. Since the results of logit, that is, nonlinear models, cannot be
easily interpreted (Hoetker 2007), we report the marginal effect of the
explanatory variable of interest, that is “the effect of a unit change in an
explanatory variable on the dependent variable” (Wiersema and Bowen
2009, p. 682), by keeping the other variables at observed values (results
not shown in the exhibits).

Models 1, 5, and 9 controlled for the task learned during the training
phase (simple or complex, where simple refers to memory and complex
refers to building). We confirm the results we already discussed in the
previous section: training on a simple task reduced exploration
(ExploreT) by 6.24%, and exploitation of a novel task environment
(ExploitNT) by 37.61%, while it increased exploitation of a familiar task
environment (ExploitFT) by 42.66%. Models 2, 6, and 10 show how the
independent variables Aspiration-Payoff Gap, Last Payoff Experienced,
and Average Payoff influenced our dependent variables. A negative gap
(i.e., payoff falls under aspirations) increased ExploreT and reduced
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Table 7
Variables and measurement.
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Dependent variables

Explanation of the measurement

Exploration of a task environment
(ExploreT)

Exploitation of a familiar task environment
(ExploitFT)

Exploitation of a novel task environment
(ExploitNT)

Independent variables

Average Payoff

Last payoff Experienced

Aspiration-Payoff Gap

BRET (risk-measure attitude)
Game

Gender

Feedback

Training Task

Age

Economics

Number of experiments

Binary variable [0,1]. If the participant changed tasks from the previous round but has not retreated to the task learned in the training
task, the value is 1 (otherwise, 0).
Binary variable [0,1]. If the participant remained in or returned to the same task learned in the training task, the value is 1 (otherwise, 0).

Binary variable [0,1]. If the participant repeated consecutively (i.e., for at least two trials) a task different from the task learned in the
training phase task, the value is 1 (otherwise, 0).

Continuous variable: Average of accumulated payoffs from the start of the game to the current round (variable standardized)
Continuous variable: Payoff in the previous round (variable standardized)

Binary variable [0,1]. Computed as the difference between the payoff in the current round and the maximum payoff across all past
rounds. If the difference is negative, the value is 1 (otherwise, 0).

Number of boxes collected in the bomb risk elicitation task (BRET). Higher values indicate a higher level of risk taking.
Binary variable [0 = visual, 1 = numeric]

Binary variable [0 = female,1 = male]

Binary variable [0 = no, 1 = yes] (received performance feedback or not)

Binary variable [0 = build, 1 = memory] (task in previous 8 rounds)

Continuous variable (years)

Binary variable [0, 1]. If participants have a background in Economics, the value is 1 (otherwise, 0).

Continuous variable (previous experiments in which the subject participated)

both ExploitFT and ExploitNT. Specifically, falling below the aspiration
level increased the likelihood of exploration (ExploreT) by 16.63%
while reducing the likelihood of ExploitFT and ExploitNT by 6.43% and
4.14%, respectively. These findings align with recent experimental ev-
idence (Levine et al., 2019) and offer strong support for March’s prop-
osition regarding the role of the aspiration-performance gap in boosting
exploration and reducing exploitation (March, 1988). The results also
indicate that a higher recent payoff (variable Last Payoff Experienced)
reduces the probability of ExploreT and ExploitFT by 5.47% and 2.72%,
respectively, while it increases the probability of ExploitNT by 8.24%.
This is consistent with earlier findings that repetition of a choice rather
than further search can be expected if the outcome of the most recent
choice was successful (Lave and March 1993; Sitkin and Pablo 1992; Van
Rijnsoever et al., 2012). The findings also suggest that the average
payoff (Average Payoff) decreases the probability of ExploreT by
11.14%, while increasing the likelihood of ExploitNT by 15.93%.

Models 3, 7, and 11 investigated exploration-exploitation behavior
in greater detail by also controlling for the interaction terms between the
variable training and the three feedback variables (Aspiration Payoff
Gap, Average Payoff, and Last Payoff Experienced). To reduce collinearity,
the Average Payoff and Last Payoff experienced were standardized. As
coefficients offer no satisfactory basis for inference of interaction effects
in a logit model (e.g., Hoetker 2007; Zelner 2009), we adopted Zelner’s
(2009) approach to test the statistical significance of the marginal
change in the likelihood of exploring and exploiting a familiar (new)
task due to an increase in the Average Payoff and the Last Payoff Expe-
rienced at the two different values of the dummy variable Training,
setting the remaining covariates as observed values. We also tested the
statistical significance of the marginal change in the likelihood of
exploring and exploiting a familiar (new) task when trailing aspiration
at the two different values of the dummy variable Training. We rely on
graphical analysis (see Figs. 6-8) to offer a better understanding of the
interaction effects (The results are based on the estimates computed in
the full models, columns 4, 8, and 12 of Table 8).

We notice that an increase in Average Payoff reduces the odds of
ExploreT (the marginal effect of the average payoff is always negative
and significant) and increases the likelihood of ExploitNT (the marginal
effect of the average payoff is always positive) irrespective of the specific

12

training task.'® At the same time, regardless of the specific training task,
an increase in the average payoff does not affect the probability of
exploiting a familiar task (ExploitFT), as the confidence interval (i.e., the
vertical bar) includes zero. Therefore, we conclude that the effect of the
average payoff so far is not conditioned on the initial conditions, even if
such effect is more sizeable in the case of the participants who were
trained on the more complex building task.

Interestingly, we previously noticed that a recent high payoff (vari-
able Last Payoff Experienced) increased the tendency to exploit a novel
task environment. Our analysis of the marginal effects revealed that this
effect is contingent upon the establishment of initial learning in the more
complex building task. In fact, an increase in the Last Payoff Experienced
reduces the odds of exploring and exploiting a familiar task and in-
creases the probability of exploiting a novel task only in the building
training task condition. On the other hand, an increase in the recent
payoff does not affect the probability of exploring and exploiting a
familiar task, while it slightly increases the probability of exploiting a
new task in the memory task condition.'!

On what is regarded as the role of the aspiration gap, we found that
falling below the aspiration level increases the likelihood of ExploreT by
27.21% in the memory task, while no effect was found in the building
task. On the other hand, trailing aspiration decreases the likelihood of
ExploitFT and increases the likelihood of ExploitNT in the memory task,
while the opposite is true in the building task: falling below the aspi-
ration level increases the likelihood of ExploitFT and decreases the
likelihood of ExploitNT. 2.

Finally, additional control variables were also incorporated in
Models 4, 8, and 12, including the presence or absence of performance

10 gpecifically, the average change in the probability of exploration (ExploreT)
when the average payoff increases is —30.69% (p = 0.000) in the complex task
and —3.21% in the simple task (p = 0.015). The average change in the prob-
ability of ExploitNT when the average payoff increases is 27.17% (p = 0.000) in
the complex task and 9.24% in the simple task (p = 0.000).

11 gpecifically, the average change in probability of exploration (ExploreT)
and ExploitFT when last payoff experienced increases is respectively equal to
—5.82% (p = 0.000) and —3.48% (p = 0.000) in the complex task. The average
change in probability of ExploitNT when last payoff experienced increases is
equal to 9.35% (p = 0.000) in the complex task and 2.7% in the simple task
(p = 0.033).

12 gpecifically, the average change in the probability of ExploitFT when
trailing aspirations is equal to 19.22% (p = 0.000) in the complex task and
—23.93% in the simple task (p = 0.000). The average change in probability of
ExploitNT when trailing aspirations is equal to —12.12% (p = 0.000) in the
complex task and 4.7% in the simple task (p = 0.067).
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Table 8
Determinants of ExploreT, ExploitFT, and ExploitNT.

DP variable: ExploreT

DP variable: ExploitFT

DP variable: ExploitNT

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 model 9 model 10 model 11 model 12
Training (Memory = 1) —0.357* —1.556%* —2.891%%* —2.891%** 5.016%** 4.888%** 6.637%** 6.628%** —2.886%** —1.594%%** —0.720 —0.667
(0.015) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.104) (0.121)
Average Payoff —0.785%** —2.527%%x —2.512%** —0.007 0.169 0.138 1.692%%* 3.632%** 3.635%**
(0.000) (0.000) (0.000) (0.953) (0.653) (0.714) (0.000) (0.000) (0.000)
Asp_Payoff_gap(neg. gap = 1) 1.063*** —0.342 —0.288 —0.853%*** 3.219%** 3.184x** —0.440* —1.521%*** —1.590%**
(0.000) (0.141) (0.216) (0.000) (0.000) (0.000) (0.026) (0.000) (0.000)
Last Payoff Experienced —0.386%** —0.467*** —0.477%** —0.350%*** —0.747%*** —0.725%** 0.876%** 1.246%** 1.251%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Training x Average Payoff 2.272%%* 2.243%** —0.284 —0.285 —2.615%** —2.598%**
(0.000) (0.000) (0.479) (0.477) (0.000) (0.000)
Training x Asp_payoff gap 2.096%*** 2.126%** —5.299%** —5.453%** 1.964%** 2.105%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Training x Last payoff exp.ed 0.323* 0.324* 0.584%* 0.587%* —0.932%** —0.950%**
(0.014) (0.015) (0.007) (0.007) (0.000) (0.000)
Feedback (Yes = 1) —0.055 -0.221 0.308
(0.780) (0.672) (0.441)
Game (Numeric = 1) 0.783%** —0.077 —0.922*
(0.000) (0.879) (0.016)
Gender (Male = 1) 0.017 —0.439 0.417
(0.928) (0.389) (0.277)
BRET 0.001 —0.006 0.001
(0.823) (0.693) (0.927)
Economics 0.283 —0.994+ 0.594
(0.144) (0.051) (0.130)
Age —0.037 0.130 0.013
(0.384) (0.228) (0.880)
Num_Experiments —0.023+ —0.019 0.036
(0.064) (0.559) (0.139)
Constant —0.959%** —0.564%** 0.695*** 1.105 —4.559%%* —4.170%** —5.513%** —6.944** 0.272 1.758%** —2.352%*%* —3.263+
(0.000) (0.000) (0.000) (0.254) (0.000) (0.000) (0.000) (0.006) (0.179) (0.000) (0.000) (0.091)
Observations 2400 2400 2400 2360 2400 2400 2400 2360 2400 2400 2400 2360
Number of codeid 240 240 240 236 240 240 240 236 240 240 240 236

Pval in parentheses.
**¥%p < 0.001, **p < 0.01, *p < 0.05, + p < 0.1.

Note. ExploreT stands for Exploration of a task environment; ExploitFT stands for Exploitation of familiar task environment; ExploitNT stands for Exploitation of a novel task environment.
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Fig. 6. Marginal effects of Average payoff, Last payoff experienced, and Aspiration
payoff on exploitation of a familiar task environment (ExploitFT).

feedback, the framework (visual or numeric), the risk attitude (BRET),
the participation in prior experiments (Number of Experiments), and de-
mographic variables (Gender, Age, and Economics). These confirmed the
results already discussed and indicate that the presence of performance
feedback does not affect exploitation-exploration behavior'® and that
playing the numeric game is associated with a slight increase in explo-
ration. Additional control variables play no explanatory role in relation
to the dependent variables (except for Economics and Number of Exper-
iments, which reduce the likelihood of ExploitFT and ExploreT,
respectively).

5. Discussion and implications

Our study’s main finding is that initial learning in task environments
with different levels of complexity leads to different types of decision
patterns in exploration-exploitation choice. We found that individuals
who were trained on a simple task tend to continue exploiting the
training stage task, either by directly continuing the exploitation after
the training stage or later retreating to the initial task after experiencing
exploration. Conversely, those who have built their learning on a more
complex task are more likely to explore new task environments and,
later, to continue exploiting a newly learned task.

An important takeaway is that being conditioned to initially simple
task environments might lead to being “trapped” in them. Despite in-
centives to leave the training task, we found that many participants were
unwilling to try alternative tasks after the training phase. These results
imply the existence of an individual-level cognitive trap that we call the
easy training trap. This bias can be seen as a special case of the compe-
tency trap (see Denrell and Le Mens, 2020; Levinthal and March 1993),
which means that suboptimal behavior driven by initial conditions may
persist for long periods despite financial incentives to switch to some-
thing different. Consequently, analyses of individual search behavior
should consider, at the same time, the exploration-exploitation choice
and the initial conditions that precede that choice.

Our study also sheds more light on how different types of perfor-
mance feedback, in interaction with initial learning conditions, affect

13 The results in section 4.1 show that the participants can improve their
performance without explicit feedback over consecutive rounds when repeating
the same task. On that basis, we can deduce that such repetitions enabled the
participants to develop a sufficient approximation of their performance. This
may explain why feedback does not significantly influence exploration-
exploitation choices.
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Fig. 7. Marginal effects of Average payoff, Last payoff experienced, and Aspira-
tion-payoff gap on exploitation of a novel task environment (ExploitNT).
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Fig. 8. Marginal effects of Average payoff, Last payoff experienced, and Aspira-
tion-payoff gap on exploration (ExploreT).

individual search behavior. Interestingly, we found that not only do
different kinds of feedback differently affect the decision to explore-
exploit, but also that feedback differently affects the decision to
explore-exploit contingent upon the task environment. First, we found
that subjects with larger average cumulated payoffs are less likely to
explore, regardless of whether they were trained in a simpler or more
complex task. Second, favorable recent feedback (i.e., the payoff in the
previous round) increases the tendency to exploit a novel task. However,
this result is contingent upon establishing initial learning in the more
complex building task. Simply put, after experiencing success in a new,
simpler task, participants are more likely to focus on improving in that
same task (Sydow et al., 2009). As a result, they become less inclined to
return to the previously established, more complex task especially if
they continue to perform well in the new task (i.e., as long as they
continue to receive high payoffs). Third, in terms of the
aspiration-performance gap, as suggested by the behavioral theory and
by more recent experimental literature (Levine et al., 2019), we found
that lagging behind long-term aspirations triggers exploration; that is,
exploration is promoted by a poor payoff relative to the best previous
payoff. Interestingly, this result is contingent upon the initial learning in
the simpler task. In this case, falling below the aspiration level increases
the likelihood of exploration. However, the opposite is true for subjects
who had been trained in the more complex task. For those subjects,
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falling below the aspiration level increases the likelihood of exploiting
the familiar task. These results highlight the contingency role of the task
environment complexity in problemistic search, helping to clarify the
surprisingly mixed empirical evidence to date regarding the effect of the
aspiration-performance gap on exploration (Posen et al., 2018).

Overall, our findings support the argument that the complexity of the
learning environment affects aspiration setting (MacLeod and Pingle
2005), and, therefore, has a major effect on choices to explore or exploit.
Our results add nuance to the literature on the individual search that has
thus far not considered the role of feedback contingent upon the initial
learning conditions. Importantly, our arguments on learning in simple
and complex task environments should be interpreted as relative
changes in the exploration-exploitation tendencies. Regardless of the
initial conditions, we still expect decision-makers to be driven by aspi-
ration adaptation. However, we argue that individual search is condi-
tioned by the underlying path-dependent learning, which changes the
relative strength of the aspiration adaptation process.

5.1. Implications for experimental research on exploration-exploitation
choice

Our experimental setting allowed us to investigate the degree of
complexity of the task environment that the participants experienced
early and the latter choices that were affected by those initial conditions.
Furthermore, our setting allowed us to integrate into it the performance
feedback with cognitive mechanisms and biases such as the competency
trap (Denrell and Le Mens, 2020; Levinthal and March 1993). Unlike
previous experiments on exploration-exploitation choice that typically
started from a “blank slate” with no past reference point—as, for
example, in the bandit problems (Puranam et al., 2015) or in the Bill-
inger et al. (2014, 2021) alien game —our design builds a reference
point artificially through path-dependent learning, revealing the
connection between the complexity of initial conditions and individual
search. The novelty of our study is that we introduce two dimensions of
the decision-making process: at the first level, the learning process (i.e.,
the training phase) within a particular task environment; and at the
second level, the search for different task environments (i.e., the active
phase). By introducing these two dimensions, our setup captures the two
fundamental elements of the definition of exploration by March (1991):
“the novelty of alternatives and the uncertainty of outcomes” (Laureir-
o-Martinez et al., 2015, p. 322). Future experimental designs could take
into account the relevance of the path-dependent learning that affects
future exploration-exploitation choice to investigate different aspects of
this phenomenon, such as the type of initial learning (e.g. the degree of
difficulty, or nature of the task), or the time spent learning a particular
task, and so on.

Our experimental results provide an outlook on individual search
that demonstrates how stabilization of learning leads to a general
persistency of exploitation that is regulated via performance feedback
and how it is affected by the complexity of initial conditions of the task
environment. Thus, our findings suggest the value of combining the
insights from the literature on individual path-dependency learning
(Luchins, 1942; Egidi and Narduzzo, 1997; Egidi, 2015; Hoeffler et al.,
2006) and the exploration-exploitation literature based on bandit
problems (Laureiro-Martinez et al., 2015; Puranam et al., 2015) or
rugged landscapes of unknown features, including the NK models
(Billinger et al., 2014, 2021; Levine et al., 2019). Going forward, we
believe that cross-pollination of the different views continues to be a
feasible way forward to address different aspects of individual search.

Finally, our study provides implications for experimental research
utilizing real-effort task methodology. We utilized this methodology to
get closer to the real-life processes that at the individual, as well as at the
organizational level, are at the roots of the exploitation-exploration
phenomenon. In real-life situations, exploration-exploitation choice is
a matter of repeating a particular procedure, protocol, or routine versus
deciding to learn new ways to reach our goals. This is in contrast to
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explaining the phenomena through abstracted lotteries, for instance,
which might not capture the aspects of path-dependent learning on the
task similarly as the real-effort task design. In reality, abandoning a
mode of behavior (a product, a technology, etc.) to find a new one in-
volves taking on new costs. Moreover, it especially involves psycho-
logical costs related to the sunk cost fallacy phenomenon (Thaler, 1980).
Switching from an effortless choice to a new, equally effortless one (like
switching from a two-arm bandit machine to another) is psychologically
very different from switching from a well-established product or pro-
cedure to a new one.

5.2. Practical implications

Given that there is a link between individuals’ search behavior and
organizational explorative and exploitative innovation (Enkel et al.,
2017), we believe our results can inform organizational practice. In
particular, our results have implications for decision-making and task
design. While stabilizing learning in a particular task with high perfor-
mance can be beneficial in the short term, our results imply that, espe-
cially in simple task environments, this may lead to a suboptimal
attachment to the previously built task. There are many ways to mitigate
the competency traps and lock-in in organizations. For instance, it may
be prudent to ensure that new recruits’ tasks are challenging enough to
prevent them from becoming unduly comfortable and locked into those
initial tasks. Alternatively, classic organizational design features such as
job rotation, job enrichment, and upskilling programs can help to pre-
vent lock-in by exposing decision-makers to new task environments in
which their skills remain applicable. Furthermore, as part of an ups-
killing program, individuals could be encouraged to accept short-term
lower performance when sampling new tasks.

5.3. Limitations and future research opportunities

While our study addressed many important aspects of individual
exploration-exploitation choices, it has certain limitations that indicate
directions for further inquiry. First, although our experimental setting
allowed for spontaneous learning in executing a real-effort task, we did
not deeply investigate the dynamics of this process. Our analysis ex-
amines learning and related exploration-exploitation patterns but does
not address, for example, the interaction between the participant type
and learning. To illuminate this interaction, it would be useful to extend
this experimental design to include the collection of fine-grained data on
the selection process of participants’ real-effort tasks during the exper-
iment—for instance, data on decision times when making exploitation-
exploration choices—and qualitative exploration of why individuals
make certain choices, such as due to boredom, interest, and deliberate
profit-seeking. It would also be useful to examine the dynamics of
exploration within a specific task and in switching tasks. Such a two-
level model could yield interesting results related to organizational
complexity in decision-making.

Second, our experimental setting rendered the round-by-round per-
formance level uncertain because it depended on the objective degree of
difficulty of each real-effort task and the participants’ individual skills.
This uncertainty mimics real situations in which performance levels are
determined by the nature of the task and by the managers’ and em-
ployees’ skills. In reality, however, the final performance outcome is
also influenced by external elements that are often random, and incor-
porating both of these dimensions would help to clarify the nature of
exploration-exploitation decisions.

Third, our participants made their choices in a social vacuum—that
is, they received no feedback from other organizational or external
agents, and they were not influenced by the decisions of other partici-
pants. As demonstrated in the previous literature (e.g., Ali et al., 2022)
explorative and exploitative learning processes are driven and moder-
ated by organizational structures and contexts. Thus, our experimental
design is a simplification in comparison to real-world organizations.
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However, we opted for this simplification because we were interested in
understanding the interplay of individual cognitive processes in
completing a real-effort task involving decisions about exploiting ac-
quired knowledge and exploring new tasks. In future studies, intro-
ducing social interaction and different organizational contingencies
should help to improve the external validity of the experimental results
and further contextualize our findings.

Data availability

The research data is available open access (the links are provided in

APPENDICES

Appendix A1 Robustness checks (alternative measure of exploration)
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To assess the sensitivity of our results to different conceptualizations of exploration, we used an alternative measure when performing the analysis
in Table 8 (see Table 9). This measure conceptualizes exploration as a more extreme form of switching to a completely unique and previously untried
task during the active phase. The binary variable is assigned a value of 1 if, during the active phase, the participant switches to a task never explored
before; otherwise, it is assigned a value of 0. The results align with those reported in Table 8, with the exception that the variable Last payoff expe-
rienced is no longer significant. This suggests that, in relation to the Aspiration-Payoff Gap, the highest experienced payoff rather than recent

experience (i.e., payoff in the previous round) is the key reference point.

Table 9
Determinants of exploration (alternative version)

DP variable: Alternative exploration

VARIABLES Model 1 Model 2 Model 3 Model 4
Training (Memory = 1) —0.145 —1.263*** —2.519%** —2.590%**
(0.163) (0.000) (0.000) (0.000)
Average payoff —0.873%** —2.995%** —3.029%**
(0.000) (0.000) (0.000)
Asp_payoff_gap (negative gap = 1) 1.080%** -0.129 —-0.104
(0.000) (0.546) (0.632)
Last payoff experienced —0.072 0.029 0.015
(0.201) (0.722) (0.859)
Training x Average payoff 2.769%** 2.769%**
(0.000) (0.000)
Training x Asp_payoff_gap 2.011%** 2.048%**
(0.000) (0.000)
Training x Last payoff experienced —0.068 —0.073
(0.586) (0.565)
Feedback (Yes = 1) —0.053
(0.684)
Game (Numeric = 1) 0.362**
(0.004)
Gender (Male = 1) 0.081
(0.522)
bretbox 0.001
(0.716)
Economics 0.128
(0.320)
Age —0.009
(0.754)
Num_experiments —0.011
(0.199)
Constant —1.360%** —1.096*** 0.080 0.063
(0.000) (0.000) (0.539) (0.922)
Observations 2400 2400 2400 2360
Number of codeid 240 240 240 236

Pval in parentheses.
***p < 0.001, **p < 0.01, *p < 0.05, + p < 0.1.

Fig. 9 reveals that the average change in the probability of exploration when the average payoff increases is equal to —0.28% (p = 0.009) in the
simple task and —34.54% (p = 0.000) in the complex task, thereby confirming a stronger effect in the complex task. Finally, we also confirmed the
different effect of the aspiration-payoff feedback contingent upon the initial conditions built in the simple or complex tasks: that falling below the
aspiration level increases the likelihood of exploration by 27.48% (p = 0.000) in the memory task, while no effect was found in the building task.
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Note: Results estimated using Model 4 (Table 9) by setting the other covariates at the observed values; 95% confidence interval reported.

Appendix A2. Demographic statistics: Exploration-exploitation patterns

Age Number of experiments
Mean Std dev Mean Std dev
Strong ExploitFT-participants rowhead 22.17 2.83 8.07 5.69
Retreaters rowhead 21.4 2.6 10.7 9.2
Strong ExploitNT-participants rowhead 21.48 1.91 10.7 7.71
Economics  Law Engineering  Sociology  Faculty Computer Psychology = Mathematics  Other Gender
Literature Science Male
Strong ExploitFT-participants 41.38% 31.3% 3.45% 3.45% 13.79% 6.90% 41%
rowhead
Retreaters rowhead 39.13% 13.04%  4.35% 17.39% 4.35% 4.35% 8.70% 4.35% 4.35%  48%
Strong ExploitNT-participants ~ 59.26% 16.7% 7.41% 5.56% 1.85% 1.85% 1.85% 5.56%  48%
rowhead
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