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AbstratModern ommuniation and spae systems suh as satellite ommuniation devies, radars, SARand radio astronomy interferometers are realized with large antenna arrays sine this kind ofradiating systems are able to generate radiation patterns with high diretivity and resolution. Insuh a framework onventional arrays with uniform inter-element spaing ould be not satisfa-tory in terms of osts and dimensions. An interesting alternative is to redue the array elementsobtaining the so alled �thinned arrays�. Large isophori thinned arrays have been exploited be-ause of their advantages in terms of weight, onsumption, hardware omplexity, and osts overtheir �lled ounterparts.Unfortunately, thinning large arrays redues the ontrol of the peak sidelobe level (PSL) and doesnot give automatially optimal spatial frequeny overage for orrelators. First of all the state ofthe art methodologies used to overome suh limitations, e.g., random and algorithmi approahes,dynami programming and stohasti optimization algorithms suh as geneti algorithms, sim-ulated annealing or partile swarm optimizers, are analyzed and desribed in the introdution.Suessively, innovative guidelines for the synthesis of large radiating systems are proposed, anddisussed in order to point out advantages and limitations. In partiular, the following spei�issues are addressed in this work:1. A new lass of analytial retangular thinned arrays with low peak sidelobe level (PSL). Theproposed synthesis tehnique exploits binary sequenes derived from MFarland di�erenesets to design thinned layouts on a lattie of P × P (P + 2) positions for any prime P .The pattern features of the arising massively-thinned arrangements haraterized by only
P×(P + 1) ative elements are disussed and the results of an extensive numerial analysisare presented to assess advantages and limitations of the MFarland-based arrays.2. A set of tehniques is presented that is based on the exploitation of low orrelation AlmostDi�erene Sets (ADSs) sequenes to design orrelator arrays for radioastronomy applia-tions. In partiular three approahes are disussed with di�erent objetives and perfor-manes. ADS-based analytial designs, GA-optimized arrangements, and PSO optimizedarrays are presented and applied to the synthesis of open-ended �Y � and �Cross� arrayon�gurations to maximize the overage u−v or to minimize the peak sidelobe level (PSL).Representative numerial results are illustrated to point out the features and performanesof the proposed approahes, and to assess their e�etiveness in omparison with state-of-the-art design methodologies, as well. The presented analysis indiates that the proposedapproahes overome existing PSO-based orrelator arrays in terms of PSL ontrol (e.g.,
> 1.0dB redution) and traking u − v overage (e.g., up to 2% enhanement), also im-



proving the speed of onvergene of the synthesis proess.3. A geneti algorithm (GA)-enhaned almost di�erene set (ADS)-based methodology to de-sign thinned planar arrays with low-peak sidelobe levels (PSLs). The method allows tooverome the limitations of the standard ADS approah in terms of �exibility and perfor-mane. The numerial validation, arried out in the far-�eld and for narrow-band signals,points out that with a�ordable omputational e�orts it is possible to design planar arrayarrangements that outperform standard ADS-based designs as well as standard GA designapproahes.
Keywords[Planar Arrays, Thinned Arrays, Correlator Array Antenna, Di�erene Sets, MFarlandSequenes, Almost Di�erene Sets, Geneti Algorithms, Partile Swarm Optimizer℄
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ST (u, v).� Figure 48. Cross arrays - Problem A [Equal-unequal arms, N = 60℄ - Synthesisresults for the RNDGA, ADSGA, RNDPSO and ADSPSO approahes: (a) behav-ior of the optimal PSL versus the iteration number i, (b) optimal ADSPSO arrayarrangement and () assoiated ST (u, v).15



� Figure 49. Example from [23℄ of Planar Array based on D
opt
3 - ADS . Number ofelements: P × Q = 7 × 11. Plots of the PSL bounds versus η = t

PQ−1
(PQ = 77,

ν = 0.4805) (a). Plot of the normalized array fator (b) generated from D
opt
3 - ADSarray arrangement () (ourtesy from [23℄).� Figure 50. Numerial validation - Problem I - PSL minimisation in array synthesis:Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 51. Numerial validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes. () and (d)show the orresponding array arrangements with ADSGA and GA-based methods,respetively.� Figure 52. Numerial validation - Problem I - PSL minimisation in array synthe-sis: Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 53. Numerial validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes. () and (d)show the orresponding array arrangements with ADSGA and GA-based methods,respetively.� Figure 54. Numerial validation - Problem I - PSL minimisation in array synthe-sis: Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 55. Numerial validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes. () and (d)show the orresponding array arrangements with ADSGA and GA-based methods,respetively.� Figure 56. Numerial validation - Problem I - PSL minimisation in array synthe-sis: Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 57. Numerial validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes. () and (d)show the orresponding array arrangements with ADSGA and GA-based methods,respetively. 16



� Figure 58. Numerial validation - Problem I - PSL minimisation in array synthesis:Graphial omparison of the PSL of di�erent array on�gurations (the side P onthe horizontal axis) for ADSGA an GA methodologies. We an observe that thePSL improvement of the ADSGA method redues ompared with standard GA asthe dimension of the array inreases.� Figure 59. Numerial validation - Problem II - extension of the range of ADSappliability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 60. Numerial validation - Problem II - extension of the range of ADSappliability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes.() and (d) show the orresponding array arrangements with ADSGA and GA-basedmethods, respetively.� Figure 61. Numerial validation - Problem II - extension of the range of ADSappliability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 62. Numerial validation - Problem II - extension of the range of ADSappliability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes.() and (d) show the orresponding array arrangements with ADSGA and GA-basedmethods, respetively.� Figure 63. Numerial validation - Problem II - extension of the range of ADSappliability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 64. Numerial validation - Problem II - extension of the range of ADSappliability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes.() and (d) show the orresponding array arrangements with ADSGA and GA-basedmethods, respetively.� Figure 65. Numerial validation - Problem II - extension of the range of ADSappliability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 66. Numerial validation - Problem II - extension of the range of ADSappliability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes.17



() and (d) show the orresponding array arrangements with ADSGA and GA-basedmethods, respetively.� Figure 67. Numerial validation - Problem II - PSL minimisation in array synthe-sis: Graphial omparison of the PSL of di�erent array on�gurations (the side Pon the horizontal axis) for ADSGA an GA methodologies. We an observe that thePSL improvement of the ADSGA method redues ompared with standard GA asthe dimension of the array inreases.� Figure 68. Numerial validation - Problem II - extension of the range of ADSappliability: Graphial omparison of the PSL against the iteration i of ADSGA,GA and Haupt [18℄ approahes along the two main diretions φ = 0° (a) and φ = 90°(b). Slies of the amplitude pattern obtained after optimization proedure along thetwo main diretions φ = 0° () and φ = 90° (d).� Figure 69. Numerial validation - Problem II - extension of the range of ADSappliability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes.() and (d) show the orresponding array arrangements with ADSGA and GA-basedmethods, respetively.� Figure 70. Numerial validation - Problem II - extension of the range of ADSappliability: Graphial omparison of the PSL against the iteration i of ADSGA,GA and Haupt [18℄ approahes along the two main diretions φ = 0° (a) and φ = 90°(b). Slies of the amplitude pattern obtained after optimization proedure along thetwo main diretions φ = 0° () and φ = 90° (d).� Figure 71. Numerial validation - Problem II - extension of the range of ADSappliability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approahes.() and (d) show the orresponding array arrangements with ADSGA and GA-basedmethods, respetively.� Figure 72. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (36, 32, 28, 23)-ADSarrangement, () Final 2D ADS layout.� Figure 73. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(36, 32, 28, 23)-ADS arrangement. 18



� Figure 74. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration num-ber i, (b) Three-level autoorrelation funtion of the onvergene (60, 6, 0, 29)-ADSarrangement, () Final 2D ADS layout.� Figure 75. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(60, 6, 0, 29)-ADS arrangement.� Figure 76. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (64, 59, 54, 43)-ADSarrangement, () Final 2D ADS layout.� Figure 77. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(64, 59, 54, 43)-ADS arrangement.� Figure 78. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (100, 5, 0, 79)-ADSarrangement, () Final 2D ADS layout.� Figure 79. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(100, 5, 0, 79)-ADS arrangement.� Figure 80. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (144, 137, 130, 101)-ADS arrangement, () Final 2D ADS layout.� Figure 81. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(144, 137, 130, 101)-ADS arrangement.� Figure 82. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (192, 184, 176, 135)-ADS arrangement, () Final 2D ADS layout.19



� Figure 83. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(192, 184, 176, 135)-ADS arrangement.� Figure 84. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (196, 7, 0, 153)-ADSarrangement, () Final 2D ADS layout.� Figure 85. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(196, 7, 0, 153)-ADS arrangement.� Figure 86. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level autoorrelation funtion of the onvergene (225, 8, 0, 168)-ADSarrangement, () Final 2D ADS layout.� Figure 87. Numerial validation - Problem III - GA designed ADS onstrutiontehnique: Plot of the power pattern assoiated to the antenna array built with the
(225, 8, 0, 168)-ADS arrangement.
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Chapter 1Struture of the ThesisThis hapter desribes how the Thesis is organized.First of all, Chapter 2 presents an overview of the Thesis, pointing out the ontextof the thinned antenna arrays for ommuniation and radio astronomy, the problem thathave been onsidered and a brief analysis of the solutions proposed in literature.Chapter 3 desribes some of the most signi�ative and relevant tehniques in the state-of-the-art, to design thinned arrays for ommuniation and radio astronomy. The aim isto present the basis and bakground of the work arried out in this Thesis during theresearh ativity developed during my PhD and make a omparative assessment withmethodologies proposed in this Thesis.Chapter 4 deals with a new lass of retangular thinned arrays with low and ontrolledpeak side lobe level (PSL). These arrays are based on MFarland Di�erene Sets (DSs),that likewise two-dimensional DSs exhibit a two-level autoorrelation funtion, and ona suitable synthesis proedure based on Geneti Algorithm (GA) optimization. GA hasbeen exploited due to the extremely large number of admissible MFarland sequenes.This methodology allows to obtain massively-thinned arrangements with a retangularshape that exhibit di�erent total main beam widths (TMBWs) in azimuth and elevationand low PSL.Chapter 5. In this hapter, in order to design orrelator arrays for radioastronomy ap-pliations a set of hybrid tehniques is introdued and numerial validated. These hybridtehniques take advantage of the apriori information on suboptimal analytially derived21



orrelator arrangements. In more detail, to improve performane of orrelators for ra-dioastronomy Almost Di�erene Sets (ADSs) sequenes, that are haraterized by almostideal autoorrelation properties, are exploited with stohasti optimization algorithmssuh as geneti algorithms (GAs) and partile swarm optimizers (PSOs).Chapter 6 proposes a GA-enhaned ADS tehnique (ADSGA) for the synthesis of pla-nar antenna arrays for ommuniation appliations and shows that the developed ADSGAhybrid tehnique allows to overome the limitations related to the use of ADS sequenesand obtain optimal performane.Chapter 7 onludes the Thesis. In partiular the main results are summarized, theopen problems and future researh diretions in the exploitation of the proposed method-ologies and tehniques are outlined.
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Chapter 2
Introdution
2.1 Context and Bakground
There are many pratial ways to exploit antenna arrays. Antenna arrays are widely usedboth in ivil and military appliations. In ommuniation and broadast engineering theyare used in TLC systems suh as TV and radio transmitters, for example in AM or FMbroadast radio stations to enhane signal. Arrays are largely utilized in warships, airraftradar systems and missile �re-ontrol systems. Other uses are sonar, weather researh andbiomedial (e.g. radiotherapy) appliations [1℄[2℄. Another partiular kind of frameworkwhere antenna arrays an be very useful is represented by spae appliations, e.g. satelliteommuniation systems and radio astronomy. The radiating systems of these appliationshave some ommon requirements: high resolution (the term "resolution" is used in thesense of Rayleigh and is proportional to the beamwidth), high gain, low sidelobe level[3℄ and, for radio astronomy appliations, optimal overage in spatial frequeny domain.In ommuniation and spae appliations, steerable re�etors are one of the most usefulkinds of antennas. Re�etors have a diameter that an be equal up to 100m but theyannot be muh larger beause of mehanial problems and prohibitive osts.23



Figure 1. Introdution - Example of large re�etor antenna.For these reasons, the attention has turned to very large arrays with a number ofradiating elements from two up to hundreds or thousands. For onventionally designedarrays where all elements are uniformly spaed an upper limit exists to the spaing, ifthe grating lobes are not permitted to appear in the visible region. In this ase wehave traditional �lled arrays that have an element plaed in every loation of a uniformlattie with half-wavelength spaing between the lattie points. As a result the requirednumber of elements, being proportional to the aperture dimension in wavelength, beomesastronomially large if a beamwidth on the order of minute of ar is desired [3℄.

Figure 2. Introdution - Example of onventional �lled array with path radiating elements.Most of the reent investigations on arrays with non-uniformly spaed elements showedthe possibility of reduing the number of radiating elements and optimizing the design ofarrays. An unequally spaed, thinned array may be used to:1. ahieve a narrow main lobe with redued number of elements24



2. ahieve a wide san angle or operate over a broad frequeny band without theappearane of grating lobes3. ahieve desirable radiation patterns without amplitude taper aross the aperture.Thinning an array means turning o� some elements in a uniformly spaed or periodi arrayto reate a desired amplitude density aross the aperture [4℄. An element onneted tothe feed network is �on�, and an element onneted to a mathed or dummy load is �o��.When thinned arrays have fewer than half of the elements of their �lled ounterparts,they are alled massively thinned arrays. In this researh proposal we are not interestedin amplitude tapering tehniques sine these methodologies have a higher omplexityand ost [5℄. We have to remember that thinning is normally aompanied by loss ofsidelobe ontrol, for this reason, thinned arrays are synthesized in aording to one ormore optimization riteria. For example, optimization of the beam pattern means toahieve the minimum PSL in the entire visible range or the maximum gain [3℄[4℄[6℄.

Figure 3. Introdution - Example of large irular thinned array.In this senario large thinned arrays allow us to obtain the following advantages:better performane with respet to re�etor antenna, inreased operational robustness,implementation ost saving and more programmati �exibility. Eah of these topis is dis-ussed further in the following paragraphs. For larger antennas, the beam width naturallyis narrower. As a result, antenna-pointing error beomes more ritial. To stay within themain beam and inur minimal loss, antenna pointing has to be more preise. Yet this isdi�ult to ahieve for larger strutures. With an array on�guration of smaller antennas,antenna-pointing error is not an issue. The di�ulty is transferred from the mehanial to25



the eletroni domain. As long as the ombining proess is performed with minimal signaldegradation, an optimal gain an be ahieved. Arraying also allows an inrease ine�etiveaperture beyond the present apability for supporting a mission at a time of need. In thepast, the Voyager Mission relied on arraying to inrease its data return during Uranusand Neptune enounters in the late 1980s. The Galileo Mission provides another examplein whih arraying was used to inrease the siene data return by a fator of 3. (Whenombined with other improvements, suh as a better oding sheme, a more e�ient dataompression and a redution of system noise temperature, a total improvement of a fatorof 10 was atually realized) [7℄. Arraying an inrease system operability. Firstly, higherresoure utilization an be ahieved. In the ase of an array the set an be partitionedinto many subsets supporting di�erent missions simultaneously, everyone tailored aord-ing to the link requirements. So doing, resoure utilization an be enhaned. Seondly,arraying o�ers high system availability and maintenane �exibility. Let us suppose anarray built with 10 perent spare elements. The regular preventive maintenane an bedone on a rotating basis while allowing the system to be fully funtional at all times.Thirdly, the ost of spare omponents would be smaller. Instead of having to supply thesystem with 100 perent spares in order to make it fully funtional around the lok, thearray o�ers an option of furnishing spares at a frational level. Equally important is theoperational robustness against failures. With a single resoure, failure tends to bring thesystem down. With an array, failure in an array element degrades system performane butdoes not result in a servie shutdown [7℄. In partiular, thinned arrays an be projetedto have a ertain amount of redundant radiating elements in order to guaranteeing PSLontrol in presene of one or multiple failures.A ost saving is realized from the fat that smaller antennas, beause of their weightand size, are easier to build and move. The fabriation proess an be automated to reduethe ost. It is often approximated that the antenna onstrution ost is proportional to theantenna volume. The reeption apability, however, is proportional to the antenna surfaearea. Note, however, that antenna onstrution is only a part of the overall life yle ostfor the entire system deployment and operations. To alulate the atual savings, oneneeds to aount for the ost of the extra eletronis required at multiple array elementsand the ost related to the inrease in system omplexity [7℄. One of the most importantquality of thinned arrays is the redued number of antennas: with few radiating elementswe an keep under ontrol the PSL, satisfying the tehnial requirements, and also inreasethe ost saving. Arraying o�ers a programmati �exibility beause additional elementsan be inrementally added to inrease the total aperture at the time of mission need.This option allows for a spread in required funding and minimizes the need to have all the26



ost inurred at one time. The addition of new elements an be done with little impatto the existing failities that support ongoing operations.In onlusion thinned arrays seem to be suitable to satisfy the previous requirementstypial of ommuniation systems and improve performane.Radio interferometers and synthesis arrays, whih are basially ensembles of two el-ement interferometers, are used to make measurements of the �ne angular detail in thedeep radio emission from the sky. The angular resolution of single radio antennas is insuf-�ient for many astronomial purposes. Pratial onsiderations limit the resolution to afew tens of arseonds. For example, the beamwidth of a 100m diameter antenna at 7mmwavelength is approximately 17arse. In the optial range the di�ration limit of largetelesopes (diameter-8 m) is about 0.015 arse, but the angular resolution ahievablefrom the ground by onventional tehniques is limited to about one arse by turbulenein the troposphere. For progress in astronomy it is partiularly important to measurethe positions of radio soures with su�ient auray to allow identi�ation with objetsdeteted in the optial and other parts of the eletromagneti spetrum. It is also veryimportant to be able to measure parameters suh as intensity, polarization, and frequenyspetrum with similar angular resolution in both the radio and optial domains. Radiointerferometry enables suh studies to be made. Preise measurement of the angular po-sitions of stars and other osmi objets is the onern of astrometry. This inludes thestudy of the small hanges in elestial positions attributable to the parallax introduedby the earth's orbital motion, as well as those resulting from the intrinsi motions of theobjets. Suh measurements are an essential step in the establishment of the distanesale of the universe. Radio tehniques provide an auray of the order of arse or lessfor the relative positions of objets losely spaed in angle.Compared with ommuniation systems, to obtain optimal performane, namely ahigh-sensitive and high-resolution measurement of radio soures, a uniform inter-elementspaing of the radiating elements is not the best solution. We need not only a low PSL butalso overage of spatial frequeny domain as uniform as possible. If the spatial domain isnot uniformly sampled the radio soure is not orretly reovered and spurious artifats arepresents. A non-uniformly spaed orrelator array, as shown in [8℄[9℄, gives the possibilityof reduing the PSL and optimizing the overage.27



Figure 4. Introdution - The VLA, an array of 27 elements, eah a 25-m paraboloid, is a Y-shapedarray having three equiangular linear arms of 21 km.

(a) (b)Figure 5. Introdution - (a) and (b) are examples of radio maps obtained with radio astronomyorrelators.
28



Chapter 3State of the Art
3.1 Arrays for Communiation and Radio Astronomy -Introdution to the State-of-the-ArtIn the framework of arrays for ommuniations, radar and spae appliations, Skolnikproposed one of the �rst examples of thinning large antenna arrays. In his work [4℄he desribes statistially designed density-tapered arrays. With the usual method fordesigning diretive antennas with low sidelobes, the reeived (or radiated) energy is greaterat the entre than at the edges [4℄. The idea proposed in [4℄ is the following: the densityof elements loated within the aperture is made proportional to the amplitude of theaperture illumination of onventional �lled arrays (designed with Taylor or Dolph methods[10℄[11℄). In other words, the signal at eah element of the array is of equal amplitude butthe spaing between adjaent elements di�ers. The seletion of the element loations isperformed statistially by utilizing the amplitude illumination as the probability densityfuntion for speifying the loation of elements (for this reason it is also alled spaetaper) [4℄. Statistially designed density-tapered arrays are useful when the number ofelements is large and when it is not pratial to employ an amplitude taper to ahieve lowsidelobes. A density taper has advantages over an amplitude taper in ertain appliations.Transmitting arrays, for example, with individual power ampli�ers at eah element areeasier to design and to build and more e�ient to operate if eah ampli�er delivers fullrated power [4℄. The density-tapered array permits the system designer to employ equal-power ampli�ers at eah element and still ahieve low sidelobes. Reeiving antennas analso bene�t from density tapering. In onlusion, this tehnique is to be onsidered forthe design of large array antennas where good sidelobes are important and where it is notonvenient to use an amplitude taper aross the aperture [4℄.29



In [6℄ Steinberg derived a formula for the PSL of a thinned array where the elements arerandomly loated. In a random array, the loation of eah radiating element is a randomvariable drawn from a population desribed by a probability density funtion (e.g.uniformpdf). Sine an a-priori desription of a random array an only be given statistially, it islogial to seek an estimator of the peak sidelobe in terms of a probability or on�denelevel that the predited value will not be exeeded. Steinberg obtained a probabilistiestimator of the peak sidelobe of uniform random array with equally weighted elements.This theoretial result was tested by measurement of the peak sidelobe of several hundredMonte Carlo omputer-simulated random arrays [6℄.During the 1960's many thinning algorithms were reated. The methodologies to thinarrays fall into the following ategories: algorithmi-spei� aperiodi designs; random-element loations hosen at random; random removal-holes hosen at random; dynamiprogramming-quasi-trial-and- error. In [6℄, Steinberg ompared algorithmi design ofthinned aperiodi arrays tested by omputer simulations with random arrays. The dis-tribution is ompared to that of a set of 170 random arrays [6℄[6℄. Both distributions arefound to be nearly log normal with the same average and median values. They markedlydi�er in their standard deviations. However, the standard deviation of the random arraydistribution is approximately half that of the algorithmi group. The author showed thatalgorithmially thinned arrays rarely o�er enough ontrol of the far radiation pattern tobe superior to random arrays. Furthermore the ompatness of the random distributionalmost guarantees against seletion of a random array with atastrophially large peaksidelobes. The only proedure that gives superior performane is dynami programming-quasi trial-and-error method of sidelobe ontrol, a highly onstrained approah. More indetail, the �rst element is loated at random. The seond loation is that whih givesthe best ombination. The third loation is that whih gives the best trio based on the�xed loations of the �rst two elements, et. Despite dynami random design method isommonly onsidered as the referene strategy for the synthesis of thinned arrays beauseof its simpliity (does not require any omputational proedure), its good performane(quasi trial-and-error method gives a slight improvement) and �exibility [6℄[6℄.In order to improve performane of thinned arrays respet to random arrays, di�erentways have been used. The �rst is based on the use of optimization algorithms and theseond on partiular kind of ombinatorial sequenes.Assuming, like in the previous methodologies, the number of radiators is a �nite num-ber and eah radiator an have two values on and o� (thinning may also be thought ofas quantized amplitude taper where the amplitude at eah element is represented by one30



bit), the number of possible ombinations, where Q is the number of array elements, is
2Q. Thinning a large array for low sidelobes involves heking a rather large number ofpossibilities in order to �nd the best thinned aperture. Exhaustive heking of all possi-ble element ombinations is only pratial for small arrays [13℄. Optimization algorithmsrepresent an alternative to exhaustive searh. Most optimization methods (inludingdown-hill simplex, Powell's method, and onjugate gradient) are not well suited for thin-ning arrays. They an only optimize a few ontinuous variables and get stuk in loalminima [14℄. Also, these methods were developed for ontinuous parameters, whereas thearray-thinning problem involves disrete parameters. The dynami programming methodan optimize a large parameter set (many elements), but it is also vulnerable to loalminima [15℄. Simulated annealing and geneti algorithms (GA) [14℄[16℄[17℄ are optimiza-tion methods that are well suited for thinning arrays. There is no limit to the number ofvariables that an be optimized. Although quite slow, these algorithms an handle verylarge arrays. These methods are global sine they have random omponents that testfor solutions outside the urrent minimum, while the algorithm onverges. The globalnature of the algorithms and the lak of derivative information ause a very slow onvergeompared to other non-global methods. If the array is symmetri, then the number ofpossibilities is substantially smaller and the GA onverges faster.In [18℄, Haupt presents an example of thinning strategy based on Geneti Algorithms(GAs) used to �nd a thinned array that produes the lowest PSL allowing us to improvethe performane of large arrays. A Geneti Algorithm is a global method for optimiza-tion inspired by the Natural Seletion Priniple whose main onepts are ompetition andadaptability [14℄. The paper [18℄ shows that the on/o� struture of the thinned array(linear or planar) is odi�ed into the hromosomes of the GA. After enoding the param-eters in binary strings alled genes, GA performs the geneti operations of reprodution,rossover, natural seletion, and mutation to arrive at the optimum solution. During eahiteration, the trial solution provides by the GA is given in input to the �tness funtion.The �tness is de�ned in [18℄ as the PSL and the purpose of the GA is to �nd out the arrayon�guration minimizing this funtion. A geneti algorithm an be used to numeriallyoptimize both linear and planar arrays and arrives at better thinning on�gurations forarrays than previous optimization attempts or statistial attempts. Previous methods ofarray thinning used statistial methods may fail to produe an optimum thinning whilethe geneti algorithm searhes in a smart way for the best thinning that produes lowsidelobes [18℄.A di�erent approah to obtain low PSL large arrays is to use partiular kind of om-31



binatorial sequenes. With this approah Leeper desribes in [5℄[19℄ a lass of massivelythinned linear and planar arrays that shows well-behaved sidelobes in spite of the thinning.The Geneti searh algorithms an obtain better performane but this method is notappropriate for very large or very highly thinned arrays and the improvements that thismethodology o�ers are di�ult to predit a-priori. Rather than using a searh algorithm,the approah in [5℄[19℄ attaks diretly the sidelobe ontrol problem by applying the prop-erties of Di�erene Sets (DSs) [2℄, to the plaement of antenna elements within a regularlattie. In partiular Leeper uses the lass of Cyli-Di�erene Sets (CDS) sequenes asfuntion that desribes the position of ative elements in arrays [20℄. The property thatmakes CDS an e�etive presription for the design of the thinned array is that the auto-orrelation of CDS (and generally all kind of DSs) is a two-valued funtion. It is possibleto demonstrate [5℄ that this kind of autoorrelation allows ontrolling the PSL of an arraybuilt with CDS geometry. The CDS method guarantees more e�etive suboptimal arraysynthesis in terms of PSL with respet to random elements plaement. 2D-CDSs havesimilar autoorrelation property of 1DCDSs [2℄[5℄[19℄[20℄.The deterministi plaements of DS reate an isophori array (�isophori� means �uni-form weight�) with attendant uniformity of spatial overage. The uniformity onsistentlyprodues, with no searhing required, a redution in PSL when ompared to random el-ement plaement. More spei�ally, in any linear array of aperture half-wavelengths, theNyquist sampling theorem shows that the array power pattern an be ompletely deter-mined from uniformly spaed samples of the pattern. In an isophori array, the even-numbered samples will neessarily be �loked� to a onstant value less than 1/K timesthe main-beam peak, where K is the number of elements in the thinned array. Whilethe odd-numbered samples are not so onstrained, the net e�et is to produe patternswith muh lower PSL than are typial with ut-and-try random plaement. Obviously,isophori arrays an be planar as well linear [5℄.In [21℄, Kopilovih suggests another method for synthesizing a planar aperiodi thinnedarray antenna with a low peak sidelobe level. Instead of using the previous CDS, Kopilovihshows the implementation of ombinatorial onstrutions alled non-Cyli di�erene sets.The most important lass of the non-Cyli 2D-DSs is represented by the sets of Hadamardtype (HDSs). In the same way of the previous Leeper method, Kopilovih uses the fatthat when the elements of an equi-amplitude array antenna are arranged aording toa DS law, its pattern takes onstant value in the net of uniformly loated spae pointsin the sidelobe region, and this value is less than 1/K, where K is the ative elementnumber. In distintion to the method using Cyli DSs developed by Leeper [5℄[21℄, that32



enables one to build planar antenna arrays only on retangular grids with o-prime sidelengths, the desribed method omits suh a onstraint. Based on suh sets, retangularand square aperiodi roughly half-�lled array antennas an be built. Kopilovih uses thisstrategy to obtain square array antennas, with the element number in the array up to300.The de�nition of binary sequenes of length with suitable autoorrelation properties,for whih DSs are not available, has been arefully investigated in information theoryand ombinatorial mathematis. It has been found that it is often possible to determinesequenes with a three-level autoorrelation funtion by taking into aount the so-alledalmost di�erene sets (ADSs) [22℄[23℄. ADSs are a researh topi of great interest inombinatorial theory with important appliations in ryptography and oding theory.Moreover, although ADS generation tehniques are still subjet of researh, large olle-tions of these sets are already available. In suh a framework, the whole lass of ADSsseem to be a good andidate for enlarging the set of admissible analyti on�gurationswith respet to the DS ase. From this viewpoint, ADSs allow to obtain low PSL andpreditable results in a very e�etive. With respet to DSs, ADSs have the advantage ofhaving a larger set of admissible sequenes [22℄[23℄.Finally, the last approah desribed to improve large arrays performane is based onmerging the ombinatorial and stohasti methods in order to take advantage from theirgood harateristis and to ompensate for their drawbaks [5℄.One of the �rst attempts to exploit this idea was developed by Caorsi et al. [24℄.The ripples formation aused by CDS ould be orreted in some way by GA searhapabilities, while the uniform spatial overage of CDS-optimized arrays ould be helpfulto speed up the onvergene of the geneti proedure. One possible way of implementingthis approah is to onsider CDS based arrays as a-priori knowledge to be inserted in thegeneti searh proess in order to improve its e�ieny. To this end, the steps aimedat transferring good CDS-derived shemata into the GA population are the following.At the initialization step, the GA population is omposed by a seleted CDS D0 and
V yli shifts of the D0 di�erene set, while the remaining hromosomes of the initialpopulation are randomly mutated yli shifts. Moreover, during the iterative loop ofthe GA, the mutation ours in order to introdue new unexplored solutions into thesearh spae. In order to keep higher order CDS-derived shemata, trial solutions havingbinary on�gurations belonging to higher order shemata are mutated only in hromosomepositions out of the shemata loations [24℄. These mehanisms are aimed at onstrainingthe GA to synthesize array on�gurations similar to CDS-based ones, but with limited33



ripple amplitudes thanks to evolutionary apabilities [24℄.
In the same way Donelli et al. make use of a hybrid tehnique based on HDS and binaryPSO [25℄[26℄. PSO is a stohasti multiple agents optimization algorithm extensivelyapplied in the framework of antenna array optimization [25℄[26℄[27℄. By imitating thesoial behaviour of groups of inset and animals in their food searhing ativities, PSOis based upon the ooperation among partiles. The ensemble of the partiles, referredto as swarm, explores the solution spae to �nd out the best position (i.e., the optimumof a suitably de�ned ost funtion). HSs-based arrays generate the initial trial solutionsof this hybrid method that then is optimized by binary PSO. Integrating the HS-basedmethod developed by Kopilovih [21℄ with PSO optimization strategy gives an importantimprovement in thinned array performane.In the framework of the antenna array for spae systems, we have a partiular appli-ation where the previous synthesis tehniques were applied. Arrays are used in radioastronomy to estimate the brilliane [9℄[29℄[30℄. Astronomers are interested in designingorrelator arrays that properly sample the spatial distribution they observe. The designof orrelator (also known as interferometri) arrays is essentially an optimal samplingproblem [9℄[29℄[30℄ in whih the positions of the antennas are hosen in order to ensureoptimal performane regarding all possible observation situations (soure positions anddurations of observation), sienti� purposes (single �eld imaging, astrometry, detetion,...) and onstraints (ost, ground omposition and pratiability, operation of the instru-ment, ...) [31℄[32℄. In order to obtain suh features, high performane orrelator arrayshave to show either a maximal overage in the spatial frequeny (or u − v) domain, ora minimum peak sidelobe level (PSL) in the angular (or l −m) domain [8℄[31℄. Towardsthis end, many di�erent design priniples have been proposed, inluding minimum redun-dany [33℄, pseudo-randomness [34℄, power laws [35℄, di�erene set arrangements [36℄, andminimization of the holes in the sampling [37℄. Ruf in [16℄ uses simulated annealing tooptimize low-redundany linear arrays while Jin [31℄ makes use of PSO. Well-establishedoptimization based sum-array design tehniques annot be diretly applied, sine, unlikein traditional sum arrays, the responses in both the u − v and the l − m domains haveto be onsidered in the design proedure [31℄. As a onsequene, design tehniques haveto inlude the array spatial overage evaluation, the Earth rotation e�ets and the l−mbeam alulation in the synthesis proedure.34



3.2 Random Arrays [6℄3.2.1 IntrodutionThe ost of a large phased array whih is designed primarily for high angular resolutionrather than for weak signal detetion may be redued manifold through thinning , i.e.,reduing the number of elements in the aperture below that of the �lled array in whihthe inter element spaing is nominally one half-wavelength. Inreasing the inter elementspaing has another salutary e�et; a separation of a few wavelengths redues mutualoupling to negligible proportions. Thinning, therefore, is attrative from both pointsof view. But these bene�ts are not free of penalty. Unless the element loations arerandomized or made otherwise non periodi, grating lobes appear. Also, the redutionin the number of elements redues the designer's ontrol of the radiation pattern in thesidelobe region, whih in turn in�uenes the level of the largest, or peak, sidelobe. In thishapter the peak sidelobe of random arrays is studied (N.B.: The random array ([6℄)is haraterized by element loations hosen by some random proess. Conversely in astatistial array ([4℄) a onventional �lled array is designed and a given fration of theelements is removed at random).3.2.2 Linear Random ArrayConsider an array of N unit, isotropi and monohromati radiators at loations xn. The
xn are hosen from a set of independent random variables desribed by some �rst proba-bility density distribution, initially assumed to be uniform over the interval [−L/2, L/2]where L is the array length. It is assumed that eah element, irrespetive of its loation,is properly phased so that a main lobe of maximum strength is formed at θ0, whih ismeasured from the normal to the array. The redued angular variable u = sin θ − sin θ0,ontains the beam steering information. The omplex far-�eld radiation pattern f(u) isthe Fourier transform of the urrent density. Sine the latter is a set of delta funtions,
f(u) is proportional to the sum of unit vetors having phase angles kxnu, k = 2π/λ be-ing the wavenumber assoiated with the wavelength λ. The array fator is the Fouriertransform of the urrent density i(x). The urrent density i(x) of a random array of Nequally exited isotropi elements is the sum of delta funtions at the loations xn andthe omplex far-�eld radiation pattern beomes

f(u) = F
{

N
∑

n=0

δ (x− xn)
}

=

N
∑

n=0

exp (jkxnu) (3.1)35



3.1 an be rewritten as
f(u) =

∑N
n=0 cos (kxnu) + j

∑N
n=0 sin (kxnu)

= a(u) + b(u)
(3.2)Sine u is de�ned over the interval [−1, 1], it follows that |f(−u)| = |f(u)|. Therefore, itis su�ient to onsider the radiation pattern |f(u)| only over the interval [0, 1].The radiation pattern f(u) as given by (3.2), is a omplex random proess. For thespeial ase where element loations are independent and uniformly distributed over theinterval [−L/2, L/2], the expeted values of the proesses a(u) and b(u) are

E {a(u)} = N sin(πuL/λ)

πuL/λ
= Nsinc(uL/λ) (3.3)and

E {b(u)} = 0 (3.4)The proess a(u) and b(u), for a given value of u, are sums of N independent, identiallydistributed random variables. When N is large, the entral the entral limit theoremjusti�es approximating a(u) and b(u) as Gaussian random variables. The mean of a(u),as given by (3.3), is approximately zero for u greater than a few beam widths (the nominalbeamwidth is λ/L). Furthermore, for imaging problems in whih high angular resolution isdemanded, λ/L≪ 1. Thus in most of the sidelobe region, the two orthogonal omponentsof f(u) are approximately zero-mean wide sense stationary Gaussian random proesses.For a given u, the magnitude of f(u) is known to be Rayleigh distributed [?℄. Letus denote the magnitude pattern as A(u)∆ |f(u)|. The probability density funtion of
A(u) will be given by [6℄

p (A) =
2A

N
exp

(

−A2/N
) (3.5)It follows that the mean square value A2, whih is the average sidelobe power level,is N (and onsequently the rms amplitude is √N). The power ratio of the averagesidelobe to the main lobe is N/N2 = 1/N . The average is A =

√

πN/2. Hene, thevariane is σ2 = A2 −
(

A
)2

= N (1− π/4).The integral [6℄
α =

∫ ∞

A0

p (A) dA = exp
(

−A2/N
) (3.6)is the probability that the magnitude of an arbitrary sample of the radiation pattern, awayfrom the region of the main lobe, exeeds some threshold A0. Its omplement, 1 − α, isthe probability that suh a sample is less than A0. If n independent samples are taken [6℄

β =
[

1− exp
(

−A2
0/N

)]n (3.7)36



is the probability that none exeeds A0. From (3.3), A2
0 = −N ln

(

1− β1/n
). It is on-venient to normalize this expression to N , the average sidelobe level, and to give thedimensionless power ratio A2

0/N a new symbol, B. Thus [6℄
B = − ln

(

1− β1/n
)

≈ ln (n)− ln
(

ln
(

β−1
)) (3.8)

B may be interpreted as a statistial estimator of the power ratio of the peak-to-averagesidelobe of a set of n independent samples. B is a on�dene level; it is the probabilitythat none of n independent samples of the sidelobe power pattern exeeds the mean valueby the fator B. n is an array parameter, whih is a funtion of all the relevant arrayproperties other than N . It is proportional to the number of sidelobes in the visibleregion. It maybe alulated in several ways. An interesting method utilizes the Nyquistsampling theorem. The omplex radiation pattern of a random array is suh a band-limited funtion, the �limit� being due to the �nite length of the array. The far-�eldomplex radiation pattern f(u) is related to the radiating element positions aording to(3.1). From (3.1) we an de�ne the expression for the power pattern of an array of unitradiators
f(u)f ⋆(u) =

N
∑

m=0

N
∑

n=0

exp (jk (xn − xm)u) (3.9)The visible domain is−1−sin θ0 ≤ u ≤ 1−sin θ0. The length of the non-redundant portionis 1 + |sin θ0|. Consequently, the number of independent samples needed to speify theomplex radiation pattern is 2 (L/λ) (1 + |sin θ0|). Half this number may be assoiatedwith the amplitude of the array fator and half with its phase. Therefore, the powerpattern is uniquely spei�ed by [6℄
n =

(

L

λ

)

(1 + |sin θ0|) (3.10)independent samples, the average angular interval between samples being λ/L. n isdominated by the length of the array in units of wavelength and seondarily in�uenedby the beam steering angle.Equations (3.8) and (3.10), however, are insu�ient to provide an unbiased estimateof the peak sidelobe. The probability is zero that any �nite set of samples ofa power pattern falls exatly upon the rest of the largest sidelobe. Henesuh estimation is downward biased. A orretion to (3.8) may be obtained byalulating the di�erene between the largest of a set of samples and the height of thelobe from whih the sample is taken. The approximate mean inrement redues to 1+2/B,and the estimator of the normalized peak beomes (for details [6℄)
Bp = B + 1 +

2

B
(3.11)37



The power ratio of the peak sidelobe to the main lobe is [6℄
peak sidelobe

main lobe
=
peak sidelobe

avg
· avg

main lobe
= Bp ·

(

1

N

)

=
B + 1 + 2/B

N
(3.12)Experimental data indiate that the estimator losely mathes the data when B & 3. Thefat that the math is satisfatory for B as small as 3 implies that (3.12) is useful evenfor small arrays. Using B = 3 in 3.8 gives the smallest array for whih the estimator issatisfatory.The minimum number of elements for whih the theory is satisfatory ([6℄) is the largerof 15 or 2B (n, β), or

Nmin = max {15, 2B} (3.13)

Figure 6. Random Arrays - Pattern of 70-wavelength random array of 30 isotropi elements [6℄.

Figure 7. Random Arrays - Probabilisti estimator of peak sidelobe of random array. N is the isnumber of array elements, PSL/ML is power ratio of peak sidelobe to main lobe, β is probability oron�dene level that no sidelobe exeeds ordinate, L is array length, λ is wavelength, θ0 is beamsteering angle [6℄. 38



3.2.3 Planar ArrayExtension of the peak sidelobe theory to two and three dimensional arrays requires onlya reevaluation of the array parameter n. Consider as an example a retangular planararray having sides L1 and L2 and uniform pdf of element loation. The angular intervalfor independent sampling of the pattern amplitude in these orthogonal planes is λ/L1and λ/L2. The area in the u1 − u2 plane assoiated with eah sample point is on theorder of λ2/ (L1L2). The visible area of the plane, whih is a irle of unit radius, is π.Hene the maximum number of independent samples over the hemisphere is approximately
πL1L2/λ

2. The same result pertains to a three-dimensional array in whih L1L2 is theprojeted area upon a plane perpendiular to the axis of the main lobe of the elementfator. Symmetry in the pattern redues the number of independent samples. With thearray steered to the zenith (θ0 = 0) eah lobe in every polar ut has an image lobe in thesame plane [6℄. Thus the range of variation of n with θ0 is a fator of two. The logarithmirelation (3.8) between peak sidelobe and the array parameter minimizes the importaneof the detailed variation. The dominant feature is the approximate squaring of n when a�xed number of elements N is spread from a linear array to a planar array of the samelength and width. The result is (approximately) a doubling, or 3 − dB inrease, in thepeak sidelobe [6℄.

(a) (b)Figure 8. Random Arrays - Examples of (a) a 50× 50 elements square random array and (b) a
100× 100 elements square random array [6℄. 39



3.2.4 Comparison between the Peak Sidelobe of the Random Ar-ray and Algorithmially Designed Aperiodi Arrays [12℄3.2.4.1 DatabaseIn [12℄, a database of 170 random arrays with various parameters were reated by om-puter, their antenna patterns alulated, and the peak sidelobe of eah measured. Approx-imately half that number algorithmially designed aperiodi arrays were olleted fromthe literature. For eah, the peak sidelobe was measured and the pertinent, parameterstabulated.The aperiodi designs fall into the following ategories:� algorithmi: spei� aperiodi designs� random: element loations hosen at random� random removal: holes hosen at random� dynami programming: quasi-trial-and errorThe random arrays were developed for an earlier study of the peak sidelobe of suh arrays[6℄. The elements were loated on a line by random numbers drawn from a populationhaving uniform probability density.3.2.4.2 ResultsAlgorithmi design of thinned aperiodi arrays rarely o�ers enough ontrol of the farradiation pattern to be superior to random loation of the array elements. A study of70 algorithmi arrays and 170 random arrays showed their peak sidelobes, when suitablynormalized to permit, omparison, to be indistinguishable in the mean and median [12℄.A quasi-trial-and-error proedure alled dynami programming was found to be 3.5dBsuperior in the mean. The distribution of the normalized peak sidelobe of the 170 randomarrays found to be log normal with a standard deviation of 1.1dB. The ompatness ofthe distribution preludes the use of trial-and-error proedures to ahieve a peak sidelobematerially below the population mean. The same harateristi almost, guarantees againstseletions of element loations whih produe unexpetedly large sidelobes [12℄.
40



3.3 Statistial Removal (Random Removal) [4℄3.3.1 IntrodutionThis hapter onsiders the design of �thinned� planar array antennas in whih the densityof elements loated within the aperture is made proportional to the amplitude of theaperture illumination of a onventional ��lled� array. (A �thinned� array is one thatontains less elements than a ��lled� array of equally spaed elements loated a halfwavelength apart). The seletion of the element loations to provide the desired densitytaper is performed statistially by utilizing the amplitude taper as the probability densityfuntions for speifying the loation of the elements. In a �thinned� array all the elementsare assumed to radiate equal power if a transmitting array, or equal amplitude weightingif a reeiving array. It is further assumed that the element spaings of a �thinned� arrayare not equal [4℄.An unequally spaed, thinned array may be used to� ahieve a narrow main lobe with redued number of elements� ahieve a wide san angle or operate over abroad frequeny band without the ap-pearane of grating lobes� ahieve desirable radiation patterns without amplitude taper aross the aperture.3.3.2 Analysis of Statistial Density-Tapered ArraysThe usual method for designing diretive antennas to ahieve low sidelobes is to taper theamplitude of the aperture illumination so that the reeived (or radiated) energy is greaterat the enter than at the edges.A density taper has advantages over an amplitude taper in ertain appliations. Trans-mitting arrays, for example, with individual power ampli�ers at eah element are easier todesign and build and more e�ient to operate if eah ampli�er delivers full rated power.The density-tapered array does not su�er any of amplitude taper inonvenienes andpermits the system designer to employ equal-power ampli�ers at eah element and stillahieve low sidelobes. Reeiving antennas an also bene�t from density tapering.The theory of the design of density-tapered arrays is not on as �rm a foundation asthat of amplitude tapered arrays. The design tehniques of Dolph ([10℄) and Taylor ([11℄)whih are based on the properties of polynomials and whih are widely used for amplitudetapered antennas do not seem appliable to unequally spaed arrays.41



There are two basi methods for mathing a density taper to an amplitude taper. Inone tehnique the density is mathed deterministially to the desired amplitude taper bytrial and error plaement of the elements or by ertain approximation tehniques appliedto the integral of the aperture illumination. The other design tehnique, and the one whihis the subjet of this paper, is a statistial method whih utilizes the desired amplitudeillumination as a probability density funtion for determining whether or not an elementshould be loated at a partiular point within the aperture.Consider an array antenna with some arbitrary arrangement of N elements. Theexitation at eah element is assumed to be of equal amplitude. The �eld intensitypattern (array fator) assuming the elements to be isotropi radiators is [4℄
E (θ, φ) =

N
∑

n=1

exp (jψn) (3.14)where θ and φ are angular oordinates desribing the pattern and ψn, is the phase of thesignal at the n − th element measured with respet to some referene. The phase ψn, isa funtion of θ and φ and the loation of the n − th element on the aperture. The Nelements may be loated on any type of aperture.

(a)Figure 8. Statistial Arrays - Geometry of an M by M element array arranged on a square grid.Angular oordinates are also shown [4℄.If elements are removed from the array the �eld intensity pattern may be written [4℄
E (θ, φ) =

N
∑

n=1

Fn exp (jψn) (3.15)42



where Fn, is either zero or unity aording as the element is removed or left in plae.The quantity Fn thus has only the values of 0 and 1. In a statistially designed array,
Fn is seleted randomly and independently from element to element by a random numbergenerator in suh a way that its average value (ensemble average over many seletions) is[4℄

Fn = An (3.16)where An, is the amplitude of the exitation that would normally be applied to the n− thelement if it were designed with an amplitude taper aross the aperture. The �eld intensityof the equivalent amplitude-tapered array used as the model is [4℄
E0 (θ, φ) =

N
∑

n=1

An exp (jψn) (3.17)The radiation pattern of (3.15) is statistial sine Fn is statistial. By the Central LimitTheorem of statistis, the distribution of the quantity E (θ, φ) for a given θ and φ will beapproximately Gaussian, if N is large.The mean of the statistial pattern of (3.15) is found using the fat that the mean ofthe sum is the sum of the means,
E (θ, φ) =

N
∑

n=1

Fn exp (jψn) =

N
∑

n=1

An exp (jψn) = E0 (θ, φ) (3.18)Thus the mean or average pattern is idential with the �eld-intensity pattern of the am-plitude tapered array used as the model. This array fator (3.17) will be referred to asthe model array fator. The oe�ients An are seleted by standard design proedures[10℄-[11℄ for amplitude-tapered arrays to obtain a desired mean pattern. Sine the quan-tities An, are the mean values of a random variable with values 0 and 1, we must alwayshave 0 ≤ An ≤ 1. This may be obtained by properly saling the original amplitude taperof the model-array design.The square of the �eld-intensity pattern is the power pattern and is written
|E (θ, φ)|2 = E (θ, φ) · E⋆ (θ, φ)

=

N
∑

n=1

N
∑

m=1

FnFm exp (j (ψm − ψn))
(3.19)where E⋆ (θ, φ) denotes the omplex onjugate. There is a theorem whih states that themean of a produt of statistially independent random variables is equal to the produt ofthe means of those random variables. The variables Fm and Fn in (3.19) are independent if43



and only ifm 6= n. If m = n they are of ourse idential. Therefore the double summationis separated into terms with m = n and terms with m 6= n, and the average is taken asfollows:
|E (θ, φ)|2 =

∑

n

F 2
n +

∑

n

∑

m

FnFm exp (j (ψm − ψn))

∣

∣

∣

∣

∣

m6=n

(3.20)Sine the values of Fn, are either 0 or 1, F 2
n = Fn, and the �rst summation of (3.20)beomes

∑

n

F 2
n =

∑

n

F 2
n =

∑

n

Fn =
∑

n

An (3.21)Using the theorem mentioned above, the seond summation of (3.20) involving terms with
m 6= n beomes

∑

n

∑

m

AnAm exp (j (ψm − ψn))

∣

∣

∣

∣

∣

m6=n

(3.22)This is simply the power pattern orresponding to the model-array pattern E0 (θ, φ) of(3.17), exept that the terms with m = n are missing. When these terms are restoredand subtrated from the result, the following is obtained
|E (θ, φ)|2 =

∑

n

An + |E0 (θ, φ)|2 −
∑

n

A2
n

= |E0 (θ, φ)|2 +
∑

n

An (1−An)
(3.23)where |E0 (θ, φ)|2 is the power pattern of the model array with "equivalent" amplitudetaper An, applied to eah element.The fration of elements removed is ontrolled by the amplitude taper hosen for themodel array. The exat number of elements after the elimination proedure is

NE =
∑

n

Fn (3.24)On the average, the number of elements left in the array is [4℄
NE =

N
∑

n=1

Fn =

N
∑

n=1

An = NAn ≤ N (3.25)and the variane is
σ2
N = N2

E −
(

NE

)2
=

N
∑

n=1

An (1− An) (3.26)44



If it is assumed that the degree of element removal is suh that the omnidiretionalomponent [seond term of (3.23)℄ of the power pattern is larger than the sidelobes of themodel amplitude-tapered array pattern, then the average value of the sidelobes is
average statistical sidelobes = SL

=

N
∑

n=1

An −
N
∑

n=1

A2
n

(3.27)Substituting NE from (3.25)
SL = NE −N2

E/Ga = NE

(

1− NE

Nρa

) (3.28)where ρa is the aperture e�ieny of the model amplitude taper given by An ([4℄). Sine
ρa is of the order of unity, (3.28) states that the average sidelobe level approahes NE ,the number of elements left within the array, when the fration of elements removed
(1−NE/N) is large. The average sidelobe level relative to the peak value of the mainbeam after the elimination of elements is

average relative sidelobe =

= ρ ≈

∑

n

An(1−An)

|E(0,0)|2

(3.29)From (3.23),
|E (0, 0)|2 =

(

∑

n

An

)2

+
∑

n

An (1− An)

≈
(

∑

n

An

)2 (3.30)Therefore, (3.29) beomes
ρ ≈

∑

n

An (1−An)

|E (0, 0)|2
=

1−
∑

nA
2
n

∑

nAn
∑

nAn

(3.31)and after elaboration
ρ ≈

1− NE

Nρa

NE

(3.32)and
ρ ≈ 1

NE

for
NE

N
≪ 1 (3.33)45



where Ga, is the gain of the model amplitude-tapered array, Gs, is the average gain ofthe statistial designed density-tapered array. If one starts with an N element arrayand remove elements aording to the above statistial proedure, the average number ofelements that remain is given by (3.25). The N-element array is said t o be �thinned� andthe degree of thinning, or perentage of elements removed, is
degree of thinning = 100

(

1− NE

N

)

% (3.34)A given amplitude taper therefore has a ertain natural degree of thinning. If it is desiredto remove more elements than the natural number, so that the number remaining Nr =

kNE , where k < 1, an examination of (3.25) shows that this may be aomplished bymultiplying the amplitudes An, by the fator k ([4℄). Thus
Nr = kNE =

N
∑

n=1

kAn (3.35)The above analysis an be repeated for Nr = kNE elements. In a statistially designedarray Fn, is seleted randomly and independently from element to element so that itsensemble average is Fn = kAn. When k = 1, the array is said to be �naturally� thinned.The average �eld intensity (ensemble average over many seletions) is
|E (θ, φ)| = kE0 (θ, φ) (3.36)whih is similar to that of the model amplitude-tapered array. The average power pattern,or radiation pattern is

|E (θ, φ)|2 = k2|E0 (θ, φ)|2 +
N
∑

n=1

kAn (1− kAn) (3.37)The �rst term of the radiation pattern is proportional to the radiation pattern of the modelamplitude-tapered array. When k = 1, it is equal to it, orresponding to a naturallythinned array. The seond term is independent of angle. Thus the average statistialsidelobes whih dominate the pattern outside the viinity of the main beam (and thenear-in sidelobes) may be written [4℄
SL =

N
∑

n=1

kAn (1− kAn) (3.38)The equation (3.38) shows that the statistial sidelobes of a thinned array are determinedby the model aperture amplitude distribution An, and by k, the fator whih determinesthe number of elements removed. The near in sidelobes are also determined by An.46



(a) (b)Figure 9. Statistial Arrays - In (a) the solid urve is the omputed radiation pattern of a statistiallydesigned array naturally thinned using as a model the 30dB Taylor irular aperture distribution whosepattern is shown by the dashed urve. In (b) the loations of the elements for the 30dB design withnatural thinning [4℄.

(a) (b)Figure 10. Statistial Arrays - In (a) there is the omputed radiation pattern of a statistiallydesigned array using as a model the 25dB Taylor design but with approximately 90 per ent of theelements removed. In (b) the orresponding loations of the elements [4℄.47



3.4 Optimization Algorithms Approah3.4.1 IntrodutionThinning an array means turning o� some elements in a uniformly spaed or periodiarray to reate a desired amplitude density aross the aperture. An element onnetedto the feed network is on, and an element onneted to a mathed or dummy load iso�. Thinning an array to produe low sidelobes is muh simpler than the more generalproblem of non uniform spaing the elements. Non uniform spaing has an in�nite numberof possibilities for plaement of the elements. Thinning has 2Q possible ombinations,where Q is the number of array elements. If the array is symmetri, then the numberof possibilities is substantially smaller. Thinning may also be thought of as a quantizedamplitude taper where the amplitude at eah element is represented by one bit. Thinninga large array for low sidelobes involves heking a rather large number of possibilitiesin order to �nd the best thinned aperture. Exhaustive heking of all possible elementombinations is only pratial for small arrays. Most optimization methods (inludingdown-hill simplex and onjugate gradient) are not well suited for thinning arrays. Theyan only optimize a few ontinuous variable sand get stuk in loal minima. Also, thesemethods were developed for ontinuous parameters, where as the array thinning probleminvolves disrete parameters. Dynami programming an optimize a large parameter set(many elements), but it is vulnerable to loal minima.Simulated annealing ([38℄), geneti algorithms ([18℄), ant olony ([39℄) andother stohasti algorithms ([14℄[28℄[27℄) are optimization methods that are well suitedfor thinning arrays. There is no limit to the number of variables that an be optimized.Although quite slow, these algorithms an handle very large arrays. These methods areglobal in that they have random omponents that test for solutions outside the urrentminimum, while the algorithm onverges. The global nature of the algorithms and thelak of derivative information auses them to onverge very slowly ompared to othernon-global methods. The purpose of this method is to �nd a thinned array that produesthe lowest maximum relative sidelobe level (rsll).3.4.2 Geneti Algorithm [18℄3.4.2.1 GA - AlgorithmA geneti algorithm ([14℄) is used to numerially optimize both linear and planar ar-rays. Geneti algorithms are modeled after geneti reombination and evolution. The48



algorithms enode parameters in binary strings alled genes and perform the genetioperations of reprodution, rossover, natural seletion, and mutation to arrive at theoptimum solution. These algorithms arrive at better thinning on�gurations for arraysthan previous optimization attempts or statistial attempts. Other optimization methodsannot be applied to large arrays, while statistial methods annot �nd optimum solutions([14℄[18℄).The goal of the geneti algorithm is to �nd a set of parameters that minimizes theoutput of a funtion. Geneti algorithms di�er from most optimization methods, beausethey have the following harateristis1. They work with a oding of the parameters, not the parameters themselves.2. They searh from many points instead of a single point.3. They don't use derivatives.4. They use random transition rules, not deterministi rules.Fig. 11 is a �ow hart of a geneti algorithm. Steps are labeled as A through F for easyreferene.Values for all the parameters are represented by a binary ode (step A). Eah enodedparameter is plaed side by side to form a long binary string alled a gene. Every gene hasan assoiated output orresponding to the funtion evaluated at the quantized parameters.Thus, the geneti algorithm has a �nite, but possibly very large, number of parameterombinations to hek. A gene with N , B − bit parameters has a total of 2NB possiblegenes. If the parameters are ontinuous, then the geneti algorithm limits performanedue to quantization errors assoiated with the binary enoding of the parameters. Onthe positive side, geneti algorithms are ideally suited for optimization of funtions withdisrete parameters.A thinned array has disrete parameters. One bit represents the element state as
on = 1 or off = 0. For example, a six element array may be represented by 101101, whereelements 2 and 5 are turned off . Assuming the linear array is symmetri about its enterallows the 2N element array to be represented by a gene with N bits. Our six-elementarray example an then be represented by the gene 101. The �tness assoiated with thisgene is the maximum relative sidelobe level (rsll) of its assoiated far-�eld pattern. Thefuntion in this paper is the relative far-�eld pattern of an array of point soures. Itsoutput to be minimized is the maximum rsll. The parameters a�eting the output arewhether an antenna element is on or o� ([18℄).49



Geneti algorithms model geneti reombination and evolution in nature. As in nature,the gene is the basi building blok. Geneti algorithms start with a random sampling ofthe output spae. Many of the genes from this list have terrible maximum rsll's. Genesthat produe a superior output survive, while genes that produe a weak output die o�.Usually initial population and genes are randomly generated (step B). Then genes areranked from best to worst, (step C) aording to their rsll. The most ommon suitabilityriterion is to disard (step D) the genes with the worst performane. After this �natural�seletion takes plae, the genes mate (step E) to produe o�spring. Mating takes plaeby pairing the surviving genes. One paired, their o�spring onsist of geneti materialfrom both parents. One last step is to introdue a random mutation in the list of genes(step F). A mutation hanges a zero to a one or a one to a zero. The mutation helps thealgorithm avoid a loal minimum. over again with the parents and the o�spring (step C). Mutation usually doesn't improve the solution. It is a very neessary part of genetialgorithms, though. Without it, geneti algorithms are more likely to get stuk in a loalminimum. Natural seletion, mating, and mutation will take plae with these genes. Thealgorithm ontinues this proess until a suitable stopping point is reahed. Eventually,all the genes will be idential exept for the single mutated gene ([18℄).3.4.2.2 GA Optimization for the design of Linear ArrayFor linear array synthesis problem, eah gene has an assoiated rsll alulated from
FF (u) = max
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(3.39)where� 2N is the number of elements in the array� an is the amplitude weight of element n =

{

1 on

0 off� d is the spaing between elements� u = cos (φ)� φ is the angle measured from line passing through antenna elements� δs = −2πdus is the steering phase 50



� elpat (u) is the element pattern� c0 is onstant� FFmax is the peak of main beamThe region of u for whih FF is valid exludes the main beam. The �rst null for a uniformarray ours at u = 1
2Nd

. Thinning an array auses the null to move, so a onstant, c0, isneeded in the formula to adjust for the �rst null loation ([18℄).3.4.2.3 GA Optimization for the design of Planar ArrayFor planar N ×M element array synthesis problem, eah gene has an assoiatedrsll alulated from
FF (θ, φ) =

M
∑

m=1

N
∑

n=1

amn cos [(2m− 1)πdy sin θ cosφ]× cos [(2n− 1) πdx sin θ sinφ] (3.40)where� M is the number of elements in the array in the y−diretion� N is the number of elements in the array in the x−diretion� dx is the spaing between elements in the x−diretion� dy is the spaing between elements in the y−diretion

Figure 11. Thinned Arrays with Geneti Algorithms - Flow hart of a geneti algorithm [18℄.51



3.4.3 Simulated Annealing [38℄In the past few years, three-dimensional (3-D) aousti imaging has been one of the maininnovations in both underwater and medial appliations. To obtain 3-D eletroni fous-ing and beamforming (i.e., 3-D imaging apabilities), a two-dimensional (2-D) apertureshould be used to generate and/or reeive an aousti �eld. When suh an aperture isspatially sampled, the adoption of a 2-D-array antenna (also alled planar array) is as-sumed. To prevent grating lobes (i.e., aliasing e�ets due to spatial under sampling), ahalf-wavelength (λ/2) spaing between the elements of the array should not be exeeded.At the same time, in order to obtain a �ne lateral resolution, the array should have awide spatial extension. The λ/2-ondition with the �ne resolution requirement often willresult in a 2-D array omposed of some thousands of elements. As an aquisition hannelis assoiated with eah array element, the ost of a 2-D array of this type (i.e., a fullysampled array) is prohibitive ([38℄).One of the most promising approahes to reduing the number of array elements (forboth linear and planar arrays) is based on the onept of aperiodi arrays. A fully sampledarray is thinned by removing a fration of the original set of elements, thus obtaining asparse array. Aliasing e�ets are avoided beause there are no periodiities at the positionsof the sparse array elements. The main drawbak of the thinning operation is an oftenunaeptable high level of the side lobes present in the beam pattern (BP) (i.e., the spatialresponse of the array). Therefore, the thinning should be an optimization operation aimedat reduing the number of elements, while maintaining adequate BP properties for theaddressed appliation ([38℄).In this method, a synthesis method is proposed that is aimed at designing a sparse andaperiodi array to be used as a planar antenna for a narrow-band beamforming proessor,mainly for underwater appliations. The purpose of the method is to minimize the numberof elements able to generate a BP that fulls some a priori �xed onstraints by ating onthe positions and weights of the elements. The stohasti method proposed in this paperis based on simulating annealing (SA) and is an evolution of the method for the synthesisof linear arrays. The main features, whih represent improvements over other methods,are the following:� very large 2-D arrays an be modeled� both weights and positions an be optimized� the number of elements an be minimized52



� asymmetri arrays an be synthesized, thus a larger number of degrees of freedoman be exploited� the overall extent of the 3-D BP an be onsidered.3.4.3.1 SA - AlgorithmInitially, simulated annealing (SA) aimed to simulate the behavior of the moleules of apure substane during the slow ooling that results in the formation of a perfet rystal(minimum energy state). The use of this tehnique to solve other types of problems isbased on the analogy between the state of eah moleule and the state of eah variable thata�ets an energy funtion to be minimized. This funtion is alled the energy funtion,
f (Y), Y being the vetor of state variables. The algorithm is iterative: at eah iteration,a small random perturbation is introdued into the urrent state on�guration Yl (l beingthe iteration). If the new on�guration, Yn, auses the value of the energy funtion toderease, it is aepted (Yl+1 = Yn). Instead, ifYn auses the value of the energy funtionto inrease, it is aepted with a probability dependent on the system temperature, inaordane with the Boltzmann distribution. The higher the temperature, the higher theprobability that the state on�guration whih aused the energy funtion to inrease willbe aepted. In short, the probability that Ynmay be aepted as a new on�guration,
Pr {Yl+1 = Yn}, an be expressed as:

Pr {Yl+1 = Yn} =
{

exp(f(Yl)−f(Yn)),
kT

if f (Yl) < f (Yn)

1, otherwise
(3.41)where k is the Boltzmann onstant and T is the system temperature. As the iterations goon, the temperature T is gradually lowered, following the reiproal of the logarithm of thenumber of iterations, until the on�guration freezes in a ertain �nal state. This methodis very useful to minimize an energy funtion that has many loal minima as, thanks to itsprobabilisti nature, it represents a notable improvement over lassial methods of loaldesent (despite being omputationally demanding). The repetition of the proess, usingdi�erent initial on�gurations, inreases the reliane on the quasi-optimality of results,even though a full optimality annot be proved ([38℄).3.4.3.2 Optimization Proedure for Linear and Planar ArraysThe oneptual mehanisms and the peuliarities of the SA implementation that havebeen applied to obtain an e�ient minimization of the energy funtion are presented.Fig. 12 shows a �ow-hart of the optimization proedure. One an start the synthesis53



by onsidering a fully sampled array, i.e., a planar array omposed of N λ/2-equispaedelements. Then, aording to the proess behavior, the elements are divided into two sets:an ative set (i.e., having weights di�erent from zero) and an inative set (i.e., havingweights equal to zero). The number of ative elements is M and the relation M ≤ N isalways veri�ed. The initial temperature, T start, is hosen high enough and suh that the�rst on�guration perturbations may almost always be aepted, even though they leadto a sharp inrease in energy. When one starts the iteration l, one hooses an element irandomly (both ative and inative elements are visited aording to a random sequenethat does not inlude any further visit to the same element before all the elements havebeen visited one). If the hosen element is ative, one an move it to an inative onditionby following �xed death probability; whereas, if the hosen element is inative, one anativate it (with a random weight) by following a resurretion probability. On the basisof the temperature T (l), suh state transitions an be aepted or not. If one of thesetransitions is aepted, the number of ative elementsM must be updated. If the element
i is ative and its death does not our, the weight wi is perturbed and, on the basis ofthe temperature T (l), the perturbation an be aepted or not ([38℄).During the optimization proedure, a onstraint is imposed to limit to low values theurrent taper ratio (CTR), whih is the ratio between the maximum and minimum weightoe�ients. This onstraint makes it possible to avoid any onsequenes of possible un-foreseen ourrenes regarding the elements with the largest weight oe�ients. To limitthe CTR value, one should perturb eah weight oe�ient in a random and ontinuousway; but one should make sure that the oe�ient value is inluded in an a priori �xedrange [wmin;wmax].The number of iterations, l, is inreased every time all the N elements have beenperturbed one. The proess terminates when a state of persistent blok (freezing) isreahed due to the slow temperature redution. Alternatively, aording to previousexperienes, one an perform a number of iterations whih is large enough to ensure thata blok state will be reahed ([38℄).Owing to the probabilisti nature of SA, di�erent temperature shedulings and randominitial on�gurations may lead to di�erent �nal results. However, if a logarithmi shedul-ing is hosen, almost all the proess runs give slightly di�erent results in terms of bothenergy values and array harateristis. This means that the resulting array on�gurationis stable and lose to the optimal one ([38℄).54



Figure 12. Thinned Arrays with Simulated Annealing - Flow-hart of the optimization proedure [38℄.3.4.4 Ant Colony [39℄It is known that with aperiodi arrays it is possible to get low sidelobe levels in alldiretions or only at some regions. The advantage of uniform amplitude exitation is learfrom the point of view of the feeding network. However, the synthesis problem is omplexand annot be solved with analytial methods. Therefore, global optimizationmethods area good option to a�ord these problems. Among them, geneti algorithms (GA), partileswarm optimization (PSO), and simulated annealing (SA) have already been used inarray synthesis for di�erent requirements.The purpose of using an algorithm based on antolony optimization (ACO) to synthesize thinned arrays with low SLL without pretendingto ompare ACO neither with PSO nor with GA or any other optimization tehnique.The main advantage of ACO algorithms ould ome from the impliit loal searh thatthey perform and also from their simpliity. Of ourse, it still depends on the problemand in the partiular implementation of the algorithm, beause all these algorithms haveparameters heuristially hosen that an have a strong in�uene on the algorithm behaviorfor a partiular problem. Moreover, the same algorithm with same parameters appliedto the same problem an �nd di�erent solutions in the same number of iterations ([39℄).This is a onsequene of their intrinsi randomness.3.4.4.1 ACO - AlgorithmThe ACO is a global searh optimization method that is based on the behavior of antolonies in obtaining food and arrying it bak to the nest. It is a �short path� based55



algorithm. When the ants walk around in searh for food, they give o� pheromone on theground. Ants selet paths aording to pheromone level. The shorter the trail from thenest to the food soure, the higher the pheromone level and thus the probability of antshoosing that path. Furthermore, ants use this to remember the path to the food, and ithelps to add new ants to that trail, getting more food from that plae to the nest. Thesepheromone also evaporate slowly with time. This dereases the probability of taking pathstoward �nished food soures ([39℄).The implementation of an algorithm based on this natural behavior is well suitedfor disrete problems (although odi�ation using real numbers is also possible). In ourase, we have implemented ant olony proedure as follows (having two working modes:forward when the ants searh food, and bakward when they arry the food to home).De�ne pheromone onentration funtion and desirability funtion and hoose param-eters: Number of ants, α, β, ...Initialize I1,I2,...,InFor eah iterationFor eah antFor eah adjoining nodeCalulate pheromone funtion and desirabilityEnd forChose one nodeIf food is foundMode 0: Come bak homeElse-if ant is at homeMode 1: Searhing foodEnd ifUpdate pheromoneEnd forEnd forSolution is I1,I2,...,In with best resultWe have N bits, thus orresponding to an N-dimensional spae of solutions. In thisase, every ant means an array solution, i.e., a vetor withN bits. Ants desribe paths thatare divided into nodes. They move from one node to another through the N-dimensionalspae of solutions by heking the desirability and the pheromone onentration levelof their neighboring nodes before making a probabilisti deision among all of them. Aneighboring node is alulated by toggling the state of only one element of the array. This56



means that every ant has N neighboring nodes and has to deide whih one among themto move toward, in a probabilisti manner. One of the most ommon and suitable formfor ombining the two parameters used to alulate the probability of hoosing one nodein a path is
pi,j (t) =

[τj (t)]
α · [ηj]β

∑

l∈θi

[τj (t)]
α · [ηj ]β

(3.42)where pi,j is the is the probability of hoosing node j at iteration t from node i, τj (t)is the pheromone level of node j at iteration t, ηj is the desirability of node j, α is theparameter ontrolling the relative importane of pheromone in the deision proess while
β does the same with the desirability. θi is the set of nodes available at deision point i([39℄).There are di�erent implementations of the funtion τj . This funtion ontrols thehange in pheromone level in nodes with time. This inludes the inrease when ants visitthat node but also the evaporation with time. We an use, for example,

τj (t + 1) = τj (t) + ∆τj (t)− d (t) (3.43)where ∆τj (t) is is the pheromone addition on node j, and dj (t) is the pheromone persis-tene
d (t) =
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(3.44)where γ is the period of pheromone elimination, and is the oe�ient of pheromoneelimination by period ([39℄).3.4.4.2 Optimization Proedure for Linear and Planar ArraysThere are di�erent methods to synthesize a suitable solution using aperiodi arrays. Themost ommon one entails varying the position of the elements symmetrially. However,when the number of array elements is large, another option is to use the onept of thinnedarrays. In this work the positions of the elements will be �xed, but with eah elementbeing able to present two states: �on� (when the element is fed) and �o�� (when theelement is passively terminated in an impedane equal to the soure impedane of the fedelements) ([39℄).For a linear array where there are 2N elements plaed symmetrially along the

x−axis, the far �eld pattern is
AF (φ) = 2

N
∑

n=1

In cos [π (2n− 1) · cos (φ)] (3.45)57



where In is the exitation amplitude of the n−th element. In our ase, In is 0 if the stateof the n−th element is �o�� and 1 if it is �on�. The distane between elements is 0.5λ andall them have idential urrent phase. In this ase, we searh the lowest value of SLL withisotropi elements. The desirability ηjis de�ned as the absolute value of the normalizedSLL (dBs)
ηj = |SLL (dB)| (3.46)For a planar array struture of elements, the array fator is given by

AF (θ, φ) = 4
N
∑

n=1

M
∑

m=1

Inm cos [π (2n− 1) · sin (θ) cos (φ)]·

cos [π (2m− 1) · sin (θ) sin (φ)]
(3.47)Therefore, the objetive is to �nd out whih array elements should be enabled or disabled(Inm = 1 or Inm = 0) to get the desired radiation pattern harateristis. In this setion,we will deal with the design of a thinned planar array. The SLL level will be heked inthe two main planes of the array ([39℄)

ηj = min (|SLLφ=0° (dB)| , |SLLφ=90° (dB)|) (3.48)
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3.5 Di�erenes Sets [5℄[19℄3.5.1 IntrodutionTradition �lled phased arrays have an element plaed in every loation of a uniformlattie with half wavelength spaing between the lattie points. Massively thinnedarrays have fewer than half the elements of their �lled ounterparts. Suh drastithinning is normally aompanied by loss of sidelobe ontrol. This hapter desribes a lassof massively thinned linear and planar arrays that show well behaved sidelobes in spiteof massive thinning. Isophori arrays derive their sidelobe ontrol from a deterministiplaement of elements that ahieves a uniform weighting of spatial overage. The termisophori is based on the Greek roots that denote uniform weight [5℄[19℄.For a given aperture size, massive thinning o�ers redutions in element ount, ost,weight, power onsumption, and heat dissipation, albeit with an attendant redution inantenna gain.For a given element ount, thinning o�ers narrowed beamwidth by making largerapertures possible.Rather than using a searh algorithm, the approah in this hapter attaks the side-lobe ontrol problem diretly by applying the properties of di�erene sets, a topi fromombinatorial mathematis, to the plaement of antenna elements within a regular lat-tie. These deterministi plaements reate an isophori array with attendant uniformityof spatial overage. The uniformity onsistently produes, with no searhing required,a redution in peak sidelobe level (PSL) when ompared to random element plaement[5℄[19℄.More spei�ally, in any linear array of aperture V half wavelengths, the Nyquistsampling theorem shows that the array power pattern an be ompletely spei�ed from
2V uniformly spaed samples of the pattern. In an isophori array, the even-numberedsamples will neessarily be �loked� to a onstant value less than 1/K times the main-beampeak, where K is the number of elements in the thinned array. While the odd-numberedsamples are not so onstrained, the net e�et is to produe patterns with muh lowerPSLs than are typial with ut-and-try random plaement [5℄[19℄.Isophori designs apply to linear or planar arrays, whether large or small. While thispaper fouses on arrays with 50% thinning, isophori arrays inlude arrays thinned to theextent that the number of elements is approximately the square root of the number ofelements in their �lled ounterparts.Some proposed modern arrays use tens, hundreds, or even thousands of elements59



ombined with digital beam forming (DBF) to produe multiple simultaneous beams.For these arrays, this paper shows how a �lled DBF-based array an be operated as two�interwoven� isophori arrays, thereby reduing the omputational omplexity in eah. Inaddition, by simple yli shifting of the element assignments overtime, it is possible toprodue power patterns for whih the entire sidelobe region is approximately a onstantvalue of 1
2
K relative to the main beam, where K is the number of elements in the original�lled array. In other words, the �peaks� in the sidelobe region virtually vanish [5℄[19℄.3.5.2 NotationThis setion introdues some de�nitions and notation needed in later setions.The array fator for a linear array of idential isotropi radiators is de�ned as

f (u) =
V−1
∑

m=0

am exp (j2πmx0u) (3.49)where am = 1 if an element exists at distane mx0 wavelengths from the origin and
am = 0, otherwise u = sin (θ) is the ommonly used diretion parameter with θ measuredo� of a normal to the array, and the lattie has V possible element loations numbered 0to V − 1, uniformly spaed at x0 intervals of wavelengths.The orresponding array fator for a planar array on a uniform x, y lattie with
x0, y0 wavelength spaing is

f (u, v) =

Vx−1
∑

m=0

Vy−1
∑

n=0

am,n exp (j2π (mx0u+ ny0v)) (3.50)where am,n = 1 if an element exists at loation (mx0, ny0) wavelengths relative to theorigin and am,n = 1, otherwise u = sin (θ) cos (φ), and v = sin (θ) sin (φ) are the ommonlyused diretion parameters and the array lattie has V = VxVy possible element loationsnumbered (0, 0) to (Vx − 1, Vy − 1). The angle θ is measured o� of a normal to the arrayplane and φ is measured o� of the x-axis of the array plane.To simplify both expressions, steering angles have, without loss of generality, been setto zero. As usual, applying an appropriate linear phase variation aross the elements willallow the main beam to be steered.Array power patterns for linear and planar arrays are represented as
ff ∗ (u) = f (u) · f ∗ (u) = |f (u)|2

ff ∗ (u, v) = f (u, v) · f ∗ (u, v) = |f (u, v)|2 (3.51)60



Sine the array fator and power pattern are periodi as well as band limited, a�nite number of samples, taken from a single period, are su�ient to regenerate the entirefator or pattern over all u. The derivations of the sampling theorem for f (u) and ff ∗ (u)are straightforward. For linear and planar arrays are ([5℄[19℄):
f (u) =

V−1
∑

n=0

f

(

n

V x0

) sin
[

πV x0

(

u− n
V x0

)]

V sin
[

πx0

(

u− n
V x0

)] (3.52)
ff ∗ (u) =

2V −1
∑

n=0

ff ∗
(

n

2V x0

) sin
[

2πV x0

(

u− n
2V x0

)]

2V tan
[

πx0

(

u− n
2V x0

)] (3.53)The form (3.52) for f (u) is valid for V an odd integer. When V is even, the sine funtionin the denominator must be replaed by a tangent funtion. Note that while it takes
2V samples to speify the power pattern ff ∗ (u), it takes only V samples to speify thearray fator f (u). The reason is that the samples of f (u) are omplex, while those of
ff ∗ (u) are real. Having both a real and imaginary part, eah sample of f (u) ontainstwie the information of ff ∗ (u) sample. Thus, f (u) both ff ∗ (u) and are ompletelyspei�ed by 2V numbers. The sampling theorem shows that at least 2V numbers arerequired to speify either f (u) or ff ∗ (u). Conversely, both have, at most, 2V degreesof freedom in that one an arbitrarily speify only 2V sample points in the power pattern.In partiular, ontrol over the power pattern is equivalent to and limited to ontrolof the 2V sample points ([5℄[19℄).The orresponding forms for planar arrays are

f (u, v) =

Vx−1
∑

m=0

Vy−1
∑

n=0

f

(

m

Vxx0
,
n

Vyy0

) sin
[

πVxx0

(

u− m
Vxx0

)]

Vx sin
[

πx0

(

u− m
Vxx0

)]

sin
[

πVyy0

(

v − n
Vyy0

)]

Vy sin
[

πy0

(

v − n
Vyy0

)](3.54)
ff ∗ (u, v) =

2Vx−1
∑

m=0

2Vy−1
∑

n=0

f

(

m

2Vxx0
,

n

2Vyy0

) sin
[

2πVxx0

(

u− m
2Vxx0

)]

2Vx tan
[

πx0

(

u− m
2Vxx0

)]

sin
[

2πVyy0

(

v − n
2Vyy0

)]

2Vy tan
[

πy0

(

v − n
2Vyy0

)](3.55)3.5.3 Di�erene SetsDi�erene sets and their assoiated blok designs are a branh of ombinatorial theory.This setion ontains a brief introdution to the theory and properties of di�erene sets[5℄[19℄. 61



By de�nition, a (V,K,Λ) di�erene set is a set of K unique integers
D = {d0, d1, ..., dK−1} , with 0 ≤ di ≤ (V − 1) (3.56)suh that for any integer 1 ≤ α ≤ (V − 1)

di − dj = αmod (V ) , i 6= j (3.57)has exatly Λ solution pairs (di, dj) from the set {D}, where mod V means the di�erenesets is to be taken modulo V .While three parameters are used to desribe a di�erene set, only two of the parametersare independent. Sine there are K (K − 1) possible di�erenes (di − dj) with i 6= j andsine eah of the (V − 1) possible unique di�erenes is to appear exatly Λ times, it followsthat
K (K − 1) = Λ (V − 1) (3.58)As an example, onsider the above set D2 = {0, 3, 5, 6} for whih V = 7, K = 4,Λ = 2.As shown in Table I, eah of the V − 1 = 6 possible unique di�erenes appears exatly

Λ = 2 times and sine K = 4, (3.58) is also satis�ed.Given a (V,K,Λ) di�erene set D, the set
D′ = {d0 + s, d1 + s, d2 + s, ..., dk−1 + s} = D + s (3.59)where eah element is taken modulo V , will also be a (V,K,Λ) di�erene set. In thisase, D′ is alled a yli shift of D. If Dp and Dq are two di�erene sets with the sameparameters (V,K,Λ) and Dp = tDq + s for any integers t and s with t prime to V (thatis, t and V have no ommon fators), then and are alled equivalent di�erene sets.If D is a (V,K,Λ) di�erene set, then its omplement D∗ will be a di�erene set withparameters (V, V −K, V − 2K + Λ) [5℄[19℄.For any partiular (V,K,Λ) satisfying (3.58) there may be no di�erene sets, one dif-ferene set (disregarding equivalent sets), or several nonequivalent di�erene sets. Proofsof existene and nonexistene are of great onern to theoretiians. For now, it is su�ientto note that the sets are abundant, that tables of the sets exist, and that onstrution al-gorithms an be used to reate them. In partiular, onstrution algorithms exist for setswith K/V ≈ 1

2
, 1
4
, 1
8
, where K/V is de�ned herein as the thinning fator. It is also pos-sible to onstrut very highly thinned Singer di�erene sets for whih K is approximatelythe square root of V [5℄[19℄. 62



3.5.4 Di�erene Sets, Autoorrelations, and Linear ArraysFrom a di�erene set D, we may onstrut a sequene or �array� of ones and zeros
AV = {aj} , i = 0, 1, ..., V − 1 (3.60)where aj = 1 if j is in D and aj = 0 if j is not in D. For example, set D3 above gives riseto AV = {1101000001000}. If we reate an in�nite array of ones and zeros

AI = {.., a−2, a−1, a0, a1, a2, ...} , i = 0, 1, ..., V − 1 (3.61)by periodially repeating AV , we may de�ne an autoorrelation for AI given by
CI (τ) =

V−1
∑

n=0

anan+τ (3.62)It follows that if and only if AI is formed from a di�erene set, then
CI (τ) =

{

K, if τ (mod V ) = 0

Λ, otherwise
(3.63)In other words, the autoorrelation funtion is two-valued. Ultimately, it is thisproperty that makes the di�erene set an e�etive presription for the design of thinnedarrays. As shown in the next setion, by tying the one's and zero's to element loationsin a lattie, a periodially repeating element plaement sequene ditated by di�erenesets neessarily has an array power pattern with all sidelobe peaks onstrained to beat an idential �xed level that is less than 1/K times the main lobe peak. When thein�nite sequene is trunated to a single period, these same �xed levels remain, tyingdown half the sample points of the power pattern. The PSL of the resulting pattern isthen determined by the remaining sample points [5℄[19℄.3.5.5 Linear Isophori ArraysFrom any sequene of one's and zero's we an onstrut a orresponding linear phasedarray by starting with an empty lattie of element loations spaed 1

2
−wavelength apart,plaing an element at eah loation where the sequene has a �1�, and skipping eahloation where the sequene has a �0�. From suh a onstrution we an form an arrayelement loation funtion

AI (x) =

∞
∑

n=−∞
anδ (x− nx0) (3.64)63



for an in�nite length array, where δ (x) is the usual Dira delta funtion, and x0 is theinter element spaing ([5℄[19℄). Typially, x0 = 1
2
wavelength.While an in�nite length array is of no pratial interest, a study of its properties willlead to the entral result for isophori arrays. As with any array, the power pattern forthis array will be the Fourier transform of the autoorrelation funtion of the loationfuntion. From (3.63), the autoorrelation funtion of isophori array is given by

CI (χ) = (K − Λ)

∞
∑

n=−∞
δ (χ− nV x0)

+Λ
∞
∑

n=−∞
δ (χ− nx0)

(3.65)This sum represents an in�nite train of impulses at χ = 0,±x0,±2x0, .... All theimpulses have area Λ exept for those at χ = 0,±V x0,±2V x0, ..., whih have area
(K − Λ) + Λ = K.We reall that the Fourier transform of an in�nite train of unity-area impulses at x =

0,±x0,±2x0, ... is itself an in�nite train of impulses in u, eah with area 1/x0 loated at
u = 0,±1/x0,±2/x0, .... From this it follows that the Fourier transform of autoorrelation
CI (χ) is

ff ∗
I (u) = (K − Λ) 1

V x0

∞
∑

n=−∞
δ
(

u− n
V x0

)

+Λ 1
x0

∞
∑

n=−∞
δ
(

u− n
x0

)

(3.66)Using (3.58) we an eliminate Λ and reate a normalized ff ∗
I (u) by writing

ff ∗
I (u) =

ff∗

I
(u)

K2 = ρ

[

1
V x0

∞
∑

n=−∞
δ
(

u− n
V x0

)

]

+ (1− ρ)
[

1
x0

∞
∑

n=−∞
δ
(

u− n
x0

)

] (3.67)where
ρ =

1

K

[

1− (K − 1)

(V − 1)

] (3.68)This normalized power pattern has a �main-lobe� impulse with an area of 1 at u =

0,±1/x0,±2/x0, ..., and idential �sidelobe� impulses with area ρ loated at u = ±1/ (V x0) ,±2/ (V x0) , ...([5℄[19℄).A �nite-length isophori array will have element loation funtion
AT (x) =

V−1
∑

n=0

anδ (x− nx0) (3.69)64



AT (x) is therefore a single �trunated� yle of the in�nite length array in (3.64). Let
ff ∗

I (u) and ff ∗
T (u) be array power patterns for the in�nite and �nite arrays, respetively.Then a basi property of the Fourier transform permits us to write

ff ∗
I (u) = ff ∗

T (u)
1

V x0

∞
∑

n=−∞
δ

(

u− n

V x0

) (3.70)This expression shows that ff ∗
I (u) and ff ∗

T (u) are �tied together� at u = 0,±1/x0,±2/x0, ....It is sometimes said that ff ∗
T (u) forms an �envelope� for the ff ∗

I (u) impulse train. There-fore, the power pattern ff ∗
T (u) for an isophori array must neessarily pass through the�xed points presribed by (3.66).It follows that for an isophori array

ff ∗
T (n/ (V x0)) =

{

1, for n = 0,±V,±2V, ...
ρ, for all other n

(3.71)Fig. 13-(a) shows the normalized power pattern for a partiular isophori linear arrayof 32 elements on a 63-slot lattie with uniform x0 =
1
2
-wavelength spaing. The regularlyspaed, dotted points loated at u = 2/63, 4/63, 6/63, ... are the sample points referred toin (3.70). At eah of these �even numbered� sample points ff ∗ (u) = 10 log10 (ρ)−18.06dB,illustrating the e�ets predited by (3.70) and (3.71).Note that in Fig. 13-(a), the peak at u = 2 is simply a repetition of the mainbeam. From (3.49), it is straightforward to show that any array in whih the elementsare onstrained to be loated at the �xed points of a uniform lattie will neessarily havea power pattern that is periodi in u with period u0 = 1/x0 as well as being symmetriabout any integer multiple of u = 1/ (2x0), where x0 is the spaing between adjaentlattie points measured in wavelengths. For omparison, Fig. 13-(b) shows a powerpattern for a random array of 32 elements on the same aperture. Note that: 1) thereis no regularity evident in the dotted points and 2) the PSL for this partiular array isapproximately 6 dB higher than that for the isophori array. In this hapter, the termrandom array refers to an array in whih an element may appear anywhere with anaperture with equal likelihood. A lattie array is an array in whih elements may onlyappear at uniformly spaed points in the aperture. A random lattie array is an array inwhih the elements are loated at randomly hosen lattie points [5℄[19℄.65



(a) (b)Figure 13. Isophori Array - (a) Isophori linear array power pattern. Number of elements = 32.Aperture size = 62 half-wavelengths. (b) Random linear array power pattern. Number of elements = 32.Aperture size = 62 half-wavelengths [5℄.More generally, the expeted PSL of the isophori array will be lower than that of aorresponding random array by
Isophoric PSL Reduction (linear array)

≈ 3 + 10 log10 (1−K/V )−1 dB
(3.72)The 3-dB portion of the PSL redution omes from onstraining the loations tothose determined by di�erene sets. The remainder of the improvement omes fromsimply onstraining the elements loations to the points of a �xed lattie. Note that thislatter improvement beomes vanishingly small with inreased thinning; that is, as K/Vapproahes zero. However, the 3-dB improvement remains even for highly thinned arrays[5℄[19℄.The theory of the random array shows that

ff ∗ (u) = 10 log10 (1/K) dB (3.73)is the average power in the sidelobe region of a random array. Both �gures show a refereneline at this average level for these arrays, namely at 15.05dB.3.5.6 Expeted Power Pattern of a Linear Isophori ArrayIsophori array PSLs in the preeding setion ould be redued still further by tryingvarious yli shifts of the di�erene set that was used to generate the initial array. Ayli shift of a di�erene set {D} simply adds an integer s to eah member of {D} andthen redues eah result modulo V . Clearly, there are V unique suh shifts possible for66



s = 0, 1, ..., V − 1. This is a relatively small number to apply in a �ut-and-try� attemptat lowering PSL.More importantly, as shown in this setion, the average power pattern of an isophoriarray, taken over all V yli shifts of the underlying di�erene set, is exatly the sameas the average power pattern of all the possible arrays that one ould reate by plaing
K elements on a lattie with V slots.The expeted (average) power pattern of a linear isophori array is de�ned as

E [ff ∗ (u)] = ff ∗
E (u) =

1

V

V−1
∑

s=0

ff ∗
s (u) (3.74)where ff ∗

s (u) is the power pattern generated by an array whose underlying di�erene sethas undergone a yli shift of s units.As shown below,
ff ∗

E (u) = ρ+ (1− ρ) sin (πuV x0)

V 2 sin2 (πux0)
(3.75)The derivation of this result is straightforward but lengthy. To onserve spae, we simplyoutline the steps as follows:1. Note that as with any power pattern, eah ff ∗

s (u) is the Fourier transform of theautoorrelation of the element loation funtion of the array built from a yli shift
s of the underlying di�erene set.2. By substituting the Fourier transform expression for eah ff ∗

s (u) in (3.74) andinterhanging the order of summation and integration, the average Fourier trans-form of the power patterns beomes the Fourier transform of the average of the Vautoorrelations.3. Fundamental properties of di�erene fore the average autoorrelation to be
CE (τx0) =











kδ (0) , τ = 0

(V − |τ |) k(k−1)
v(v−1)

δ (x− τx0) , for 0 < |τ | < V

0, |τ | ≥ V

(3.76)4. The (normalized) Fourier transform of CE (τx0) is ff ∗
E (u), as given by (3.75).Note that for a moderately large V , (say, greater than 30), K/V < 1

2
and u not loseto zero (that is, the sidelobe region), the ontribution to be made by the seond term in(3.75) is quite small. Under these onditions

ff ∗
E (u) ≈ ρ =

1

K

[

1− (K − 1)

(V − 1)

] (3.77)67



In the speial ase K = V , the array is �lled and the expression redues to the well-known power pattern of a �lled array. The �lled array is in fat a speial ase of anisophori array [5℄[19℄.(3.75) also represents the grand average power pattern of all possible plaements of Kelements on a V -slot lattie. One way of viewing the V yli shifts of an isophori arrayis that they represent a small set of arrays whose average power pattern is the same as theaverage pattern of the muh larger set of all possible of K elements on a V -slot lattie. Inthe example used thus far, the 63 yli shifts of Array 1 have an average power patternidential to that of the 9.16× 1017 possible plaements of 32 elements on a 63-slot lattie.

Figure 14. Isophori Array - Expeted power pattern of isophori array with V = 63 and K = 32 [5℄.Note also that while the average sidelobe power of a random array is 1/K, the averagepower of a random lattie array is ≈ (1/K) (1−K/V ). Thus, simply onstrainingthe element plaements to lattie positions redues sidelobe levels to some ex-tent, although the improvement beomes vanishingly small with inreased thinning. Asstated previously, further onstraining the element plaements to be those ditated by adi�erene set produe another 3 dB of expeted PSL redution. This 3-dB redution isindependent of how muh the array has been thinned [5℄[19℄.3.5.7 Extension to Planar ArraysIsophori arrays, both stati and spatially hopped, an be planar as well as linear. Theprinipals are the same. We seek a deterministi plaement of K elements in a retangularlattie suh that the element loation funtion has a two-level autoorrelation funtion intwo dimensions [5℄[19℄.The element loation funtion for a planar array is de�ned by
AT (x, y) =

Vx−1
∑

m=0

Vy−1
∑

n=0

am,nδ (x−mx0, y − ny0) (3.78)68



where the array has dimensions VxVy, δ (x− g, y − h) is interpreted as a unit impulse atloation (x, y) = (g, h), and the oe�ients form a Vx-by-Vy matrix of ones and zeros thatdesignate the presene or absene of an array element at (mx0, ny0).Analogous to (3.62), we form a two-dimensional autoorrelation for an in�nitely re-peated version AI (x, y)of AT (x, y) as
CI (p, q) =

Vx−1
∑

m=0

Vy−1
∑

n=0

am,nam+p,n+q (3.79)We let the number of ones in the am,n oe�ients equalK and assume that we an disovera plaement of ones and zeros suh that
CI (p, q) =

{

K, if Vx divides p and Vy divides q

Λ, otherwise
(3.80)That is, AI (x, y) has a two-level autoorrelation funtion. If this an be done, then weknow that all the VxVy sample point sin the sidelobe region of f (u, v) (3.54,3.55) willneessarily have magnitude K. We also know that the even-numbered samples from thesidelobe region of ff ∗ (u, v) will have magnitude K2. The odd-numbered samples will bethe ones that determine the PSL [5℄[19℄.Results from Monte Carlo simulations show that ompared to a random (nonlattie)plaement of elements on the same aperture, a stati (not spatially hopped) isophoriarray will have an expeted improvement in PSL of

Isophoric PSL Reduction (planar array)

≈ 1.5 + 10 log10 (1−K/V )−1 dB
(3.81)where V = VxVy . This improvement is 1.5dB smaller than it was for linear arrays.As with linear arrays, if we an �nd a plaement algorithm with the property desribedby (3.80), then we an spatially hop the array element assignments as we did for lineararrays, thereby guaranteeing a �xed low-sidelobe power pattern for ff ∗ (u, v) as we didfor ff ∗ (u) ([5℄[19℄).Assume we have a linear sequene of V ones and zeros

AV = {ai} , i = 0, 1, ..., V − 1ditated by a di�erene set as in (3.57). Then the assignment
am,n = ai where m = i (modVx)

n = i (modVy) i = 0, 1, ..., V − 1
(3.82)69



will reate a retangular array of ones and zeros
AVxVy

= {am,n}
m = 0, 1, 2, ..., Vx − 1, n = 0, 1, 2, ..., Vy − 1

(3.83)that has the desired two-level autoorrelation funtion.For example, the (63, 32, 16) di�erene set would be plaed in a 9×7 array as shown inTable II. As shown, a0 is plaed in the �southwest� orner of the array and eah sueedingoe�ient is plaed in the slot to the �northeast�, ontinuing from the other side wheneveran edge is reahed until the entire V = VxVy = (9)(7) = 63 oe�ients have been plaed.The table shows the plaement of the �rst 18 oe�ients. An antenna element will beplaed in eah loation where ai = 1 and not plaed where ai = 0.With the approah above, we an reate a stati isophori array with expeted powerpattern
ff ∗

E (u, v) = ρ+ (1− ρ) sin2 (πuVxx0)

V 2
x sin2 (πux0)

sin2 (πuVyy0)

V 2
y sin2 (πuy0)

(3.84)As with linear arrays, one we move into the sidelobe region (that is, u and v not toolose to 0,±2,±4, ...), the expeted normalized pattern is approximately the onstant ρ,where ρ is given by (3.67). Fig. 15 shows for a ff ∗
E (u, v)-slot lattie, with128 elements.Note that for the speial ase V = K, ρ beomes zero and ff ∗

E (u, v) beomes thepower pattern of the familiar �lled retangular-lattie array. Note also that the beamwidthimplied by (3.84) is independent of the thinning fator β = K/V . Even a very highlythinned isophori array will have the same beamwidth as a �lled array.Again, as with linear arrays, if we begin with a �lled lattie and operate it as twoindependent interwoven isophori arrays with spatially hopped element assignments, wean atually ahieve two independent patterns obeying ff ∗
E (u, v) on a time-averaged basis.

70



Figure 15. Isophori Array - Expeted power pattern of isophori planar array with
V = VxVy = 15× 17 half-waves and K = 128 elements. this exat pattern is realizable with �spatialhopping�. Note pattern �oor at 10 log10 ρ = −24dB [5℄.
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3.6 Almost Di�erene Sets [22℄3.6.1 IntrodutionMassive thinning of arrays (i.e., the redution of the number of the array elements belowhalf of its �lled ounterpart) is of great importane in pratial appliations beause ofthe redution of the array osts, weight, power onsumption, HW and omputationalomplexity.However, suh advantages usually ome at the ost of a loss of sidelobe level (SLL)ontrol and gain ompared to the �lled arrangement. In order to overome these draw-baks, several thinning tehniques have been proposed. Deterministi thinning has been�rst studied, but no signi�ant improvements of SLL ontrol ompared to a random ele-ment plaement have been obtained. More reently, dynami programming and stohastioptimization tehniques, suh as simulated annealing (SA) and geneti algorithms (GAs)have been suessfully applied. Despite the satisfatory results, statistial methodologieshave not an easy appliation to large arrays beause of the omputational burden andonvergene issues. Moreover, due to their stohasti nature, it is often di�ult to a-prioriestimate the expeted performanes for a given aperture size and thinning fator.The synthesis of massively thinned arrays has been faed in a very promising fashionby onsidering equally-weighted arrays. Suh an approah is based on the use of binarysequenes derived from di�erene sets (DSs), whih are known to possess two-level peri-odi autoorrelations. In di�erent works it has been shown that, if the element exitationsare hosen aording to the binary distribution derived from DSs, the peak sidelobe level(PSL) of the synthesized linear array is 3-dB lower than that of the orresponding randomdistribution. Suh a result has been suessfully exploited for the design of both linearand planar arrays, although the PSL redution is about 1.5-dB smaller when planar ar-hitetures are dealt with. The appliation of DSs has also allowed some improvementsin thinned-array design proedures based on GA optimization [22℄.Reently, the de�nition of binary sequenes of length N with suitable autoorrelationproperties, for whih DSs are not available, has been arefully investigated in informationtheory and ombinatorial mathematis. It has been found that it is often possible todetermine sequenes with a three-level autoorrelation funtion by taking into aountthe so-alled almost di�erene sets (ADSs). ADSs are a researh topi of great in-terest in ombinatorial theory with important appliations in ryptography and odingtheory. Moreover, although ADS generation tehniques are still subjet of researh, largeolletions of these sets are already available. As regards the array synthesis, a prelimi-72



nary appliation, although limited to a partiular subset of ADSs. In suh a framework,the whole lass of ADSs seem to be a good andidate for enlarging the set of admissibleanalyti on�gurations with respet to the DS ase, despite a redution of expeted per-formanes. From this viewpoint, it is of interest to arefully detail the ADS features forantenna arrays synthesis [22℄.In this hapter, the exploitation of ADSs properties for the design of linear thinnedarrays is disussed and analyze in depth through a solid mathematial desription. Theproposed ADS based tehnique is aimed at synthesizing arrays with performanes loseto those with DSs, but enhaning the set of admissible array on�gurations. It is alsoworth while to point out that the paper is not aimed at de�ning an optimal method forthe design of thinned arrays, but its purpose is to propose some guidelines to the arraydesigners who, whether by neessity or hoie, are synthesizing a thinned array withoutonsidering stohasti optimizations or a random plaement, but using a determinististrategy with preditable results [22℄.3.6.2 Almost Di�erene Sets - De�nitions and PropertiesLet us provide just some basi de�nitions and main properties of ADSs.A K-subset D = {dk ∈ [0, N − 1] , dh 6= dl; k, h, l = 0, ..., K − 1} of an Abelian group
G of orderN is alled a (N,K,Λ, t)-almost di�erene set if the multisetM = {mj = (dh − dl) ,
dl 6= dk; j = 0, ..., K × (K − 1)− 1} ontains nonzero elements of G eah exatly Λ times,and the remaining N−1−t nonzero elements eah exatly Λ+1 times. As a onsequene,DSs are ADSs for whih t = N − 1 or t = 0. 1. An Abelian group is a group satisfyingthe requirement that the produt of elements does not depend on their order. In additionto the other axioms of a group, the produt operation is assoiative, G has an identityelement, and every element of G has an inverse [22℄.If G ≡ Z and D is a (N,K,Λ, t)-ADS of G, then the yli repetition of the binarysequene A = {an ∈ [0, 1] ;n = 0, ..., N − 1}of length N , whose nth element is

an =

{

1, if n ∈ D
0, otherwise

(3.85)de�nes the harateristi sequene S = {sn, n ∈ Z} of D, where
sn =

{

1, if modN (n) ∈ D
0, otherwise

(3.86)The orresponding autoorrelation funtion, Cs (z), is a periodi funtion de�ned as fol-73



lows
Cs (z) =

N−1
∑

n=0

snsn+1 z ∈ Z (3.87)and equal to
CADS

s (z) =











K, z = 0

Λ + 1, z ∈ L

Λ, otherwise

, K ≥ Λ + 1 (3.88)in the period z ∈ [0, N − 1], L being a set of N − 1 − t elements (i.e. L = {lp ∈ Z;

p = 1, ..., N − 1− t}). For illustrative purposes, let us onsider the examples of ADSsreported in Table I together with the orresponding binary sequenes and autoorrelationfuntions. For ompleteness, the plots of CADS
s (z) are shown in Fig. 16 [22℄.

Table I. Linear Thinned Arrays based on Almost Di�erene Sets - Examples of ADSs and theirdesriptive funtions [22℄. 74



Figure 16. Linear Thinned Arrays based on Almost Di�erene Sets - Autoorrelation funtion
CADS

S (z) of D1 and D2 in Table I [22℄.It is worth noting that the autoorrelation funtion CADS
s (z) of a (N,K,Λ, t)-ADS islose to that of the (if any) orresponding (N,K,Λ)-DS

CDS
s (z) =

{

K, z = 0

Λ, otherwise
(3.89)In fat, the di�erene is limited to just a unity in N − 1− t points where CADS

s (z) =

Λ + 1. Moreover, the ADSs share several other properties with the DSs. In partiular,neither DS nor ADS an be de�ned for every value of N , K, Λ, and t . Indeed, for
(N,K,Λ, t)-ADSs in an Abelian group, the following existene ondition holds true

K (K − 1) = tΛ + (N − 1− t) (Λ + 1) (3.90)being K ≥ Λ + 1, 0 ≤ K ≤ N , and 0 ≤ t ≤ N − 1.On the other hand, if D is an ADS, then the set
D =

{

d
(σ)
k = modN (dk + σ) , dk 6= dl;

k, h, l = 0, ..., K − 1}
(3.91)where σ ∈ Z, is still an ADS. Therefore, starting from an (N,K,Λ, t)-ADS, it is possibleto build di�erent (N,K,Λ, t)-ADSs by applying a yli shift to its elements (i.e., a ylishift on the assoiated binary sequene A). Mathematial proofs of existene or non-existene of ADSs for di�erent hoies of are urrently topi of researh in the frameworkof ombinatorial theory and suitable tehniques for the generation of new families of ADSsare still in progress. However, several ADSs has been already found and their propertiesan be pro�tably exploited for array synthesis [22℄.75



3.6.3 ADS-Based Linear Arrays - Mathematial Formulation3.6.3.1 ADS-Based In�nite ArraysAn in�nite thinned array an be de�ned from whatever binary sequene A of length Nby introduing the array element loation funtion Ψ∞ (x)

Ψ∞ (x) =
∞
∑

n=−∞
snδ (x− nd) (3.92)where δ (.) is the Dira delta funtion, d and x are the lattie spaing and the spatialoordinate along the linear array, respetively (both expressed in wavelength). In pratie,the in�nite thinned array is de�ned by loating the array elements along a uniform lattiewith spaing d at those positions where Ψ∞ (x) =∞ [22℄.As with any array, the power pattern of the ADS-based in�nite linear array turns outto be the Fourier transform of the autoorrelation funtion of Ψ∞ (x), CADS

Ψ (z), that is
PP∞ (u) = F

{

CADS
Ψ (z)

} (3.93)where F {.} denotes the Fourier transform operator, u = sin (θ), u ∈ [−1, 1], and
CADS

Ψ (z) = Λ
∞
∑

n=−∞
δ (z − nd)

+

N−1−t
∑

p=1

{ ∞
∑

n=−∞
δ (z − ndN − lpd)

}

+ (K − Λ)
∞
∑

n=−∞
δ (z − ndN)

(3.94)
where the index lp satis�es the ondition Cs (lp) = Λ + 1 [22℄.By substituting (3.94) in (3.93) and realling the Fourier transformation properties ofan in�nite train of pulse funtions, one an show that

PP∞ (u) =

∞
∑

n=−∞
PP∞,nδ

(

u− n

Nd

) (3.95)where, see equation
PP∞,n =























Λ
d
+ 1

Nd

(

K − Λ +
N−1−t
∑

p=1

exp (j2πlpn/N)

)

, n = 0,±N,±2N, ...

1
Nd

(

K − Λ +

N−1−t
∑

p=1

exp (j2πlpn/N)

)

, otherwise

(3.96)76



However, unlike DSs, further simpli�ations of (3.95) are not trivial sine the followingterm of PP∞,n

(

K − Λ +
N−1−t
∑

p=1

exp (k2πlpn/N)

)

=

(

K − Λ +
N−1−t
∑

p=1

exp (k2πlpn/N)

)

, l0 = 0(3.97)annot be evaluated in losed form. In fat, the set L depends on the ADS at handand PP∞ (u) has to be evaluated on a ase-by-ase basis instead of in a general fashion.However, it is still possible to provide an a-priori estimate of the peak sidelobe level ofthe in�nite array, PSL∞, de�ned as
PSL∞ = max

n 6=0

PP∞,n

PP∞,0

(3.98)Atually, it turns out that PSL∞ is limited by the following upper
PSLMAX

∞ =
K − Λ− 1 +

√

t (N − t)
(N − 1) Λ +K − 1 +N − t (3.99)and lower

PSLMIN
∞ =

K − Λ− 1−
√

t(N−t)
(N−1)

(N − 1)Λ +K − 1 +N − t (3.100)respetively. Moreover, for �xed values of η = t/ (N − 1) and of the thinning perentagefator ν, (ν = K/N), the range of variation of PSL∞ redues as N inreases until athreshold. Suh a behavior is pointed out in a study on the dependene of the on�denerange index ∆∞ = PSLMAX
∞ /PSLMIN

∞ , whih by (3.90), (3.99), and (3.100) turns out tobe, see the following equation
∆∞ =

N2 (ν − ν2)− ηN + η + (N − 1)
√

N2 (η − η2) +N (2η2 − η)− η2
N2 (ν − ν2)− ηN + η − (N − 1)

√

N (η − η2) + η2
(3.101)On N for di�erent values of the ADS-parameters. The asymptoti threshold of ∆∞appears to be equal to

lim
N→∞

(∆∞) =
ν − ν2 +

√

η (1− η)
ν − ν2 (3.102)As expeted, the ondition ∆∞ is asymptotially veri�ed when η = 1 (i.e., t = N − 1and the ADS oinides with a DS), sine PSL∞ = PSLDS

∞ . Suh a onlusion identiallyholds true for η = 0 (i.e., t = 0), whatever the admissible value of ν [22℄.77



Let us also notie from (3.101) that the following property ∆∞ (ν) = ∆∞ (1− ν) holdstrue. Moreover, the analysis and the orresponding plots are limited to the range of Nvalues for whih an ADS sequene an exist [i.e., (3.90), K ≥ Λ + 1, 0 ≤ K ≤ N , and
0 ≤ t ≤ N − 1℄. As it an be observed, the value of the on�dene index dereases when
|ν − 0.5| → 0 and it attains its minimum value when ν = 0.5. In suh a ase, ∆∞ →
[

1 + 4
√

η (1− η)
] asymptotially with a maximum value equal to maxn {∆∞⌋ν=0.5} ≈

4.77dB for η = 0.5 [22℄.
3.6.3.2 ADS-Based Finite ArraysAs regards �nite arrays, sine the array element loation funtion Ψ (x)

Ψ (x) =

N−1
∑

n=0

snδ (x− nd) (3.103)is now a trunated version of Ψ∞ (x) , then it an be easily shown that PP∞ (u) and thepower pattern of the �nite on�guration, PP (u), are related by the following relationship
PP∞ (u) = PP (u)

∞
∑

n=−∞
δ
(

u− n

Nd

)

Nd
(3.104)Aordingly, PP (u) neessarily satis�es the sampling ondition at eah oordinate u =

un = n/Nd, that is
PP (un) = NdPP∞,n n = 0, ...,

⌊

N
2

⌋ (3.105)In order to illustrate suh a behavior, Fig. 17 shows the plots of PP (u) and of theoe�ients PP∞,n for the thinned array of K = 22 elements on a N = 45-loations lattie(d = 1/2) de�ned from the ADS D4. It is worth noting that, sine Ψ (x) is real-valued,the beam pattern is symmetri with respet to u = 0 and only the range u ∈ [0, 1] isonsidered [22℄. 78



Figure 17. Linear Thinned Arrays based on Almost Di�erene Sets - Normalized PP (u) derived fromthe ADS derived from the ADS D4 (D4 = D
(σ)
4

⌋

σ=0
) and its yli shifts D(σ)

4 (σ = 17, σ = 24).Number of elements: N = 45-Aperture size: 22λ [22℄.Starting from (3.104), it is then possible to estimate the PSL of a �nite array
PSL =

max
u∈[UM(D(σ)),1]

{PP (u)}

PP (0)
(3.106)where UM is the width of the main lobe region, by using the assoiated in�nite arraypower pattern PP∞ (u). It is worth noting that (see Fig. 4) the PSL value is determinedby the behavior of the power pattern at u = um+ 1

2
= (m+ 1/2)Nd

PSL =
max
m

{

PP
(

um+1/2

)}

PP (0)
, m = 1, ...,

⌊

N

2

⌋ (3.107)being um+1/2 = (m+ 1/2) /Nd.To evaluate PP (um+1/2

), let us onsider the sampling theorem and (3.104). It followsthat
PP (u) =

∣

∣

∣

∣

∣

N−1
∑

n=0

√

NdPP∞,n exp (jφn)
sin
[

πNd
(

u− n
Nd

)]

N sin
[

πd
(

u− n
Nd

)]

∣

∣

∣

∣

∣

2 (3.108)where φn, n =, ..., N − 1, are the phase terms of the sampled array fator (φ0 = 0), whihare known quantities only when the ADS at hand is spei�ed. By evaluating (3.108) in
u = 0 and u = um+1/2 and substituting in (3.107), we obtain

PSL =

max
m







∣

∣

∣

∣

∣

∣

N−1
∑

n=0

√

PP∞,n exp (jφn)
sin [π (m− n+ 1/2)]

N sin
[

π(m−n+1/2)
N

]

∣

∣

∣

∣

∣

∣

2





PP∞,0

m = 1, ...,
⌊

N
2

⌋

(3.109)79



Consequently, the PSL of an ADS-based �nite array is fully spei�ed from the knowledgeof PP∞,n and φn, n = 0, 1, ..., N − 1. However, sine the PP∞,n oe�ients of ADSsequenes neither an be expressed in losed-form (as for RDSs) nor have equal expressions(as for DSs), it is not available (although approximated) a threshold value for the PSL asfor DSs. Nevertheless, it is possible to yield the following set of inequalities
PSLMIN ≤ PSLDW ≤ PSLopt ≤ PLSUP ≤ PSLMAX (3.110)where PSLopt = min
σ∈[0,N−1]

{

PSL
(

D(σ)
)}, PSLMIN = PSLMIN

∞ , PSLDW = max {PSL∞, PSL
min},

PSLUP = E {Φmin
N }PSL∞, and PSLMAX = E {Φmin

N }PSLMAX
∞ , being E {Φmin

N } ≈
0.8488+1.128 log10N and PSLmin = E {Φmin

N }min
n

(PP∞,n) /PP∞,0. It should be pointedout that PSLDW and PSLUP are determined when the ADS sequene is available sinethey require the knowledge of the oe�ients PP∞,n. On the ontrary, PSLMIN and
PSLMAX an be always a-priori omputed from (3.100) and (3.99), respetively [22℄.

80



Figure 18. Linear Thinned Arrays based on Almost Di�erene Sets - Comparative Assessment - Plotsof the PSL bounds of the ADS-based �nite arrays and of the estimator of the PSL of the random arrays(RND - random array, RNL - random lattie array) when ν = 0.489 versus (a) the array dimension, N ,and (c) the index η. Normalized generated from Dopt
4 and estimated PSL values of the orrespondingrandom sequenes (b) [22℄. 81



3.7 Basi Theory of Interferometry for Radio Astron-omy [8℄[9℄[30℄[31℄3.7.1 IntrodutionThe partiular interest in orrelator antenna arrays for radio astronomy appliations anbe traed bak to 1960s, and it was aompanied by drasti instrumental advanes ininterferometry tehniques. Compared to onventional sum arrays, the enhaned datagathering e�ieny of a orrelator array is losely related to its spatial-�lter-like behaviorand the unique signal ombination sheme by pair-wisely orrelating output signals fromall antenna elements. Unlike the well-established synthesis tehniques for sum arrays,determining an appropriate on�guration of a orrelator array is essentiallyan optimal sampling problem. In order to obtain a lear image of a distant radiosoure, an ideal orrelator array is desired to have either the maximum overagein the spatial frequeny domain (the u − v domain) or the lowest sidelobe level(SLL) in the angular domain (the l −m domain) [31℄.
3.7.2 Problem De�nitionFig. 19 depits the measurement of a distant radio soure using a orrelator antennaarray. The soure has a brightness distribution I (l, m) in the angular domain and theosmi signal is olleted by the ground-based array with a on�guration of f (x, y). Thevisibility of the soure, V (u, v), is de�ned in a plane perpendiular to the diretion ofsoure and this plane is referred as the u − v domain. Here x and y are measured inkilometers; u and v are unitless quantities and uλ (or vλ) has a unit of kilometer, where
λ is the freespae wavelength. l and m are diretional osines of a point in the angulardomain with respet to the u− and v− axes, respetively. They are measured in radiansby applying the small-angle assumption sine the desired �eld of view (FOV) in manypratial ases is usually no more than a few degrees. It is worthwhile to mention thatthe de�nition of the u− v domain is similar to that of the �u− v domain� in onventionalantenna language, whih is often used to desribe the far �eld of an antenna. In this thesis,the notion of �u − v domain� follows the radio astronomy nomenlature and representsthe spatial frequeny domain instead of the angular domain [8℄[9℄[31℄.82



Figure 19. Radio Astronomy - Coneptual sketh of a radio astronomial measurement using aorrelator antenna array. The brightness distribution I (l,m) in the angular domain is retrieved by theinverse Fourier transform of the samplings of its visibility V (u, v) in the spatial frequeny domain. Thesampling points are determined by autoorrelating the array on�guration f (x, y) in the spatial domain[31℄.The partiular importane of introduing the onepts of visibility and the u − vdomain stems from the Fourier transform relationship between and given in
I (l, m) =

∫ ∞

−∞

∫ ∞

−∞
V (u, v) exp [j2π (ul + vm)] dudv (3.111)that applies to most radio soures with the spatially inoherent feature in their emissions.In other words, the visibility represents the spatial frequeny spetrum of a radiosoure. The radio astronomial measurement desribed in Fig. 19, therefore, resemblesthe mirowave holographi imaging in the sense that I (l, m) an be retrieved by theinverse Fourier transform of the sampled omponents of V (u, v).Fig. 20 provides a quantitative desription of the measurement and summarizes allFourier transformation pairs between the u− v domain and the l−m domain. Similar tothe transient response of a system in signal proessing, the point soure responses of thearray in the u− v domain and the l−m domain are haraterized by the u− v overage

W (u, v) and the synthesized beam b0 (l, m), respetively. This spatial-�lter-like behavioris only valid when the output signals from antenna elements are pair-wisely proessed,83



whih makes orrelator arrays a better option than onventional sum arrays for the sakeof signal-to-noise ratio (SNR) and data gathering e�ieny [8℄[9℄[31℄.In general, a uniform u− v overage is preferable if the array is aimed to observe verybright and ompliated soures, and a synthesized beam with a low SLL might funtionbetter in extrating images out of noisy data. Although W (u, v) and b0 (l, m) are relatedas one of the Fourier transformation pairs in Fig. 20, there is not a rigorous proof thatthe most omplete u−v overage leads to the optimal synthesized beam. The seletion ofan appropriate array on�guration f (x, y) has to be aomplished via the optimizationsof W (u, v) and b0 (l, m) in di�erent domains separately [8℄[9℄[31℄.

Figure 20. Radio Astronomy - Relationship among antenna quantities for an inoherent �eld.3.7.3 The U-V CoverageFirst let us onsider how the array on�guration f (x, y) is related to the u− v overage,
W (u, v). Here we assume that two antenna elements are separated by a baseline vetor

−→
B = x̂uλ+ ŷvλ (3.112)and the antenna dimensions are muh smaller than the length of baseline, ∣∣

∣

−→
B
∣

∣

∣
. It has beenshown that for a snapshot observation at zenith, the output signals of the orrelator thatonnets the antenna pair are the sampled visibilities at symmetri spatial frequenies84



(u, v) and (−u,−v). Thus for an N-element orrelator array with the ith element loatedat (xi, yi) and a on�guration of
f (x, y) =

N
∑

i=1

δ

(

x− xi
λ

,
y − yi
λ

) (3.113)
W (u, v) an be loated by searhing all baseline vetors via the autoorrelation of thearray's on�guration

W (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f (x, y) f (x− uλ, y − vλ) dxdy

=
N
∑

i=1

N
∑

j=1,j 6=i

∏

(

u− xi − xj
λ

, v − yi − yj
λ

) (3.114)Here ∏ (u, v) is a 2D unit impulse funtion de�ned by
∏

(u, v) =

{

1; u = v = 0

0; elsewhere
(3.115)The summation in (3.114) does not inlude i = j terms sine eah antenna is not orre-lated with itself. The origin (u, v) = (0, 0) is therefore not inluded in the u−v overage,while all other spatial frequenies satisfying (u, v) = ((xi − xj) / (λ) , (yi − yj) / (λ))aresampled. Theoretially an N-element array should have N (N − 1) samplings in the u−vdomain for a snapshot observation, however, the atual number of samplings is often lessthan that due to the redundany in the array on�guration. An appealing solution toinrease the number of sampling points is to apply a traking observation in whih theEarth rotation e�et is inorporated [8℄[9℄[31℄.3.7.4 The Earth-Rotation E�etIn a traking observation, eah baseline vetor traks an ar of an ellipse in the u − vdomain due to the rotation of the Earth. The axial ratio of ellipse and the length of ar aredetermined by the soure delination δ, the elevation E , the latitude L and the azimuth

A of baseline, along with the observation time duration 2h (h ∈ [0, 12], unit: hours).For eah instant hour angle H ∈ (− (hπ) / (12) , (hπ) / (12)) (unit: radians) during theobservation, the partiular sampling spatial frequeny (u, v) at that instant is spei�edby a matrix equation
[

u

v

]

=

[

sinH cosH 0

− sin δ cosH sin δ sinH cos δ

]







Xλ

Yλ

Zλ






(3.116)85



where






Xλ

Yλ

Zλ






=
∣

∣

∣

−→
B
∣

∣

∣







cosL sin E − sinL cos E cosA
cos E sinA

sinL sin E + cosL cosE cosA






(3.117)Assume the time interval between taking two samplings is ∆h, the total number of u −

v samplings is inreased by a fator of (h) / (∆h) ompared to a snapshot observation[8℄[9℄[31℄.

Figure 21. Radio Astronomy - The geometry of an interferometer. The baseline intersets the elestialsphere at B, whih has delination d and the loal hour angle h. The soure is at point S, withoordinates δ and H . The projetion of the baseline on the intersetion of the plane SOB and a planetangent to the elestial sphere at S is D cos θ.3.7.5 The Synthesized BeamAs shown in Fig. 20, the synthesized beam b0 (l, m) is alulated by the inverse Fouriertransform of the u− v overage W (u, v). This relationship applies to both snapshot andtraking observations in whih W (u, v) is obtained using (3.114) and (3.116)-(3.117), re-spetively. Typially b0 (l, m) is alulated by inverse fast Fourier transformation (IFFT),in whih the u−v domain is disretized into Nu×Nv retangular grids eah with a dimen-sion of ∆u×∆v. Multiple u− v samplings lying in eah grid are averaged and reloatedat the enter of the grid [8℄[9℄[31℄.The maximum FOV in the l−m domain, Lmax andMmax (in radians), are determinedby the grid size ∆u and ∆v

Lmax = 1/∆u, Mmax = 1/∆v (3.118)Under the assumption that the antenna dimension is muh smaller than the length ofbaseline, the maximum FOV is far less than the half-power beamwidth (HPBW) of eah86



antenna element. The e�et of element pattern in the synthesized beam is just multiplyinga onstant, whih an be omitted when investigating a normalized pattern. The resolutionof the beam plot is given by:
Rl = Lmax/Nu, Rm =Mmax/Nv (3.119)By applying zero-padding in the u− v domain, the resolution an be improved to obtainmore detailed sidelobe features of b0 (l, m).Similar to applying amplitude tapering in low-sidelobe aperture antennas, a weight-ing funtion w (u, v) is often imposed in the u − v domain to suppress sidelobes of thesynthesized beam. Therefore the beam alulation has a general form
b0 (l, m)⇔W (u, v)w (u, v) (3.120)where ⇔ represents the Fourier transformation pair [8℄[9℄[31℄.3.7.6 Image RetrievalOperating as a spatial �lter, the response of a orrelator array to an extended soure isobtained by a multipliation in the u− v domain

Vmea (u, v) = W (u, v)w (u, v)V (u, v) (3.121)or a onvolution in the l −m domain
Imea (l, m) = I (l, m) ⋆ b0 (l, m) (3.122)as shown in Fig. 20. Sine the RHS's of (3.121) and (3.122) are related by the Fouriertransformation, the soure image Imea (l, m) an be retrieved by the IFFT of sampledvisibility Vmea (u, v)

Vmea (u, v)⇔ Imea (l, m) (3.123)For a better assessment of the array's performane, the image retrieval proess an besimulated by speifying a soure with a known brightness distribution I (l, m) obtainedfrom an atual astronomial measurement. In this paper, however, due to the lak ofmeasured raw-data, the soure is spei�ed in the u − v domain by applying benhmarkvisibility funtions provided. For instane, the visibility of a 2-D Gaussian soure isde�ned by
V (u, v) =

1√
2πσ

exp
[

−
(

u2 + v2
)

/2σ2
] (3.124)where σ2 is the variane that modulates the angular width of the soure. With thisanalytial form of V (u, v), the exat value of sampled visibility Vmea (u, v) at an arbitraryspatial frequeny is alulated by (3.121) [8℄[9℄[31℄.87



3.7.7 Basi Two-Elements InterferometerAn interferometer system an be expressed shematially in a fairly general way in Fig.22. Two antennas, eah with its amplifying system, are onneted to a orrelator (or mul-tiplier), whih inludes an averaging or integrating iruit with a spei�ed time onstantthat is muh longer than the reiproal of the frequeny bandwidth of the system, so thatmany voltage impulses are averaged in a simple observation [8℄[9℄[31℄.The interferometer is assumed to observe an extended soure of inoherent and sta-tistially radiation. The antennas are pointed in the same diretion. For these onditionsthe output of the orrelator is
r (τ) =

∫ ∞

−∞

∫ ∞

−∞
Γ̂ (ξ′, ν)A1 (ν)A

∗
2 (ν) Ĝ1 (ξ

′ − ξ, ν) Ĝ∗
2 (ξ

′ − ξ, ν) exp (j2πντ)dνdξ′(3.125)in whih� r (τ) is the output of the orrelator� Γ̂ is the line-integrated brightness distribution of an isolated, �nite soure� Â is the frequeny response of the ampli�er� Ĝ is the antenna voltage gain� ν is the frequeny (Hz)� τ = τg − τi is the di�erene between in transit time from a plane wavefront in spaeto the orrelator via the two possible paths� τg is the geometrial omponent of τ� τi is the instrumental omponent of τ� ξ = sin θ 88



Figure 22. Radio Astronomy - Basi orrelator interferometer system.This formula is quite general. In the ase of two idential antennas with idential,band-limited ampli�ers it redues to
r (τ) =

∫ ∞

−∞
dξ′
∫ ν0+∆ν/2

ν0−∆ν/2

dνΓ̂ (ξ′, ν) |A (ν)|2
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∣

2

exp (j2πντ) (3.126)The time delay τ is the di�erene between the geometrial delay τg and is the instrumentaldelay, τi. The instrumental delay is adjusted to the value Dξ1/c, so that
τ =

D (ξ′ − ξ1)
c

(3.127)where D is the separation of the antennas in meters and c is the veloity of the wave inspae. If the ampli�er passband ∆ν is su�iently small, so that the antenna pattern andthe brightness distribution do not vary signi�antly over the band, Equation 3.126 an bewritten
r (ξ0, ξ1, D) =

∫ ∞

−∞
Γ̂ (ξ′, ν) P̂ (ξ0, ξ

′, ξ1) dξ (3.128)where ξ0 is the diretion in whih the antennas are aimed and ξ1 is the diretion forwhih τ = 0. The funtion P̂ (ξ0, ξ
′, ξ1) is the produt of the antenna power pattern
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2, the bandwidth pattern (or delay pattern)
B (ξ1 − ξ′,∆ν,D) =

∫ ∆ν/2

−∆ν/2

|A (ν)|2 exp [−j2πν (ξ1 − ξ′)D/c] dν (3.129)and the interferene pattern
F (ξ1, ξ

′, D) = exp [−j2πν0 (ξ1 − ξ′)D/c] (3.130)89



The bandwidth pattern has a peak in the diretion ξ1. When the soure and the antennabeamwidth are of small angular extent, the integrand in Equation (3.129) is nonzero overonly a small range of θ entered at θ0. The instrumental delay an be adjusted to thevalue Dξ0/c so the delay pattern also has a peak at ξ. Now let θ′ be de�ned as θ0 − θ;then θ is small and
ξ ≃ sin θ0 − cos θ0 sin θ = ξ0 − ξ cos θ0De�ne u as (D cos θ0) /λ0 . This is the spatial frequeny and is the omponent of thebaseline (in wavelengths) in the diretion normal to θ0.Equation (3.128) an be rewritten
r (u) =

∫ ∞

−∞
Γ̂ (ξ, ν0) P̂ (ξ, u,∆ν) dξ (3.131)Now let us examine the form Equation (3.131) assumes when the bandwidth is narrowenough so that for all baselines the bandwidth pattern is muh wider than the antennapattern, and when soure being observed is, in turn, small ompared with the antennapattern. In this ase

r (u) =

∫ ∞

−∞
Γ̂ (ξ, ν0) exp (−j2πξu)dξ = γ̂ (u, ν) (3.132)This will be alled the �fringe funtion�. It is the Fourier transform of the brightnessdistribution, and it is apparent, therefore, that the interferometer an be used to make aFourier analysis of the struture. This is the basis of aperture synthesis. It is seen from(3.132) and the de�nition of u that the spatial frequeny measured with a given baselineis the baseline length, in wavelengths, projeted on a plane tangent to the elestial sphereat the loation of the soure. By using a su�ient number of di�erent baselines, enoughFourier omponents an be measured to permit the reonstrution of the soure by Fouriertransformation [8℄[9℄[31℄.It has been assumed that the soure is �nite, in fat, that is small ompared withthe antenna beam. A soure of extent ∆ξ an be ompletely represented by sampling itsspatial frequeny spetrum at intervals u = 1/∆ξ. This follows from the basi propertiesof the Fourier series representation of a funtion with a �nite base. Furthermore, if thesmallest detail to be measured is ∆ξm. Thus, the number of baselines needed to perform aomplete, one-dimensional analysis on a soure is equal to the width of the soure dividedby the width of the �nest detail that is to be resolved. A two-dimensional analysis requiresa number of baselines equal to the square of the number for one dimension.A Fourier series with disrete, uniform spaing of the terms in the frequeny domainis a periodi funtion of the spatial oordinate. If one-dimensional antenna is synthesized90



by means of a series of interferometers whose baselines inrease suessively in length bya uniform interval, the response to a point soure is a omb-shape series of evenly spaedspikes in the ξ dimension. In an atual observation, an isolated single soure an bemapped aurately by this means. If there are other soures present, however, the mapof the soure under investigation may be seriously distorted by their interations withthe higher-order responses, whih are usually termed �grating lobes�. The spaing of theresponses in the ξ domain is inversely proportional to the inrement of the baseline spaingin the u domain; therefore, it is important to plan the observing program aording to thenature of the soure under investigation. In a two-dimensional synthesis operation, therewill be a two-dimensional array of grating lobes, of whih examples will be seen [8℄[9℄[31℄.In the Fourier-series method of aperture synthesis, it is neessary to measure eahomponent of the series only one. If several antennas are available, together with theneessary eletronis to permit simultaneous operation of several baselines, the most eo-nomial arrangement of the antennas is one whih provides the largest number of neessarybaselines with the minimum number of dupliations. It is possible to arrange four anten-nas on a straight line in suh a way that there are no redundant baselines; but for largernumber of elements and for two-dimensional arrays redundanies are inevitable [40℄.The aperture illumination is the distribution of the eletri �eld in the plane of theantennas. In a synthesis array onsisting of a small number of antennas, for example,the illumination would onsist of a number of disrete points in the aperture plane. Theautoorrelation funtion of the illumination is alled the transfer funtion. The Fouriertransform of the brightness distribution (in spatial oordinates) is the brightness spetrum(in spatial frequeny terms), and the produt of the brightness spetrum and the transferfuntion is the output in terms of spatial frequenies: that is, the observed brightnessspetrum, whose Fourier transform is the onventional radio telesope output. Onlythose spatial frequeny omponents are present in the output whih are also present inthe transfer funtion; thus, the performane of the syntheti telesope an be investigatedby examinating its transfer funtion. The transfer funtion has the same on�gurationas the diagram of the antennas in the u dimension, or in the u− v plane in the ase of atwo-dimensional array.3.7.8 Comparison between Conventional Sum Arrays and Corre-lator ArraysIn early radio astronomial measurements in 1940s, onventional two-element sum arraysare used as an alternative for 1-D and 2-D image retrieval of radio soures. Di�erent spatial91



frequenies are sampled by varying the baseline between two antenna elements. On theother hand, multi element sum arrays are usually used as a probe for diretly mapping thesoure in the angular domain, and the diretion of probe is steered by applying phasedarray tehniques. Here we ompare both types of sum arrays to orrelator arrays, and itwill be shown that orrelator arrays have unique advantages in both noise redution anddata gathering e�ieny [9℄[31℄.Fig. 23(a) shows a shemati diagram of a two-element sum array. The voltage signalsfrom both antennas are summed and squared by a square-law detetor, and the outputof the detetor is low-pass �ltered before being reorded. Assume the signal voltage fromantenna I is V sin (2πf0t). The output of antenna II is therefore delayed by τ =
(−→
B · −→s

),where −→B is the baseline vetor, −→s is the unit vetor pointed to the soure and c is the waveveloity in free spae. Notiing that u =
(−→
B · −→s

)

/ (λ) . The output of the square-lawdetetor is
W ′ (u) =
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V sin (2πf0t) + V sin
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2πf0

(

t− uλ
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)]}2 (3.133)By �ltering harmonis of 2πf0t, whih represent radio frequenies, the output of the sumarray is
W (u) = V 2

[

1 + cos
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2πf0uλ
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)] (3.134)For a ertain radio soure, the osine term in (3.134) is a funtion of u only and representsthe spatial frequeny to whih the array responds. It is not �ltered out sine varies slowlyas the Earth rotates. However, due to the noise power whih is typially several ordersof magnitude greater than the signal from the soure, the large o�set represented by theonstant term in (3.134) is desired to be removed.In the two-element orrelator array shown in Fig. 23(b), output signals of two an-tenna elements are multiplied and time-averaged, namely, orrelated. Using the sameexpressions as those in (3.133), the output of the multiplier is
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(3.135)The seond and the third terms in (3.135) vanish after being time averaged. Thereforethe output of the orrelator is
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with the osine term remains only [9℄[31℄.For a sum array with elements, sine the output signals of all elements are summed up,it is not feasible to identify the u− v domain response of the array. Using suh a multielement sum array, a radio soure is usually mapped in l −m domain by onvolving itspower pattern and the brightness distribution of the soure, and only one data is obtainedat any instant. In this ase, what ontributes most to the onvolution is the brightnessdistribution within a small angular region determined by the narrow beam formed by thearray. In order to ahieve a radio map within a reasonably large angular region, the mainbeam of the array must be phase-steered. On the other hand, a orrelator array respondsto the entire FOV by sampling multiple spatial frequeny omponents simultaneously. Itis therefore more e�ient than a sum array in gathering data for mapping purpose [9℄[31℄.

Figure 23. Radio Astronomy - Comparison between the signal proessing shemes of a 2-element: (a)sum array and (b) orrelator array.
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3.8 Partile Swarm Optimization for Radio Astronomy[31℄3.8.1 IntrodutionCompared to onventional deterministi and pseudodynami programming tehniques dis-ussed in other works, the PSO optimizer provides more �exibilities to optimize the arrayperformane in both the u − v domain and the l −m domain, by performing statistialexplorations in high-dimensional, non-linear solution spaes. Benhmark examples arepresented to illustrate its e�etiveness in designing orrelator arrays with typial open-ended and losed on�gurations suh as the �Y� and the Reuleaux triangle, by obtainingoptimal arrays that outperform uniform arrays and representative existing designs [31℄.
3.8.2 A Numerial Example: A Uniform Y-Shaped ArrayBy utilizing basi formulations (3.113)-(3.123), an analyzer is developed to alulate the
u−v overage and the synthesized beam of a orrelator array with an arbitrary on�gura-tion f (x, y). Let us take a 27-element array is onstruted on a Y-shaped rail trak, whihis a representative open-ended on�guration similar to the Very Large Array (VLA) atSoorro, New Mexio (L = 34°, E = 0°). The entire array is rotated by 5° from the north-south diretion to ahieve a better u − v overage for observations at low delinations.Eah arm of the �Y� extends up to 21 km and eah antenna element is a 25m-diameterparaboli re�etor. The ratio between the maximum baseline (Bmax = 21

√
3km) and thedimension of eah individual antenna element is approximately 1400.A Gaussian soure with the visibility spei�ed in (3.124) is used to test the imageretrieval apability of the array. The variane of the Gaussian funtion is seleted as

σ = (Bmax) / (8λ)and the original soure image I (l, m) is plotted in Fig. 24(a) by theinverse Fourier transform of (3.124) at 128 × 128 FFT grids. The image plot is saledfrom −30dB to 0dB [31℄. 94



Figure 24. Radio Astronomy - (a) Original soure image with the visibility spei�ed by the Gaussianfuntion in (3.124). (b) Image retrieved by the uniform Y-shaped array shown in Fig. 4(a).3.8.3 Optimization of Y-Shaped Arrays3.8.3.1 The Partile Swarm Optimization TehniquePSO is a reently proposed evolutionary algorithm that addresses both ontinuous anddisrete optimizations by applying the swarming behavior in the nature. The basi prin-iple of PSO is to iteratively explore the solution spae using a swarm onsists of multipleagents. Eah agent represents a andidate design and its performane is quanti�ed bya �tness funtion representing the goal of optimization. At eah iteration, all agents in-terhange the information of the best design that has ever been found. Eah agent isnavigated by its own experiene and the knowledge from other agents. This proedurerepeats until the swarm onverges to the global optimum. Being applied to a large varietyof pratial eletromagneti appliations, a robust PSO optimizer has been developed [31℄.The PSO algorithm is applied in this setion to optimize element positions on eaharm of the �Y� in order to redue the redundany in the u− v overage and suppress thesidelobes in the synthesized beam. The number of antenna elements in eah optimization is�xed to be 27, and the andidate design has a three-fold symmetry (i.e., the nine elementson eah arm have the same distribution) to guarantee a good azimuthal -distribution. Tomaintain the same Bmax of 21√3km, it is also assumed that there is always an elementloated at the end of eah arm. Therefore the array on�guration is represented by aneight-dimensional real vetor
−→x = [x1, x3, .., x8] (3.137)in whih xi ∈ (0, 21) (unit: kilometers) represents the radial displaement of the ith95



element from the enter of the array. The optimization is performed over −→x and minimizesthe �tness funtions disussed in following subsetions depending on di�erent optimizationgoals [31℄.3.8.3.2 Optimizing the U-V CoverageThe �rst-order requirement of optimizing the snapshot u − v overage is to redue theredundany while maintaining the uniformity of u− v samplings.The �tness funtion an be therefore de�ned as
f = −Nsampled (3.138)to maximize the number of sampled grids. The negative sign is used due to the defaultsetting of PSO as a minimizer.The optimization is exeuted using a 10-agent swarm for 500 iterations. The optimizedarray (denoted by Y1) and its u−v overage are plotted in Fig. 25(a) and (b), respetively.The radial displaements of nine elements on eah arm are tabulated in Table II. The �xedelement at the end of eah arm is denoted x9 as and it has a onstant radial displaementof 21 km. Compared to the uniform Y-shaped array, the u− v samplings are distributedin 558 grids with 24 more sampled grids obtained. More importantly, there are no moreoverlapping samplings in the arm diretions due to the slight perturbation indued intothe uniform element distribution.In order to verify the robustness of the optimizer, 10 independent optimizations areperformed using the �tness funtion de�ned in (3.138). All these trials onverge to thesame optimal design shown in Fig. 25(a) and the u− v overage with 558 sampled gridsis the best result that an be ahieved. It is worthwhile to mention that, although theideal number of 702 sampled grids is used as the target for optimizing element positions,it is not possible to ahieve this exat number sine there is not suh a funtion f (x, y)whose autoorrelation is ompletely �at in the u− v domain [31℄.A similar riterion is applied to optimize the u − v overage for an 8-hour trakingobservation, with the only di�erene in seleting the value of Ngrid de�ned in (??). Underthe same observation ondition previously mentioned (h = 8 hours, ∆t = 5 minutes), thetotal number of u− v samplings is inreased by a fator of (h) / (∆t) = 96. Ideally Ngridshould be inreased by a fator of √96, however, the number of FFT grids (128 × 128)in the mapping proedure is omparable to the number of u − v samplings in this ase.A Ngrid = Nu = Nv = 128 is therefore seleted to ahieve more sampled FFT grids. The�tness funtion is de�ned to be similar to (3.138). The same optimization setup of 1096



agents and 500 iterations is applied. By inorporating the analysis of Earth rotation e�etin eah �tness evaluation, the total optimization time is inreased to about 20 minutes[31℄.The on�guration of optimized array (Y2) and its traking u− v overage are plottedin Fig. 26(a) and (b), respetively. The optimized element loations are also tabulated inTable I. In order to represent the number of sampled grids in a onise manner with suha large Ngrid, we de�ne the �lling ratio of the u− v domain as
R =

As

Ac
(3.139)where As is the total sampled area and Ac is the area of the big irle of the six-pointstar. Compared to the uniform array, the �lling ratio of array Y2 is inreased from 68.9%to 86.5% by non-uniformly loating antenna elements on eah arm [31℄.

Figure 25. Radio Astronomy - (a) Con�guration of the optimized 27-element Y-shaped array (Y1) forthe maximum snapshot u− v overage. (b) Snapshot u− v overage of Y has 558s sampled grids.97



Figure 26. Radio Astronomy - (a) Con�guration of the optimized 27-element Y-shaped array (Y2) forthe maximum traking u− v overage. (b) Traking u− v overage of Y2 has a �lling ratio of 86.5%, asde�ned in (3.139).3.8.3.3 Optimizing the Synthesized BeamIn order to suppress the sidelobes in the synthesized beam, the peak sidelobe in the 2-Dbeam plot is identi�ed and a �tness funtion is de�ned as:
f = max [b0 (l, m)] in sidelobe region (3.140)The beam is alulated based on the u−v overage of the 8-hour traking observation, anda −15dB Gaussian tapering is applied to the u−v samplings as previously mentioned. Fig.27(a) and (b) plot the optimized array on�guration (Y3) and its synthesized beam using10 agents for 500 iterations. The element loations of the optimal design are presented inTable II.Array (Y3) also has good sidelobe features for other soure delinations. As shown inFig. 28, the optimized array outperforms the uniform Y-shaped array in a wide rangeof soure delinations from +30° to +80° with SLLs around or lower than −18 dB. Thedeteriorated SLL when traking a soure at +90° is possibly due to the redundany re-sulted by the three-fold symmetry. A better SLL at +90° an be ahieved by optimizingan array with asymmetrial element distributions on eah arm [31℄.
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Table II. Radio Astronomy - Radial Element Displaement of Optimized Y-Shaped Arrays (Unit:Kilometers).

Figure 27. Radio Astronomy - (a) Con�guration of the optimized 27-element Y-shaped array (Y2) forthe lowest SLL. (b) Synthesized beam of Y has a peak SLL of −20.3 dB.

Figure 28. Radio Astronomy - Comparison between a uniform array, a power-law array (α = 1.7) andthe optimized array Y3 for SLLs in 8-hour traking observations with di�erent soure delinations.99



3.8.3.4 Benhmark ComparisonsTable II ompares performanes of the uniform and three optimized Y-shaped arrays. Itis quite obvious that eah of (Y1), (Y2) and (Y3) only outperforms other designs in thesnapshot u− v overage, the traking u− v overage and the peak SLL of the synthesizedbeam [the peak SLL referred in Tables II and IV orresponds to the maximum of b0 insidelobe region, as de�ned in (3.140)℄, respetively. By realizing that these design goalsare not diretly interrelated to eah other, it is appropriate to justify here the advantageof applying PSO to orrelator antenna array designs.First of all, PSO provides a �exible optimization platform to aommodate di�erentirumstanes that might be enountered in pratial astronomial measurements. Sinethe only input required by the optimizer is the �tness value, a large variety of design goalsan be approahed by simply applying di�erent �tness funtions without signi�antlymodifying the optimizer itself. On the other hand, in some onventional optimizationmethods suh as the gradient-based method, antenna loations are diretly manipulatedaording to the distribution density funtion of snapshot u− v samplings, whih makesthe methodology not as e�etive for optimizing the synthesized beam.Seondly, the �tness funtions elaborated in (3.138) and (3.140) enable the optimizerto be more e�etive in obtaining the desired u − v overage and synthesized beam. Forinstane, the snapshot u − v overage of a irular array is optimized by maximizingthe summation of u − v separations using simulated annealing (SA). In order to test itsappliability in designing Y-shaped arrays, we did four omparative optimizations in PSOusing the same �tness funtion of
f =

MB
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∣

∣
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∣

∣
(3.141)and di�erent element numbers of N = 9, 12, 18 and 27. Here −→B j and −→B k represent the

jth and the kth baseline vetor, respetively; and MB = (N (N − 1)) / (2) is the totalnumber of baselines [31℄.Finally, let us onsider the atual VLA on�guration designed by the power-law, inwhih the ith element's position is de�ned by (unit: kilometers)
xi = 21×

(

i

9

)α (3.142)where α = 1.7. In PSO-optimized arrays disussed above, it is interesting to notie that Y2resembles a �reversed� version of the power-law design, whih has more antenna elementsonentrated near the enter rather than near the edges. In fat, the power-law-based100



design is seleted largely for reasons of eonomy. By seleting a proper α, the total numberof antenna stations along the rail trak is signi�antly redued by sharing some stationsbetween multiple array on�gurations with di�erent sales. However, under the partiularobservation onditions onsidered in this hapter, the highly-ondensed elements near theedge in the on�guration of Y2 ompensate the Earth-rotation e�et more e�iently. Itis observed in Table II that the �lling ratio of the power-law design is only 59.8%, whihis even worse than the uniform Y-shaped array. Moreover, its synthesized beam is alsooutperformed by the optimized low-SLL design Y3 in a wide range of soure delinations,as shown in Fig. 29 [31℄.

Figure 29. Radio Astronomy - (a) Original image of a Gaussian soure and retrieved images by (b)array Y1, (c) array Y2 and (d) array Y3 . The best image is retrieved by optimized array Y2.
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Chapter 4Retangular Thinned Arrays Based onMFarland Di�erene Sets
4.1 IntrodutionARRAY systems for frequeny-modulated ontinuous-wave (FMCW) radars and SAR ap-pliations usually have to exhibit di�erent total main beam widths (TMBWs) in azimuthand elevation and low PSLs [41℄, [15℄. To meet these requirements and provide suitable res-olutions, large retangular layouts are needed [41℄, [15℄. Sine large fully-populated retan-gular arrangements an yield to unaeptable high osts, weight, power onsumption, andfeeding network omplexity [1℄, [42℄, arhitetural solutions with a redued number of ele-ments over large apertures with satisfatory PSLs and TMBWs values are often preferred.Towards this end, thinning tehniques are generally exploited [1℄, [42℄ even though theirmain drawbak is a lower sidelobe ontrol when ompared to their �lled ounterparts [1℄,[42℄. In order to overome suh a limitation, several approahes have been proposed inlud-ing the random displaement of the array elements [3℄, [6℄, the dynami programming [43℄,and the stohasti optimization [44℄-[45℄. In suh a framework, analytial tehniques seemto be promising tools beause of their numerial e�ieny and the PSL ontrol [19℄, [5℄.By exploiting the auto-orrelation properties of binary sequenes, suh as di�erene sets(DSs) [19℄-[21℄ or almost di�erene sets (ADSs) [22℄-[46℄, a regular and a-priori preditablebehaviour of the sidelobes is guaranteed [47℄. Unfortunately, only spei� geometries andarray sizes an be synthesized [5℄, [25℄, [48℄. Despite the availability of quite large DS-ADS repositories [49℄-[50℄, planar arrays based on DSs and ADSs are usually square [21℄,[48℄ or almost square [5℄, [48℄, while few examples of DS-based retangular arrangementswith di�erent azimuth and elevation TMBWs are atually used (Following the approah103



disussed in [19℄, [5℄, a retangular DS array of size N1 × N2 an be generated only if a1D DS is available with length N = 2r1r2 − 1 suh that N1 = 2r1 − 1 and N2 = N/N1 areoprime and greater than one. Aordingly, only 6 of suh sequenes exist for N1 < 30orresponding to N = {15, 63, 255, 511, 1023} [49℄, and only 3 these exhibit strongly dif-ferent azimuth and elevation TMBWs [i.e. (N1 ×N2) = {(3 × 85), (3× 341), (7× 73)}]).[41℄, [5℄. In this paper, thinned retangular arrays based on MFarland sequenes [51℄,whih are a partiular lass of DSs, are analyzed for the �rst time to the best of the au-thors' knowledge, and a suitable synthesis proedure based on a binary Geneti Algorithm(GA) [44℄ is proposed (MFarland sequenes, likewise two-dimensional DSs [5℄, exhibit atwo-level autoorrelation funtion). It is worthwhile to point out that the exploitation ofsuh a lass of DSs enables the extension of the design approah proposed in [19℄, [5℄ toretangular layouts of size (being a prime number) with di�erent azimuth and elevationTMBWs.The outline of the hapter is as follows. Setion 4.2 introdues MFarland sequenesand their appliation to array thinning. Afterwards, the GA-based synthesis tehnique fordesigning MFarland arrays is presented (Setion 4.3) and a set of representative numerialresults onerned with di�erent apertures and thinning fators is provided (Setion 4.4)to show features, potentialities, and limitations of the proposed thinning strategy. AnAppendix is present in Setion 4.5.4.2 Mathematial FormulationLet us onsider a two-dimensional regular lattie of P × Q positions spaed by sx and
sy wavelengths along x and y, respetively. The array fator of a thinned arrangementde�ned over suh a lattie is equal to [42℄

F (u, v) =
P−1
∑

p=0

Q−1
∑

q=0

d (p, q) exp [j2π (psxu+ qsyv)] (4.1)
u = sin (θ) cos (φ) and v = sin (θ) sin (φ) being the diretion osines. Moreover, d (p, q) isthe MFarland binary thinning sequene[48℄

d (p, q) =

{

1 (p, q⌋P , q⌋P+2) ∈M

0 otherwise
p = 0, ...., P − 1, q = 0, ..., Q− 1 (4.2)where P is a prime number, Q = P (P + 2), M is a MFarland DS [51℄ with indexes

N = P 2(P + 2), N = P (P + 1) and Λ = P . Furthermore, ·⌋Pand ·⌋P+2 stand for the104



reminder of division by P and P + 2, respetively. It is now worth notiing that severalMFarland arrays an be generated for eah P value. From the MFarland generationtehnique in the Appendix, it follows that a distint DS,D = {d (p, q) , p = 0, ..., P−1, q =
0, ..., P (P+2)−1}, orresponds to (a) eah value of the integer k in [0, ..., P+1], (b) the setof P +1 vetors (at, bt) (t = 0, ..., P +1, t 6= k), and (c) the P +1 elements (ŵ(t+1)

1 , ŵ
(t+1)
2 )

(t = 0, ..., P +1, t 6= k) used for deriving M. As a result, up to (P +2)!×P 2P+2 di�erentMFarland sets an be generated for eah prime P . In turn, eah MFarland set de�nesup to P 2(P + 2) di�erent layouts by performing yli shifts of the thinning matrix [5℄
D

(σx,σy) (p, q) =
{

d
[

(p+ σx)⌋P , (q + σy)⌋P (P+2)

]

p = 0, ...., P − 1, q = 0, ..., P (P + 2)− 1

p = 0, ...., P − 1, q = 0, ..., P (P + 2)− 1}

σx and σy being the shift indexes along the array axes. In onlusion, the total numberof di�erent MFarland arrangements generated for eah P turns out to be
Ψ (P ) = (P + 2)2 × (P + 1)!× P 2P+4 (4.3)where (·)! indiates the fatorial.As for the power pattern, a MFarland array de�ned over a retangular grid of P ×

P (P + 2) loations satis�es the following sampling property [5℄
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∑
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∑
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d (p, q) d
[

(p,+m)⌋P , (q + n)⌋P (P+2)

] is the two-valued pe-riod autoorrelation funtion of D [51℄ whose values are
χ (m,n) = (K − Λ) δ (m,n) + Λ

m = 0, ..., P − 1, n = 0, ..., P (P + 2)− 1 (4.5)
δ (m,n) being the delta funtion [i.e δ (m,n) = 1 ifm = n = 0 and δ (m,n) = 0 otherwise℄.As an example, Fig. 30(a) shows a MFarland array obtained for P = 3, while theorresponding autoorrelation reported in Fig. 30(b). From 4.4 and 4.5, it follows thatthe samples of the power pattern of MFarland arrays are a-priori known. Moreover, ithas been proved in [5℄ that they produe patterns with muh lower PSLs that are typialwith ut-and-try random plaement. More in detail, Monte Carlo simulations have shownthat ompared to a random (nonlattie) plaement of elements on the same aperture, aDS array has an expeted PSL improvement of ≈ 1.5 + 10 log10(1− (K/N))−1[dB℄ [5℄.105



In order to fully exploit the features of MFarland sequenes for array thinning, asuitable synthesis proedure is presented in Setion 4.3.

Figure 30. MFarland Retangular Arrays - Example of (a) a MFarland array and (b) the assoiated(two-level) autoorrelation funtion (P = 3).4.3 MFarland Array Synthesis ProedureIn order to �nd the optimal (i.e., with the lowest PSL) MFarland layout for every P value,all Ψ(P ) deduible arrays should be, in priniple, analyzed. Unlike other 2D DS-basedthinned arhitetures [21℄, an exhaustive proedure is here omputationally unfeasibledue to the extremely wide number of layouts even for small P values. As an example,more than Ψ(P ) ≈ 2.15 × 1014 MFarland arrays an be de�ned over a lattie of size106



P × Q = 5 × 35 ( P = 5 - Table I). As a onsequene, a di�erent and more e�ientseletion approah is mandatory to analyze the PSL properties of these arrangementsfor identifying the optimal layout.Towards this end, the problem of �nding the optimalMFarland array among all existing Ψ(P ) layouts for a given is reast as an optimizationone where the �tness funtion to be minimized is de�ned as follows
Φ(D) , PSL{D} (4.6)where

PSL{D} ,
max

(u,v)∈Ω
|F (u, v)|

|F (0, 0)|2
(4.7)

Ω being the sidelobe region [21℄.Beause of the disrete nature of the desriptors of the MFarland sets [i.e., σx, σy, k,
(at, bt) and (ŵ(t+1)

1 , ŵ
(t+1)
2

) for t = 0, ..., P + 1, t 6= k℄, a binary GA-based approah [24℄,[44℄ is exploited. More spei�ally, the following proedure is iteratively applied.1. Initialization (i = 0) - A randomly-hosen initial population of C trial solutions(or individuals), ρc(i), c = 1, ..., C is de�ned;2. Coding - Eah individual ρc(i) enodes the values of the MFarland integer de-sriptors σx ∈ [0, P − 1], σy ∈ [0, P (P + 2) − 1], k ∈ [0, P + 1], (at, bt) (at ∈
[0, P − 1], bt ∈ [0, P − 1], t = 0, ..., P + 1, t 6= k) and (ŵ(t+1)

1 , ŵ
(t+1)
2

)

∈ Vt+1
(

ŵ
(t+1)
1 ∈ [0, P − 1], ŵ

(t+1)
2 ∈ [0, P − 1], t = 0, ..., P + 1, t 6= k)

) into a binary string(or hromosome);3. GA-Evolution - At eah i-th iteration, the geneti evolution takes plaes throughseletion, rossover, reprodution, mutation and elitism operators [24℄, [44℄ takinginto aount the �tness values Φc = Φc{ρc(i)}, c = 1, ..., C of urrent trial solutions;4. Termination - The iterative optimization terminates when the optimal �tnessvalue, ΦPOP (i) = minc Φc{ρc(i)}, is smaller than an user-de�ned threshold or whena maximum number of iterations Imax has been reahed. Then, the �ttest trial in-dividual ρ̄ = argρ {mini (minc [Φc{ρc(i)}])} is assumed as the optimal solution (i.e.,the optimal setup for the MFarland desriptors). Otherwise, the iteration index isupdated (i→ i+ 1) and goto 3.It is worth to point out that, unlike [18℄, [24℄, the objetive of the GA proedure is herenot to design an optimally thinned array, but the searh of the �ttest arrangement interms of PSL among all available MFarland layouts for a given P .107



4.4 Numerial Results and DisussionThis setion is aimed at (a) numerially assessing the features and the potentialities of theMFarland retangular layouts and (b) validating the GA-based synthesis approah forgenerating optimal PSL arrangements when dealing with both small and large apertures.The GA-based searh has been applied with the following setup: ross-over probabilityequal to 0.7, mutation probability equal to 10−2, maximum number of iterations Imax =

5 × 103, population size C = 10. Moreover, has been assumed sx = sy = 0.5. It isworth remarking that, although dedued for a broadside steering, the �nal layouts will beoptimal for sx = sy = 0.5 whatever the steering diretion [thanks to 4.4℄. Moreover, sinein most ases the highest seondary lobes appear near the main lobe in DS planar arrays[19℄, suh layouts are expeted to represent the optimal ones also for most other steeringdiretions and inter-element spaings.The �rst numerial experiment is onerned with the MFarland sequene with P = 3for whih an exhaustive analysis, although omputationally umbersome, an be stillperformed in a reasonable amount of time. The plot of the PSL values of the whole setof Ψ(P )⌋P=3 = 3.54 × 107 MFarland arrays indiate that several DS layouts exhibitPSLs equal or very lose to the optimal one PSLopt = −9.3dB [Fig. 31(a)℄. This is alsoon�rmed by the index ∆(η) given by
∆(η) ,

Ψ(P )⌋PSL≤ηPSLopt

Ψ(P )
(4.8)and de�ned as the fration of MFarland layouts that exhibit a PSL equal or below ηtimes the optimal value PSLopt (Fig. 32). As a matter of fat, although the optimalon�gurations are quite rare [∆(η = 1.0) ≈ 5.5×10−4- Fig.32℄, a non-negligible portion ofthe randomly-generated layouts exhibits a PSL lose to PSLopt [∆(η = 0.9) ≈ 0.01℄. Thissuggests that the GA-based searh method should quikly �nd a sub-optimal on�gura-tion, while a larger number of iterations may be required to atually reah onvergene tothe global optimum. Suh a behaviour is pointed out by the plot of the evolution of theoptimal GA solution within the solution spae of MFarland arrays in Fig. 31(b) wherethe blue rosses identify the elements of the GA solution set at the i-th GA iteration, whilethe red line is onerned with the overall (ordered) MFarland solution set as a funtionof the sequene index. Indeed, less than 300 iterations are su�ient to �nd a MFarlandarrangement with PSL ≈ −8.6dB, while the onvergene is reahed after Iconv = 1693steps. Suh an outome on�rms that the GA-based synthesis is able to e�etively samplea large solution spae �nding the optimal MFarland layout haraterized by a low PSLvalue despite only 12 ative elements over a lattie of 45 positions [Fig. 30(a)℄.108



Figure 31. GA-Based MFarland Synthesis - Plots of (a) the PSL values of the whole set ofMFarland arrays and (b) evolution of the PSL of the GA solution during the iterative (i being theiteration index) sampling of the MFarland solution spae.Similar onlusions an be drawn from the analysis (non exhaustive, but limited to aperentage of the whole set of MFarland on�gurations) arried out for P = 5 and P = 7[Figs. 33(a) and (b)℄, even though a faster onvergene of the GA-searh is expeted whendealing with larger dimensions as suggested by the values of ∆(η) [e.g., ∆(η = 0.9) ≈ 0.1for P = 5 vs. ∆(η = 0.9) ≈ 0.01 for P = 3 - Fig. 32℄. This is further on�rmed bythe evolution of the GA solutions in Fig. 33. As a matter of fat, only Iconv = 52 and
Iconv = 47 iterations are neessary to reah the onvergene when P = 5 [Fig. 33(a)℄ and
P = 7 [Fig. 33(b)℄, respetively. 109



(a)Figure 32. MFarland Retangular Arrays - Behaviour of ∆(η) versus P when η ∈ {0.7, 0.8, 0.9, 1.0}.

Figure 33. GA-Based MFarland Synthesis - Evolution of the PSL of the GA solution during theiterative (i being the iteration index) sampling of the MFarland solution spae when (a) P = 5 and (b)
P = 7. 110



For ompleteness, Fig. 34 gives the orresponding arrangements and power patterns.As expeted from DS theory, the optimal layouts at onvergene [ P = 5 - Fig. 34(a);
P = 7 - Fig. 34()℄ exhibit ontrolled and regular sidelobes [ P = 5 - Fig. 34(b); P = 7 -Fig. 34(d)℄ despite the massive thinning (ν , K/N = (P+1)/(P (P+2)) ≈ 0.17 for P = 5,
ν ≈ 0.13 for P = 7 - Table III). Moreover, thanks to the MFarland distribution, theorresponding arhitetures give di�erent resolutions in eah angular domain as indiatedby the loations of the �rst nulls of the beam pattern (see zuvs. zv in Table III).
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P (N,K,Λ) Array Size Ψ(P ) ν zu zu PSLopt[dB℄
3 (45, 12, 3) 3× 15 3.54× 107 0.2667 6.66× 10−1 1.33× 10−1 −9.28
5 (175, 30, 5) 5× 35 2.15× 1014 0.1714 4.10× 10−1 5.74× 10−2 −10.41
7 (441, 56, 7) 7× 63 5.31× 1021 0.1270 2.85× 10−1 3.17× 10−2 −12.04
11 (1573, 132, 11) 11× 143 9.64× 1037 0.0839 1.81× 10−1 1..34× 10−2 −15.56
13 (2535, 182, 13) 13× 195 5.14× 1046 0.0718 1.53× 10−1 1.02× 10−2 −15.54
17 (5491, 306, 17) 17× 323 1.32× 1065 0.0557 1.17× 10−1 6.19× 10−3 −15.61
19 (7581, 380, 19) 19× 399 5.47× 1074 0.0501 1.05× 10−1 5.01× 10−3 −15.63
23 (13225, 552, 23) 23× 575 4.73× 1094 0.0417 8.69× 10−2 3.47× 10−3 −15.50
29 (26071, 870, 29) 29× 899 1.18× 10126 0.0334 6.89× 10−2 2.22× 10−3 −15.02Table III. MFarland Retangular Arrays (P ≤ 29) - Features and Performane Indexes.
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(a) ()

(b) (d)
Figure 34. GA-Based MFarland Synthesis - Optimal MFarland layouts (a), () and theorresponding power patterns (b), (d) when P = 5 (a), (b) and P = 7 (), (d).

In order to assess the performanes of MFarland thinned arrays also when impratial(for an exhaustive analysis) apertures are at hand, the next experiments are onernedwith 11 ≤ P ≤ 29. The results of the GA-based synthesis when P = 11 and P = 13 areprovided in Figs. 35 and 36. Despite the dereasing thinning fator (νP=11 ≈ 8.4× 10−2,
νP=13 ≈ 7.2 × 10−2 - Table I), high sidelobe do not appear sine PSLP=11 = −15.56dBand PSLP=13 = −15.54dB (Table I). Moreover, the power patterns in Fig. 36 [P = 11 -Fig. 36(a); P = 13 - Fig. 36(b)℄ show the sidelobe regularity expeted from the two-levelautoorrelationMFarland layouts notwithstanding the highly-sparse element distribution[P = 11 - Fig. 35(a); P = 13 - Fig. 35(b)℄.113



(a)
(b)Figure 35. GA-Based MFarland Synthesis - Optimal MFarland layouts (a) P = 11 and (b) P = 13.

(a) (b)Figure 36. GA-Based MFarland Synthesis - Power patterns of the optimal MFarland layoutsdedued for (a) P = 11 and (b) P = 13. 114



Previous onlusions an be also extended to wider MFarland layouts ( P ≤ 29 -Table III). As it an be notied, low PSL values are obtained whatever the P dimension(PSL ∈ [−15.61dB, −15.0]dB for P ∈ [17, 29] - Table III), despite the sharp redution ofthe thinning fator (ν < (1/P ) - Table III).As a �nal numerial validation, a omparison between the performanes of the bestMFarland array and those of the best sparse array with the same size and thinningfator found by means of a traditional GA-based approah [51℄, [50℄ is provided. TheGA methodology is applied by assuming standard �binary� desriptors of the geometry[24℄, [50℄, rather than the MFarland desriptors introdued above. As a onsequene,the obtained design will not be a DS layout. More in detail, a state-of-the-art randomlyinitialized GA method (see [24℄, [50℄ for the implementation details) is employed fordesigning a thinned retangular array of size P ×Q = 7×63 with K = 56 ative elements.The stohasti optimization has been arried out by onsidering a GA population of size
10, a mutation probability equal to 10−2 and a rossover probability of 0.7. The maximumnumber of GA iterations has been set to 5×103 [24℄, [50℄. By omparing the performanesobtained by the GA-optimized layout [Fig. 37(a)℄ with those of the MFarland one [Fig.34()℄, it turns out that the stohastially optimized arhiteture does not to reah a PSLvalue [Fig. 37(b)℄ as low as that of the proposed layout [Fig. 34(d)℄ [PSLGA = −10.76dBvs. PSLMcFarland = −12.04dB℄ even though also non-DS layouts an be synthesized inthe former ase. Suh a result is due to the size of the searh spae that has to be exploredby the standard GA methodology (i.e., 2441), whih is extremely larger than that de�nedby the MFarland desriptors (Ψ(P = 7) ≈ 5.31× 1021 - Table III).
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Figure 37. Comparison with Standard GA-Thinned Retangular Arrays - Optimal layout (a) and theorresponding power pattern (b) obtained by GA when P = 7, Q = 63 and K = 56.
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4.5 AppendixIn this setion, a proedure for the generation of a MFarland Sets is presented.Let be P a prime number and let us de�ne V0 = {(w1, w2) : 0 ≤ w1 ≤ P −1, 0 ≤ w2 ≤
P − 1, w2, w2 ∈ N}, H0 = {(0, 0)}and M0 = ∅. Selet an integer k ∈ [0, ..., P + 1] andhoose P + 2 (not neessarily di�erent) vetors (at, bt) ∈ V0 with o ≤ t ≤ P + 1, t 6= k.For every t ∈ [0, ..., P + 1], let Vt+1 = Vt\Ht and determine the set Mt+1as follows:

Mt+1 = Mt, Ht+1 = ∅














Ht+1 =
{[(

pŵ
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) is randomly piked element in Vt+1.From [51℄, it follows that MP+2 is a MFarland DS (i.e. M , MP+2) with indexes
N = P 2(P + 2), K = P (P + 1), and Λ = P .
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Chapter 5Hybrid ADS-Based Tehniques forRadio Astronomy Array Design
5.1 IntrodutionThe design of orrelator (also known as interferometri) arrays has been a topi of re-searh sine the1960s for appliations in radio astronomy [1℄-[52℄. The e�ieny of thedata gathering of orrelator arrays is related to their spatial �ltering properties [31℄, [8℄.Therefore, the design of a orrelator array essentially onsists in solving an optimal sam-pling problem [31℄ where the positions of the array elements are hosen to ensure optimalperformanes in all possible observation situations (i.e., soure positions and durationsof the observation), for whatever sienti� purpose (e.g., single �eld imaging, mosaiing,astrometry, detetion), and di�erent onstraints (i.e., ost, ground omposition and pra-tiability, operation of the instrument) [31℄, [53℄, [54℄. In order to reah these objetivesand unlike traditional sum arrays, orrelator arrays have to generate either a maximaloverage in the spatial frequeny (or ) domain or a minimum peak sidelobe level (PSL)in the angular (or ) domain [31℄, [8℄, [53℄ as detailed in Setion 5.2. Towards this end,many and ustomized strategies have been proposed inluding minimum redundany [55℄,[40℄, [33℄, pseudo randomness [34℄, power laws [35℄, di�erene set arrangements [36℄, andminimization of the holes in the sampling [37℄. As regards optimization-based sum-arraydesign tehniques [1℄, [56℄-[59℄, they also annot be diretly applied sine the array spa-tial overage evaluation, the Earth rotation e�ets [60℄, [29℄, and the beam alulationmust be taken into aount in the synthesis proedure as pointed out in [31℄ and [54℄.However, optimization-based design tehniques an still represent an important tool forfuture planned instruments, espeially when the underlying arhiteture is mehanially119



reon�gurable (as for the future planned ALMA [57℄ and SKA [58℄).In suh a framework, valuable results have been obtained in [62℄, [31℄ thanks to theintegration of a tool for the systemati analysis of orrelator arrays and an e�etive par-tile swarm optimizer (PSO). However, despite the good performanes, suh a tehniquedoes not exploit the available analytial knowledge on interferometri arrays [31℄. Usu-ally, introduing a priori information in stohasti optimizers is known to improve theirperformanes in terms of both rate of onvergene and �nal design properties [24℄, [25℄.This is expeted to hold true also for the synthesis of orrelator arrays. Therefore, thispaper is aimed at introduing and numerially validating a set of hybrid tehniques thattake advantage of the a priori information on suboptimal analytially derived orrela-tor arrangements. The proposed methodologies are based on reently introdued binarysequenes with almost ideal autoorrelation properties, named Almost Di�erene Sets(ADSs) [61℄-[63℄. Suh sequenes are exploited in three di�erent ways: (i) as a odebookin an exhaustive searh approah; (ii) as initial trial solutions for a binary optimizationproess (ADS -hybridized GA); (iii) as a-priori information for a real-oded optimizationtehnique (ADS-enhaned PSO). The main motivations of these reipes are:� ADSs seem to be good andidates for the synthesis of orrelator arrays sine theyexhibit orrelation properties very similar to those of DSs [5℄, [64℄, whose e�etive-ness in suh a framework has been already shown [36℄, but they are available in awider set of admissible on�gurations [61℄[65℄[63℄;� GAs are highly e�ient tools for disrete optimization problems [44℄ potentiallysuitable for the e�etive design of orrelator arrays whose elements lie on a regularlattie;� PSO [59℄ has already shown its e�etiveness and reliability when dealing with or-relator arrays [31℄;� the a-priori information an be straightforwardly integrated in stohasti optimiza-tion tools and it has proven to be e�etive in enhaning performanes and on-vergene in array synthesis [24℄, [25℄. Indeed, a good initial population (based onsome a priori known sub-optimal solutions) ontains good �shemata� [66℄ whih anevolve through geneti operators to improve the GA speed of onvergene towardsthe global minimum (similar onsiderations apply to PSO, as well).The outline of the hapter is as follows. After a short review on orrelator arrays and adesription of the key problems in synthesizing interferometri arrangements (Setion 5.2),120



the performanes of the design methodology (i) are analyzed to point out potentialitiesand limitations of the analyti ADS-based approah (Setion 5.3). Afterwards, the GA-(ii) and PSO-based (iii) hybrid methodologies are presented and numerially validateddealing with benhmark problems (Setion5.4).5.2 Mathematial Formulation and Problem StatementThe interferometer beam, whih desribe the spatial �ltering features of a orrelator array,is de�ned as [8℄
S (l, m) = IFT {W (u, v)× a (u, v)} (5.1)where IFT {·} denotes the Inverse Fourier Transform operator, a (u, v) is a taperingfuntion devoted to suppress the sidelobes in the domain [8℄, and W (u, v) is the u − voverage funtion

W (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f (x, y) f (x− uλ, y − vλ) dxdy (5.2)where λ is the wavelength and f (x, y) is the element loation [8℄.As far as traking observations are onerned, the e�ets of the Earth rotation mustbe introdued in the overage funtion (5.2), and the interferometer beam in (5.1) turnsout modi�ed as [8℄

ST (l, m) = IFT {WT (u, v)× a (u, v)} (5.3)
WT (u, v) being the traking u− v overage funtion [8℄ whih is a funtion of the souredelination D, the elevation E , the latitude L, the azimuth of the baseline A, and thetime angle during the observation Tk = kHπ

24(K−1)
. Moreover, H is the total traking time(in hours) and the number of snapshots olleted during the observation.As for the arising interferometer beam (5.3), the omputation of the inverse Fouriertransform is usually arried out by means of an IFFT proedure [8℄. Towards this end,the u− v domain is partitioned in Nu×Nv ells of size ∆v×∆u and the IFFT proedurelimits the l −m domain within the range − 1

∆u
≤ l ≤ 1

∆u
and − 1

∆v
≤ m ≤ 1

∆v
, while thebeam pattern ST is sampled at ( 1

ZNu∆u
, 1
ZNv∆v

), Z being the IFFT zero-padding fator[31℄.For illustrative purposes, the element loation funtion of an Y-shaped array with
N = 27 elements (L = 21 [km℄ and ϕ = 5 [deg℄) is shown in Fig. 38(a), while theassoiated ST (u, v) pattern is reported in Fig. 38(b) in orrespondene with a working121



frequeny of 3.6 GHz and for the following setup: D = 34°, E = 0, L = 34°, H = 8 hours,
K = 97, Nu = Nv = 128, and ∆u = ∆v = 6.82×103. Analogously to [31℄, the plot in Fig.38(b) has been generated by applying an all-over Gaussian weighting a (u, v) with an edgetapering of −15dB. Moreover, Z has been set to 8 for visual purposes and only the angularrange within ±01 ar seonds is displayed to highlight the near-in sidelobes. The design ofa orrelator array requires the optimization of the features ofW (u, v), WT (u, v), S (l, m),and/or ST (l, m) depending on the problem at hand. Standard benhmark synthesis prob-lems are stated in the following subsetions and, for omparison purposes, the refereneY-shaped arrangements in [31℄ similar to the Very Large Array (VLA) at Soorro, NM[8℄, [67℄, will be onsidered unless otherwise stated.

Figure 38. Y -shaped Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Plots of thearrangement (a) and assoiated ST (u, v) (b) for the array Y3 [31℄; optimal ADS geometry with equal() or unequal (e) arms, and assoiated synthesized beams (d),(f ).122



5.2.1 Problem A - Optimization of ST (u, v)The �rst benhmark problem is onerned with the suppression of the sidelobes of theinterferometer beam during traking observations. Towards this end, the following metri[31℄.
FA = PSL =

max
(l,m)∈R

ST (l, m)

ST (l0, m0)
(5.4)has to be minimized, R and (l0, m0) being the main lobe region and the main beamsteering diretion, respetively.5.2.2 Problem B - Optimization of the u−v Coverage in SnapshotObservationThe optimization of the snapshot u−v overage is the seond referene problem. In orderto redue the redundany of the orrelator array , while keeping a uniform sampling, the

u − v domain is partitioned in Ngrid × Ngrid square ells of equal size ∆grid × ∆grid andthe following ost funtion, to be minimized, is then de�ned
FB =

1

B
(5.5)where B [B ≤ (Ngrid)

2℄ is the number of di�erent ells sampled by the snapshot overagefuntion W (u, v) given by
B =

Ngrid−1
∑

i=0

Ngrid−1
∑

i=0

G (i, j) (5.6)where G (i, j) = 1 if W (u, v) 6= 0 when (−Ngrid
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∆grid < v <
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)

∆grid, and G (i, j) = 0 otherwise.5.2.3 Problem C - Optimization of the u−v Coverage in TrakingObservationIn the third problem, the maximization of the traking u− v overage is at hand. As forProblem B and analogously to [31℄, the domain is still disretized, but in a �ner grid of
Nu ×Nv ells of size ∆u×∆v, to de�ne the following ost funtion to be maximized:

FC =
1

ν
(5.7)123



ν being the �lling index de�ned as the ratio between Ac (e.g., the number of ells belongingto the irle around the �six point star� autoorrelation when dealing with a uniformlyspaed array [31℄) and AS [i.e., the number of ells sampled by the traking overagefuntion WT (u, v) given by (5.6) with WT instead of W ℄.5.3 ADS-Based Y-Shaped Correlator ArraysADSs have been introdued in ombinatorial mathematis and ode theory to overomesome limitations of DSs while providing similar properties [61℄[65℄[63℄. Although suess-fully applied in several �elds ranging from ryptography up to antenna array synthesis[22℄[47℄[48℄[69℄[70℄, they have never been onsidered (to the best of the authors' knowledge)in the framework of orrelator arrays as proposed in the following exhaustive proedure:1. Initialization - Given a target number of ative elements N and an arm length L,selet from [68℄ a referene-ADS D (for de�nition and properties, see [61℄, [65℄) with
Q = N

E
, E being the arm number (E = 3 for an Y layout). Set σe = 0 (σe being theyli shift applied to the e−th arm of the array) and loate the i−th array elementof the orrelator array at















xi = sin
(

πe
3
+ ϕ

) L[1+(dq+σe)|modP ]
P

yi = cos
(

πe
3
+ ϕ

) L[1+(dq+σe)|modP ]
P

i = Qe+ q, q = 0, ..., Q− 1, e = 0, ..., E − 1

(5.8)
2. Evaluation - Evaluate the degree of ��tness� to a design problem of the urrenttrial arrangement by omputing the ost funtion in (5.4), or (5.5), or (5.7);3. Iteration - Update σe (σe ← σe + 1) and use the same shifted ADS-based elementdistribution on eah arm of the orrelator (�equal � on�guration) or a di�erent shiftone eah arm by iteratively repeating Step 2 and Step 3 (�unequal � on�guration);4. Termination - Stop when (�equal � on�guration) or PE (�unequal � on�guration)trial designs have been evaluated. Set the �optimal � ADS design to the arrangementwith the highest ��tness�.It is worth to notie that suh a proedure is very simple and omputationally e�ientsine just up to PE evaluations are required for a orrelator array with N ative elements.124



Moreover, the array elements are displaed on a regular lattie of P positions on eah armallowing an easier realization with respet to arbitrary displaements.In order to evaluate the performane of the ADS-based analyti approah as well asto ompare the arising on�gurations with state-of-the-art arrangements [31℄, the designof the Y-shaped orrelator desribed in Setion 5.2 has been onsidered as �rst test ase.Beause of the design requirements (Q = 9), the (18, 9, 4, 13)-ADS D1 [68℄ (see TableIV) has been adopted as referene sequene.As far as Problem A is onerned, Fig. 39(a) shows the behavior of the PSL as afuntion of the shift number σe for both the �equal � and �unequal � arrangements. The�gures of merit at the onvergene (Table V) indiate that ADS-based designs signi�antlyimprove the performane of referene uniform ( PSLunf = −13.1[dB℄) and power-law(PSLpl = 16.2[dB℄) arrays. Moreover, the arising PSL values turn out to be lose to thatof stohastially optimized arrays (PSL3 = −20.3[dB℄) [31℄, even though the onvergenehas been reahed after few evaluations of the ost funtion when the same σe is applied toevery arm. As expeted and beause the inreased number of degrees-of-freedom (DoFs),a smaller PSL an be yielded by setting di�erent shifts on the arms, but more evaluationsare neessary [σun = 2708 vs. σeq = 7℄.On the other hand, it is worthwhile to observe [Fig. 39(b)℄ that di�erent ADS layoutspresent performanes lose to that of the optimal one pointing out an interesting fea-ture of the ADS synthesis to be exploited when �ompromise� problems with on�itingrequirements are at hand.Conerning Problems B and C, similar onlusions on the omputational e�ieny ofthe analyti ADS-based synthesis arise (Table V). However, the behaviors of B and ν ver-sus σe [Fig. 39() and (e)℄ as well as the harateristis of the onvergene designs (TableV) indiate that (a) the ADS strategy reahes results with performanes omparable orbetter than those of power-law arrays in Problem B (Beq
ADS = 408 and Bun

ADS = 430 versus
Bpl = 428) and signi�antly better for the Problem C (νeqADS = 0.828 and νunADS = 0.831versus νpl = 0.598); (b) the overage of ADS-based arrays worsens when ompared touniform arrays [Fig. 39(), Bunf = 534℄, while they outperform uniform arrangementsin Problem C [νunf = 0.689℄; () as expeted, the PSO-based synthesis gives better per-formanes than the ADS-based strategy in both Problem B (B1 = 558) and Problem C(ν2 = 0.865) thanks to the unonstrained displaement of the array elements.125



ADS P Q Λ r d0, ..., dQ−1

D1 18 9 4 13 0, 1, 5, 6, 7, 8, 10, 12, 15

D2 88 44 21 22

3, 4, 5, 7, 8, 9, 10, 11, 1215, 16, 17, 18, 20,

22, 23, 25, 27, 30, 33, 34, 36, 37, 39,

43, 47, 52, 53, 54, 57, 58, 59, 66, 67,

68, 69, 70, 72, 75, 76, 78, 80, 84, 87

D3 180 90 44 45

0, 4, 8, 9, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 25, 28, 30, 33, 34,

40, 42, 45, 48, 52, 53, 54, 55, 57, 61, 63, 65, 68, 71, 73, 76, 77,

78, 79, 80, 82, 84, 89, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105,

111, 112, 113, 121, 126, 128, 129, 131, 132, 133, 137, 138, 139,

140, 141, 143, 145, 146, 149, 150, 151, 152, 153, 156, 158,

159, 162, 163, 166, 167, 168, 170, 172, 173, 175, 176, 177, 179

D4 42 21 10 31 0, 3, 4, 5, 6, 8, 9, 12, 14, 17, 19, 27, 28, 29, 30, 31, 34, 35, 36, 38, 41

D5 30 15 7 22 5, 6, 8, 9, 10, 14, 16, 17, 19, 20, 22, 23, 24, 27, 29

Table IV. ADS D1, D2,D3, and D4 and desriptive parameters.126



Equal arms Unequal armsDesign Problem PSL [dB℄ B ν σ Ξ PSL [dB℄ B ν σ ΞUniform - −13.1 534 0.689 - 0.41 - - - - -Power-law - −16.2 428 0.598 - 0.44 - - - - -
Y3 [31℄ A −20.3 412 0.751 - 0.29 - - - - -
Y1 [31℄ B −17.3 558 0.719 - 0.22 - - - - -

Y2 [31℄ C −16.7 366 0.865 - 0.39 - - - - -A −19.34 388 0.758 7 0.33 −19.98 400 0.807 2708 0.29

ADS B −15.84 408 0.688 1 0.40 −19.00 430 0.767 2094 0.26C −17.76 396 0.828 9 0.32 −17.65 398 0.831 2781 0.32Table V. Numerial results - YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13℄ - Comparison of ADS-based Y -shaped arraysand some representative designs (bold numbers identify optimized quantities).
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One again, the plots of B and ν versus the yli shift [Fig. 39(d), (f )℄ further on�rmthat multiple ADS designs with lose sub-optimal performanes an be synthesized start-ing from a single ADS with the potential of providing good trade-o� solutions in terms ofPSL, B, and ν despite negligible omputational e�orts. To investigate suh an issue, Fig.40 pitorially summarizes the performanes of the whole set of trial ADS arrays generatedby D1. For omparisons, the representative points of the solutions in [31℄ are reported, aswell. As expeted, good trade-o� ADS arrays are available espeially in the spae [Fig.40(b)℄. They positively ompare also with optimized designs and most of them overomeboth uniform and power-law arhitetures [Fig. 40(b)℄. In order to quantitatively esti-mate the e�etiveness of the ADS �ompromise� solutions, let us analyze the normalizedtrade-o� performane index Ξ de�ned as follows:
Ξ =

{

[

(PSL−PSLopt)×H(PSL−PSLopt)
PSLopt

]2

+

[

(B−Bopt)×H(B−Bopt)
Bopt

]2

+

[

(ν−νopt)×H(ν−νopt)
νopt

]2
}1/2

(5.9)
where H (·) is the Heaviside funtion and the �optimal � values (i.e., PSLopt = −20.3[dB℄,
Bopt = 558 and νopt = 0.865) have been set to those of the layouts Y3, Y1, and Y2 in [31℄.As it an be notied (Fig. 41), the Ξ indexes of several ADS designs turn out to be betterthan power law (Ξpl = 0.44), uniform (Ξunf = 0.41), and Y2 (Ξ2 = 0.39) arhitetures.Moreover, ADS layouts with di�erent shifts on the array arms also improve the resultsfrom Y3 (Ξ3 = 0.29). On the ontrary, no bare ADS design outperforms Y1 (Ξ1 = 0.22).As a matter of fat, the arising number of ADS baselines turns out to be signi�antlysmaller than that of the optimized design in [31℄ and of the uniform arrangement [Fig.39(b)-()℄.Summarizing, the obtained results suggest that (a) ADS layouts provide ν, PSL and
Ξ values whih are lose to or better than those of state-of-the-art globally optimizedarhitetures when dealing with Problems A and C ; (b) the �bare� ADS approah annotbe pro�tably applied when Problem B is of interest and suitable hybridization and/or aninreasing of the DoFs (e.g., no position onstraints) is mandatory.128



Figure 39. YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Behavior of optimal(a) PSL, () , and (e) ν versus evaluated shift for ADS-based Y arrays, and omparison with referenedesigns from [31℄. Plots of (b) PSL, (d) B, and (f ) versus evaluated shift for ADS-based Y arrays.

Figure 40. YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Behavior of (a) Bversus PSL, (b) ν versus PSL, and () ν versus for all YADS arrays derived from D1 , and omparisonwith referene designs from [31℄. 129



Figure 41. YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Behavior of for Ξ all
YADS arrays derived from D1 , and omparison with referene designs from [31℄.5.4 ADS-Based Hybrid MethodologiesA �rst attempt to improve the performane of ADS-based designs while keeping theirfavorable properties (i.e., the omputational e�ieny of the synthesis proess and thegeometri simpliity of the lattie arhiteture) is aimed at de�ning an iterative hybridGA-ADS (in the following, ADSGA) approah. The iterative approah is based on astandard GA implementation where the positions of Q ative elements over a lattie of Ppositions are enoded in a binary string of length P , thus de�ning a hromosome of length
E × P . To exploit the ADS properties, the initial GA population of dimension is deter-mined by �rst sorting the shifted versions of the referene ADS arrangement aording totheir �tness values and seleting the �rst αVGA highly ranked sequenes (α being the hy-bridization fator,0 ≤ α ≤ 1) as trial array solutions. The remaining of the population israndomly hosen within the range of admissibility of the problem unknowns. As regardsthe GA operators, both rossover and mutation are applied with rossover probability
PC and mutation probability PM aording to standard binary implementations [44℄, butonstraining to Q the number of ative elements on eah arm of the orrelator.The �rst numerial assessment is still onerned with the Y -shaped orrelator and itdeals with Problem A (i.e., the PSL minimization) by �xing the following setup: VGA =

10, α = 0.5, PC = 0.9, PM = 0.01, and a maximum number of iterations equal to
IMAX = 400. �Equal � and �unequal � arrangements on eah arm have been simulatedand a standard GA (RNDGA) has been also applied for evaluating in a omparativefashion the impat of the ADS initialization. The results reported in Table VI indiatethat the ADSGA array [Fig. 40(b)℄ outperforms the bare ADS-based geometries bothin the �equal � (PSLeq

ADSGA = −19.84[dB℄ versus PSLeq
ADS = 19.34[dB℄) and �unequal �(PSLun

ADSGA = −20.93[dB℄ versus PSLun
ADS = −19.98[dB℄) on�gurations.130



Equal arms Unequal armsDesign Problem PSL [dB℄ B ν I Ξ PSL [dB℄ B ν I ΞA −19.57 400 0.770 90 0.31 −20.14 460 0.794 331 0.29GA B −13.55 534 0.737 279 0.37 −15.00 534 0.748 1719 0.30C −16.40 394 0.838 244 0.35 −16.14 412 0.841 399 0.33A −19.84 424 0.769 175 0.27 −20.93 404 0.773 231 0.30ADSGA B −13.55 534 0.737 203 0.37 −14.75 534 0.742 1799 0.31C −16.01 400 0.839 283 0.35 −18.11 396 0.845 432 0.31A −20.83 457 0.763 407 0.21 −21.25 453 0.781 414 0.22PSO B −16.88 550 0.768 186 0.20 −17.97 552 0.759 96 0.17C −17.57 407 0.878 260 0.30 −17.94 387 0.881 464 0.32A −20.91 457 0.800 312 0.20 −21.35 489 0.781 493 0.16ADSPSO B −17.80 554 0.747 222 0.18 −18.44 554 0.787 269 0.13C −17.48 379 0.879 245 0.35 −17.94 415 0.882 288 0.28Table VI. Numerial results - Comparison of optimized Y -shaped arrays (bold numbers identify optimized quantities).
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On the other hand, the PSL value in orrespondene with the �unequal � ADS ar-ray turns out to be lower than that for GA-based �equal � arrangements (PSLeq
ADSGA =

−19.84[dB℄, PSLeq
RNDGA = −19.57[dB℄). Suh a result further on�rms that unequallydisplaing the array elements over the orrelator arms an provide non-negligible per-formane improvements independently of the synthesis tehnique. However, �unequal �layouts usually require a larger number of iterations to reah the onvergene due to theadditional DoFs (IeqADSGA = 175 vs. IunADSGA = 231, IeqRNDGA = 190 vs. IunRNDGA331).As a further observation, it is worth noting that the ADSGA array outperforms theorresponding RNDGA solution both in terms of �tness (PSLeq

ADSGA = −19.84[dB℄ versus
PSLeq

RNDGA = −19.57[dB℄, PSLun
ADSGA = −20.93[dB℄ versus PSLun

RNDGA = −20.14[dB℄)and onvergene rate [Fig. 42(a) and Table VI℄ assessing the e�etiveness of an ADSinitialization to improve the GA optimization. Thanks to the properties of �unequal �layouts and the e�etiveness of an ADS initialization, the hybrid GA-based approah iseven able to improve the state-of-the-art PSO solution [31℄ ( PSLun
ADSGA = −20.93[dB℄versus PSL3 = −20− 30[dB℄), despite the wider set of DoFs of this latter.Conerning the reliability of the ADSGA and RNDGA layouts as �ompromise� solu-tions, it is note worthy (Table VI) that they exhibit trade-o� indexes very lose or betterthan Y3 (e.g., Ξeq

ADSGA = 0.27 versus Ξ3 = 0.29). Suh a behavior seems to assess theability of the approah to intrinsially provide good ompromise solutions also withoutdiretly optimizing the �ompromise index � Ξ.Dealing with the appliation of ADSGA to the other benhmark problems, even thoughthe positive e�et of the ADS integration still holds true, it results that (Table VI) both
B and ν indexes, as well as the orresponding �ompromise� performanes, annot beimproved signi�antly without resorting to non-regular designs (i.e., avoiding regular lat-ties) as for PSO-based state-of-the-art solutions [31℄.Towards this aim, an hybrid real-valued multiple-agent optimization approah basedon a standard iterative PSO method [31℄, [59℄, [25℄ is then investigated. Likewise theADSGA, the initial set of trial solutions is generated by exploiting the ADS sequenes.Otherwise, the positions of the N ative elements of the array are enoded in a PSOpartile by setting eah unknown as the distane between two adjaent array elements.Beause of the limitations of the ADS and ADSGA approahes in dealing with ProblemB and Problem C, suh benhmark tests will be �rst onsidered for validating the AD-SPSO. Towards this end, the following setup for the PSO parameters has been adopted:
VPSO = 10, c1 = c2 = 2, w = 0.4, and IMAX = 500. For a omplete omparison, a PSOapproah with a random initialization (RNDPSO) has been implemented, as well. Thenumerial simulations related to Problem B and whose results are illustrated in Fig. 43132



indiate that the hybrid ADSPSO proedure is able to reah higher �tness values thanADS and ADSGA tehniques (Bun
ADSPSO = 554 versus Bun

ADSGA = 534 and Bun
ADS = 430)and very lose to [31℄ (B1 = 558), while signi�antly outperforming uniform and powerlaw layouts (Bunf = 534, Bpl = 428) thanks to the additional DoFs of the real-valuedformulation (i.e., arbitrary element positions over eah arm).

Figure 42. Problem A [Equal-unequal arms , N = 27℄ - Synthesis results for the GA and ADSGAapproahes: (a) behavior of the optimal PSL versus the iteration number i, and omparison withreferene designs from [31℄, (b) optimal YADSGA array arrangement, and () assoiated synthesizedpattern.Moreover, as for the GA-based approahes, the hybrid ADS implementation exhibitsimproved performanes (Beq
RNDPSO = 550 vs. Beq

ADSPSO = 554, Bun
RBDPSO = 552 vs.

Bun
ADSPSO = 554) and onvergene properties (IeqRNDPSO = 286 vs. IeqADSPSO = 222,

IunRNDPSO = 296 vs. IunADSPSO = 269) with respet to the randomly initialized PSO also133



when real-oded unknown are at hand. Moreover, the PSO-based hybrid tehnique alwaysguarantees the best �ompromise� performanes (Table VI). As a matter of fat, it turnsout that Ξeq
ADSPSO = 0.18 and Ξun

ADSPSO = 0.13, while Ξ1 = 0.22.

Figure 43. Problem B [Equal-unequal arms , N = 27℄ - Synthesis results for the RNDPSO andADSPSO approahes: (a) optimal YADSPSO array arrangement and (b) assoiated u− v overagefuntion.The improvements allowed by the ADSPSO are even more evident when addressingProblem C (Fig. 44), as on�rmed by the indexes in Table VI (e.g., νunADSPSO = 0.882versus ν2 = 0.865). As far as the trade-o� index Ξ is onerned, one ould notie that theADSPSO solution for the Problem C still overomes the orresponding ADSGA design(Ξun
ADSPSO = 0.28 versus Ξun

ADSGA = 0.31), but it does not reah the optimal value yieldedby the ADSPSO when applied to Problem B (Table VI). Suh results, together with thatfrom the bare ADS (Ξun
ADS = 0.32) indiate that, whatever the design tehnique, theon�gurations suitable for Problem C are not reliable ompromise solutions.For ompleteness and further veri�ation of the positive e�et of the inreased numberof DoFs of the real-valued optimization, the ADSPSO has been applied to Problem Aas well (Fig. 45), although the ADSGA was already able to improve state-of-the-artperformanes. The �exibility of the real-valued enoding used in the ADSPSO allows afurther redution of the array PSL with respet to the ADSGA (and obviously Y3) in boththe equal ase (PSLeq

ADSPSO = −20.91[dB℄ versus PSLeq
ADSGA = −19.84[dB℄) and unequalone (PSLun

ADSPSO = −21.35[dB℄ versus PSLun
ADSGA = −20.93[dB℄), but at the expense ofthe geometri regularity of the GA or bare ADS lattie-based solution [Fig. 45(b) versusFigs. 42(b) and 38()℄. 134



Figure 44. Problem C [Equal-unequal arms, N = 27℄ - Synthesis results for the RNDPSO andADSPSO approahes: (a) optimal array arrangement and (b) assoiated traking u− v overagefuntion.

Figure 45. Problem A [Equal-unequal arms , N = 27℄ - Synthesis results for the RNDPSO andADSPSO approahes: (a) Behavior of the optimal PSL versus the iteration number i, and omparisonwith referene designs from [31℄, (b) optimal YADSPSO array arrangement, and () assoiatedsynthesized pattern. 135



As it an be observed, the ADS initialization allows an improvement of the opti-mization tehnique performane whatever the problem at hand [Table VI℄. Moreover,from previous outomes, the real-valued ADS hybrid approah seems to always yieldbetter performane than the GA-based tehnique (Table VI). Suh a onlusion ouldbe misleading sine it has been drawn for arrays with a small number of ative ele-ments (N = 27) [31℄. In order to evaluate the performane of the ADS-based methodswhen dealing with larger N , the Problem A is still addressed, but onsidering medium(large) N . More in detail, Problem A is formulated by assuming L = 100 (210) Km,
∆u × Nu = ∆v × Nv = ∆grid × Ngrid = 4.16×105

λ

(

4.2×105
√
3

λ

), and Z = 2. Consequently,the hybrid solvers have been applied with the following setup: VGA = VPSO = 20,
IMAX = 400 and Q = N

E
= 44 (90). Moreover, the referene ADS sequene is the(88,44, 21, 22)- ADS D2 [(180, 90, 44, 45)- ADS D3℄ [68℄. In order to point outthe e�ieny of binary-valued tehniques, Fig. 46 shows the optimization of the PSLduring the iterative minimization. As it an be observed, the GA-based approahesoutperform the orresponding PSO implementations when dealing with both mediumand large arrays (PSOeq

ADSGA⌋N=132 = −15.86[dB℄ vs. PSLeq
ADSGA⌋N=132 = −17.54[dB℄,

PSLeq
ADSPSO⌋N=270 = −18.35[dB℄ vs. PSLeq

ADSGA⌋N=270 = −20.15[dB℄). Suh a behavioris mainly related to the greater e�ieny of the binary optimizers in sampling very largesolution spaes as those when is medium/large. On the other hand, it is worthwhile topoint out the more signi�ant e�et of the ADS initialization on the arising PSL and theonvergene rate of the optimization when applying GA-based approahes (Fig. 46),whilethe improvement turns out to be less important using real-valued PSO approahes.
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Figure 46. Problem A - Behavior of the optimal PSL versus the iteration number i for the RNDGA,ADSGA, RNDPSO, and ADSPSO approahes for (a) N = 132 (equal and unequal arms) and (b)
N = 270 (equal arms).In order to provide further insights on the expeted improvements over existing ap-proahes, the next experiment deals with a design example for the 12-m Ataama LargeMillimeter/Sub millimeter Array (ALMA) [57℄ (Problem A has been onsidered). In thisase, a Y-shaped (E = 3) layout with L = 9000[m℄, N = 63, φ = π/6, L = D = −23° and
E = 0 [57℄ has been optimized at 300GHz assumingNu = Nv = 256, ∆u×Nu = ∆v×Nv =

∆grid × Ngrid = 3.2 × 107, and Z = 2. The results obtained starting from the (42,21,10,31)-ADS D4 (Table IV) indiate that PSO-based approahes overome GA-based teh-niques (Table VII), as expeted beause of the moderate value of [Fig. 47(a)℄, by ahieving137



PSLun
ADSPSO = −18.55[dB℄ [Fig. 47(b)℄. Moreover, it is worth notiing that the �unequal �layouts always guarantee non-negligible improvements over their equally spaed oun-terparts (e.g., PSLeq

ADSGA = −17.25[dB℄ versus PSLun
ADSGA = −17.56[dB℄ - Table VII).Furthermore, the omparisons with uniform and power law analytial designs (Table VII)further assess the e�etiveness of the proposed approahes (e.g., PSLun

ADS = −15.57[dB℄versus PSLpl = −11.01[dB℄ - Table VII).
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Equal arms Unequal armsDesign Problem PSL [dB℄ B ν I PSL [dB℄ B ν IUniform - −12.40 2766 0.712 - - - - -Power-Law - −11.01 2479 0.610 - - - - -ADS A −15.48 2412 0.731 - −15.57 2372 0.721 -GA A −16.82 998 0.550 207 −17.02 1618 0.716 370ADSGA A −17.25 1044 0.511 87 −17.56 1544 0.671 282PSO A −17.58 931 0.607 233 −17.61 779 0.501 309ADSPSO A −18.08 893 0.562 152 −18.55 877 0.596 266Table VII. Numerial results - Comparison among optimized ALMA on�guration(bold numbers identify optimized quantities).
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Figure 47. ALMA - Problem A [Equal-unequal arms , N = 63 ℄ - Synthesis results for the ADSPSOapproah: (a) optimal array arrangement and (b) assoiated ST (u, v).
Finally, the last example is aimed at analyzing the hybrid approahes when appliedto the synthesis of a di�erent geometry and set of parameters. Let us onsider a �Cross�geometry (E = 4) at 1.42GHz haraterized by L = 189[m℄, N = 60, φ = 0, Nu = Nv =

256, ∆u×Nu = ∆v×Nv = ∆grid×Ngrid = 4000, Z = 2, D = −33.8°, E = 0, L = −33.8°(i.e., similar to the �Chris-Cross� array [8℄[60℄). The results from the synthesis proessstarting from the referene sequene (30,15,7,2)-ADSD5, indiate that, as expeted, PSO-based approahes provide better layouts [Fig. 48(a)℄ than GA-based tehniques beause ofthe relatively small dimension of the solution spae (i.e., low number of ative elements).Moreover, the improvement aused by �unequal � element plaement is more signi�antthan for the Y geometry. This is due to the highest redundany of the Cross geometrythat an be more easily broken by an unequal arm displaement [e.g., Fig. 48(b)℄. Forompleteness, a summary of the performane indexes is given in Table VIII. These resultsfurther on�rm the e�etiveness of an ADS initialization to enhane the e�ieny of theoptimization proedures (e.g., PSLRNDPSO − PSLADSPSO ≈ 1.4[dB℄ - Table VIII).140



Equal arms Unequal armsDesign Problem PSL [dB℄ B ν I PSL [dB℄ B ν IGA A −14.21 201 0.572 157 −14.69 283 0.763 397ADSGA A −14.90 261 0.692 159 −15.16 283 0.756 389PSO A −16.29 265 0.905 387 −17.83 339 0.873 328ADSPSO A −17.69 265 0.912 324 −21.10 301 0.847 266Table VIII. Numerial results - Comparison of optimized Cross arrays (bold numbers identify optimized quantities).
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Figure 48. Cross arrays - Problem A [Equal-unequal arms , N = 60℄ - Synthesis results for theRNDGA, ADSGA, RNDPSO and ADSPSO approahes: (a) behavior of the optimal PSL versus theiteration number i, (b) optimal ADSPSO array arrangement and () assoiated ST (u, v).
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Chapter 6Hybrid Almost Di�erene Set(ADS)-based Geneti Algorithm (GA)Method for Planar Array Thinning
6.1 IntrodutionIn the framework of antenna arrays for ommuniation and spae appliations, suh asradars for remote sensing, arrays for mirowave imaging or satellite and ground ommu-niations one of the most important requirements is represented by high diretivity andlow peak sidelobe level (PSL) [1℄. To satisfy these requirements an interesting solution isrepresented by large thinned arrays. Thinned arrays, as put in evidene in [6℄ are a goodsolution sine thinning o�ers redution in element ount, ost, weight, power onsump-tion, and heat dissipation, albeit with an attendant redution of the antenna gain. Insienti� literature ([5℄[6℄[12℄) it is showed that the main drawbak assoiated to thinningis the loss of sidelobe ontrol. Several di�erent tehniques have been proposed and devel-oped to overome suh a problem: e.g. random tehnique [3℄[12℄, algorithmi approahes[12℄, dynami programming [71℄, geneti algorithms [18℄[44℄, simulated annealing [38℄, andpartile swarm optimisers [25℄. One of the more interesting approahes is based on theuse of deterministi ombinatorial sequenes alled di�erene sets (DSs) that have beensuessfully employed to analytially determine thinned arrangements with well ontrolledsidelobes [5℄. This approah generate arrays that have element loations onstrained by analgorithm based on di�erene sets. These onstraints produe arrays with PSLs demon-strably better than those obtainable with simple ut-and-try plaement tehniques, aswell as many previously published algorithmi tehniques. Sine only a limited number143



of DS sequenes exists, reently a new analytial approah have been proposed. Suh ananalytial approah has been extended to a wider lass of geometries by exploiting themathematial properties of almost di�erene sets (ADSs) [61℄[65℄. ADSs are harater-ized by a three-valued autoorrelation funtion that allows to obtain deterministi arrayson�guration with a ontrolled and preditable PSL [50℄. Moreover, the reliability of theanalyti ADS-based thinning has been analysed also taking into aount the mutual ou-pling e�ets among array elements [46℄. However, despite several interesting features andadvantages, the use of ADS sequenes for array thinning has some limitations. In moredetail� arrays based on ADS sequenes usually provide sub-optimal and not optimal PSLperformane;� although large repositories of ADSs are available [16℄, the possible array on�gu-rations are limited. ADS arrays with arbitrary aperture sizes and thinning fatorsannot be designed, sine ADS sequenes exist only for spei� sets of desriptiveparameters;� a general purpose ADS onstrution tehniques do not exist at present. The expliitforms of ADS sequenes has to be determined on a ase by ase basis using suitableonstrution theorems [61℄[65℄ or other approahes.The aim of this hapter is to introdue a way to improve and enhane the ADS-baseddesign tehnique and to overome the above limitations [50℄. The main idea is to exploit aGA-based proedure, that is partiularly suitable for these appliations for the followingonsiderations1. GAs are able to deal with binary optimisation problems;2. GAs have been used and applied to thin antennas arrays [18℄;3. GA optimization proedure an integrate information and onstraints of ADSs [44℄.In other words the method that is proposed in this hapter is a GA-enhaned ADS teh-nique, alled hereinafter ADSGA. Di�erently from other works published about exploitingADS to thin antenna arrays [22℄[46℄, as well as other array design problems (suh as inter-leaved arrays [69℄), the proposed approah does not rely on a analyti tehnique but ona hybrid one. Consequently it is not possible to determine a priori performane bounds.The main objetives of this hapter are not only to propose a hybrid tehnique to designlinear thinned arrays, but also to proposed an approah useful when either the ADS-based144



array performane do not omply with the radiation requirements of the appliation athand or no ADS is available for the geometry (aperture size or thinning fator) understudy [50℄.The struture of the hapter is as follows. First of all a review of ADS design tehniquesfor planar array thinning is presented. Then a GA-enhaned methodology is proposedto address three di�erent problems onerned with ADS-based planar arrays (Setion6.2). In Setion 6.3, the hybrid tehnique is applied to the three problems and validatedby means of several numerial simulations. Representative results onerned with bothsmall and large arrays as well as di�erent thinning fators are disussed to point out itsreliability.6.2 Problem statement and mathematial formulationLet us onsider a planar arrangement de�ned over a lattie of P×Q positions (N = P×Qbeing the total number of elements) [23℄. The array fator of is equal to
W (u, v) =

P−1
∑

p=0

Q−1
∑

q=0

s (p, q) exp [2πi (pdxu+ qdyv)] (6.1)where s (p, q) is the array weight of the (p, q)th element, dx and dy are the lattie spaingsalong the x and y diretions (in wavelengths), u = sin (θ) cos (φ), and v = sin (θ) sin (φ)(u2 + v2 ≤ 1) [23℄. Dealing with equally weighted thinned arrays, s (p, q) = 0, p =

0, ..., P − 1, q = 0, ..., Q − 1, an either assume the value 1 or 0 when an element ispresent or not at the (p, q)th lattie position. In ADS-based thinning tehniques thelattie weights are seleted as follows
s (p, q) =











1 if (p, q) ∈ D

0 otherwise

(6.2)whereD is a (N,K,Λ, t)-ADS, where N is the array size, K the number of ative elements,and Λ and t are parameters whih de�ne the autoorrelation properties of the onsideredADS [23℄. A (N,K,Λ, t)-ADS is de�ned as a K-subset D = {dk ∈ G, k = 0, ..., K − 1} ofthe Abelian group G of order P ×Q (G = Z
P⊗ZQ, P and Q being hosen aording theKroneker Deomposition Theorem) for whih the multiset

M = {mj ∈ (dh − dl) ,dh 6= dl; j = 0, ..., K (K − 1)− 1}145



ontains t nonzero elements of G eah exatly Λ times and the remaining PQ − 1 − tnonzero elements eah exatly Λ+1 times [23℄. Therefore, an ADS satis�es the followingexistene ondition
K (K − 1) = tΛ + (PQ− 1− t) (Λ + 1) (6.3)where K ≥ Λ+1, 0 ≤ K ≤ PQ, and 0 ≤ t ≤ PQ−1. Moreover, it is worth notiing thatDSs and ADSs for whih t = PQ−1 or t = 0. ifD is a (N,K,Λ, t)-ADS, then it is possibleto de�ne the two dimensional binary sequene S = {s (p, q) = 1 (0) , if (p, q) ∈ (/∈)D;

p = 0, ..., P − 1, q = 0, ..., Q− 1} [23℄.In more detail, by exploiting the properties of the autoorrelation funtion, ξ (τx, τy) =
P−1
∑

p=0

Q−1
∑

q=0

s (p, q)s
[

(p+ τx)|modP , (q + τy)|modQ

] (being P × Q its period), of ADS binarysequenes, whih is known to be the three-level funtion
ξ (τx, τy) =











K (τx, τy) = 0

Λ for t values of (τx, τy)

Λ + 1 otherwise

(6.4)it turns out that the power pattern |W (u, v)|2 of an ADS-based array satis�es the followingonstraint
∣

∣

∣
W
(

k
sxP

, l
syQ

)
∣

∣

∣

2

= Υ (k, l)

k = 0, ..., P − 1, l = 0, ...., Q− 1

(6.5)i.e., the samples of the power pattern are equal to the inverse disrete Fourier transform(IDFT) of the autoorrelation funtion ξ (τx, τy),
Υ (k, l) =

P−1
∑

p=0

Q−1
∑

q=0

ξ (τx, τy) exp [2πi ((τxk) /P + (τyl) /Q)] ,whih, from (6.4), turns out to be equal to
Υ (k, l) = K − Λ +NΛδ (k, l) + Ψ (k, l) (6.6)In (6.6), δ (k, l) is the disrete impulse funtion [δ (k, l) = 1 if k = l = 0, and δ (k, l) =

0℄ otherwise Ψ (k, l) = IDFT {ψ (τx, τy)}, where ψ (τx, τy) =
N−1−t
∑

r=1

δ
(

τx − τ rx , τy − τ ry
),and (τ rx , τ ry ), r = 1, ..., N − 1 − t, are the indexes at whih ξ

(

τ rx , τ
r
y

)

= Λ + 1 [23℄.Aording to (6.4), the ADS sequene exhibits a three-level autoorrelation funtion.146



Thanks to (6.5), the following a priori bounds have been derived for the one-way PSLs ofADS-based thinned arrays [23℄:
PSLINF ≤ PSLMIN ≤ PSLOPT ≤ PSLMAX ≤ PSLSUP (6.7)where PSLOPT = min

σx,σy

{

PSL
[

D
(σx,σy)

]}, σx = 0, ..., P − 1, σy = 0, ..., Q− 1,
PSL

[

D
(σx,σy)

]

=

max
(u,v)/∈M

∣

∣W (σx,σy) (u, v)
∣

∣

2

|W (σx,σy) (0, 0)|2where (u0, v0) is the main lobe steering diretion, M is the main lobe region [23℄, and
|W (σx, σy) (u, v)|2 is the power pattern [23℄ of the layout generated from the ylial shiftsequene of the referene ADS, D(σx,σy),

D
(σx,σy) =

{(

(p+ σx)modP , (q + σy)modQ

)

; (p, q) ∈ D; σx, σy ∈ Z

}

.The analyti expressions of the bounds in (6.6) state the peak sidelobe level of ADS-basedarrays is onstrained by the a priori known quantities PSLINF , PSLMIN , PSLMAX ,
PSLSUP [23℄:� PSLINF =

K−Λ−
√

(t+1)(N−t−1)
(N−1)

K2� PSLMIN =

[

min
(k,l)∈H0

{Υ (k, l)}
]

[0.5+0.8 log10(N)]

K2� PSLMAX =

[

max
(k,l)∈H0

{Υ (k, l)}
]

[−0.1+1.5 log10(N)]

K2� PSLSUP =

(

K−Λ+
√

(t+1)(N−t−1)
)

[−0.1+1.5 log10(N)]

K2These onstrains on PSL indiate that ADS-based thinned arrays exhibit a sidelobe levelwhih an be predited either from the knowledge of the features of the ADS sequene(PSLINF and PSLSUP only depend on N , K, Λ and t) or from the expression of Υ (k, l)(neessary for omputing PSLMIN and PSLMAX and returning higher auray of esti-mation) [23℄. 147



(a)

(b)
()Figure 49. Example from [23℄ of Planar Array based on D

opt
3 - ADS . Number of elements:

P ×Q = 7× 11. Plots of the PSL bounds versus η = t
PQ−1 (PQ = 77, ν = 0.4805) (a). Plot of thenormalized array fator (b) generated from D

opt
3 - ADS array arrangement () (ourtesy from [23℄).As put in evidene in the Introdution, the ADS-based approah for array thinning islimited, despite of the advantages of random thinned arrays and omputational e�ieny.Therefore a methodology able to overome these limitations while exploiting the ADSanalyti features seems to be of some interest in view of ommuniation and spae appli-ations [50℄. Aordingly, the ADSGA hybrid approah is presented. This methodologytries to exploit the advantages assoiated to both ADS and GA-based tehniques [50℄.148



Conerning the iterative ADSGA optimisation, the standard struture of the GA ismodi�ed to exploit the positive key features of the ADSs. The struture of the GenetiAlgorithm (GA) onsidered in this work are brie�y desribed [44℄[50℄:1. Initialisation: The Initial (i = 0) population is randomly hosen. A set of M trialsolutions, ρm (i) , m = 1, ...,M is de�ned. The way to de�ne this set of trial solutionallows to de�ne ADSGA method instead of standard GA.2. Coding : Eah Individual ρm (i) odes the values of an unknown set of parametersinto a binary string (alled Chromosome);3. GA-Evolution: At eah iteration i, the geneti evolution exploit suitable binaryoperators of evolution and natural seletion (seletion, rossover, reprodution, mu-tation and elitism [6, 9℄) applied in a probabilisti fashion and taking into aountthe �tness values Fm = F {ρm (i)} , m = 1, ...,M of urrent trial solutions;4. Termination: The iterative proedure ends when one of the following stop riteriais satis�ed. The optimal �tness value, FPOP = min
m
{Fm}, is smaller than an user-de�ned threshold or the maximum number of iterations Imax has been reahed. The'�nal solution' is the �ttest trial solution determined throughout the whole iterativeproess, ρconv = arg

{

min
i

(

min
m

[F {ρm (i)}]
)}.The initial population (i = 0, i being the iteration index) is generated as follows forADSGA method [50℄. The N = P × Q shifted versions of a referene ADS are rankedaording to their PSL values. Then, half-trial solutions (M being the dimension of theGA population) are hosen with hromosomes equal to the binary sequenes of the �rst

M/2 highly ranked shifted ADSs
ρm (i) =

{

bm (n) = w(m) (p, q) ; p = 0, ..., P − 1, q = 0, ..., Q− 1, n = 0, ..., N − 1
}

1 ≤ m ≤ M
2 (6.8)where bm (n) is the nth digit of the mth trial solution and s(σx,σy) (p, q) = s(m) (p, q) =

1 (being m = σx + (P × σy − 1) = f (σx, σy)) if (p, q) ∈ D
(σx,σy) and s(σx,σy) (p, q) =

s(m) (p, q) = 0, otherwise. Conerning the remaining of the population, the trial solutionsare hosen randomly within the range of admissibility of the problem at hand
ρm (i) = {bm (n) = rm (n) ;n = 0, ..., N − 1}

1 ≤ m ≤ M
2

(6.9)149



rm (n) being a random digit and N = P ×Q. Suh an initialisation allows the �transfer�into the GA hromosomes of the good ADS-based shemata also providing a su�ientvariability within the population to avoid the stagnation [6℄. As regards the GA operators,both rossover and mutation are applied following the standard binary implementations[6℄, but also guaranteeing the updated trial solutions be admissible and omply withthe problem onstraints (e.g.�xed thinning fator ν = K/N) [50℄. Towards this end, therossover operation is repeated until the new hromosomes satisfy the solution onstraints,while a onditioned mutation is applied. More spei�ally, let ν be the user-de�nedthinning fator, then the bit-mutation probability is de�ned as follows [50℄
PBM (n) =

[

N × ν −
n−1
∑

h=0

b (h)

]

N − n × [1− 2b (n)] + b (n) (6.10)The set of parameters of he GA-based proedure are: PC = 0.9 (rossover), PM = 0.01(mutation rate) and N = P ×Q (population size) if not otherwise stated.6.2.1 Problem I - PSL minimisation in array synthesisIn order to determine an optimal thinned on�guration starting from the (usually) sub-optimal ADS arrangement with a given aperture size NADS = PADS×QADS and thinningfator νADS, let us formulate the following onstrained optimisation problem, similarly to[50℄Problem I : Minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2
}

/ |W (0, 0)|2, RM the main loberegion as
RM =







(u, v) ∈ [−1, 1]× [−1, 1] : u2 + v2 ≤ 1, uv ≤ K

4PQsxsy max
(k,l)∈H0

{Υ (k, l)}







,subjet to K = KADS and N = NADS (namely P = PADS and Q = QADS).to be solved through ADSGA. In Suh a ase, the GA �tness funtion is de�ned as thePSL of the array while the onstraints fore the array to kept its desriptive parameters(i.e. original dimension, N = NADS , and thinning, ν = νADS).150



6.2.2 Problem II - extension of the range of ADS appliability inarray synthesisThe use of an ADS-based tehnique for array synthesis is sometimes limited to �xedarray dimensions and thinning values beause of the limited, although quite large, set ofavailable ADS sequenes. In order to design a thinned on�guration with arbitrary valuesof N = P × Q and ν, still exploiting the properties of the existing ADS arrangements,the following problem is at hand (in a similar way to [50℄)Problem II : Minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2
}

/ |W (0, 0)|2, RM the main loberegion as
RM =







(u, v) ∈ [−1, 1]× [−1, 1] : u2 + v2 ≤ 1, uv ≤ K

4PQsxsy max
(k,l)∈H0

{Υ (k, l)}







,are subjet to K = K̂ and N = N̂ , being K̂ 6= KADS and/or N̂ 6= NADS (namely
P̂ 6= PADS and Q̂ 6= QADS).Suh a onstrained optimisation problem is quite similar to that in previous Setion,but, in this ase, no ADS-based array is available in orrespondene with the array pa-rameters (N̂ , K̂) [50℄.6.2.3 Problem III - de�nition of a general purpose ADS onstru-tion tehnique for array synthesisWith referene to the potential limitation (III) outlined in the Introdution, the aim isnow to �nd the expliit forms of ADSs sequenes (i.e. binary sequenes with a three-level autoorrelation funtion) for arbitrary values of N . Towards this end, let us denotewithL {ρ} and R {ρ} the number of levels of the autoorrelation funtion ξ (τx, τy) of atrial solution ρ and the number of (τx, τy) values for whih ξ (τx, τy) di�er from 6.4. Then,the searh for admissible (but not available in ADS repositories) ADS sequenes is reastas the solution of the followingProblem III : Minimise F {ρ} = α [L {ρ} − 3] + βR {ρ} subjet to N = N̂ , where
N̂ 6= NADS (namely P̂ 6= PADS and Q̂ 6= QADS) and α and β are suitable user-de�nedweight oe�ients [47℄. 151



In suh a ase, the optimisation at hand turns out to be di�erent from that in ProblemI and Problem II. As a matter of fat, it is de�ned and performed with the ADSGA withinthe �autoorrelation spae� instead of in the �pattern spae�, while the onstraints are stillon the set of parameters de�ning the ADS as well as the orresponding array arrangement[50℄.6.3 Numerial analysis6.3.1 Appliation to Problem IAs suggested in [5℄, the ombinatorial and the stohasti methods are ombined in in orderto take advantage from their good harateristis and to ompensate for their drawbaks.The ripples aused by ADS sequenes an be orreted by GA apabilities, while theontrolled PSL of ADS-based arrays is useful to speedup the onvergene of the genetiproedure and get optimal PSL for planar arrays. The inter element distanes are assumed
dx = dy =

1
2
hereinafter.In partiular, now we onsider when the appliation deals with Problem I: obtain anoptimal thinned on�guration starting from the ADS arrangement and omparing it withstandard GA approah.As stated in previous setion, to determine an optimal thinned on�guration startingfrom the (usually) sub-optimal ADS arrangement with a given aperture size NADS =

PADS × QADS and thinning fator νADS, let us formulate the following onstrained op-timisation problem, that is to minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2
}

/ |W (0, 0)|2, RMthe main lobe region, subjet to K = KADS and N = NADS (namely P = PADS and
Q = QADS). The onstraints fore the array to kept its desriptive parameters (i.e.original dimension, N = NADS , and thinning, ν ≈ νADS).The experiments deal with the 2D ADSs desribed in the following Table

N P Q K Λ t ν

49 7 7 25 12 24 0.555

121 11 11 61 30 60 0.502

289 17 17 145 72 144 0.501

529 23 23 265 132 264 0.500Table IX: Properties of the ADS sequenes 152



6.3.1.1 Array arrangement P ×Q = 7× 7In this example we have used to initialize the population at step i = 0, the (7× 7, 25, 12, 24)-ADS (NADS = 49, νADS = 0.555). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in orrespondene with the ADSGA and the standard GAminimization proedure.The results an be summarized in the following
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Figure 50: Problem I- PSL minimisation in array synthesis : Behaviour of the optimal �tness value,
PSL(i), against the number of iteration number, i.
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6.3.1.2 Array arrangement P ×Q = 11× 11In this example we have used to initialize the population at step i = 0, the (11× 11, 61, 30, 60)-ADS (NADS = 121, νADS = 0.502). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in orrespondene with the ADSGA and the standard GAminimization proedure.The results an be summarized in the following Figures.
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Figure 52. Numerial validation - Problem I - PSL minimisation in array synthesis : Behaviour of theoptimal �tness value, PSL(i), against the number of iteration number, i.
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6.3.1.3 Array arrangement P ×Q = 17× 17In this example we have used to initialize the population at step i = 0, the (17× 17, 145, 72, 144)-ADS (NADS = 289, νADS = 0.501). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in orrespondene with the ADSGA and the standard GAminimization proedure.The results an be summarized in the following Figures.
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Figure 54. Numerial validation - Problem I - PSL minimisation in array synthesis : Behaviour of theoptimal �tness value, PSL(i), against the number of iteration number, i.
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6.3.1.4 Array arrangement P ×Q = 23× 23In this example we have used to initialize the population at step i = 0, the (23× 23, 265, 132, 264)-ADS (NADS = 529, νADS = 0.500). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in orrespondene with the ADSGA and the standard GAminimization proedure.The results an be summarized in the following Figures.
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Figure 56. Numerial validation - Problem I - PSL minimisation in array synthesis : Behaviour of theoptimal �tness value, PSL(i), against the number of iteration number, i.
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6.3.1.5 Summary
Iconv ν PSL[dB℄

P ×Q ADSGA GA ADSGA GA ADS ADSGA GA ADS

7× 7 1445 920 0.428 0.489 0.555 −16.13 −14.40 −9.69
11× 11 4366 1125 0.496 0.487 0.502 −16.50 −16.03 −12.63
17× 17 208 3512 0.480 0.494 0.501 −17.74 −17.50 −13.88
23× 23 1418 2800 0.484 0.482 0.500 −18.74 −18.35 −13.90Table X. Numerial validation - Problem I - PSL minimisation in array synthesis: Summary of theresults obtained. Comparing the results of the new proposed ADSGA tehnique with the standard GAmethodology, we obtain a redution of PSL that goes from 1.73[dB℄ to 0.24[dB℄.
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6.3.2 Appliation to Problem IIIn this setion the aim, aording to Problem II, is to design antenna arrays with arbitraryvalues of elements N = P × Q and thinning ν, still exploiting the existing (and limited)ADS arrangements. In other words, starting from an ADS-based array on�guration(with NADS = PADS × QADS elements, νADS) used as initial guess of the optimizationiterative proedure, we want to synthesize a new array on�guration with N 6= NADS and
ν 6= νADS.For the sake of omparison of the performane of the proposed approah, the arrayon�gurations are hosen among the state-of-the-art examples, suh as [25℄ and [18℄.6.3.2.1 ADSGA method ompared with [25℄In order to ompare the results of the optimization proedure with [25℄, we have thede�ne the following problem:Problem II : Minimise F {ρ} = max

(u,v)/∈RM

{

|W (u, v)|2u=0 + |W (u, v)|2v=0

}

/ |W (0, 0)|2,
RM the main lobe region as previously de�ned. The problem is subjet to K = K̂and N = N̂ , being K̂ 6= KADS and/or N̂ 6= NADS (namely P̂ 6= PADS and Q̂ 6= QADS).
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6.3.2.2 P ×Q = 6× 6 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(5× 5, 13, 6, 12) 25 6× 6 36
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Figure 59: Problem II- extension of the range of ADS appliability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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164



6.3.2.3 P ×Q = 8× 8 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(7× 7, 25, 12, 24) 49 8× 8 64
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Figure 61: Problem II- extension of the range of ADS appliability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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6.3.2.4 P ×Q = 12× 12 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(11× 11, 61, 30, 60) 121 12× 12 144
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Figure 63: Problem II- extension of the range of ADS appliability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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6.3.2.5 P ×Q = 16× 16 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(13× 13, 85, 42, 84) 169 16× 16 256
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Figure 65: Problem II- extension of the range of ADS appliability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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6.3.2.6 Summary
Array −Dimesion ν

P̂ × Q̂ ADSGA GA SPSO [25℄ HSPSO [25℄ DS [21℄
6× 6 0.583 0.555 0.50 0.42 0.583

8× 8 0.546 0.500 − − 0.562

12× 12 0.541 0.534 0.44 0.48 0.542

16× 16 0.500 0.515 − − 0.531

Table XI: Problem I- PSL minimisation in array synthesis: Summary of the results obtained.Comparing the results of the new proposed ADSGA tehnique with the standard GA methodology, theSPSO, the HSPSO [25℄ and DS [21℄, we obtain that ADSGA is able to improve PSL performane alsowhen N̂ 6= NADS .
Array −Dimesion PSL[dB℄

P̂ × Q̂ ADSGA GA SPSO [25℄ HSPSO [25℄ DS [21℄
6× 6 −14.16 −13.23 −12.72 −13.06 −12.55
8× 8 −16.55 −15.92 − − −13.71
12× 12 −16.90 −16.53 −15.54 −16.74 −15.47
16× 16 −17.45 −17.67 − − −15.17

Table XII: Problem I- PSL minimisation in array synthesis: Summary of the results obtained.Comparing the results of the new proposed ADSGA tehnique with the standard GA methodology, theSPSO, the HSPSO [25℄ and DS [21℄, we obtain that ADSGA is able to improve PSL performane alsowhen N̂ 6= NADS .
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6.3.2.7 ADSGA method ompared with [18℄In order to ompare the results of the optimization proedure with [18℄, we have the de�nethe following problem:Problem II : Minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2u=0 + |W (u, v)|2v=0

}

/ |W (0, 0)|2,
RM the main lobe region as de�ned in [18℄. The problem is subjet to K = K̂ and
N = N̂ , being K̂ 6= KADS and/or N̂ 6= NADS (namely P̂ 6= PADS and Q̂ 6= QADS).The two examples that are onsidered are the followings

Starting ADS NADS Array Geometry [18℄ N̂

(7× 11, 37, 17, 36) 77 10× 20 200

(37× 37, 685, 342, 684) 1369 40× 40 1600
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6.3.2.8 P ×Q = 10× 20 Array Con�guration
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Figure 68: Problem II- extension of the range of ADS appliability: Graphial omparison of the PSLagainst the iteration i of ADSGA, GA and Haupt [18℄ approahes along the two main diretions φ = 0°(a) and φ = 90° (b). Slies of the amplitude pattern obtained after optimization proedure along thetwo main diretions φ = 0° () and φ = 90° (d).
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6.3.2.9 P ×Q = 40× 40 Array Con�guration
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Figure 70: Problem II- extension of the range of ADS appliability: Graphial omparison of the PSLagainst the iteration i of ADSGA, GA and Haupt [18℄ approahes along the two main diretions φ = 0°(a) and φ = 90° (b). Slies of the amplitude pattern obtained after optimization proedure along thetwo main diretions φ = 0° () and φ = 90° (d).
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6.3.2.10 Summary
ν

P Q ADSGA GA GA− [Haupt] [18℄
10 20 0.455 0.515 0.54

40 40 0.485 0.491 0.81Table XIII: Problem II- extension of the range of ADS appliability: Summary of the results obtainedabout thinning fator ν. Comparing the results of the new proposed ADSGA tehnique with thestandard GA methodology and [18℄.
BWφ=0 BWφ=90

P Q ADSGA GA GA− [Haupt] [18℄ ADSGA GA GA− [Haupt] [18℄
10 20 0.2412 0.2460 0.2480 0.1289 0.1289 0.1289

40 40 0.0546 0.0546 0.0546 0.0546 0.0546 0.0546Table XIV: Problem II- extension of the range of ADS appliability: Summary of the results obtainedabout main lobe dimension BW . Comparing the results of the new proposed ADSGA tehnique withthe standard GA methodology and [18℄.
PSLφ=0[dB] PSLφ=90[dB]

P Q ADSGA GA GA− [Haupt] [18℄ ADSGA GA GA− [Haupt] [18℄
10 20 −20.93 −20.74 −20.07 −23.45 −21.87 −19.76
40 40 −19.24 −18.97 −17.20 −19.28 −19.12 −17.20Table XV: Problem II- extension of the range of ADS appliability: Summary of the results obtained.Comparing the results of the new proposed ADSGA tehnique with the standard GA methodology and[18℄. We obtain with ADSGA a redution of PSL in both examples.
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6.3.3 Appliation to Problem IIIAs stated in the Introdution and in the desription of the Problem III, several onstru-tion tehniques to obtain ADS sequenes have been already developed and even largerepositories are now [61℄[65℄ available. However, the fat that the ADS sequenes of ar-bitrary length are, at present, not available is a limitation for their use in real-worldproblems. As a matter of fat, sine ADS synthesis tehniques are usually based on theylotomy property, they generate sequenes haraterized by spei� ylotomi numbersand not with arbitrary length [47℄.As proposed in the desription of Problem III, here a new method is proposed for thesynthesis of sequenes of arbitrary length. The approah reformulates the ADS design interms of a ombinatorial optimization problem where the ost funtion quanti�es the mis�tbetween the autoorrelation of a binary sequene and the three valued funtion of the DSs.The binary geneti algorithm (GA) is used to minimize suh a ost funtion beause ofits �hill-limbing� features and its ability to e�etively sample the binary solution spae[47℄. The parameters of the ost funtion have been set α = 10−2 and β = 10−4. Thenumber of iterations Imax depends on how large is the searh spae.
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6.3.3.1 (36, 32, 28, 23)-ADS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5

Ψ
(i)

i
Iteration Number [x103](a)

A
w  (

p,
q) K

Λ+1
Λ

 0

 1

 2

 3

 4

 5

p

 0  1  2  3  4  5

q

 28
 29
 30
 31
 32

 0  2.5

x/λ

 0

 2.5

y/
λ

(b) ()
Figure 72. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (36, 32, 28, 23)-ADS arrangement, () Final 2D ADS layout.
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Figure 73. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (36, 32, 28, 23)-ADS arrangement.
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6.3.3.2 (60, 6, 0, 29)-ADS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  2  4  6  8  10

Ψ
(i)

i
Iteration Number [x103](a)

A
w  (

p,
q) K

Λ+1
Λ

 0

 1

 2

 3

 4

 5

p

 0  2  4  6  8

q

 0

 2

 4

 6

 0  1.5  3  4.5

x/λ

 0

 1.5

 3

y/
λ

(b) ()
Figure 74. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (60, 6, 0, 29)-ADS arrangement, () Final 2D ADS layout.
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Figure 75. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (60, 6, 0, 29)-ADS arrangement.
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6.3.3.3 (64, 59, 54, 43)-ADS
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Figure 76. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (64, 59, 54, 43)-ADS arrangement, () Final 2D ADS layout.
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Figure 77. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (64, 59, 54, 43)-ADS arrangement.
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6.3.3.4 (100, 5, 0, 79)-ADS
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Figure 78. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (100, 5, 0, 79)-ADS arrangement, () Final 2D ADS layout.
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Figure 79. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (100, 5, 0, 79)-ADS arrangement.
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6.3.3.5 (144, 137, 130, 101)-ADS
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Figure 80. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (144, 137, 130, 101)-ADS arrangement, () Final 2D ADS layout.
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Figure 81. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (144, 137, 130, 101)-ADS arrangement.
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6.3.3.6 (192, 184, 176, 135)-ADS
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Figure 82. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (192, 184, 176, 135)-ADS arrangement, () Final 2D ADS layout.
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Figure 83. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (192, 184, 176, 135)-ADS arrangement.
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6.3.3.7 (196, 7, 0, 153)-ADS
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Figure 84. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (196, 7, 0, 153)-ADS arrangement, () Final 2D ADS layout.
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Figure 85. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (196, 7, 0, 153)-ADS arrangement.
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6.3.3.8 (225, 8, 0, 168)-ADS
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Figure 86. Numerial validation - Problem III - GA designed ADS onstrution tehnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level autoorrelationfuntion of the onvergene (225, 8, 0, 168)-ADS arrangement, () Final 2D ADS layout.
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Figure 87. Numerial validation - Problem III - GA designed ADS onstrution tehnique: Plot of thepower pattern assoiated to the antenna array built with the (225, 8, 0, 168)-ADS arrangement.

195



6.3.3.9 SummaryA GA-based tehnique has been proposed as a new methodologial tool for designing 2DADS sequenes of arbitrary length. As put in evidene in the Introdution Setion 6.1,although large repositories of ADSs are available, ADS arrays with arbitrary aperturesizes and thinning fators annot be designed, sine ADS sequenes exist only for spei�sets of desriptive parameters. Moreover, even for admissible aperture sizes and thinningfators, general purpose ADS onstrution tehniques do not exist at present and theexpliit forms of ADS sequenes has to be determined on a ase by ase basis usingsuitable onstrution theorems.To overome this problem, the original synthesis has been reformulated as a ombina-torial optimization. Towards this end, a suitable �tness funtion exploiting the autoor-relation properties of ADSs has been introdued and minimized by means of a GA-basediterative proedure. In other words, the aim is now to �nd the expliit forms of ADSssequenes for arbitrary values of N . In suh a ase, the optimisation at hand turns out tobe di�erent from that in Problem I and Problem II. The GA works within the �autoor-relation spae�, while the onstraints are still on the set of parameters de�ning the ADSas well as the orresponding array arrangement.In the following Table, the (N,K,Λ, t)-ADS sequenes that have been found by meansof GA proedure are desribed.
N P Q K Λ t ν

36 6 6 32 28 23 0.888

60 6 10 6 0 29 0.10

64 8 8 59 54 43 0.921

100 10 10 5 0 79 0.50

144 12 12 137 130 101 0.951

192 12 16 184 176 135 0.958

196 14 14 7 0 153 0.35

225 15 15 8 0 168 0.35Table XVI: Properties of the ADS sequenes that have been designed by the proposed GA-basedtehniques. Neither of these (N,K,Λ, t)-ADS sequenes an found in [61℄ or [65℄.All the sequenes in Table XVI are not desribed by the available theorems and thisshows that the proposed ADS-synthesis tehnique orretly works. It is mandatory toput in evidene that, as expeted, the GA-based ADS synthesis tehnique requires muh196



more iterations to determine the three-level autoorrelation binary sequene for a givengeometry for larger searh spaes. Anyway the proposed method assessed its reliabilitywhatever the dimension athand.As a �nal observation, it is worthwhile to point out that the new ADSs determinedsolving di�erent instanes of Problem III an be diretly used to de�ne new thinned arraysor as starting points for di�erent formulations of Problem I or Problem II. Indeed, thepower patterns of di�erent new ADS-based arrays have been plotted.
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Chapter 7ConlusionAs desribed in the Abstrat, this Thesis has presented innovative guidelines for the syn-thesis of antenna arrays for ommuniation and radioastronomy systems and appliations.In more detail in the �rst part of the Thesis a new family of analytially-designed thinnedarrays with di�erent azimuth and elevation TMBWs has been proposed. Thanks to theproperties of MFarland DSs, several massively thinned isophori arhitetures have beendedued and the PSLs of the arising layouts, de�ned over grids of size P × P (P + 2) (Pbeing a prime number), have been numerially analyzed. Towards this end, a GA-basedsearh proedure has been exploited due to the extremely large number of admissibleMFarland sequenes.The numerial results point out the following issues� the design of MFarland arrays is highly e�ient whatever P , sine up to Ψ(P )layouts an be obtained by simply seleting the assoiated desriptors ,σx, σy, k,
(ai, bi) and (ŵ(i+1)

1 , ŵ
(i+1)
2

) for i = 0, ..., P + 1;� unlike traditional binary enodings used for thinned array designs [44℄, the GA-based proedure is able to more e�iently identify optimalMFarland layouts thanksto the disrete nature of the MFarland desriptors and also the large number ofoptimal solutions available within the searh spae (Fig. 3);� despite the extremely low number of ative elements (ν < (1/P )), MFarland ar-rays exhibit well-ontrolled sidelobes espeially for large dimensions. This suggeststheir exploitation for the design of extremely light large arrays as well as of arhi-tetures with interleaved funtionalities (e.g., multi-funtion radar arrays in whiheah funtion orrespond to a highly sparse sub-array [41℄).199



Further studies will be devoted to analyze the e�ets of the presene of real array elementsand/or mutual oupling. Furthermore, it is still a work in progress the exploitation ofMFarland sequenes for designing interleaved arhitetures.In the seond part of this Thesis ADS sequenes have been exploited to design orre-lator arrays for radio astronomy appliations in a omputationally e�ient and reliablefashion. Three strategies have been presented that exhibit di�erent features, omputa-tional omplexity and �exibility. More spei�ally: (a) a fully analyti tehnique based onADS layouts to provide sub-optimal designs with extremely redued omputational osts;(b) an ADSGA hybrid tehnique that employs a binary desription of the orrelator arrayto obtain optimized on�gurations with interesting geometri properties and improvedPSL performanes; and () an ADSPSO strategy devoted to enhane the �exibility of thelattie-based approahes and exploiting a real-oded desription of the geometry at hand.An extensive numerial validation has been arried out to analyze features and advan-tages of the proposed approahes, also in omparison with state-of-the-art methodologies,in several working onditions, inluding design examples for future planned instruments(i.e., the ALMA arhiteture [57℄).The obtained results have pointed out the following key issues:� ADS-based analyti layouts outperform equally spaed or power-law state-of-the-artdesigns in terms of PSL ontrol and snapshot or traking overage (e.g., νunADS =

0.831 versus νpl = 0.598 - Table II);� the analyti ADS tehnique synthesizes arrays with sub-optimal performanes ifompared to state-of-the-art stohastially optimized arrangements (e.g., PSL3 =

−20.3[dB℄ versus PSLun
ADS = −19.98[dB℄ - Table II), but it is extremely e�ient interms of omputational osts and the generation of reliable ompromise solutions(versus Ξ1 = 0.22 vs. Ξun
ADS = 0.26 - Fig. 4);� ADS-based hybrid approahes outperform orresponding standard randomly initial-ized GA and PSO tehniques for both onvergene rate and array features whateverthe synthesis objetive and the array geometry (e.g., PSLun

RNDGA = −20.14[dB℄versus PSLun
ADSGA = −20.93[dB℄ for Problem A - Table II);� the ADSPSO turns out to be more e�ient and e�etive than the ADSGA whendealing with small arrangements, while the ADSGA outperforms the other hy-bridizations when medium/large arrays are at hand (Setion IV);200



� the �unequal-arms� geometry usually guarantees �tter solutions than the state-of-the-art �equal-arms� displaements, espeially when is small (e.g., PSLun
ADSPSO =

−21.35[dB℄ versus PSL3 = −20.3[dB℄ - Tables II and III).Future e�orts will be devoted to assess the advantages, potentialities, and limitations ofthe proposed methodologies when dealing with more realisti senarios (e.g. diretiveelements or wideband behavior) and/or onsidering other geometri arhitetures suhas Reuleaux triangles [31℄. Towards this end, the exploitation of linear ADSs in openand losed-ended on�guration as well as 2D ADSs [48℄ will be arefully analyzed. Asan additional researh topi in future papers, the design parameter spaes for whihomputational e�ieny is a pratial limitation will be explored. Indeed, this ould allowto disriminate when optimization is impratial even with modern omputers and ADS-based tehniques are best-in-lass or when a full-stohasti approah is more e�etive.Finally the third part of this Thesis has been devoted to a hybrid ADSGA-basedmethodology for planar antenna arrays. This synthesis tehnique has been presented anddeveloped to improve performane of large thinned arrays. These results an be veryuseful to design and enhane the features in the far-�eld and for narrow-band signals ofADS-based binary sequenes for planar array thinning. To overome the main limitations(i.e. �exibility and performane) of ADS-based thinned arrays, while taking advantageof their properties, an innovative methodologial approah that, unlike the ADS thinningtehniques desribed in [48℄, does not rely on purely analytial design method, has beenproposed. An extensive numerial analysis has been performed by addressing di�erentkinds of problems, eah one onerned with a spei� ADS limitation. The obtainedresults have pointed out the following outomes:1. thanks to the ADS initialisation, the ADSGA provides improved performane withrespet to a standard GA approah when dealing with linear array thinning, eventhough the improvements are not always very signi�ant;2. ADSGA-onstrained designs are usually advantageous sine they avoid both quasi-dense layouts of limited pratial importane as well as large main lobe widths,unlike unonstrained arhitetures;3. the knowledge of ADS referene sequenes and the a priori information on theperformane of the orresponding arrays turn out to be useful even for synthesisingantenna arrangements with di�erent (also when ADSs do not exist) thinning fatorsor sizes; 201



4. the hybrid approah an be pro�tably employed to determine the expliit form ofnew ADS sequenes of desired length beyond those already available, thus extendingthe range of appliability of the ADS-based array thinning.
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