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Abstract: Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae), commonly known as the European grape-
vine moth (EGVM), is a primary pest of vineyards. This article provides an updated review of its monitoring, model-
ling, and management tools. EGVM management strategies analysed here include insecticide-based control, insecticide 
resistance, side-effects (particularly those caused by the exposure to sublethal doses of pesticides), cultural control, sterile 
insect technique, pheromone-mediated control strategies (with special reference to pheromone-based mating disruption), 
biological control, and area-wide control programs. Lastly, we outline significant challenges for future EGVM research and 
sustainable control implementation.

Keywords: area-wide pest management; biological control; entomopathogens; Integrated Pest Management; mating dis-
ruption; modelling; monitoring; parasitoids; predators; sex pheromones; tortricids

1 Introduction

Benelli et al. (2023) recently reviewed the biology, ecology, 
and invasiveness of the European grapevine moth (EGVM) 
Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: 
Tortricidae), outlining new research advances. Strategies for 
its control have a long history, starting from the pioneer work 
of Götz (1939), who firstly showed that EGVM females were 
able to attract males for mating. He preconized the concept of 
pheromone-based control before the first sex pheromone was 
chemically identified by Karlson & Butenandt (1959). Even 
before, Silvestri (1912), Feytaud (1913) and Marchal (1912) 
performed the first key natural history studies on EGVM 
biology and natural enemies. Noteworthy, several biocontrol 
issues were already treated in their studies as future efficient 
control options. Interestingly, a few decades before the onset 
of synthetic insecticides, the egg parasitoids Trichogramma 
spp. (Hymenoptera: Trichogrammatidae), entomopathogenic 
fungi and the efficient larval parasitoid, Campoplex capita-
tor Aubert (Hymenoptera: Ichneumonidae) were studied by 
several authors (Coscollá 1997; Ioriatti et al. 2012; Reineke 
& Thiéry 2016; Thiéry et al. 2018).

Herein, we analyze current knowledge on EGVM 
monitoring, modelling, and management. The manage-
ment section includes insecticide-based control, insecticide 
resistance, side-effects, sterile insect technique (SIT), pher-
omone-mediated control strategies, biological control, cul-
tural control, and functional biodiversity as Integrated Pest 
Management (IPM) tools and area-wide control programs. 
Finally, a research agenda highlighting challenges for forth-
coming studies is proposed.

2 Prevention

2.1 Monitoring
Prediction of phenological stages of EGVM is critical to 
time control operations in IPM and to reduce the use of 
pesticides to comply with the EU Directive 128/2009. 
Monitoring also serves to determine if control methods are 
working and to obtain the diel activity periods and optimise 
the synthetic pheromone release through automated aerosol 
devices.

Egg counting is a reliable sampling method, but it takes a 
trained eye to find eggs because EGVM lays them singly, and 
it is rather difficult on inflorescences. Egg colour changes as 
the larva develops, allowing more precise insecticide timing. 
Markheiser et al. (2018; 2020) and Rid et al. (2018; 2019) 
explored oviposition monitoring in vineyards with the help 
of dispenser cards delivering attractive plant volatiles on sur-
faces that were physically appropriate for oviposition. So far, 
the project has failed, technically because it was not possible 
to produce a dispenser for complex but defined fragrance 
bouquets.

Larval monitoring is pivotal during the first generation, 
when the larvae build visible nests on the inflorescences and 
the damage is limited. In the second and third generations, 
monitoring the eggs is crucial to prevent the damage, whereas 
monitoring the larvae is of relevance only to assess infesta-
tion levels. Searching for pupae, which hide in the leaves, 
bark or soil, is not a feasible method to estimate populations. 
Artificial pupation substrate, such as corrugated cardboard, 
has been used to sample and control EGVM pupae (e.g., 
Catoni & Schwangart 1914).

The adult is the only stage that can be sampled passively 
using traps lured with pheromones. Because it is highly spe-
cific, reliable and easy to use, the main component of the 
EGVM sex pheromone (E,Z)-7,9-12:Ac) is the most widely 
used attractant in the traps. If the latter are used in untreated 
plots there is no clear correlation between male catches and 
later grape infestations (Roehrich & Boller 1991), especially 
with low catches.

Sex pheromone does not attract females and its attrac-
tiveness to males decreases a lot under mating disruption 
(MD), so alternatives are needed. The so-called “food” or 
“host” lures are effective alternatives to pheromone lures 
under MD conditions or when females need to be estimated 
(Ioriatti et al. 2011). “Food” lures are based on fermentation 
of sugar-containing solutions. The nature and amount of the 
volatiles released is largely unknown because it depends on 
substrate, microorganisms, temperature, and time (Davis 
et al. 2013; Beck & Vannette 2017; Tasin et al. 2018), 
and thus it is likely to show regional and seasonal varia-
tion. Despite these limitations, EGVM food lures based on 
wine (Bagnoli et al. 2013; Pinto et al. 2020) and fruit juices 
(Thiéry et al. 2006a, b) are gaining interest. The ratio of 
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males and females, and of mated and unmated females 
caught with food-baited traps varies widely among reports 
(Henrici 1941; Thiery et al. 2006a, b; Bagnoli et al. 2013; 
Pinto et al. 2020). Using food traps based on concentrated 
apple juice in two French vineyards, Thiery et al. (2006a, 
b) observed in both study sites a higher prevalence of cap-
tured females (i.e., 60% or more) than males. Similar results 
were obtained by Bagnoli et al. (2013) using wine-based 
food traps. The drawback associated with these traps is the 
stickiness of the sugar solution, the poor selectivity, and the 
need of periodic refilling.

In moths, the innate preference of unmated female 
towards “food” volatiles shifts to “host” volatiles upon 
mated, to help them finding oviposition sites (Saveer et al. 
2012). Therefore, the proportion of unmated and mated 
females in food traps may not represent the actual proportion 
of unmated and mated females in the field.

Host volatiles that attract EGVM in the laboratory and 
in the field have been identified (reviewed in Ioriatti et al. 
2011). Field tests demonstrate that the mix of phenylaceto-
nitrile (an HIPV) and acetic acid is more attractive to both 
sexes of EGVM than acetic acid alone (El-Sayed et al. 
2019). Similarly, a blend of 2-phenylethanol and acetic acid 
was attractive in a dose-dependent manner (Larsson-Herrera 
et al. 2020). In all these host-plant VOC studies the number 
of males and females captured was similar.

Ever more accessible and efficient electronics and soft-
ware are paving the way to develop automated monitoring 
devices (Ünlü et al. 2019; Lima et al. 2020). They provide 
two benefits over traditional hand-operated traps: high tem-
poral resolution and network access. High temporal resolu-
tion indicates the time of the day when the pest is active and 
serves to time automated pheromone dispensers (i.e., puff-
ers) cutting pheromone costs. EGVM males fly for a 1–3 h 
period starting at sunset as shown by using live females 
(Götz 1943) and image traps (Lucchi et al. 2018a). Images 
are relatively large (byte-wise) and the camera and acces-
sory night-time illumination consume energy, so the com-
mercial models offer low time resolution (1–2 pictures/day) 
(Lucchi et al. 2018a). Traps that encode the wingbeat of a 
moth crossing a LED-optical-sensor array may be the future 
of automated monitoring because they are real-time and less 
demanding in terms of energy and bytes than image-sensor 
traps (Burks 2022). “Wing-beat” traps, like image traps 
(Faria et al. 2021), require learning algorithms to discrimi-
nate among species, but this should not be a problem for 
the highly specificity of the pheromone lures. In addition, 
“wing-beat” traps do not retain the insects and so they spare 
“trap cleaning” visits.

Light may increase the attractiveness of pheromone 
and plant-volatile traps. The retina of the EGVM has two 
response peaks, one at 460–540 nm (blue-green region of 
visible spectrum), and a smaller one at 340–420 nm (ultra-
violet) which is the region of the spectrum considered behav-
iourally maximal in night flying insects (Crook et al. 2022).

2.2 Modelling
Today, phenological, physiological and predictive models are 
prevalent in IPM. By combining the simplicity of tempera-
ture-driven models and tools (e.g., sex-pheromone traps and 
weather stations), the application of phenological models on 
Decision Support Systems (DSS) can contribute to the advance 
of IPM programs. The relationship between EGVM phero-
mone trap catches and degree-day (DD) accumulations using 
phenological models to determine the best time for insecticide 
spraying it has been assessed (Del Tío et al. 2001; Milonas 
et al. 2001; Gallardo et al. 2009; Ortega-Lopez et al. 2014; 
Heit et al. 2015). Many models have been developed to moni-
tor EGVM adult flight, including process-based ones (Logan 
et al. 1976; Touzeau 1981; Gabel & Mocko 1984; Caffarelli & 
Vita 1988; Milonas et al. 2001; Gallardo et al. 2009; Caffarra 
et al. 2012). Other models use biological responses to tem-
perature (Moravie et al. 2006; Ainseba et al. 2011).

As reviewed by Carlos et al. (2018), several research-
ers have proposed predictive models for the development of 
EGVM based on the relationship between temperature and 
developmental rate (Gabel & Mocko 1984; Baumgärtner 
& Baronio 1988; Cravedi & Mazzoni 1994; Savopoulou-
Soultani et al. 1999; Brière & Pracros 1998; Del Tío et al. 
2001; Milonas et al. 2001; Gallardo et al. 2009; Heit et al. 
2015). In general, humidity does not play a major role in 
temperature-based phenological models, but it can be limit-
ing under particularly dry (Torres-Vila et al. 1996) and humid 
conditions (Bovey 1966). According to Bovey (1966) the 
combination of both parameters influences mortality, so the 
application of a model from one geographic area may need 
adjustments to the local conditions of a different one (Allen 
1976; Gallardo et al. 2009; Amo-Salas et al. 2011; Flores & 
Azin 2016). Only a few EGVM models have been applied to 
large geographical scales (Baumgärtner et al. 2012; Ortega-
López et al. 2014; Castex et al. 2020).

Physiological models including both environmental and 
life history parameters have been developed (Schmidt et al. 
2003; Moravie et al. 2006; Amo-Salas et al. 2011; Gutierrez 
et al. 2012; Ortega-Lopez et al. 2014; Gilioli et al. 2016). 
However, DD models have the advantage of being simpler 
to develop and easier to use by growers, after being vali-
dated locally because emergence of EGVM adults varies 
with location, climate, and year (Gallardo et al. 2009). The 
development of phenological models based on temperature 
either for grapevine, as well as for EGVM has been stud-
ied (Reineke & Thiéry 2016; Castex et al. 2020; Reis et al. 
2021a, b). Simulations with phenological models can help 
understanding the impact of climate change on the phenol-
ogy of both trophic levels (EGVM and grapevine). Their use 
would not replace common monitoring programs or eco-
nomic thresholds. An adequate sampling technique must be 
adopted to accurately determine egg and larval population 
structure variability in space and time (Ioriatti et al. 2011). 
Knowledge of the spatial distribution of EGVM populations 
is important for developing efficient sampling programs that 
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enable a more accurate assessment of damage and determine 
an intervention threshold. Direct plant inspections and inter-
vention thresholds help farmers to decide if and when using 
insecticides. Second and third EGVM generations are par-
ticularly difficult to control since larvae quickly penetrate the 
berries or the innermost parts of the grape cluster (Ioriatti 
et al. 2005; Carlos et al. 2018) and the canopy growth acts as 
a barrier for sprays. As economic damage to grapes occurs 
when larvae feed on grape clusters, control measures against 
the second and third generation should primarily target 
EGVM eggs, reducing the trophic activity of the emerging 
larvae to a minimum. Therefore, precise timing of sprays 
with ovicides (e.g., IGRs), before eggs hatch is particularly 
important to avoid damage. Ensuring effective strategies for 
EGVM control requires the development of tools to sup-
port sampling programs and timing of insecticide sprays. In 
this scenario, extension services or consultants should still 
carry out egg and larval assessments to estimate the actual 
level of infestation. The need of spraying-related DSS tak-
ing into account the actual vineyard infestation led to sev-
eral approaches, some of which are not yet practicable, e.g., 
DSS by cage station under local field conditions (Polesny 
et al. 2000) where survival and development of overwintered 
EGVM is monitored year around.

Models estimating the mortality of different stages 
under certain weather conditions based on long-term field 
assessment (Pasquali et al. 2022) are the most promising 
approaches for forecasting infestation if they deliver reliable 
quantitative results everywhere or are easily adjustable to 
other local conditions.

3 Management

3.1 Insecticide-based control
Despite the widespread application of pheromone MD 
(Ioriatti & Lucchi 2016; Benelli et al. 2019) and recent pes-
ticide restrictions (Daane et al. 2018a), EGVM is still man-
aged using insecticides on wide surfaces worldwide. In IPM 
programs, timing of sprays is based on trapping (Vacas et al. 
2011), on forecasting models (Castex et al. 2020; Lessio 
& Alma 2021), and on visual inspections (Bažok & Diklić 
2016). The number of applications per year depends on popu-
lation density, cultivar (i.e., wine or table grapes), and related 
economic injury levels (Moschos 2005; Vassiliou 2011). A 
high economic threshold is established for the 1st generation, 
especially on cultivars with abundant inflorescences, while 
2nd and 3rd generation are considered the most destructive, 
with a lower injury threshold (i.e., 1–15% of infested clus-
ters), depending on the cultivar, bunch tightness, and harvest 
time (Ioriatti et al. 2008).

Insecticide treatments are generally timed at the vine phe-
nological phase of pre-closure and post-veraison in bunches 
targeting eggs or the 1st instar larvae depending on the insec-
ticide mode of action (Coscollá 1997; Voigt & Sárospataki 

2000; Thiéry 2008; Ioriatti et al. 2012; Linder et al. 2016; 
Altimira et al. 2021). EGVM 3rd generation is generally 
considered the most harmful due to its closest relationship 
with the development of grey mold and sour rot (Pavan et al. 
1998; Ioriatti et al. 2005).

A wide variety of insecticides with different modes of 
action are available worldwide. Most of them are regis-
tered for grape pest control allowing resistance manage-
ment through rotating chemical classes in successive spray 
applications (Roditakis 2003; Bostanian et al. 2012). Since 
the 1980s, organophosphorus insecticides were widely used 
due to their effectiveness and inexpensiveness, in particular 
chlorpyrifos-ethyl and chlorpyrifos-methyl (Ioriatti et al. 
2008), both recently withdrawn by the EU regulation. In 
the IPM frame, the side effects of organophosphates, car-
bamates, and pyrethroids on non-target beneficial arthro-
pods, e.g., Phytoseiidae mites, is crucial (Tirello et al. 
2013; Pozzebon et al. 2015; Schmidt-Jeffris et al. 2021). 
Chlorpyriphos-methyl is harmful for other biocontrol agents 
(BCAs) in the vineyard. Mansour et al. (2011) reported that 
this organophosphate caused 100% mortality 24 h post-
treatment on the mealybug parasitoid Anagyrus vladimiri 
Triapitsyn (Hymenoptera: Encyrtidae) exposed to contact 
toxicity assays.

In the early 1990s, more selective insecticides like the 
insect growth regulators (IGRs) became available, including 
chitin synthesis inhibitors (CSIs), juvenile hormone agonists 
(JHAs) and molting hormone agonists or molting accelerator 
compounds (MACs). Being effective at lower concentration 
levels and scarcely hazardous to non-target species such as 
mammals and predatory mites, they have been considered 
as an alternative to several conventional compounds (Tirello 
et al. 2013; Pozzebon et al. 2015). CSIs, such as flufenoxuron 
and lufenuron, targeting the 1st larval generation of EGVM, 
reduced the second generation and caused significant lar-
val mortality for up to 45 days post-treatment (Pavan et al. 
2014). JHAs as pyriproxyfen target the endocrine hormonal 
system and disturb the pupation process and the embryonic 
development in freshly laid eggs (Dalla Montà & Pavan 
1990). MACs as methoxyfenozide are effective after inges-
tion or contact on larvae, inducing a premature moult and 
having ovicide activity (Dorn et al. 1981). The non-steroidal 
ecdysone agonist methoxyfenozide was more effective on 
older EGVM larvae over younger ones; when administered 
orally to adults it reduced EGVM fecundity and fertility, 
but not longevity (Sáenz de Cabezón Irigaray et al. 2005). 
Metoxyfenozide provided a higher larvicidal efficacy than 
tebufenozide in laboratory (Pasquier & Charmillot 2000). 
The commercial product at a dose of 0.03% was very effec-
tive in controlling larval infestation and showed a good rain 
fastness under a simulated rainfall of 30 or 60 mm. Being 
an effective ovicide, it boosted stakeholders to review the 
classic chemical control strategy based on neurotoxic insec-
ticides targeting EGVM larvae. Thus, a standard biological 
efficacy test method and a forecasting system taking into 
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account the biological stages of EGVM were developed 
(Pasquier & Charmillot 2000). IGR residues reduce fecun-
dity and fertility of adult moths in contact with treated sur-
faces (Charmillot et al. 1994). Early treatments targeting 
freshly laid eggs could reduce the reproductive potential of 
adults and therefore crop damage (Charmillot et al. 1994).

Chlorantraniliprole, belonging to the selective ryanodine 
receptor agonist’s class, achieved a high level of toxicity to 
EGVM neonate larvae in laboratory. In vineyards, chloran-
traniliprole applied against the larvae at 35 mg AI L-1 was 
as effective as the commercial standard reference, chlorpyr-
ifos-ethyl, and had a long-lasting effect. Chlorantraniliprole 
at the same field rate caused >20% egg mortality (Ioriatti 
et al. 2009). This active ingredient had no side-effects on 
eggs, nymphs, and adults of the predatory phytoseiid mite 
Amblyseius (Neoseiulus) californicus (McGregor) using the 
spray tower-leaf disk method (Kaplan et al. 2012). It was 
harmless when applied at the maximum recommended field 
dose and at twice the field dose on Chrysoperla externa 
(Hagen) (Neuroptera: Chrysopidae) (Zotti et al. 2013). The 
new mode of action of chlorantraniliprole and its safety to 
non-target organisms are useful in IPM, as well as for man-
aging insecticide resistance. The macrocyclic lactone ema-
mectin benzoate is a neurotoxic compound active through 
ingestion, effective at very low rates and on all instar stages 
(Boselli et al. 2008). Due to its rapid photodegradation on 
leaf surface it is considered harmless for beneficials, and 
it has a favourable residue profile requiring a short prehar-
vest interval (Liguori et al. 2010). Spinosad is widely used 
in organic vineyards and fruit orchards to control various 
pests, including EGVM (Duso et al. 2022). In the labora-
tory, it demonstrated toxicity to several arthropod natural 
enemies, but in vineyards this effect is mitigated by its short 
persistence (Dripps et al. 2011). Nevertheless, based on field 
observations, spinosad was reported as harmful to predatory 
mites and to egg parasitoids of leafhoppers (Tirello et al. 
2013; Duso et al. 2022). Spinetoram is a new insecticide 
derived from spinosad, through a chemical modification to 
improve its insecticidal activity, and a longer residual activ-
ity that in turn may led to higher toxicity to hymenopteran 
parasitoids (Varela et al. 2010). Spinetoram was applied in 
vineyards to control the 2nd larval generation and its efficacy 
was comparable with that of methoxyfenozide and chloran-
traniliprole (Forte et al. 2014).

Bacillus thuringiensis (Bt)-based products are used 
commercially against EGVM both in IPM and organic 
viticulture. The efficiency of different Bt ssp. on differ-
ent grapevine cultivars has been studied (Roditakis 1986; 
Ifoulis & Savapoulou-Soultani 2004; Ruiz de Escudero et al. 
2007; Thiéry et al. 2018). Exploring new natural products 
generated by the symbionts of entomopathogenic nema-
todes, i.e., the bacteria species belonging to Xenorhabdus 
and Photorhabdus genera, may contribute to develop new 
tools for EGVM control (Vicente-Díez et al. 2021), pending 
proper field evaluation.

Botanical insecticides are of interest for future EGVM 
management. Carlina acaulis L. (Asteraceae) root essen-
tial oil and its highly stable aqueous nanoemulsion has 
been reported as effective against 1st instar larvae (LC50 = 
7.29 and 9.04 µL/mL, respectively) feeding on an insecti-
cide-sprayed diet (Benelli et al. 2020a). Later, Dasenaki 
et al. (2022) reported the larvicidal effect of Pistacia len-
tiscus L. (Anacardiaceae) fruit, leaf, and bark extracts 
on EGVM, highlighting that oleic and linoleic acids from 
the triglyceride mixture of the fruit hexane extract were 
responsible for the insecticidal activity observed towards 
the 5th instar larvae through topical application (oleic acid 
LD50 112.89–172.33 g/cm3, linoleic acid LD50 157.26–
201.48 g/cm3).

Kaolin is effective in limiting the EGVM oviposition and 
larval settlement, also showing its good selectivity towards 
beneficial insects (Pease et al. 2016; Tacoli et al. 2019). A 
significant effect against EGVM was also detected through 
sulphur applications, widely used in viticulture against pow-
dery mildew (Tacoli et al. 2020).

Regardless of the active ingredient used, its effective-
ness depends on its formulation and related chemical-phys-
ical properties, as well as on the dosage of the insecticidal 
mixture applied per unit of surface area, or rather per unit 
of vegetation volume, the coverage/wetting of the target 
organs, the size of the droplets, and the persistence/penetra-
tion of the substance applied on or into the vegetation to be 
protected (Bostanian et al. 2012). In this scenario, the new 
sensory technologies can contribute to a precision viticul-
ture where insecticide-based EGVM control can be carried 
out according to “when needed and only enough” (Pertot 
et al. 2017).

3.2 Insecticide resistance
There are very few insecticide resistance reports for EGVM, 
including indoxacarb resistance in Italy (Civolani et al. 
2014) and Turkey (Durmusoğlu et al. 2015; Hatipoğlu et al. 
2015), and pyrethroid and spinosad resistance in EGVM 
populations from Greece, and recently from Turkey (Vontas 
& Roditakis pers. comm.). To evaluate EGVM insecticide 
efficacy and insecticide resistance levels, bioassay protocols 
that facilitate exposure of larvae to the insecticide via artifi-
cial diet are used. They include incorporation of the active 
ingredient in the artificial diet, and incubation of individual 
larvae in ventilated cells for selected time intervals (Civolani 
et al. 2014, Durmusoğlu et al. 2015, Vontas & Roditakis 
pers. comm.). These protocols were originally designed for 
another tortricid, the codling moth Cydia pomonella (L.) 
and have been validated by IRAC (method 017 or modified 
protocols, https://irac-online.org/methods/cydia-pomonella-
larvae/) (Civolani et al. 2014).

One of the major difficulties in performing standard 
dose-response bioassays with EGVM is the slow and elabo-
rate rearing of field-collected strains. The establishment of 
EGVM strains in the laboratory is not always successful. An 
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adaptation period is often required, aggressive fungal con-
taminations have been observed, and minor alterations in the 
rearing conditions may reduce the moth reproduction rate. 
These issues may explain the limited published laboratory 
insecticide bioassays for EGVM in comparison with other 
lepidopteran species.

Insecticide-resistance mechanisms have been elucidated 
at the molecular level in several lepidopteran species. These 
include modifications of target sites and/or enhancement of 
the detoxification/metabolism process (Ffrench-Constant 
2013; Nauen et al. 2022). Target site mutations have been 
associated with striking insecticide resistance phenotypes 
against several insecticide classes in key moth species (Wang 
et al. 2016; Roditakis et al. 2017a, b; Zhang et al. 2017). 
Detoxification-based resistance, either by overexpression 
or (less often) by mutations that increase enzyme-substrate 
affinity, have been also reported in many lepidopterans 
(Katsavou et al. 2022; Nauen et al. 2022). Molecular charac-
terisation of insecticide-resistance mechanisms in the EGVM 
have not kept pace with other lepidopteran pests due to the 
lack of genome information. However, a de novo transcrip-
tome was recently assembled for the EGVM containing the 
complete sequence of 84% of the Insecta BUSCO (Vontas & 
Roditakis pers. comm.).

Alignment and analysis of the target site fragments indi-
cate the absence of known target-site resistance mutations 
in EGVM populations from Turkey. The EGVM CYPOME 
(cytochrome P450s), which was annotated and phyloge-
netically classified, and the transcriptome and cytochrome 
P450 analysis will facilitate further molecular studies on the 
metabolism-based insecticide resistance in EGVM (Vontas 
& Roditakis pers. comm.). Resistance monitoring is rarely 
implemented in EGVM (Pasquini et al. 2018), but this is 
expected to change because fewer insecticides are becoming 
available for control.

The identification of genes potentially involved in meta-
bolic resistance, and the functional characterization of resis-
tance mechanisms, including the understanding of their 
evolutionary features (e.g., intensity and fitness cost) will 
facilitate the development of molecular tools, in line with 
other pests, which can be used in combination with toxico-
logical bioassay data to allow the implementation of the most 
appropriate evidence-based control strategies (Van Leeuwen 
et al. 2020).

3.3 Side and sublethal effects of insecticides
Insecticides, with special reference to carbamates, neonicoti-
noids and pyrethroids, have unexpected effects on the fitness 
of arthropods directly or indirectly through the trophic chain 
(e.g., James & Xu 2012; Mahmood et al. 2016). The effect of 
neonicotinoids on semiochemical communication of EGVM 
adults has been studied in the laboratory (Navarro-Roldán 
& Gemeno 2017; Navarro-Roldán et al. 2017; 2019). Dose-
mortality curves with an organophosphate, a pyrethroid, 
and a neonicotinoid insecticide were made to estimate the 

dose at which 50% of the population died (LD50) (Navarro-
Roldán et al. 2017). Unexpectedly, female larvae were more 
susceptible to the organophosphate chlorpyrifos than male 
larvae, despite females being larger, and this difference was 
not explained by sex differences in detoxification enzymes 
(Navarro-Roldán et al. 2020).

To study the effect of the neonicotinoid thiacloprid on 
pheromone production and release, and on male detection 
of and orientation to sex pheromone, lethal concentrations 
LC0.001, LC1, LC10 and LC20 were applied to the thorax of 
CO2-anesthetized moths. Calling behaviour decreased start-
ing at LC1 in the EGVM (Navarro-Roldán & Gemeno 2017). 
Thiacloprid delayed and reduced the percentage of EGVM 
males responding to pheromone in a wind tunnel without 
alteration of electrophysiological antennal responses (i.e., 
electroantennography) (Navarro-Roldán et al. 2019). During 
navigation along an odour plume, treated males exhib-
ited increased susceptibility to wind-induced drift. Further 
insights on the impact of sublethal doses of insecticides on 
semiochemical monitoring and control should be achieved 
under semi-field and field conditions.

MD is competitive when males are attracted to MD pher-
omone dispensers, and it is non-competitive when detec-
tion of sex pheromone is altered (Miller & Gut 2015). We 
do not know yet if MD is competitive or non-competitive 
in EGVM. Determining this requires demanding large-field-
cage experiments (Miller & Gut 2015), but prolonged expo-
sure to large pheromone concentration reduces antennal and 
flight responses, so non-competitive MD is likely in EGVM 
(Gavara et al. 2022). A reduction in calling behaviour by 
sublethal doses could make artificial pheromone lures more 
attractive than females, and this could increase the efficiency 
of monitoring traps and of competitive MD. Thus, sublethal 
insecticide doses may synergize MD, but simultaneously 
may overestimate population counts. On the other hand, a 
deterioration of pheromone detection and response in males 
by sublethal insecticide doses could boost non-competitive 
MD, and could also increase their response to synthetic lures, 
which probably have higher emission rates than females.

Sublethal insecticide effects could affect other IPM con-
trol methods, such as adult emergence phenology, protandry 
(Thiéry et al. 2014a, b), and parasitoid resistance via the lar-
val immune system and other defence strategies (Vogelweith 
et al. 2014; Thiéry et al. 2018). The experiments required 
to demonstrate the potential effects of sublethal insecticide 
doses on other IPM control methods in the field are tech-
nically challenging but could shed light on the interaction 
among control methods and improve IPM implementation.

3.4 Development of the Sterile Insect Technique 
(SIT)

There is increasing interest in developing the sterile insect 
technique (SIT) against EGVM due to its increased world-
wide pest status and the need to eradicate it from newly 
invaded regions (Saour 2014; FAO-IAEA 2018; Simmons 
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et al. 2021c). Particularly, when EGVM occurs close to resi-
dential areas, it is necessary to develop tools that are accept-
able to the public (FAO-IAEA 2018; Simmons et al. 2021b). 
Over the last ten years several efforts have been initiated to 
develop the SIT, which includes determining the effect of 
radiation on the biology and mating behaviour, developing 
mass-rearing methods, and making field releases to evalu-
ate sterile moth competitiveness, dispersal, longevity, and 
population suppression with season-long, small-scale pilot 
projects to evaluate operational use (Saour 2016; Simmons 
et al. 2021c; Taret et al. 2021).

3.4.1 Radiation biology for SIT development
Complete female sterility was achieved by irradiating adults 
with 150 Gy, with 400 Gy achieving near 100% male sterility 
(Saour 2014), and 150 Gy was suggested as the dose to use 
for an F1 sterility program (or inherited sterility program, see 
Marec et al. 2021), allowing a trade-off between field perfor-
mance and higher residual male fertility (Saour 2016). At 150 
Gy, the frequency of F1 male progeny increased, and these 
had high sterility levels when crossed with fertile females 
(Saour 2014). Steinitz et al. (2015) found a similar level of 
sterility at 150 Gy in EGVM females when irradiated as pha-
rate pupae and crossed to fertile males, though they found 
somewhat lower sterility levels with less than 4% residual 
fertility. Crosses of fertile females with 150-Gy-irradiated 
males had higher levels of fertility than what Saour (2014) 
reported but had similar sterility levels in the F1 generation 
(Steinitz et al. 2015; Simmons et al. 2021c).

3.4.2 Impact of the mating biology on SIT development
EGVM males, like all lepidopterans, produce two types of 
sperm, eupyrene, the fertilising sperm, and apyrene, the non-
fertilizing sperm cells (Friedländer et al. 2005), which have 
a role in sperm competition when females remate (Cook 
& Gage 1995). EGVM is unique among most moth spe-
cies, having a monandrous mating system with about 80% 
of females mate once and only 20% mate more than once 
(Torres-Vila et al. 2002a; 2002b). In the EGVM the ratio 
of apyrene to eupyrene sperm is about 2:1, which is differ-
ent from the typical 10:1 ratio of most polyandrous species 
(Cook & Wedell 1996; Watanabe et al. 1998). Sperm prece-
dence is about 0.5, with no advantage to either first or second 
mating males (Sadeh & Harari 2015). Monandry and lack of 
precedence is advantageous for the SIT approach because 
it increases mating competitiveness of sterile males over 
wild males (Lance & McInnis 2021). EGVM males cease to 
produce fertile (eupyrene) sperm at the pupal stage (Sadeh 
2016), thus, there is no risk of producing new viable sperm 
at the adult stage after irradiation.

3.4.3 Pilot projects for SIT development
In Chile, the Servicio Agrícola y Ganadero (SAG), an Agency 
of the Agricultural Department (Ministery of Agriculture), 
working with partners in the fruit industry (Fundación para el 

Desarrollo Frutícola, FDF), started a pilot project to develop 
the SIT for EGVM. The first steps were based on methods 
adapted from mass-rearing moths for other SIT programs 
and adapting existing artificial diets (Nadel et al. 2018; 
Simmons et al. 2021b). After optimizing an artificial diet 
using ingredients available at low cost in Chile, a mass-rear-
ing capable of producing 100,000 or more moths per week 
was developed. SAG also developed quality control proce-
dures and a system for adult collection and irradiation based 
on the pink bollworm and codling moth programs (Simmons 
et al. 2021c), while FDF developed collection and irradiation 
of pharate adults (S. Izquierdo pers. comm.). A smaller scale 
mass-rearing and pilot release program has been started in 
Argentina in cooperation with researchers from Chile (Taret 
et al. 2021).

3.4.4 SIT field studies
A field dispersal experiment in Syria demonstrated a reduc-
tion in the percentage of male recapture for moths irradiated 
at 350 Gy compared to moths irradiated at 150 Gy, while 
there was no difference between 150-Gy irradiated and unir-
radiated moths (Saour 2016). Starting in 2016, several field 
studies were conducted to evaluate the potential of the SIT to 
control EGVM infesting grapevines in urban gardens adja-
cent to vineyards and fruit production areas in Chile. Initial 
field cage and mark-recapture experiments of moths and 
pupae irradiated at 150 Gy showed that the average dispersal 
and longevity of irradiated males was 58 m, with a 62% sur-
vival after 3 days (Simmons et al. 2021c).

During the 2019–2020 growing season, a season-long 
field release experiment was conducted in a 25-ha urban 
plot in a small city next to grape production areas in central 
Chile. A release of 752,353 moths was made for 37 weeks 
for an average rate of 813 moths/ha/week. High overflooding 
ratios were achieved for the first weeks of the experiment, 
but because of the high wild moth population in this area, 
the release of sterile moths did not reach large enough ratios 
of sterile versus wild moths to achieve effective control. Yet 
high moth quality and field performance of sterile moths was 
observed, with some flying as far as 800 m and living as 
long as 10 days (Simmons et al. 2021c). The project dem-
onstrated that high-quality sterile moths could be produced 
and released but it was clear that additional IPM tactics 
were needed, such as fruit stripping or treatments with Bt to 
lower the overall population for sterile release to be effective 
(Simmons et al. 2021c.)

4 Pheromone-mediated control strategies

One of the most effective biocontrol methods used against 
EGVM over large areas and in the long term is MD (Ioriatti 
et al. 2011; Ioriatti & Lucchi 2016), which is characterized 
by high selectivity, and very low environmental impact. The 
first MD tests against EGVM were carried out in France, 
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under laboratory (Roehrich et al. 1977) and field condi-
tions (Roehrich et al. 1977; 1979; Roehrich & Carles 1981). 
Despite heterogeneous results, they established basic points 
and procedures to improve the efficiency of this method, 
including adult dispersal, plot shape, minimum area treated, 
edge area, number and dosage of pheromone dispensers, ini-
tial population density, habitat details, global pest species 
spectrum, and other compatible control measures. Improved 
knowledge of the insect species combined with technical and 
economic enhancements allowed to optimise the use of MD 
against EGVM (e.g., Stockel et al. 1994; Charmillot et al. 
1995; Schmitz et al. 1995; Torres-Vila et al. 1997; Ioriatti 
et al. 2005).

The case of the Trento province (northern Italy) can be 
cited as a model example for effective and large-scale appli-
cation of this control strategy (Ioriatti & Lucchi 2016). This 
territory indeed is recognized as a pioneer in Italy in the 
application of MD against Lepidoptera Tortricidae such as 
EGVM, Eupoecilia ambiguella (Hübner) and, in some areas, 
Argyrotaenia ljungiana (Thunberg), for which three-purpose 
dispensers have been developed. Currently, the vine-growing 
area in the Province of Trento involved in pheromone MD 
represents about 95% of the total viticulture (about 9,700 
hectares), and together with the area where the control of the 
codling moth in the apple orchards is carried out with MD, 
represents the largest area treated with pheromones in Italy.

Nowadays, MD against EGVM is applied on approxi-
mately 300,000 ha of European vineyards, i.e., about 6–7% 
of the total grapevine-growing area. To date, no resistance 
to MD has been detected under field conditions, even if 
there is heritable variation in the ability of males to locate 
females in commercial pheromone-treated areas (Torres-
Vila et al. 1997). MD area-wide applications have been 
recently conducted in Chile, Argentina, and California 
where EGVM was accidentally introduced (Ioriatti et al. 
2012; Cooper et al. 2014). The most common hand-applied 
“passive” dispensers available on the market for EGVM are 
Shin-Etsu twist-ties ropes (Isonet® L, L plus, L E and L A 
plus in Europe; Isomate® EGVM in the USA), BASF twin 
ampoules (RAK® 2 MAX and RAK® 1+2), and ShinEtsu 
Isonet® L TT and BIOOtwin® L twin ropes (Lucchi et al. 
2018b). The active ingredient in these dispensers is the main 
EGVM pheromone compound, (E,Z)-7,9-dodecadienyl ace-
tate, rarely mixed with other minor compounds. Depending 
on the formulation, 200 to 500 dispensers per hectare (the 
number of dispensers may vary depending on manufacturer 
formulation and EGVM population level) must be deployed 
in the vineyards before the onset of the first seasonal flight, 
because late deployment will cause control failures. In urban 
areas of Chile, important refuges for large EGVM popula-
tions and frequent sources for vineyards re-infestation, the 
use of as low as 50 mesodispensers ha-1 (each containing 
1.72 g (E,Z)-7,9-dodecadienyl acetate) for three consecutive 
seasons (between 2013–2016) have shown an asymptotic 
reduction in trap captures overtime (Ceballos et al. 2022). 

Dispensers must be evenly distributed in the vineyard and 
should be attached to vine shoots covered with foliage for 
protection against direct sun exposure and high temperatures. 
Twice as many dispensers must be hung along the vineyard 
edges to compensate for the loss of pheromone concentration 
in those areas. Border effects are remarkably reduced when 
MD is applied in area wide projects, as in certain growing 
regions of Germany, France, Switzerland, northern Italy, 
and Spain (Kast 2001; Ioriatti et al. 2008; Ioriatti & Lucchi 
2016). Depending on the vineyard layout and trellising sys-
tem, the time to deploy the dispensers in the vineyards may 
vary between 1 and 2.5 h/ha. Currently, the surface area of 
vineyards in Europe under EGVM MD control remains lim-
ited, despite intensive research and substantial experience 
with practical applications during the past two decades. This 
is due to socio-cultural and economic conditions existing in 
the different vine-growing areas where interest and trust for 
innovative methods is often low. Recently, increasing quality 
standards for wine and table grapes with respect to pesticide 
residues, and improved pest control in high-pressure areas, 
are creating new opportunities for extensive adoption of MD 
in IPM programmes.

Further research is needed to improve the efficacy of MD 
technology, and to manage invasive and secondary pests 
without compromising the value of the pheromone-based 
approach for the management of the target tortricid pests 
(Nieri et al. 2022). For example, it remains critical to develop 
and commercialise novel and/or better formulations that are 
more effective, cheaper, and easier to deploy. In this sense, 
aerosol technologies may provide a cost-effective alternative 
to hand-applied passive dispensers (Benelli et al. 2019).

Automatic aerosol devices can actively release pher-
omone puffs at programmed time intervals (Suterra 
CheckMate Puffer® LB and ShinEtsu Isonet® Mister L). 
These active devices require a much lower number of units 
per hectare (3 to 5) compared to hand-applied dispensers 
because they release liquid micro-droplets that float in the air 
and evaporate, differing from the slow releasing vaporized 
molecules of the passive dispensers. The reduced number 
of units can save labour costs, at least after the first year of 
application, and contribute, to some extent, to reduce plastic 
disposal in agricultural settings (McGhee et al. 2016; Lucchi 
et al. 2018b c).

Aerosol formulations can be easily tuned to release 
pheromone plumes during the hours when males really fly 
searching for mates, providing a cost-effective alternative 
to passive dispensers. As above mentioned, Lucchi et al. 
(2018a) reported that EGVM flight mainly occurs between 
21:00 and 23:00 h along the three generations. These find-
ings are useful in optimizing the MD technique, identifying 
selected time intervals when the release of synthetic phero-
mones can be concentrated, boosting MD efficacy against 
this important pest, reducing the release of synthetic sex 
pheromone molecules, and potentially reducing application 
costs.
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Further research to develop aerosol dispensers with 
reduced pheromone content and finely tuned release pro-
grammes is ongoing with the aim of producing highly effec-
tive, economic, and easy-to-manage aerosol devices. This 
research will undoubtedly have to be linked with the mea-
surement of pheromone concentration in the air via research 
on sensors (Ivaskovic et al. 2021). Harari et al. (2011) showed 
that females can detect their synthetic pheromone and may 
adjust several behavioural traits and their spatial distribution. 
Hence, the optimal efficiency of MD will depend on the uni-
formity of the pheromone cloud and its spatial distribution 
in time.

Other novel pheromone application systems as auto-
confusion, lure and kill, microencapsulated sprayables and 
nanofibers are still under investigation and can hopefully 
represent future opportunities for grapevine moth control 
(Underwood et al. 2002; Charmillot et al. 2005; Ioriatti & 
Lucchi 2016). Investment in fundamental research is how-
ever still critical for an effective improvement in semiochem-
ical applications. Research should address the reproductive, 
physiological and behavioural mechanisms by which phero-
mone affects the target insects, as well as explain how these 
compounds are involved in tritrophic interactions. For steep 
slope regions of countries located in the south of Europe, 
research about new dispensers is still needed, to avoid 
exhaustion of pheromone during the 3rd flight. Under such 
situations, and particularly on windy slopes, aerosol dispens-
ers can show a limited efficacy.

In some wine-growing areas where MD is applied, the 
reduction in insecticide use against the key pests is surpris-
ingly one of the main limitations to the extensive use of 
MD. In fact, the outbreaks of resident secondary pests or the 
invasion of new alien species allowed by the lower quan-
tity of insecticides applied because of MD application can 
sometimes occur. Therefore, in order not to jeopardise the 
adoption of MD, it is crucial to develop environmentally safe 
control methods against these secondary or invasive pests 
(Pertot et al. 2017; Nieri et al. 2022).

4.1 Biological control
The occurrence of EGVM natural enemies varies on the 
season and strictly depends on the features of the ecological 
niche in which the moth lives (Thiéry et al. 2001; Bagnoli & 
Lucchi 2006).

4.1.1 Predators
The predators associated with EGVM include insects, other 
arthropods, and vertebrates (Coscollá 1997; Ioriatti et al. 
2011; Thiéry et al. 2018). The latter are represented by birds 
and bats, which occasionally feed on EGVM adults (Thiéry 
et al. 2018; Baroja et al. 2021; Charbonnier et al. 2021; 
Chaperon et al. 2022). Among arthropods, Clubionidae, 
Theridiidae, Thomisidae, Linyphiidae and Salticidae spiders 
(Araneae) are considered EGVM predators in Mediterranean 

vineyards (Marchesini & Dalla Montà 1994; Addante et al. 
2008; Ioriatti et al. 2011; Thiéry et al. 2018). Several insect 
species in the orders Dermaptera, Hemiptera, Neuroptera, 
Diptera and Coleoptera can prey on EGVM, providing a 
moderate contribution to control their populations (Coscollá 
1997; Ioriatti et al. 2011).

4.1.2 Parasitoids
A number of studies have been carried out to describe 
parasitoids, specifically or occasionally associated with 
EGVM (Thiéry et al. 2006c; 2011; Xuéreb & Thiery 2006; 
El-Wakeil et al. 2009; Moreau et al. 2010; Loni et al. 2016; 
Scaramozzino et al. 2017; 2018; Carlos et al. 2022; Di 
Giovanni et al. 2022). For a correct association between host 
and parasitoid, dedicated breeding protocols by expert tax-
onomists and carefulness in the selection and management 
of the field-collected material are required. To this regard, 
PCR-RFLP analysis on EGVM larvae can be a reliable tool 
to shed light on parasitoid species identity and parasitization 
rates (Papura et al. 2016).

From a physiological point of view, larval immune func-
tions depend on host plant quality and are positively cor-
related to parasitism, suggesting that parasitism selects for 
greater investment into immunity in the EGVM (Vogelweith 
et al. 2013a). Larvae exposed to parasitoids develop faster, 
which provides added defence to immunity (Vogelweith 
et al. 2013b). Feeding on several host plants in addition to 
grapevines increases the immune response, which could 
explain the maintenance of polyphagy in the EGVM (Muller 
et al. 2015). During the night-time EGVM larvae spend more 
time eating, have higher phenoloxidase activity and experi-
ences changes in immunity-related haemocytes, all of which 
points towards adaptations to enhance the immune response 
to parasitoids (Iltis et al. 2021).

As a general trend, egg and larval parasitisation rate is 
higher in the first two EGVM generations and decreases in 
the overwintering generation, which is mainly affected by 
larval and pupal parasitoids (Ioriatti et al. 2011). Most of 
the species associated with EGVM (>95%) are either para-
sitic Hymenoptera belonging to the families Braconidae, 
Chalcididae, Elasmidae, Eulophidae, Ichneumonidae, 
Pteromalidae and Trichogrammatidae, or belong to 
Tachinidae (Diptera). The numbers of Ichneumonidae spe-
cies associated with EGVM have been recently recorded 
at 120 (Scaramozzino et al. 2018). In Italy, 63 taxa have 
been reported, the most abundant belonging to Cryptinae 
(20), Campopleginae (11), Pimplinae (10), Ichneumoninae 
(9), Metopiinae (7), Anomaloninae (3), Tryphoninae (2) 
and Cremastinae (1) (Scaramozzino et al. 2018). Moreover, 
in the Douro Demarcated Region (DDR) (Portugal), 16 
parasitoid taxa have been identified, most of them belongs 
to Hymenoptera (Carlos et al. 2022; Di Giovanni et al. 
2022). Among all EGVM parasitoids, only two of them 
have been considered suitable BCAs to be mass-reared for 
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subsequent release in the vineyard: Trichogramma spp. 
(Castaneda-Samayoa et al. 1993; Hommay et al. 2002; 
Pizzol et al. 2012; Lucchi et al. 2016; Thiéry & Desneux 
2018) and Campoplex capitator Aubert (Bagnoli & Lucchi 
2006; Xuéreb & Thiery 2006; Lucchi et al. 2018d; Moreau 
et al. 2019; Scaramozzino et al. 2018; Benelli et al. 2020b) 
(Fig. 1). Castaneda-Samayoa et al. (1993) evaluated three 
Trichogramma species (T. cacaeciae Marchal, T. embryoph-
agum (Hartig) and T. dendrolimi Matsumura) in the labora-
tory and in the field for the management of EGVM and E. 
ambiguella. Depending on the tested parasitoid species, dif-
ferent egg parasitisation rates ranging from 22.5% to 83.3% 
were achieved. In addition, eggs older than two days were 
parasitized significantly less than newly laid eggs. Lucchi 
et al. (2016) explored the parasitsm of T. euproctidis, T. cor-
dubense, T. evanescens and T. cacaeciae on eggs of EGVM 
feeding on Daphne gnidium L. (Thymelaeaceae). During 
the spring-summer season, the parasitisation rate increased 
and peaked at 55% in the third EGVM generation. The con-
trasting results concerning parasitisation rates achieved by 
the different Trichogramma spp. led to a failure in using 
these natural enemies as an effective and reliable strategy 
for controlling EGVM. On the other hand, research on the 
most suitable and reliable Trichogramma species for EGVM 
biocontrol is still ongoing.

C. capitator showed interesting EGVM parasitisation 
rates, depending on the context (Moreau et al. 2019); it has 

a host range limited to a few grapevine-feeding tortricids 
(Villemant et al. 2011), and the woodland deciduous tortri-
cid Ancylis mitterbacheriana (Aubert) (Scaramozzino et al. 
2018). Its rearing is difficult (Xuéreb & Thiéry 2006; Benelli 
et al. 2020b), because, as in other ichneumonids, mating 
failures rapidly drifts the sex ratio towards males. However, 
a joint project between University of Pisa (Italy) and SAG 
(Chile), led to the mass-rearing of C. capitator, followed 
by its release for EGVM management purposes in Chile 
(Lucchi et al. 2018d; Navarro 2021). Results still need to 
be fully evaluated, since the covid-19 emergence precluded 
an immediate assessment of the parasitisation rates directly 
after the release of the parasitoid. However, this species is 
still considered one of the most promising parasitoids for 
EGVM management.

Among the better-performing parasitoids, three other 
candidates emerged, i.e., Dibrachys microgastri (Bouché) 
(= Dibrachys cavus (Walker)) (Hymenoptera: Pteromalidae) 
(Coscollá 1980; Chuche et al. 2006), D. affinis Masi, 1907 
(Coscollá 1980; Bagnoli & Lucchi 2006) and Phytomyptera 
nigrina (Meigen) (Diptera: Tachinidae) (Bagnoli & Lucchi 
2006). Coscollà (1980) identified D. microgastri as a suitable 
parasitoid of EGVM in the Valencian wine-growing area. 
The tachinid fly P. nigrina represents an important polypha-
gous endoparasitoid for the natural control of EGVM in 
Tuscany (central Italy) especially during the anthophagous 
generation (Bagnoli & Lucchi 2006).

Fig. 1. (A) Lobesia botrana eggs parasitized by Trichogramma spp. (Photo: P. L. Scaramozzino). (B) Campoplex capita-
tor female (lateral view) (Photo: R. Ricciardi).
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Overall, given the difficulties in finding and breeding 
effective BCAs, it is important to support those already pres-
ent in the agroecosystem, boosting conservation biologi-
cal control (CBC) and IPM. This can be achieved through 
the adoption of selective, low-persistence (bio)insecticides, 
or by the use of non-insecticide-based techniques, but also 
through a smart management of the vineyard agro-ecosys-
tem, e.g., allowing the presence of flower strips in the inter-
row or by ensuring the presence of hedges or shrubs around 
the vineyard to provide food and refuges to BCAs, boosting 
biodiversity and agroecosystem stability (Segoli et al. 2020). 
Natural surrounding habitats are also crucial for maintain-
ing and providing resources for potentially EGVM natural 
enemies.

4.1.3 Entomopathogens
Several studies focused on entomopathogenic fungi (EPF) 
in the order Hypocreales, given their extensive expansion 
and persistence in various agroecosystems (Bidochka et al. 
2001). López Plantey et al. (2019) showed that Beauveria 
bassiana and Metarhizium robertsii are capable of infect-
ing EGVM larvae and that both species were adapted to the 
specific conditions of the studied vineyard. Further, Altimira 
et al. (2019, 2022) proposed the use of B. pseudobassiana 
strains during the winter season to control the overwintering 
pupae with the aim to reduce the number of adults in the fol-
lowing flight. Aguilera-Sammaritano et al. (2021) assessed 
the use of M. anisopliae for managing different developmen-
tal stages of EGVM, showing 85% pupal and adult mortality 
and 75% larval mortality in the laboratory. In the field, larval 
mortality ranged from 64 to 91%, with a correlation between 
the EPF strain and the pupal stage.

Differences between laboratory and field tests do not rep-
resent a priori an impediment to the use of these organisms 
in agricultural systems (Roy & Pell 2000). Some authors 
have focused on alternatives such as the application of B. 
bassiana and Paecilomyces fumosoroseus together with B. 
thuringiensis, which shows a synergistic effect in EGVM 
larval mortality (Beris & Korkas 2021).

Regarding entomopathogenic nematodes (EPN), labo-
ratory studies proved that Steinernema feltiae (Filipjev), S. 
carpocapsae Weiser, S. riojaense n. sp. and Heterorhabditis 
bacteriophora (Poinar) were able to kill larvae and pupae of 
EGVM, with S. carpocapsae being the most efficient, killing 
in 2 days ~50% of L1 and >75% L3 and L5. At the pupal 
stage, a concentration 5 times higher than that used in the 
larval tests was required to reach ~50% mortality (Vicente-
Díez et al. 2021). Ongoing experiments are showing the 
compatibility with regular adjuvants used in viticulture, the 
co-formulation with other chemical products applied in vine-
yards to manage fungal diseases, and the compatibility at 
10–15 °C that can facilitate their application to target over-
wintering pupae at the stem under the bark (Campos-Herrera 
et al. unpublished data).

5 Cultural control, functional biodiversity, 
and conservation biological control as 
tools of integrated pest management

The cultivation of less susceptible varieties is a tool to modu-
late damage in EGVM hot spots (Esmenjaud et al. 2008). 
It is unclear whether these longstanding observations on 
the susceptibility of grape varieties to EGVM are based on 
observed egg-laying behaviour or on different degrees of 
symptom expression with the same infestation (Rid et al. 
2019). However, these questions are of outstanding rele-
vance for breeding research. The effect of grape varieties was 
reported by several authors as having an important impact in 
EGVM development and fecundity (e.g., Moreau et al. 2006; 
Thiéry et al. 2014a, b; Carlos et al. 2018). Moreover, the size 
and shape of the grape bunches in the different varieties, as 
well as other characteristics of the larval micro-habitat, may 
influence EGVM developmental time (Thiery et al. 2014a, 
b), suggesting that the difference of compactness of clusters 
among varieties could infer differences in sunlight exposure 
and temperature having possibly an impact on the insect 
development.

Traditional ways of controlling EGVM without insecti-
cides include piling vineyard soil around the stems during 
winter to cause mold development on the overwintering 
pupae (Hoffmann 2021). Removal of the bark with metal 
mesh gloves, which can kill overwintering pupae is another 
possible option (Schwangart 1913). Both methods require 
too many hours of manual labor but could represent an 
incentive for designing new machines automatically per-
forming these tasks.

Leaf removal in the bunch zone of the canopy is an effi-
cient way to reduce cluster size and compactness, making 
them less susceptible to EGVM attack and subsequent rot. 
Another positive effect is that the direct sunlight increases 
berry temperature in a way that EGVM eggs can be killed. 
As demonstrated by Moosavi et al. (2018) bunch-zone leaf 
removal (BZLR) reduced the carpophagous generation by 
about 50%. Temperatures from 37–40 °C increased the mor-
tality of eggs and newly hatched larvae. In the field, the berry 
temperatures of sun-exposed bunches exceeded the tempera-
tures that were lethal in the laboratory reducing egg hatch-
ing and larval settlement, even if the number of eggs laid 
by females on these bunches was not affected. BZLR can 
be considered as a valid cultural practice in the context of 
Integrated Pest Management and combined with optimised 
grapevine-row orientations, can improve EGVM control.

In addition to the agronomic techniques just mentioned, 
the management of the wild flora in or around the vineyard 
can play an important role in fostering EGVM natural ene-
mies. The timing and frequency of weed control by herbi-
cide applications or tillage of inter-row strips determines the 
diversity of the plants and arthropods that can inhabit these 
strips (Hall et al. 2020). It is difficult to cultivate green cover 
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crops at all in rainfall-deficient vineyards, especially in cli-
mates like the Mediterranean (Winter et al. 2018).

The idea that intercropping or mixing different crops can 
improve moth natural regulation is old (Silvestri 1912) but 
was temporarily forgotten after the introduction onwards of 
synthetic insecticides from the 1950s. Several studies have 
pointed out a positive influence of landscape diversity on the 
abundance and diversity of natural enemies at the field level 
(Bianchi et al. 2006; Tamburini et al. 2020), but the impact of 
this diversity in enhancing biological control has not always 
been demonstrated (Begg et al. 2017; Lichtenberg et al. 2017).

The importance of non-crop vegetation or soil cover veg-
etation for providing resources to parasitoids, such as shelter, 
overwintering habitat, nectar, pollen, and alternate hosts or 
preys, is well documented (e.g., Thomson et al. 2010; Daane 
et al. 2018b; Shapira et al. 2018; Segoli et al. 2020; Möller 
et al. 2021). Semi-natural elements in the surrounding land-
scape and vineyard inter-row management are necessary to 
foster natural pest control (Judt et al. 2019) and to execute 
a successful CBC program based on the implementation 
of habitat management strategies. The use of plants native 
to a region in the habitat management to support natural 
enemy populations has several other advantages (Landis 
et al. 2012). Because these plants are locally adapted, they 
require, in general, little management after establishment 
and can persist within the agroecosystem for decades. The 
incorporation of such habitats into the vineyard, in addition 
to biocontrol, can provide other benefits such as conserving 
wildlife, protecting water quality, and reducing erosion and 
runoff (Tillman et al. 2012). Furthermore, the use of native 
plants contributes to their conservation, which is especially 
important in the Mediterranean Basin, since this is one of the 
world’s richest places in terms of plant diversity (Cuttelod 
et al. 2009), being considered a prime candidate for conser-
vation support (Myers et al. 2000).

In DDR, a strong impact of the ecological infrastructure 
(EI) on the parasitism of EGVM was found (Carlos et al. 
2022), being five times higher in areas with a higher per-
centage of EI, when compared with areas with a lower per-
centage of EI. It was also found that native ground cover 
increased parasitism by 50%, compared to vineyards with 
bare soil. In Andalusian vineyards, surrounding landscapes 
influence EGVM infestations on farms (Paredes et al. 2021). 
At harvest, pest outbreaks increased four-fold in simplified 
vineyard-dominated landscapes compared to complex land-
scapes in which vineyards are surrounded by semi-natural 
habitats. Similarly, insecticide applications doubled in vine-
yard-dominated landscapes but declined in vineyards sur-
rounded by shrubland.

Thomson et al. (2010) observed a positive impact of 
woody vegetation surrounding vineyards on Eulophidae 
parasitoids. On the other hand, temporal dynamics and dis-
turbance regimes of perennial and annual crops greatly dif-
fer, and these differences may modify the effect of landscape 
composition on natural enemies, pest communities, and bio-

control services. Consequently, it is not known if landscape 
heterogeneity positively affects pest control over time or if 
antagonistic relationships between guilds emerge over time, 
neutralising the effects of landscape heterogeneity (Rusch 
et al. 2017). The general variability of the results shows that 
the regional context can strongly influence the local effects 
of the habitat characteristics (Begg et al. 2017).

It is clear that the habitat management systems must be 
developed and evaluated regionally, according to the natural 
characteristics of the context (Fernández-Mena et al. 2021) 
and that it is not possible to standardise the intervention 
methods in different contexts. New management systems 
have to be harmonised with the behaviour of growers at 
local or regional scales (Yang et al. 2021). This means that 
the research on the functional biodiversity in vineyards will 
probably become one of the main tasks for future plant pro-
tection research. At this regard, the use of sentinel traps for 
standardised measurement of insect parasitisation and pre-
dation (Hoffmann et al. 2017; Pennington et al. 2018; Reiff 
et al. 2021) and the use of molecular markers and metabar-
coding for ecosystem analysis could be useful. Using sen-
tinel traps, which consist of cards with previously counted 
instars of EGVM temporarily exposed in the field, both 
predation- and parasitisation rates can be assessed in vari-
ous contexts, independently from the actual occurrence of 
the pest (Hoffmann et al. 2017). These authors observed that 
flowering green cover crops did not enhance parasitism of 
EGVM compared to spontaneous vegetation in a given EI, 
but they increased the activity of unspecific egg and pupal 
predators. Pennington et al. (2018) found that reduced appli-
cations of plant protection products, by planting mildew 
resistant varieties, increased egg removal by predators. Reiff 
et al. (2021) did not find egg and pupal parasitism at all in 
Austrian vineyards but found that predation of EGVM pupae 
was negatively influenced by organic management and posi-
tively influenced by spontaneous vegetation. According to 
these authors, the landscape and the management have no 
effect on the egg predation. These results were found in an 
environment where insecticides were not used but where 
copper and sulphur applications in organic viticulture appear 
to be the most important bottleneck for biodiversity.

From a molecular ecology point of view, Papura et al. 
(2020) used EGVM-specific primers for food web research. 
Kaczmarek et al. (2022) firstly used metabarcoding of the 
whole vineyard/malaise trap fauna to analyse and manipu-
late entire vineyards on a whole ecosystem level.

6 Area-wide control programs (experiences 
from USA, Argentina, Chile)

As mentioned above, EGVM was introduced into the Americas 
region with the first detections occurring in Chile in 2008, in 
California (USA) in 2009 and in Argentina in 2010 (Gilligan 
et al. 2011; Ioriatti et al. 2012; Altimira et al. 2022b). Based 

12    Giovanni Benelli et al.



on its status as a significant Palearctic grape pest, its estab-
lishment in these regions presented significant production and 
export issues for grapes, as well as for other fresh market agri-
cultural commodities. In response, the national and regional 
plant protection authorities in each country implemented offi-
cial control programs where area-wide integrated pest man-
agement and regulatory control measures were established to 
eradicate or contain the spread of the pest.

6.1 Program response in Chile
In April 2008, the first confirmed South American detec-
tion was made in the Linderos area of Maipo province in the 
Metropolitan region in Chile (FAO-IAEA 2020). In response, 
the SAG, in cooperation with the Instituto de Investigaciones 
Agropecuarias (INIA), the grape and fruit industries and uni-
versity scientists, began a national control program for the 
management of EGVM and reduction of damage caused by 
the pest. This was accomplished by deployment of a pest 
monitoring program in grape production areas, the area-wide 
application of MD, insecticidal treatments and regulatory 
controls for grape production areas (Ioriatti et al. 2012; SAG 
2015; Simmons et al. 2021a). Mandatory treatments were 
applied to areas within 500 m of a detection with a quaran-
tine established within 3 km of the find. The program paid 
for all or part of the treatments depending on the size of the 
farm. The regions most impacted were wine grape produc-
tion areas near Santiago in the metropolitan region, and to the 
south in O’Higgins and Del Maule regions. There were also 
significant infestations in residential and urban gardens due 
the popularity of growing wine grapes in Chilean gardens, 
also requiring monitoring and control tactics (Ceballos et al. 
2022). Because of incidents of detections in plums and blue-
berries in areas where these crops were grown near infested 
vineyards, efforts are ongoing to protect these crops from 
EGVM impacts, especially to valuable export markets for 
fresh fruit. To help coordinate national activities, SAG and 
INIA developed a nation-wide alert system which included 
a phenology model, temperature monitoring stations and 
weekly EGVM pheromone trap capture, which were used to 
predict optimal timing for applications of MD and pesticide 
treatments.

Infestations in urban areas adjacent to agricultural pro-
duction areas were a significant challenge for control due 
to the difficulties in setting up effective control measures 
in residential areas (Ioriatti et al. 2012; FAO-IAEA 2020). 
Applications of MD were made to residential areas using 
regular dispensers, as well as mesodispensers (Ceballos et al. 
2022) and SAG launched a program to develop additional 
control tools to include development of the sterile insect 
technique (SIT) and a classical biological program to rear 
and release the European parasitoid C. capitator to improve 
control in urban areas (Lucchi et al. 2017; SAG 2018; 2019; 
FAO-IAEA 2020).

The peak period of EGVM detections was in the 2015–
2016 growing season and since that time there has been a 

significant decline in adult moth detections in grapes above 
90%, along with a decrease in the area under regulation  
(A. Alvarez pers. comm.) and the establishment of regions of 
low pest prevalence.

6.2 Program response in the United States
In 2009, a year after its detection in Chile, EGVM was 
reported in the Napa Valley in California; the first record in 
the United States (Varela et al. 2010; Gilligan et al. 2011). 
To react to this plant pest emergency, a cooperative response 
and control program was established among the California 
Department of Food and Agriculture, several offices of county 
Agricultural Commissioners, the University of California, 
the United States Department of Agriculture – Animal and 
Plant Health Inspection Service and grape producers (Ioriatti 
et al. 2012; Cooper et al. 2014). An eradication program was 
established that included a surveillance program, restrictions 
on the movement of plant material and equipment, multiple 
control measures, research and methods development and an 
extension and outreach program. The surveillance program 
consisted of a state-wide network of pheromone-baited traps 
to delimit the scope of the EGVM invasion, with 39 traps per 
km2 deployed in the central quarantine areas and 10 traps per 
km2 in grape producing areas outside of the quarantine area 
(Simmons et al. 2021a). Insecticide and mating disruption 
treatments were made in a 500 m radius around detection 
spots. Coordinated insecticide treatments using degree-day 
models to target eggs and young larvae were implemented 
at the start of the first and second flights (Varela et al. 2010; 
Cooper et al. 2014). MD applications were made during at 
least the first two flights after a detection (Simmons et al. 
2021a). Coordinated treatments were also made in residential 
areas with grape plantings within quarantine areas in Napa 
County. These properties were either treated by stripping 
flowers and fruit or by applications of Bt with some limited 
uses of MD (Cooper et al. 2014). Before its detection and the 
establishment of an official control program, movement of 
infested grapes and in one case, recycled vineyard stakes, led 
to EGVM spreading to several other California counties as 
far as 300 km from where it was first detected. However, the 
control program successfully caused populations to decline 
sharply over time. In 2016, after two years without detection, 
the pest was declared eradicated (Simmons et al. 2021a).

6.3 Program response in Argentina
Following the announcement of EGVM detection in Chile, 
Argentina established a phytosanitary alert to guard against 
entry of the pest (SENASA 2009). However, despite these 
measures, the first detection occurred in 2010 in Maipú, 
in the Province of Mendoza (Ioriatti et al. 2012, Dagatti & 
Becerra 2015). In response, a national official control pro-
gram for the EGVM prevention and eradication and a surveil-
lance trapping network was established (SENASA 2010). In 
Mendoza, program treatment zones were set up based on the 
degree of infestation, and protocols were established for the 
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transport of grapes within each zone. The program provided 
funds to pay for pesticides and MD for small and medium-
sized grape growers. MD applications were applied using 
hand-tied dispensers, mechanised aerosol release devices 
and aerial spray applications. Quarantine measures included 
restriction of movement of grapes and other host materials, 
tarping of bulk shipments of grapes to prevent larvae leaving 
infested shipments, destruction of wine making wastes, and 
removal of remaining fruit after harvest. After 2010, EGVM 
was detected in the provinces of San Juan, Entre Rios and 
Salta and control programs were initiated in those loca-
tions. Additional control measures included a pilot project to 
develop and evaluate the use of the SIT and releases of the 
classical biological control agent C. capitator.

Since program initiation, by 2021 the provinces of Entre 
Rios and Salta have achieved pest free area status after two 
years without detections and reductions in moth captures of 
about 50% have been achieved in the northern, eastern, and 
central grape growing regions of Mendoza with very low 
populations in the southern grape growing regions of the 
province. EGVM is still present in southern grape growing 
areas in the province of San Juan though population levels 
are low (W. Ramirez, SENASA, pers. comm.).

7 The future: challenges for prevention and 
management strategies

Overall, IPM offers several possible solutions for EGVM 
control. However, several key challenges in this field still 
need to be addressed. Below, we propose an agenda formu-
lating major aims for future research.

To date, as the problems induced by synthetic pesticides 
worsened, applied entomologies started to realise that CBC, 
in the frame of IPM, could represent a pivotal solution for 
the timely and sustainable management of this pest. It is 
of strategic relevance to focus on prevention rather than 
on post detection responses, which are usually much more 
costly. Molecular analyses represent a useful and reliable 
tool for improved insect identification and, in case of new 
detections, for characterising populations and determining 
the origin of the seeded populations (Daane et al. 2018a). 
Molecular tools could also be successfully used to distin-
guish among larval stages of parasitoids attacking EGVM 
(Papura et al. 2016).

More studies on BCAs are needed. For example, research 
on the biology and mass production of the two very efficient 
parasitoids in Europe (C. capitator and P. nigrina) has to be 
intensified. Interesting laboratory results were also obtained 
with D. microgastri (Chuche et al. 2006) and the technique 
based on Trichogramma spp. has to be developed as well. 
Focusing deeper on the egg/larval immune system quality of 
EGVM will provide interesting perspectives. The analysis 
of the prophenol oxidase (Vogelweith et al. 2014) suggests 
that encapsulation may occur after C. capitator egg laying in 

its larval host. The immune function varies with larval food 
and grape cultivar (Vogelweith et al. 2015); this could help 
in the future to adapt the biological control procedures to the 
immune efficiency (e.g., ratio parasitoids/hosts).

The extension of areas under MD worldwide is a very 
efficient current option for EGVM control, and the prom-
ising rapid results obtained in California (Simmons et al. 
2021a) suggest that a large-scale project can be very effec-
tive. Progress in sensing such concentrations are still needed 
to efficiently manage MD vineyards (Harari et al. 2011; 
Ivaskovic et al. 2021).

Gene editing tools have been proposed for manipulating 
natural enemy biology or plant defences (Gurr & You 2016). 
Recent research opens promising new prospects for control-
ling EGVM through interference with its interspecific com-
munication (Salvagnin et al. 2018).

Some of the control methods already available or under 
development against EGVM, if applied on a large scale and 
in the frame of IPM programs, can provide efficient, sustain-
able, and lasting control. However, the reduction of chemi-
cal input in the vineyard that these strategies can ensure may 
open the way for resurgence of secondary pests or invasion 
of alien species (Vezzulli et al. 2022). These phenomena 
are exacerbated by the mechanisms of globalisation and, in 
some contexts, by the ongoing climate change. The chal-
lenge for those involved on EGVM research and manage-
ment is therefore to quickly find effective and compatible 
solutions against these new species to safeguard hitherto 
developed IPM and sustainable control of EGVM (Nieri 
et al. 2022).
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