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Abstract. Deep neural networks (DNNs) obtained remarkable achieve-
ments in remaining useful life (RUL) prediction of industrial components.
The architectures of these DNNs are usually determined empirically, usu-
ally with the goal of minimizing prediction error without considering
the time needed for training. However, such a design process is time-
consuming as it is essentially based on trial-and-error. Moreover, this
process may be inappropriate in those industrial applications where the
DNN model should take into account not only the prediction accuracy
but also the training computational cost. To address this challenge, we
present a neural architecture search (NAS) technique based on an evolu-
tionary algorithm (EA) that explores the combinatorial parameter space
of a one-dimensional convolutional neural network (1-D CNN) to search
for the best architectures in terms of a trade-off between RUL prediction
error and number of trainable parameters. In particular, a novel way to
accelerate the NAS is introduced in this paper. We successfully shorten
the lengthy training process by making use of two techniques, namely
architecture score without training and extrapolation of learning curves.
We test our method on a recent benchmark dataset, the N-CMAPSS, on
which we search for trade-off solutions (in terms of prediction error vs.
number of trainable parameters) using NAS. The results show that our
method considerably reduces the training time (and, as a consequence,
the total time of the evolutionary search), yet successfully discovers ar-
chitectures compromising the two objectives.

Keywords: Evolutionary Algorithm · Multi-Objective Optimization ·
Convolutional Neural Network · Remaining Useful Life · N-CMAPSS.

1 Introduction

Predictive maintenance (PdM) is one of the key enabling technologies for In-
dustry 4.0. It develops a maintenance policy using predictions of future failures
of industrial components. Considering that this can be realized by estimating
remaining useful life (RUL) of the target components, the RUL prediction has
attracted considerable research interest, and much attention also from industry
stakeholders.

Today, data-driven approaches using various deep learning (DL) models have
gained increasing attention for developing RUL prediction tools. However, these
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models are usually handcrafted and their performance depends on the net-
work architecture, usually set empirically. Such a design process can be time-
consuming and computationally expensive because of the needed trial-and-error.
Neural architecture search (NAS), a technique that enables to design the archi-
tectures automatically, can be a reasonable solution for this problem. Particu-
larly, the realization of NAS through an evolutionary algorithm (EA), the so
called evolutionary NAS, has attracted considerable attention.

In the field of RUL prediction, a recent work [1] applied evolutionary NAS to
design the architecture of a data-driven DL model automatically. The authors
use a genetic algorithm (GA) to optimize the architecture of a complex DL
architecture that was manually designed in their previous work [2], aimed at
improving RUL prediction accuracy. Solving such an optimization problem for
better prediction accuracy can be formalized as follows:

w∗(a) = argmin
w

Ltrain(w, a) (1)

a∗ = argmin
a

Lval(w
∗(a), a) (2)

where Eq. (1) describes an inner evaluation loop that aims to find the optimal
weights w∗ for a given architecture (described by its parameters a) w.r.t. the
training loss Ltrain, while the outer loop defined by Eq. (2) searches for the
optimal architecture (i.e., the one described by the parameters a∗) w.r.t. the
validation loss Lval.

There are two problems in the above optimization task. As shown in Eq. (2),
the algorithm searches for an optimal architecture w.r.t. the prediction accuracy,
regardless of the size of the network. Although this aspect has not been thor-
oughly discussed so far in the existing literature, limiting the size of the network
determined by the number of trainable parameters is an important objective
in industrial contexts that normally seek to save cost by minimizing access to
expensive computing infrastructures. To solve this problem, in this paper we
propose to evolve a one-dimensional convolutional neural network (1-D CNN)
simultaneously subject to the two objectives of reducing the RUL prediction er-
ror and minimizing the number of trainable parameters. For this multi-objective
optimization (MOO) task, we use the well-known non-dominated sorting genetic
algorithm II (NSGA-II) [3], which has already been applied successfully to NAS
tasks [4, 5].

Another challenge of the aforementioned task is that it typically requires a
lengthy and rather expensive training process. As shown in Eq. (1), evolution-
ary NAS is computationally expensive because each individual (i.e., candidate
network architecture) should tune its parameters iteratively with gradient-based
computations until convergence, before being evaluated on the validation data.
To address this issue in our MOO approach, we propose a method for speeding
up the training formulated in Eq. (1) by combining two techniques: architecture
score without training [6] and extrapolation of learning curves.

The idea behind the architecture score is to predict the performance of a
trained network from its initial state. This score measures the overlap of acti-
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vations in an untrained network between different inputs from a mini-batch of
data, so that a higher score at initialization implies better performance in terms
of prediction error after training. Based on our preliminary experiments (not
reported here for brevity), we found that this score is distinctive for networks
with less than a certain number of trainable parameters. For those networks, we
replace the expensive training step with the architecture score. For the networks
with a larger number of trainable parameters, we instead apply extrapolation of
learning curves. This technique prevents the need for full training (as done in the
existing literature, where training is typically continued until a given maximum
epoch, set large enough to allow convergence, before computing the validation
loss), by training the network for a smaller number epochs, and observing the
validation root mean square error (RMSE) after each training epoch. The ob-
servations are then used for estimating the validation RMSE at the maximum
epoch. Specifically, we derive a learning curve based on the observations, and
extrapolate it to take the predicted validation RMSE at the maximum epoch.

To test the proposed method, we have used the new commercial modular
aero-propulsion system simulation (N-CMAPSS) dataset provided by NASA [7],
which is a well-established benchmark in the area of RUL prediction. On this
dataset, we search for optimal CNN architectures compromising the RUL pre-
diction error and the number of trainable parameters. The experimental results
verify that speeding up the evolutionary search causes the reduction of the hy-
pervolume (HV) of just around 3% (compared to the NAS without acceleration),
but the proposed method provides a considerable overall runtime reduction of
approximately 75% in terms of GPU hours.

To summarize, the main contributions of this work can be identified in the
following elements:
– The proposed method significantly shortens the evaluation time of the evolu-

tionary NAS process.
– The networks discovered by the architecture search process represent success-

ful trade-off between two conflicting objectives, namely the RUL prediction
error and the number of trainable parameters.
The rest of the paper is organized as follows: in the next section Section 2, the

general concepts on RUL prediction are introduced. The details of the proposed
methods are presented in Section 3. Then, Section 4 describes the specifications
of our experiments, while Section 5 presents the numerical results of the exper-
iments. Finally, Section 6 discusses the conclusions of this work.

2 Background

Recently, various RUL prediction methods have been proposed, which can be
mainly categorized into two approaches [8]: physics-based approaches and data-
driven approaches. The former require extensive knowledge to analytically model
the physical degradation process [9]. In practice, these implementations have
been limited because the physics underlying degradation is well-understood only
for relatively simple components, despite the huge amount of efforts [10]. On the
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other hand, data-driven approaches do not suffer from the above problems as
they assume that the information relevant to the health and lifetime of compo-
nents can be learned from past monitoring data [11].

Due to their ability to learn degradation patterns directly from historical data
without knowing the underlying physics, data-driven approaches have gained in-
creasing attention. Especially, black-box models based on deep learning have
been widely used for prediction [12]. Fig. 1 illustrates the flowchart of a data-
driven RUL prediction task with a black-box model. The object of the RUL
prediction is a target component. The sensors installed on the target collect the
health monitoring data, usually recorded in the form of multivariate time series.
The data are then fed into a black-box model that derives a RUL prediction as
its output. This model is trained on historical data collected by run-to-failure
operations. The training loss is then defined based on the difference between
the predicted RUL and the actual RUL. After training, the model can directly
provide the predicted RUL w.r.t. current sensor measurements. However, deter-
mining an appropriate black-box model is a key issue for developing successful
data-driven RUL prediction tools.

Fig. 1: Flow chart of a data-driven RUL prediction task.

Over the past decade, extensive research on data-driven approaches for RUL
prediction using neural networks has been performed. One of the earliest works,
introduced in [13], propose to use a multi-layer perceptron (MLP) for predicting
the RUL of aircraft engines. The authors also propose to employ a convolutional
neural network (CNN). Instead, the authors of [14] propose to a recurrent neural
networks (RNN), in particular a long short term memory (LSTM), to recognize
the temporal patterns in the time series. Considering the advantages of both
CNNs and LSTMs, a combination of them has been used to predict RUL in [2].
As an alternative to use back propagation neural networks (BPNNs), Yang et al.
[15] employ an extreme learning machine (ELM), a model originally introduced
in [16], that achieves a much faster training compared to BPNNs. Recently, an
autoencoder (AE) has been combined with RNNs [17] to obtain unsupervised
learning. In [18], attention mechanism has been applied to a DL-based frame-
work. Finally, deeper CNNs have been proposed in [10, 19], showing comparable
performances to the aforementioned combined architectures.

3 Method

We present now the details of the proposed method: Section 3.1 describes the
individual encoding and the optimization algorithm we used, while Section 3.2



Accelerating Evolutionary NAS for RUL Prediction 5

explains how we defined and applied the two techniques for speeding up the
evaluation.

3.1 Multi-objective optimization

Individual encoding Deep CNN architectures have provided outstanding per-
formances on multivariate time series processing [20], also including RUL predic-
tion [10, 19]. Therefore, we adopt a 1-D CNN as our backbone network, whose
architecture should be optimized. This network consists of a set of 1-D convolu-
tion layers and one fully connected layer: the nl stacked convolution layers aim
to extract high-level feature representations, while the following fully connected
layer uses all the extracted features for regression.

Fig. 2 visualizes a 1-D convolution layer in the network. Each of nf filters
of length lf slides over its input features to apply convolution in the temporal
direction. Each convolution layer is followed by an activation layer applying the
rectified linear unit (ReLU) activation function. The feature map of the last
convolution layer is flattened and fed into the fully connected layer comprising
nf.c. neurons to predict the RUL.

Fig. 2: Illustration of 1-D convolution layer with nf filters of length lf .

The number of convolution layers nl and the two hyper-parameters regard-
ing the convolution filter, nf and lf , contribute to the feature extraction. The
number of neurons in the fully connected layer, nf.c., works on the regression
task based on the extracted feature. All the four hyper-parameters largely affect
the prediction error and determine the total number of trainable parameters in
the network.

Based on the above description, we consider the optimization of the following
architecture parameters:
– nl, number of convolution layers;
– nf , number of filters in each convolution layer;
– lf , length of convolution filters;
– nf.c., number of neurons in the fully connected layer.

Considering that the architecture parameters are all integers, the encoding of
solutions consists of four integers. The lower and upper bounds for each param-
eter considered in our evolutionary search are set as follows: [3, 8] for nl, [5, 25]
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for both nf and lf , and [5, 15] (multiplied by a fixed value of 10) for nf.c.. These
values have been chosen empirically. In particular, the smaller networks, which
have too few trainable parameters, cannot decrease the training loss (i.e., they
underfit), while the larger networks, containing too many parameters, may over-
fit the training data. Taking these two aspects into account, we set the bounds so
to explore a parameter space of approximately 30,000 1-D CNN configurations.
One additional note is that nf is not valid for the last convolution layer. The
number of filters in the layer is set to 5, to prevent the fully connected layer from
receiving a too long flattened feature.

Optimization algorithm In order to optimize the architecture of the CNN de-
scribed in Section 3.1, we use the well-known NSGA-II algorithm [3], to look ex-
plicitly for the best trade-off solutions in terms of RUL prediction error and num-
ber of trainable parameters. In the evaluation step of our evolutionary search,
the fitness of each individual is calculated by generating a CNN (the phenotype)
associated to the corresponding genotype, i.e., a vector containing the four pa-
rameters introduced in Section 3.1.

At the beginning of the evolutionary run, a population of npop individuals
is initialized at random. In the main loop of the GA, an offspring population
of the same size is generated by tournament selection, crossover and mutation.
The new individuals are then put together with the parents. The combined
population is then sorted according to non-domination. Finally, the best non-
dominated sets are inserted into the new population until no more sets can be
taken. For the next non-dominated set, which would make the size of the new
population larger than the fixed population size npop, only the individuals that
have the largest crowding distance values are inserted into the remaining slots
in the new population. Subsequently, the next generation starts with the new
population by creating its offspring population. We stop this loop after a fixed
number of generations ngen.

Regarding the genetic operators, we consider 1-point crossover with crossover
probability pcx set to 0.5 and uniform mutation with mutation probability pmut

set to 0.5. The probabilities have been chosen such that, in most cases, indi-
viduals are produced by either mutation or crossover (exclusively), so to avoid
disruptive effects due to the combination of mutation and crossover that may
lead to bad individuals. The expected number of mutations per individual is
determined by the probability pgene, set to 0.4. It indicates the probability of
applying the mutation operator to a single gene. This means that we have, on
average, 1.6 mutated genes out of 4, which allows us not only to have a relatively
faster architecture search process, but also to avoid disruptive mutations.

Finally, we set npop and ngen to 20 and 10 respectively. We have empirically
found that these values allow enough evaluations to observe an improvement on
the HV spanned by the discovered solutions. After 10 generations, the algorithm
returns a Pareto front, that is defined as the set of trade-off solutions at the top
dominance level.
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3.2 Speeding up evaluation

Architecture score without training In almost all evolutionary NAS meth-
ods, the evaluation is the most time-consuming stage, because these methods
typically evaluate a number of candidate networks on the validation data after
the computationally expensive training [21]. In detail, a training set Dtrain is set
to include all the available training data. This set is split into training purpose
data, Etrain, and validation purpose data, Eval (i.e., Dtrain = Etrain ∪ Eval).
Then, Etrain is used for the training process defined in Eq. (1) while the archi-
tecture search process, defined in Eq. (2), is based on Eval.

To reduce the time needed for the evolutionary search, we employ a speed-up
technique called architecture score without training [6]. This method predicts the
performance of a trained network based on its ability to discriminate between
the different inputs of the network upon initialization, instead of training it.

Given that we use ReLU as the activation function in the networks, the
output activation of each unit can indicate whether the unit is active or inactive;
if the activation value is non-zero positive, the unit is active; otherwise, it is
inactive. This is encoded as a binary bit, representing the former case as 1 and
the latter as 0, i.e., we set the output activation of the non-zero positive case
to 1. Given a data mini-batch X = {xi}Mi=1, we feed an input sample xi into a
network containing NReLU activation units, and gather all the binary bits. Then,
we obtain a binary code ci ∈ {0, 1}NReLU for each sample xi, thus in total we
have M binary codes for the mini-batch.

The underlying intuition for the binary activation codes is that the similarity
of two binary codes from two different inputs reveals how difficult it is to separate
them for the network. For instance, if two different inputs have the same binary
code, they lie within the same linear region defined by the activation function
and therefore they are particularly difficult to distinguish [6].

The similarity between two different binary codes for xi and xj can be mea-
sured by the Hamming distance dH(ci, cj), and the correspondence between
binary codes for X can be computed by the kernel matrix KH :

KH =

NReLU − dH(c1, c1) · · · NReLU − dH(c1, cM )
...

. . .
...

NReLU − dH(cM , c1) · · · NReLU − dH(cM , cM )

 . (3)

Based on KH , the architecture score is then defined as:

s =
c

ln |KH |
. (4)

Following Eq. (4), the determinant of the kernel matrix |KH | is higher for the
kernel closest to the diagonal, and large distances between two different codes
mean that those can be well-separated by the neural network. Thus, a lower score
for the same input batch at initialization implies a better prediction accuracy
after training. We set the value of the constant c to 104, so that the score values
in our work range approximately from 1 to 20.
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Extrapolation of learning curves The evaluation step in evolutionary NAS
typically requires training each network for a given number of epochs, with a
relatively small learning rate. Following our previous work [1], we know that
using a large learning rate enables to reduce the number of epochs, but it makes
the validation curve fluctuate, thus providing unreliable evaluations caused by
overfitting. Early stopping policy has been widely used for saving a few epochs,
but its result is largely affected by how we define the performance improvement
and the amount of patience. Moreover, the early stopping policy can lead to
inaccurate performance estimations [21]. To mitigate this problem, we propose
an extrapolation of learning curves that allows to save half of the training time
w.r.t. a predetermined number of epochs. Note that here the learning curve is
based on the validation RMSE across epochs.

Our basic approach is to derive the learning curve based on a set of functions
f(x), which are combined after fitting each of them to the observations. Specifi-
cally, we terminate the training at nt epochs, that is half of the maximum epoch
nm planned for convergence, and collect all the validation RMSE for each of the
nt epochs. The observations are then used to fit each function defined in Table
1 by non-linear least squares minimization:

minimize
nt∑
j=1

(yoj − f(xj))
2

where yoj indicates the observed validation RMSE at xj . The obtained function is
denoted by f∗. The algorithm to solve the least squares problem is the Levenberg-
Marquardt algorithm [22].

Table 1: Functions f(x) used for extrapolation of learning curves. We chose a
set of functions from the literature [23], whose shape coincides with our prior
knowledge about the trend of the validation RMSE.

Name Formula

MMF α− α−β

1+γxδ

Janoschek α− (α− β)e−γxδ

Weibull α− (α− β)e−(γx)δ

Gompertz α+ (β − α)(1− e−e−γ(x−δ)

)
Hill custom α+ β−α

1+10(x−γ)δ

As shown in Fig. 3, each curve drawn by f∗ is close to the observation curve,
but no single function can sufficiently describe the learning curve. Therefore, we
combine all the obtained functions by solving a linear regression:

minimize ∥F ∗a− yo∥22
where F ∗ ∈ IRnt×k contains all the function values from k functions f∗ (in our
experiments, k = 5) for nt epochs, and yo ∈ IRnt is a vector of observations.
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Fig. 3: An example of how the learning curve is derived from the k = 5 functions
and the observations for 15 epochs. The red colored curve called “combined”
represents the obtained learning curve. We take its value at 30 epochs and use
it as the predicted validation RMSE.

The optimal a ∈ IRk, obtained by solving the linear problem problem, can be
written as a∗ = [a∗1, · · · , a∗k]. Our target value is the predicted validation RMSE
at xnm

. For that, first we take the function value at xnm
for each function f∗,

i.e., f∗(xnm
) = [f∗

1 (xnm
), · · · , f∗

k (xnm
)]. The linear combination of these values

with the weights a∗ is then the target value ypnm
:

ypnm
= f∗(xnm

) · a∗. (5)

If the validation RMSE has not converged yet, then our defined curve sufficiently
decreases with x and the minimum observed value, min(yo), is greater than ypnm

.
This decay can be defined as d = min(yo)−ypnm

, where we take ypnm
as the fitness

value if the decay d is greater than 0.
During the evolutionary NAS process, many networks appear and each net-

work converges at a different speed. Based on preliminary observations, we found
that ypnm

cannot be directly used as the fitness for some networks for which
the learning curve decreases rapidly in the first few epochs and then reaches a
plateau. In this case, our derived curve does not decrease with x and the decay
d can be negative, while the actual validation RMSE may decrease even a little
if we keep training the network. We compensate for this scenario by subtracting
the absolute value of the decay to the minimum observed value. This way, we can
assign a lower fitness value to the network that shows a validation RMSE trend
that converges very quickly. Overall, the predicted fitness in terms of validation
RMSE is then defined as:

fitnessRMSE =

{
ypnm

, d > 0

min(yo)− |d|, d ≤ 0.
(6)

In our experiments, we set the maximum epoch nm to 30, based on our previous
works [1, 2, 5]. If we terminate the training too early (i.e., after less than half
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nm), then the predicted value may be too small because the learning curve shows
no sign of convergence. On the other hand, using too many training epochs (close
to nm) would reduce any benefit of this speed-up technique. For these reasons,
nt is set to half nm, i.e., 15.

4 Experimental setup

4.1 Computational setup and benchmark dataset

The 1-D CNNs are implemented using TensorFlow 2.4. All the experiments have
been conducted on the same workstation with an NVIDIA TITAN Xp GPU, so
that we can have a reliable comparison of the GA runtime in terms of GPU
hours. To get reproducible results, we use the tensorflow-determinism library1,
which allows the DNNs implemented by TensorFlow to provide deterministic
outputs when running on the GPU. The GA is implemented using the DEAP
library2. Our code is available online3.

To test the proposed method, we use the N-CMAPSS dataset [7] that con-
sists of the run-to-failure degradation trajectories of nine turbofan engines with
unknown and different initial conditions. The trajectories were generated with
the CMAPSS dynamic model implemented in MATLAB, employing real flight
conditions recorded on board of a commercial jet. Among the nine engines, we
use 6 units (u2, u5, u10, u16, u18 and u20) for the training set Dtrain, and the
remaining 3 units (u11, u14 and u15) for the test set Dtest. We select and use 20
condition monitoring signals following the setup in [10].

4.2 Data preparation and training details

As shown in Fig. 2, the DNNs used in our work require time-windowed data
as an input to apply 1-D convolution in the temporal direction. To prepare the
input samples for the networks, first each time series is normalized to [−1, 1]
by min-max normalization. Then, we apply a time window of length 50 and
stride 50 so that the given multivariate time series consisting of the 20 signals
is divided into input samples, with each sample of size 50× 20. After slicing the
time series into samples, we assign 80% randomly selected samples from Dtrain

to Etrain. The remaining samples in Dtrain are assigned to Eval, which is used
for the fitness evaluation.

For training, we use stochastic gradient descent (SGD). In particular, AMS-
grad [24] is used as optimizer after initializing weights with the Xavier initializer.
We set the initial learning rate to 10-4 and divide it by 10 after 20 epochs, fol-
lowing our previous observations on the effect of learning rate decay [1]. The size
of the mini-batch for the SGD is set to 512. This size is also used for defining
a mini-batch for the architecture score. We randomly choose 512 samples from
1 https://github.com/NVIDIA/framework-determinism
2 https://github.com/DEAP/deap
3 https://github.com/mohyunho/ACC_NAS

https://github.com/NVIDIA/framework-determinism
https://github.com/DEAP/deap
https://github.com/mohyunho/ACC_NAS
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Eval, and use it as the mini-batch X. On this regard, the ablation study in [6]
verified that the choice of the mini-batch has little impact on the score trend
over different network architectures.

5 Results

First, we generate 20 individuals (i.e., 1-D CNNs) randomly. Then, the multi-
objective evolutionary process starts from the initial population. To perform a
comparative analysis, we consider 5 different configurations w.r.t. the way of
defining the fitness, denoted by fitnessRMSE : 1) using the architecture score,
without training any networks; 2) using the validation RMSE, after training
for 30 epochs; 3) using the validation RMSE, but training only for 15 epochs;
4) using the predicted validation RMSE at 30 epochs based on learning curve
extrapolation, after training for 15 epochs; 5) using the architecture score if
the network contains less than 5× 104 trainable parameters, and the predicted
validation RMSE with learning curve extrapolation otherwise.

The last configuration corresponds to our proposed method. We determine
the decision threshold value to be 5× 104 by analyzing the correlation between
the number of trainable parameters and the architecture score. In Fig. 4, we can
observe a negative correlation below the decision threshold. The difference in
the architecture score for the range between 4 and 5 (×104) on the horizontal
axis is trivial, but we take a large threshold value so that we can apply the
architecture score based evaluation to as many networks as possible, because
our major concern is to speed up the evolutionary search.

Here, we should note that the two different proposed surrogate mechanisms,
i.e., the architecture score and the validation RMSE predicted by means of learn-
ing curve extrapolation, provide evaluation metrics that are obviously in different
ranges. In order to use the score as fitness value (from the GA perspective), we
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Fig. 4: Architecture score vs. num-
ber of trainable parameters on 100
randomly generated networks (20
for each seed). The dash-dotted line
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Table 2: Summary of the comparative analysis for 5 different NAS configura-
tions w.r.t. fitnessRMSE . The HV is an avg.±std. of the values in Fig. 6 that
are based on the test RMSE and the number of trainable parameters. The bold-
face indicates the proposed method, which includes both architecture score and
learning curve extrapolation. It gives the shortest GA runtime of all the methods
that achieve better results than randomly generated solutions.

Methods (w.r.t. fitnessRMSE) Test HV GA runtime
(avg.±std.) (GPU hours)

Initial population (without GA) 71.28± 0.95 -
Architecture score 70.26± 0.70 0.03± 0.01
Training 30 epochs 75.40± 0.55 4.96± 0.51
Training 15 epochs 72.94± 1.20 2.59± 0.30
Training 15 epochs + Extrapolation 73.81± 0.89 2.53± 0.15
Architecture score + Extrapolation 73.11± 0.58 1.23± 0.09

proceed as follows. For all the individuals in the initial population, we calculate
both the architecture score and the actual validation RMSE value. Then, we
fit a cubic function to these values, by means of least squares minimization, as
explained in Section 3.2. This fitted curve is then used to convert, for any new
network, the architecture score to the corresponding best fit validation RMSE
value. This mechanism is meant to prevent any potential bias in the relative
comparison of architectures evaluated by means of different metrics.

We execute 5 independent runs with different random seeds to improve the
reliability of the results. While searching for the solutions, we consider the valida-
tion HV, which is calculated on the fitness space defined by the validation RMSE
and the number of trainable parameters; we collect the validation HV across 10
generations, and normalize it to [0, 1] by min-max normalization. The monotonic
increase of the mean of the normalized validation HV in Fig. 5 indicates that
the GA keeps finding new non-dominated solutions across the generations.

After finding the solutions, our result analysis is based on the test RMSE,
which is evaluated a posteriori. Therefore, the HV in the rest of this paper is
calculated on the space defined by the test RMSE and the number of trainable
parameters. Fig. 6 shows the results of our experiments and Table 2 describes
the summary of the comparative analysis. In the result analysis, we assess how
the speed-up techniques affect the GA in terms of two metrics: 1) the quality of
the solutions, represented by the HV, and 2) the GA runtime, in GPU hours.

It is obvious that the solutions based on the full training NAS are always the
best in terms of HV, but it takes a rather long time (about 5 hours) to obtain
them. When we merely use the architecture score without training, the NAS
fails to find better solutions w.r.t. the initial population, because as said this
approach alone cannot discriminate complex networks with a larger number of
trainable parameters. If we terminate the training after 15 epochs, the obtained
solutions are still better than the initial populations, but worse than the solutions
obtained by training for 30 epochs. This implies that the learning curves of most
of the networks appeared in our search converge later than 15 epochs. In this



Accelerating Evolutionary NAS for RUL Prediction 13

case, our extrapolation technique helps find better solutions for the same 15
epochs training time, i.e., it improves the HV without significantly increasing the
GA runtime. Finally, the proposed method, which combines the two techniques,
further decreases the runtime while the HV slightly decreases. Its HV is not
comparable to the HV obtained when training for 30 epochs, but this method
allows to save a considerable amount of search time. Compared to the case of
training for 15 epochs, the proposed method not only achieves better HV, but
it saves more than 50% of GPU hours.

6 Conclusions

In this work, we presented a multi-objective evolutionary NAS approach that
uses a custom GA to optimize the architecture parameters of a 1-D CNN spe-
cialized to make RUL predictions. The multi-objective optimization is based on
NSGA-II and aims to achieve a trade-off between two competing objectives:
the RUL prediction error and the number of trainable parameters. To improve
the efficiency of evaluations in the NAS process, we introduced two acceleration
methods for evaluating networks with either training for a reduced number of
epochs or no training at all. The experimental results on the benchmark show
that the speed-up techniques save about 75% of the GA runtime, while the solu-
tions are slightly worse but still much better than randomly generated networks.

The most important limitation of this work is that the learning curve cannot
fully simulate the actual learning trend for some networks. In future work, we
can consider a variety functions (i.e., more than the 5 functions considered in
this work), to enforce the learning curve decay for all the networks.
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Fig. 6: Pareto front for 5 different NAS configurations w.r.t. fitnessRMSE : 30
training epochs (“Tr.30ep”); the combination of the architecture score and the
learning curve extrapolation for (“A.score+extpl.”); the learning curve extrap-
olation after 15 training epochs (“Tr.15ep+extpl.”); 15 training epochs without
extrapolation (“Tr.15ep”); merely using the architecture score (“A.score”). Each
HV is calculated on the space shown in the figure which is defined by the test
RMSE and the number of trainable parameters, and its value indicates the size
of the space covered by the solutions of the corresponding configuration, with
reference point (13, 13). Each figure shows the solutions found in 5 independent
runs. The results of the handcrafted CNN, used as baseline, are taken from [10].
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