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Behavioral effects of non-invasive brain stimulation techniques (NIBS) can dramatically

change as a function of different factors (e.g., stimulation intensity, timing of stimulation).

In this framework, lately there has been a growing interest toward the importance of

considering the inter-individual differences in baseline performance and how they are

related with behavioral NIBS effects. However, assessing how baseline performance

level is associated with behavioral effects of brain stimulation techniques raises up

crucial methodological issues. How can we test whether the performance at baseline

is predictive of the effects of NIBS, when NIBS effects themselves are estimated with

reference to baseline performance? In this perspective article, we discuss the limitations

connected to widely used strategies for the analysis of the association between baseline

value and NIBS effects, and review solutions to properly address this type of question.

Keywords: brain stimulation, baseline performance,mathematical coupling, regression to themean,measurement

error

INTRODUCTION

Converging evidence demonstrates that the behavioral effects of transcranial magnetic stimulation
(TMS) could dramatically change as a function of different factors, such as stimulation intensity
(Moliadze et al., 2003; Abrahamyan et al., 2011, 2015; Silvanto et al., 2017), timing of stimulation
(Kammer, 2007; de Graaf et al., 2014; Chiau et al., 2017; Silvanto et al., 2017) and the initial brain
“state” when stimulation is applied (Siebner, 2004; Silvanto and Pascual-Leone, 2008; Ruzzoli et al.,
2010; Schwarzkopf et al., 2011; Perini et al., 2012; Romei et al., 2016; Silvanto and Cattaneo, 2017).
In this framework, there is lately a growing interest toward the importance of considering the inter-
individual differences in baseline performance when describing the impact of TMS. Although few
studies directly investigated the role of inter-individual differences in determining the behavioral
effects of non-invasive brain stimulation techniques (NIBS), there is currently a strong drive to
explore how NIBS effects covary with individual characteristics, especially with the performance at
baseline (see Silvanto et al., 2018).

A consistent body of independent and recent evidence suggests that baseline performance
modulates TMS effects (Schwarzkopf et al., 2011; Painter et al., 2015; Emrich et al., 2017; Juan
et al., 2017; Paracampo et al., 2018; Silvanto et al., 2018). Furthermore, also the effects of others
brain stimulation techniques, such as transcranial direct current stimulation (tDCS) or transcranial
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random noise stimulation (tRNS), seem to interact with baseline
performance level (Jones and Berryhill, 2012; Tseng et al., 2012;
Hsu et al., 2014, 2016; Benwell et al., 2015; Learmonth et al.,
2015; Juan et al., 2017; Penton et al., 2017; Schaal et al., 2017;
Yang and Banissy, 2017; see also Vergallito et al., 2022 for a
recent review). Together these findings have been interpreted as
indicative of the importance of adopting an individual differences
approach, when describing the effect of NIBS. This is indeed a
potentially important issue for brain stimulation studies: Even
though at group level a modulation in performance does not
emerge, a deeper analysis focusing on individual differences
may disclose stimulation effects characterizing specific classes
of individuals (Silvanto et al., 2018). According to this view,
baseline performance can be seen as an indirect measure of
neural excitability that, in interaction with the TMS intensity,
contributes to the behavioral outcome (Silvanto and Cattaneo,
2017; Silvanto et al., 2017, 2018). The facilitatory vs. inhibitory
effect of TMS as a function of neuronal excitability is a well-
established mechanism and it is consistently observed when
TMS is applied during a behavioral task following a predictable
manipulation of the initial neural state, such as adaptation or
priming (see Silvanto et al., 2008 for a review). State-dependent
TMS effects in paradigms based on priming/adaptation have been
observed in a range of different domains, from number and letter
processing (Kadosh et al., 2010; Cattaneo Z. et al., 2010; Renzi
et al., 2011) to action observation (Cattaneo, 2010; Cattaneo
L. et al., 2010; Jacquet and Avenanti, 2015) and perception of
emotion (Mazzoni et al., 2017).

Assessing how baseline performance level (and brain state)
determine behavioral effects of brain stimulation techniques
is therefore an important question, which raise up crucial
methodological issue. How to assess the association between
baseline value and subsequent change? Or, in other words, how
can we test whether the performance at baseline is predictive
of the effect of NIBS? An approach that has been typically
used to provide evidence of an association between baseline
performance and their changes after the stimulation is the
correlation approach. This consists in regressing or correlating the
magnitude of the induced stimulation effect (which is defined as
the performance in the effective TMS/tDCS condition minus the
performance in the baseline/Sham condition) with the baseline
level of performance (sham stimulation) (Emrich et al., 2017;
Penton et al., 2017; Yang and Banissy, 2017; Paracampo et al.,
2018; Silvanto et al., 2018; Diana et al., 2021; Wu et al., 2021).
Another conceptually similar approach is the categorization
approach (Tu et al., 2005). It consists in categorizing subjects
according to threshold values, such as the median baseline
performance (i.e., median-split) and subsequently comparing the
effect of NIBS in terms of changes in the behavioral outcome
(defined as the active TMS/tDCS condition minus the baseline
performance) across the two subgroups (i.e., “low” performers
vs. “high” performers) (Tseng et al., 2012; Hsu et al., 2014,
2016; Benwell et al., 2015; Learmonth et al., 2015; Juan et al.,
2017; Schaal et al., 2017; Silvanto et al., 2018). However, these
approaches are connected to severe biases in estimating the
effects. Albeit such biases are well documented (Oldham, 1962;
Tu et al., 2005; Chiolero et al., 2013), they have been neglected in

several TMS/tDCS studies. We first illustrate biases connected to
these methods, and we conclude by discussing techniques that
have been proposed to investigate baseline modulatory effects
without incurring in such biases.

Biases of the Correlation Approach
The correlation approach consists in correlating or regressing a
baseline with a deviation from the baseline, or equivalently in
regressing the deviation from the baseline on the baseline. One
issue with this strategy is not taking into account that the estimate
of the deviation from a baseline depends on the baseline itself
(Oldham, 1962). This issue is known as mathematical coupling,
and can take place when a correlation is estimated between two
variables that share a common source of variation (Blance et al.,
2005). Let us denote as xi the observed baseline performance of
the i-th individual and as yi the performance observed after NIBS.
The deviation of i’s performance from the baseline is computed
as di= yi−xi. The relationship between baseline performance and
NIBS effect can be then estimated as the correlation rd,x=ry−x,x.
We should suspect a mathematical coupling by seeing that x
contributes to both variables being correlated. Since x contributes
positively to the first term of the correlation and negatively to
the second term, the expected correlation is negative (Spearman,
1913).

A simple numeric example is probably the most effective way
to illustrate how dramatic the effects of mathematical coupling
can be (Oldham, 1962). We can use the R statistical language
(R Core Team, 2021) to generate random data representing
the performance of N = 50 subjects in the baseline (x) and
experimental stimulation (y) conditions.

1 set.seed(1)

2 x <- rnorm(50)

3 y <- rnorm(50)

4 t.test(x, y, paired = TRUE)

5 cor(x, y)

6 cor(x, y–x)

The first line, set.seed(1), serves to fix the random number
generation procedure, such that the readers will be able to
produce our exact same results on their computers. Lines 2
and 3 actually generate the data at baseline and after NIBS. In
this example, all datapoints are independently sampled from a
standard normal distribution with µ = 0 and σ = 1. Thus,
data come from a population in which there is no relationship
between the variables involved and no effect of neurostimulation
whatsoever. In short, such data come from a population in which
the null hypothesis is true for all parameters of interest. In
fact, at line 4, we can test the effect of the NIBS by comparing
performance before and after stimulation, and obtain a null
result, t(49)=−0.09, p= 0.93, as it could be expected. Similarly,
at line 5, we test the correlation between x and y and obtain a
null result, r = −0.039, p = 0.79 (Figure 1A). However, at line
6 we test the correlation between the baseline and the deviation
from the baseline, and we obtain ry−x,x = −0.67, p < 0.001
(Figure 1B). If we repeated the example with a different random
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seed, we would obtain slightly different results each time. On
average, it can be demonstrated that our results would converge
toward the value ry−x,x = 1√

2
∼= 0.707 (Spearman, 1913;

Chiolero et al., 2013).1 Thus, under the null hypothesis of no
relationships and no effect of neurostimulation, a researcher
using the correlation approach would expect to find a correlation
between the baseline and the deviation that can be considered
very large (Cohen, 1988).

Another bias connected to the correlation approach is
regression toward themean due tomeasurement error at baseline
(Nesselroade et al., 1980; Blomqvist, 1987; Tu et al., 2005). Let
us now consider the fact that the individual performance is
always assessed with a certain degree of error. Variations in
observed performance could reflect transient and non-systematic
factors (tiredness, distraction, etc.), which introduce noise in
the assessment. The observed performance at baseline of the i-
th subject could be decomposed into xi = Xi + exi, where
the observed performance xi is given by the sum of the true
performance Xi and measurement error exi. The same holds for
the performance after NIBS, yi = Yi + eyi. A researcher’s
aim would be to estimate the true correlation, which is the
correlation involving the true latent performance rY−X,X , but the
researcher would typically approximate that value by estimating
the correlation involving observed performance, ry−x,x. However,
the observed difference yi − xi is equal to Yi− Xi + eyi − exi.
The correlation ry−x,x is thus affected by the measurement error
exi being present both in the independent and in the dependent
variable, with opposite signs. In particular, Blomqvist (1987) has
shown that the relationship between the observed correlation (or
regression slope) and the true value is ry−x,x = rY−X,X

(

1− k
)

−k,

where k = σ 2
ex

σ 2
x
is the measurement error, the ratio of the error

variance of the observed baseline performance, σ 2
ex
, to the total

variance of the observed baseline performance, σx. For example,
let us assume a situation in which the true correlation is very
low, rY−X,X = 0.01, and the error variance in performance
assessment is 40% (a value that is not uncommon in tasks used
in the field, e.g., Fan et al., 2002). The researcher would expect
to observe a correlation of ry−x,x = −0.394, which would be
regarded as significantly different from zero (p < 0.05) on a
sample of more than N = 25 participants.

Interestingly, both biases lead to the same type of results,
which is observing a negative correlation between baseline and
change. This is exactly what most of the studies in the field
reviewed above reported.

Biases of the Categorization Approach
The categorization approach consists in categorizing subjects
into two groups, one including those with higher baseline
performance (e.g., above the median) and the other including the

1If we used an unstandardized regression approach, our results would converge

towards a slope b = −1 (Blomqvist, 1987), which is equivalent to a correlation

of 1√
2
. This can be seen considering that the population variance of x and y are

σx = σy = 1 and their correlation is σxy = 0. The standard deviation of y–x is thus

σy−x =
√

σx + σy − σxy =
√
2. The regression slope by−x,x can be standardized

with the formula ry−x,x = by−x,x
σx

σy−x
= 1√

2
.

remaining subjects. The deviation in performance between the
two groups is then compared (e.g., in using t-test or ANOVA).
The categorization approach avoids mathematical coupling but
is nonetheless affected by regression toward the mean.

As for the correlation approach, an easy way to understand
why the categorization approach is problematic is considering
what would happen if this was applied under the null hypothesis.
Let us define the null hypothesis as the one in which
the neurostimulation has no effect whatsoever and the true
performance of all participants is the same. For simplicity, let us
assume that the true performance takes value zero (i.e.,Xi = Yi =
0, ∀i). In this situation, any variance in the observed performance
is just measurement noise. Following the typical categorization
approach, we would nonetheless perform a median or mean
split, relying on the observed baseline performance, and divide
participants into high performers (highP) and low performers
(lowP). The observed performance of the highP group will
thus be always larger than the observed performance of the
lowP group, but this will not be true for the performance
after neurostimulation. Therefore, we will typically observe a
performance increase after stimulation for the lowP group and
a performance decrease for the highP group.

This bias can also be easily illustrated by continuing the simple
numeric example used above. In particular, lines 7–10 in the
code below perform the median split, separating the x and y
variables for those who have better or worse observed baseline
performance. Lines 11–12 perform a paired-samples t-test to
examine changes in performance in the lowP group and calculate
the effect size dz (Cohen, 1988; Perugini et al., 2018). Lines 13–14
replicate the analysis for the highP group.

7 x_lowP <- x[x <= median(x)]

8 x_highP <- x[x > median(x)]

9 y_lowP <- y[x <= median(x)]

10 y_highP <- y[x > median(x)]

11 t.test(x_lowP, y_lowP, paired = TRUE)

12 mean(y_lowP – x_lowP)/sd(y_lowP – x_lowP)

13 t.test(x_highP, y_highP, paired = TRUE)

14 mean(y_highP – x_highP)/sd(y_highP – x_highP)

The results of the t-test show, as expected, a significant
performance improvement for the lowP group, t(24) = −2.90,
p = 0.008, dz = 0.58, as well as a significant decrease in
performance for the highP group, t(24) = 2.89, p = 0.008, dz =
−0.58 (Figure 1C). This is of course an example on few randomly
generated data points: If one repeated this example with different
random data, the effect size would converge toward the values

dz = ±
√

1
π−1 (i.e.,±0.68),2 an effect that is considered by Cohen

2This value can be obtained by considering that ylowP and yhighP have been sampled

from a standard normal distribution. Since the median of a standard normal

distribution is zero, xhighP and xlowP follow a half-normal distribution, with mean

M =±
√

2
π
and SD=

√

π−2
π

(Olmos et al., 2012). The expected value of the effect

size dz can then be calculated as the mean of the differences between ylowP − xlowP

or yhighP−xhighP , which are respectively+
√

2
π
and−

√

2
π
, divided by the standard
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FIGURE 1 | Illustration of mathematical coupling and regression to the mean using a numeric example with N = 50 subjects. (A) visualizes the relationship between

the simulated baseline performance (x) and the simulated performance after NIBS (y). Data are simulated to be uncorrelated. (B) shows the biases in the correlation

approach, by visualizing the relationship between the baseline performance (x) and the deviation from the baseline after NIBS (d). (C) shows the biases in the

categorization approach: The sample is split into high-performers (highP) and low-performers (lowP) and the baseline performance is compared with the performance

after NIBS. Bars represent ±1 SE.

above the medium size [i.e., “one large enough to be visible to the
naked eye” (Cohen, 1988)], with a positive sign for the lowP group
and a negative sign for the highP group.

Suggested Approaches
We have shown how a researcher using either the correlation
approach or the categorization approach would easily believe to
have found a potentially interesting effect, even in a situation in
which no effect is present, just because of mathematical coupling
and regression to the mean. However, investigating how baseline
performance can modulate NIBS effects is a very interesting
research question and should not be neglected. Methods for
testing such effects have been developed that allow reducing the
impact of such systematic biases.

The first method has been proposed by Oldham (Oldham,
1962), and it consists in simply correlating the mean (or,
equivalently, the sum) of the performance at baseline and after
the stimulation (i.e.,

x+y
2 ) with the performance change (x − y).

Albeit this method might appear very similar to the correlation
method illustrated above, it can be demonstrated that it gets rid
of the mathematical coupling (Tu and Gilthorpe, 2007). This
method can be used in any situation in which the correlation
approach is used, by simply changing one of the terms.

It has been shown that Oldham’s method is equivalent to test
a change in variance between x and y (Tu and Gilthorpe, 2007)
and that a differential effect of NIBS according to the baseline
implies a change in variance (Chiolero et al., 2013). An alternative
test similar to Oldham’s method is to directly test the differences
between the variances of x and y (Tu and Gilthorpe, 2007).
However, an important limitation of both this and Olhdam’s

deviation of such differences, which is in both cases
√

2π−2
π

. The expected effect

size is then given by dz = ±
√

2
π

2π−2
π

=
√

1
π−1 .

methods is that any factor increasing or decreasing variance after
NIBS other than the genuine stimulation effects, namely a change
in error variance after NIBS, could lead to spurious conclusions
(Tu et al., 2005; Chiolero et al., 2013).

In the above discussion, we have shown that if x and y are
unrelated, the expected correlation between the baseline and
the deviation from the baseline is ry−x,x = 1√

2
. Researchers

could then wonder whether it would be possible to test the
correlation observed in their samples against this value, instead
of zero. The issue is slightly complicated by the fact that the
expected correlation is not always ry−x,x = 1√

2
, but it depends

on the correlation between x and y. Tu and colleagues (Tu et al.,

2005) showed that the correct value can be calculated as

√

1−rxy
2 .

This method showed performances comparable to the Oldham’s
method in simulation (Tu et al., 2005). Like Oldham’s method,
this strategy assumes that error variance in the assessment of
performance does not differ before and after NIBS (Tu et al.,
2005).

Another method has been proposed by Blomqvist (1987),
which corrects the distortion introduced by regression to the
mean due to measurement error in baseline performance. This
method requires estimating the parameter k mentioned above,
to recover the true unbiased correlation from the observed
correlation or regression slope using the formula3 ry−x,x =
ry−x,x+k

(1−k)
. Parameter k, the measurement error, can be estimated

as one minus the reliability of the test used for assessing

3Notice that Blomqvist (1987) reports a slightly different formula from those

used here, in which k is subtracted and not added from the observed

correlation/regression slope. This is because in some fields the deviation from

baseline is calculated as y–x (i.e., improvement from baseline), in other fields the

same change is calculated as x–y (i.e., deterioration from baseline), thus implying

a change in sign.
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performance (see Parsons et al., 2019 for guidance on how to
estimate reliability in cognitive tests), and should be obtained
on data independent of those used for the baseline (Tu and
Gilthorpe, 2007). A limit of Blomqvsist’s method is that it does
not correct for regression to the mean due to factors other than
measurement error, such as that due to genuine heterogeneity in
the responses of patients to treatments (Tu and Gilthorpe, 2007).

Methods based on multilevel linear models have also been
suggested to obtain unbiased estimates. In particular, if one has
available many repeated measures over time and is interested in
estimating whether the (e.g., linear) trend in change over time is
related to the baseline, one can employ multilevel linear models
and estimate the correlation between random intercept (i.e.,
the interindividual variance in the baseline performance) and
random slope (i.e., the interindividual variance in the deviation
from the slope) (Byth andCox, 2005; Chiolero et al., 2013). This is
also possible if only two assessments of performance are available,
but estimating such models requires constraining error variance
to zero to make the model identified (Blance et al., 2005). When
using mixed models, it is crucial to center the predictor variable
(i.e., time should be coded as −0.5 if before NIBS and +0.5 if
after NIBS, not as 0 and 1), otherwise estimates will be vulnerable
to mathematical coupling (Blance et al., 2005). Unlike other
methods reviewed, this solution allows testing more elaborated
models including also covariates (Blance et al., 2005).

CONCLUSIONS

The main goal of this perspective article was clarifying the
main biases connected to widely used methods to examine
the association between baseline performance and NIBS effects,
reviewing solutions proposed in the literature. In particular, we
have shown that mathematical coupling and regression to the
mean can have large distorting effects on estimates, leading to
extremely biased conclusions even when the null hypothesis

is true. We also reviewed several solutions to mitigate such
biases. None of the methods reviewed can be considered as the
perfect solution, and whether one of such methods is superior
to the others is still debated (Hayes, 1988; Tu et al., 2005; Tu
and Gilthorpe, 2007; Chiolero et al., 2013). However, any of
these methods will be superior to both the correlation and the
categorization approaches that have been used in the field of
NIBS. In situations in which is difficult to determine which
biases are more likely to affect one’s estimate, we suggest to apply
different methods (e.g., Oldham’s and Blomqvist’s method), to
inspect the results after considering different sources of bias.

We wish to stress that the biases and the solutions reviewed
here are not recent findings. Some of them have been known
for more than fifty years (Oldham, 1962; Blomqvist, 1987).
Furthermore, these biases are not strictly specific to NIBS,
but are relevant whenever one is interested in examining
the relationships between baseline levels and deviations from
such levels. Nonetheless, knowledge of such biases and
solutions does not seem to be effectively integrated in the
NIBS literature. The present work thus provides a strong
contribution to a deeper understanding of the non-linear
effects observed in brain stimulation studies (Schwarzkopf
et al., 2011; Jones and Berryhill, 2012; Tseng et al., 2012;
Hsu et al., 2014; Benwell et al., 2015; Painter et al., 2015;
Learmonth et al., 2015; Emrich et al., 2017; Penton et al.,
2017; Schaal et al., 2017; Yang and Banissy, 2017; Paracampo
et al., 2018; Silvanto et al., 2018), and represents a step
forward toward a full exploitation of the potential of brain
stimulation techniques.
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